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ABSTRACT The effective distribution of relief to an emergency logistics system plays a crucial role
during the disaster response phase. Considering stochastic characteristics of relief demand, this study
investigates the robust optimization of a multi-objective multi-period location-routing problem for epidemic
logistics, a special emergency logistics, with uncertain scenarios. A corresponding robust multi-objective
multi-period optimization model is proposed, which aims to determine the optimal location of temporary
relief distribution centres and route planning simultaneously. The optimization objectives include the total
travel time, the total cost, and the disutility of relief service. To solve the above optimization model,
a preference-inspired co-evolutionary algorithm with Tchebycheff decomposition (PICEA-g-td) is given.
The performance of the proposed PICEA-g-td is evaluated by comparing it with NSGA-II, MOEA/D and
PICEA-g. The experimental results show that the proposed algorithm performs better than the other three
algorithms in terms of the solution quality. Finally, some useful management insights are obtained.

INDEX TERMS Epidemic logistics, robust optimization, location-routing problem, multi-objective opti-
mization, improved heuristic algorithm.

I. INTRODUCTION
Outbursts of emergencies from public health events have
occurred worldwide, causing a large number of deaths.
Examples in recent years include the 2003 Severe Acute Res-
piratory Syndrome (SARS) outbreak in Canada, China, Hong
Kong, Singapore, Taiwan, and Vietnam [1], the 2009 H1N1
influenza in Turkey, Canada, Florida, and China [2], the
outbreak of Ebola in Uganda, Sudan, Congo and some coun-
tries in West Africa [3], [4], and the Coronavirus Disease
2019 (COVID-19) Outbreak, which is currently occurring
throughout the world [5]. These epidemic diseases not only
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have caused casualties but also had a serious impact on the
national and regional economies.

Since December 2019, more than 80 thousand cases
of pneumonia caused by Coronavirus Disease 2019
(COVID-19) have been reported in China.Wuhan, as a severe
epidemic area in China, has treated 50 thousand people, and
there have been more than 50 thousand infected people [6].
A series of measures have been taken to control the spread
of the epidemic and to speed up epidemic disease recovery.
From January 23rd, 2020, an effective lockdown was used in
the urban area of Wuhan [7]. In other words, traffic in Wuhan
was restricted to make people and vehicles unable to com-
municate to the outside world without permission. By May
2020, the number of infected people in China dropped below
1,000, and the death rate was under 5% (approximately
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4650 deaths). In contrast, the number of COVID-19 cases
globally remains at the highest levels since the beginning
of the pandemic, with over 5.7 million new weekly cases,
and new deaths continuing to increase for the seventh con-
secutive week, with over 93,000 deaths by May 2021 [8].
Compared with the current situation outside China, Wuhan
epidemic prevention measures can be used as a good case
study. To ensure that a large number of the epidemic infected
people receive timely medical treatment, epidemic logistics,
as a special type of emergency logistics, decision-makers
must make optimal decisions to ensure a stable supply of
medical materials during a city lockdown. Disaster temporary
relief distribution centres play an important role in emergency
supplies, i.e., three logistics parks were chosen as disaster
temporary relief centres to provide logistics services during
the lockdown of Wuhan. At the same time, sixteen module
hospitals that are temporary hospitals converted from sports
stadiums and exhibition centres were set up to treat the rapidly
growing number of infected epidemic people. Locating dis-
aster temporary relief centres and planning rational routes to
provide relief to these hospitals have a significantly positive
impact on the overall performance of epidemic logistics.

Infection materials, such as medical materials and daily
supplies during the epidemic outbreak, were defined as
class 6 hazardous materials by the Jefferson Lab [9]. For
the transportation of hazardous materials, researchers suggest
avoiding societal risk and reducing the potential exposure
of the population in the logistics [10], [11]. Compared with
traditional logistics, epidemic logistics must respond quickly
within a short time of the outbreak to effectively control an
epidemic outbreak [12]. There are many challenges to the
location of temporary relief distribution centres and route
planning, while the external environment changes rapidly
with the disaster outbreak. The location-routing problem
(LRP), as the core of emergency logistics, has wide appli-
cation value in socioeconomic activities [13], [14]. In the
traditional location-routing problem, decision makers access
information about customers and make two types of deci-
sions: the location of distribution centres and the design
of the vehicle routes [15]. Considering that information
about the relief needs is imprecise as the epidemic disaster
progresses, it is one of the most important decisions for
emergency logistics management to dynamically optimize
temporary relief distribution centres and route planning [16].
Normally, in stochastic logistics, there are some uncertain
parameters within the planning horizon. To reduce the error
caused by parameter variations, stochastic problems can be
divided into multiple periods and adopt multiple decision
making to reduce decision errors [17], [18]. Considering
that multi-period LRPs are a much better model to address
stochastic location and routing problems with uncertain
parameters, a multi-period LRP model is used to solve the
dynamic LRP under emergency logistics [19]. The robust pre-
dictive control approach is a useful tool to handle emergency
logistics with uncertain data such as supply and demand [20].
Based on the robust optimization approach of Bertsimas and

Sim, robust relief route planning is used to ensure that relief
supplies are met as much as possible [21].

Different from traditional logistics, which mainly pursue
the maximization of benefits, emergency logistics decision
makers prefer to consider the relief process as a humanitarian
issue [16]. Timely relief supplies can ensure that epidemic
disaster-infected patients are treated as quickly as possi-
ble, and thus, the backing time is a key factor for emer-
gency logistics. Humanitarian relief operations are concerned
by a variety of stakeholders, such as local governments,
the military and non-governmental organizations. Therefore,
a major challenge of emergency logistics also focuses on
providing equitable services to all aid recipients. A good
example is to encourage a vehicle not to necessarily sat-
isfy a vertex’s entire demand but rather to save supply to
serve another vertex when relief supplies are scarce [22].
In addition, non-profit indicators such as fair distribution
(such as minimizing the absolute deviations of a fraction
of unsatisfied demands between affected areas to fairly
allocate recourse) reflect the humanistic concern of relief
operations [23], [24]. To balance the economy, society and
efficiency of epidemic logistics, the problem features three
objectives: the total travel time, the total cost, and the fairness
of relief allocation. This study considers a multi-objective
multi-period robust location-routing problem with uncertain
demand (MMRLRP) to optimize epidemic logistics during
public health events. In a planning horizon, the demand for
relief is stochastic in the epidemic area. However, the infor-
mation about the demand points is known at the beginning
of each period. Several potential relief distribution centres
are placed in reasonable locations, and the challenges are
to make decisions on the relief distribution centre locations
and on allocating demand points under several periods of
the epidemic. The problem consists of locating several relief
distribution centres to serve in each period and planning
routes for the demand points under the condition that the
following requirements are met: (1) the demand allows for
a shortage of relief supplies (2) each demand point is visited
once, (3) there are shortage of relief supplies at the early and
mid- stage of an outbreak, and (4) each vehicle route has a
carrying capacity Q.

The main contributions of this paper are shown as fol-
lows: First, a robust optimization model on a multi-objective
location-routing problem for epidemic logistics system
design with multi-period is proposed. Second, an improved
heuristic algorithm named PICEA-g-td is developed and
examined by numerical experiments, as well as a real-world
case study. The proposed algorithm is embedded with a
decomposition strategy, so as to improve its computational
performance. Finally, the sensitivity analysis of some key
parameters on the proposed model is conducted, and some
useful management insights are obtained by the numerical
experiments and case study on the epidemic disease outbreak
of Coronavirus disease 2019 (COVID-19) in Wuhan.

The remainder of this paper is organized as follows.
Section 2 reviews the related work. Section 3 elaborates
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the problem description and describes the mathematical
model. The details of the improved preference-inspired
co-evolutionary algorithm are described in Section 4. Numer-
ical experiments are conducted in Section 5, followed by
conclusions in Section 6.

II. LITERATURE REVIEW
The most important function of emergency logistics is to
ensure the supply of relief–i.e., medical mask, protection suit,
and medicine–quickly and in sufficient quantities during the
disaster outbreak. Therefore, epidemic logistics ensures that
patients are treated and prevents the spread of the disease
among affected people. For the past 20 years, emergency
logistics have received more attention because of their the-
oretical and practical significance. There are several typical
optimization models for emergency logistics: multi-objective
relief distribution models and stochastic relief distribution
models.

Considering the characteristics of relief supply, emergency
logistics have usually been constructed as multi-objective
location-routing models with timeliness indicators [25], [26].
Wang et al. [27] proposed a multi-objective location-routing
model for the relief distribution problem. The model con-
siders three objectives: the total cost, the travel time, and
the reliability under high uncertainty in emergency logistics.
Gan and Liu [28] developed the modified non-dominated
sorting genetic algorithm II to optimize the emergency
logistics model in large-scale disaster relief, which mini-
mizes the transportation cost and the total unsatisfactory
time. However, the information from the model is consid-
ered to be deterministic, and emergency logistics scheduling
should be regulated with uncertain and updated informa-
tion. Feng et al. [29] considered the timeliness and economy
of emergency logistics and proposed a location selection
of emergency supplies and route planning to minimize the
total transport length and cost. The model converts the two
objectives mentioned above into a single objective, therefore,
it is impossible to obtain Pareto solutions that can provide
sufficient decision information. Vahdani et al. [19], [30]
suggested a multi-objective, multi-period, multi-commodity
location-routing model to optimize the transportation time,
the total cost, and the routing reliability. Two meta-heuristic
algorithms were developed to seek the Pareto solutions and
for locating relief centres, allocating demand points and
planning vehicle routes. Beyond the above-mentioned multi-
objective emergency logistics problems that are related to the
objective function of timeliness, there are still some studies
about other humanitarian factors. Bozorgi-Amiri et al. [31]
considered maximizing the affected areas’ satisfaction levels
to be a key factor in emergency logistics. They constructed a
multi-objective robust model that involved minimizing short-
ages in the affected areas andminimizing expected total costs.
Mohamadi et al. [32] presented a multi-objective emergency
logistics model that consists of three objectives: the total
transportation distance, the service coverage of the facilities
and the routes’ availabilities. Barzinpour considered both

economic and humanitarian objectives in urban disasters and
proposed a multi-objective location distribution model to
solve the location-allocation problem of urban relief distri-
bution [33]. In addition to the cost, the model considers
cumulative coverage of the population to be a key factor
in humanitarian relief chain management. According to the
papers mentioned above, multi-objective emergency logistics
mainly focus on the economy, timeliness and humanitarian
objectives to address the rescue process during the disaster
outbreak.

Different from traditional business logistics with a
stable market environment and deterministic informa-
tion, decision-makers of emergency logistics must make
decisions in stochastic environments [34], [35]. Stochastic
LRPs with random parameters are more suitable for
solving real-life location problems with routing and usu-
ally divide the planning horizon into multiple periods [17].
Bozorgi-Amiri et al. [16] considered a humanitarian emer-
gency logistics problem as a multi-objective stochas-
tic model, and they converted the multi-objective model
to a single-objective model by the ε-constraint method.
Duhamel et al. [36] considered the population distribu-
tion for post-disaster situations and proposed a multi-period
location-allocation model to seek optimal combinations to
maximize population assistance. Moreno et al. [37] studied
a multi-period location-transportation problem for deliver-
ing relief supplies under uncertain conditions in emergency
logistics. Two stochastic programming models and decom-
position heuristics are proposed for relief facility location
and transportation decisions. Vahdani et al. [19] considered
the repair of damaged roads after a disaster and suggested a
multi-period location-routing model for timely relief distri-
bution to locate the distribution centres and arrange vehicle
routing. In this research, the supplies of relief are divided
into several periods because the repair of roads lasts for
several periods depending on the proportion of roads dam-
aged. Yu et al. [38] proposed a multi-period reverse logistics
network focused on the optimal location of facilities and
vehicle routes to provide a strong response to healthcare
services, to tackle medical waste during an epidemic out-
break. A real-world case study based on the outbreak of
COVID-19 in Wuhan was used to illustrate the applicability
of the model. In addition to the relief distribution, multi-
period models are widely used in business logistics with
uncertainty. Klibi et al. [39] studied stochastic multi-period
location-transportation problem consisting of a two-stage
stochastic programming: the strategic level is responsible
for the network location and allocation decisions, and the
user level is responsible for vehicle transportation decisions.
Imen et al. [40] considered that the planning horizon must be
partitioned into several periods to illustrate the uncertainty of
the demand and cost. They proposed a two-echelon stochastic
multi-period capacitated location-routing model to design a
logistics network to satisfy future flexibility distribution for
a company. Rabbani et al. [41] innovated a multi-period
stochastic location-routing model for industrial hazardous
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waste management and developed the non-dominated sort-
ing genetic algorithm-II (NSGA-II) based on a Monte Carlo
simulation to tackle location, inventory and routing deci-
sions. Rafie-Majd et al. [42] suggested a perishable product
supply chain with stochastic demand and proposed a multi-
period inventory-location-routing model in which the time
horizon of deliveries was divided into several time periods.
To solve the model, a heuristic algorithm and Lagrangian
relaxation method were used to obtain the optimal solu-
tion. Peiman Ghasemi et al. [43] proposed an uncertain
multi-objective multi-commodity multi-period multi-vehicle
location-allocation mixed-integer mathematical program-
ming model for earthquake rescue. The research considered
two objectives: the total cost and the amount of the shortage
of relief supplies under an uncertain disaster scenario. In most
existing studies on emergency logistics, uncertainty is mod-
eled using a scenario-based probability approach. However,
it is difficult to accurately set scenario-based probabilities
during the response phase of a disaster, which is a tough
challenge for decision-makers.

According to this literature review, existing studies about
emergency logistics focus on multi-objective models or
stochastic multi-period models, and most studies focus
on post-disaster relief distribution [19], [20]. Although
some studies have addressed multi-objective multi-period
relief distribution models with uncertainties, the uncer-
tainty in the demand is mainly to research the demand
level, which is usually considered to be distributed within
a range [16], [37]. This paper studies the multi-objective
multi-period location-routing model considering the uncer-
tainty of demand points for emergency supplies at various
periods of a disaster. In particular, this study studies relief
distribution in the emergence, development and control of
epidemic diseases.

As discussed above, the location-routing problem is one
stream of epidemic logistics and is a typical NP-hard prob-
lem solved by an evolutionary strategy algorithm. The
multi-objective multi-period robust location-routing prob-
lem with uncertain demand (MMRLRP), as a variant of
the standard LRP, poses great challenges to the current
research in multi-objective optimization. To obtain Pareto
solutions for multi-objective problems (MOPs), a variety of
MOEAs have been proposed for MOPs during the past few
decades [36]. Some classical MOEAs, such as NSGA-II [44],
MOPSO [45], [46] andMOSA [47], have proven to be advan-
tageous in obtaining Pareto solutions. When the MOPs have
more objectives, it can easily exist that the current popula-
tion becomes non-dominated with each other, which makes
the algorithms have poor performance [48]. Many-objective
MOEAs (e.g., MOEA/D [49], HypE [50], MSOPS [51])
have been proposed to solve the problem with more objec-
tives. Purshouse et al. [52] proposed a decision-maker
preference co-evolving concept to solve multi-objective
problems. In this concept, a family of decision-maker pref-
erences is co-evolved with candidate solutions to converge
towards the Pareto front. Wang et al. [53], [54] developed

a preference-inspired co-evolutionary algorithm (PICEA-g)
based on the co-evolved concept and verified the superiority
of the proposed algorithm by comparison with NSGA-II,
ε-MOEA, HypE and MOEA/D on multi-objective bench-
mark instances.

III. MATHEMATICAL MODEL
In this study, a multi-objective multi-period robust
location-routing problem(MMRLRP) is considered to deliver
relief to demand points during an epidemic disaster outbreak.
The decisions of epidemic logistics included the location of
temporary relief distribution centres (TRDCs), relief alloca-
tion of hospitals and vehicle routing in each period of the
epidemic disaster outbreak. Medical masks, protection suits,
andmedicine are regarded as crucial relief items required dur-
ing epidemic disaster outbreaks, and the demand is stochastic
in each period. Servicing to all demand points of the route,
vehicles will return to the TRDCs because of the need to
prevent the spread of the epidemic, which is consistent with
the practical operation.

A. PROBLEM DESCRIPTION
In the MMRLRP, information on the demand points, includ-
ing the positions, service time, is known at the beginning of
the planning horizon. However, factual demands are revealed
only after the location-routing decision has been made. The
stochastic demand q̃tj takes values in

[
qtj − q̂

t
j , q

t
j + q̂

t
j

]
, qtj

and q̂tj represent the demand nominal value of demand point
j at period t and the maximum deviations from this nominal
value, respectively. Relief supplies are related to the treatment
of patients, and a shortage of relief supplies is allowed in this
paper.

The problem aims to determine the subset of TRDCs to be
used and to plan routes for the demand points considering the
condition of meeting the vehicle capacity and the capacity
of TRDCs. The location of the TRDCs and the allocation
of the demand points are adjusted based on the stochas-
tic demand level. Considering the stochastic demand, this
paper proposes a robust optimization approach to ensure that
relief supplies (as many as possible) meet the capacity of
TRDCs. In addition, it is noteworthy that the multi-period
problemmust account for the condition in the previous period
at each period. There is a fundamental difference in the
decision-making about each period of the location-routing
problem separately.

The following three objectives are considered for the
MMRLRP: (1) minimization of the total travel time of vehi-
cles; (2) minimization of the total costs, including the rental
costs of TRDCs, the fixed vehicle costs and the transportation
costs; and (3) minimization of the disutility of relief service.

Objective 1 is for the pursuit of effectiveness. An early
vehicle backing time means that faster assistance is pro-
vided for the affected population. Objective 2 is for the
economic value. Even in the context of epidemic logis-
tics, the MMRLRP should consider having limited funds.
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Objective 3 is for the fairness of emergency logistics. In addi-
tion, non-profit indicators such as fair distribution (such as
minimizing the absolute deviations of a fraction of unsatisfied
demands between affected areas to fairly allocate recourse)
reflect the humanistic concern of relief operations [23], [24].

B. THE OBJECTIVES OF THE MMRLRP
1) SETS AND INDICES
I : Set of TRDCs indexed by i{1, 2, . . . , I}
J : Set of demand points indexed by j{1, 2, . . . , J}
K : Set of vehicles indexed by k {1, 2, . . . ,K }
T : Set of planning periods indexed by t{1, 2, . . . ,T}

2) MODEL PARAMETERS
Fi: Fixed cost locating a TRDC at location i
Capti : Output of TRDC i in period t
sj: Service time of demand point j
q̃tj : Relief demand of demand point j in period t
dgh: Distance between vertex g and h
cdgh: Transportation cost between vertex g and h
αs: Punish coefficient for one unit relief shortage
Qk : Loading capacity of transportation vehicles
v: Speed of transportation vehicles
Fv: Use-cost of a transportation vehicle
c: Transportation cost per unit distance of a vehicle
Stik : Departure time of vehicle k from the TRDC i.
Ma: A very large positive number

3) DECISION VARIABLES
yi (t): 1, if TRDC i is selected to be used at period t;

0, otherwise
xijk (t): The number of relief supplies provided by

TRDC i to demand point j at period t
µik (t): 1, if vehicle k is allocated to the TRDC i at

period t; 0, otherwise
ujk (t): 1, if demand point j is serviced by vehicle k in

period t; 0, otherwise
δhgk (t): 1, if vehicle k goes from vertex g to vertex h in

period t; 0, otherwise
endik (t): Backing time of vehicle k to the relief

distribution centre i in period t
entjk (t): Entrance time of the vehicle k to the demand

point j
short tj : Amount of unsatisfied relief at demand point j

in period t

Four objectives of the MMRLRP are as follows:
(1) The first objective: The sooner the vehicle reaches the

demand points, the better we provide treatment to the affected
population. The response time is considered to be key factor
in relief logistics. We focus on the total traveling time of
vehicles to ensure time effectiveness.

min Z1 =
∑
t∈T

∑
i∈M

∑
k∈K

endik (t) (1)

(2) The second objective is to minimize the total cost and
to balance the rental costs of TRDCs and transportation costs
in the planning horizon:

min Z2 =
∑
t∈T

∑
i∈M

Fiyi (t)+
∑
t∈T

∑
i∈M

∑
k∈K

Fvµik (t)

+

∑
t∈T

∑
g∈M∪N

∑
h∈M∪N

∑
k∈K

cdghδghk (t)

+αs
∑
t∈T

∑
j∈J

short tj (2)

where part one of formula (2) is the rental cost of the TRDCs.
Part two is used to calculate the fixed cost of the vehicles. Part
three is the transportation cost. The last part is the penalty cost
for shortages of relief supplies.

The third objective is the disutility of relief service. This
concept applies to measure the fairness of customers’ access
to emergency relief [22].

min Z3 =
∑
t∈T

∑
j∈N

f
(
Udj (t)

)
(3)

where f
(
Udj (t)

)
is a piecewise linear disutility functions are

defined as follows:

f (x) =



4x
13
, x < 0.25

8x − 1
13

, 0.25 ≤ x < 0.5

16x − 5
13

, 0.5 ≤ x < 0.75

24x − 11
13

, 0.75 ≤ x

(4)

where Udj (t) is the proportion of demand point j lacking

relief supplies and Udj (t) =
short tj
q̃tj

if the need for emergency

supplies of demand point j cannot be met.
Constraints of the MMRLRP are shown as follows:

µik (t) ≤ yi (t) ∀i ∈ I , k ∈ K , t ∈ T (5)

xijk (t) ≤ Ma · yi (t) ∀i ∈ I , j ∈ N , t ∈ T (6)∑
k∈K

∑
j∈N

xijk (t) ≤ Capti ∀i ∈ I , t ∈ T (7)

∑
k∈K

µik (t)+
∑

h∈(I∪J)

δjhk (t)− xijk (t) ≤ 1

∀i ∈ I, k ∈ K, t ∈ T (8)∑
j∈J

δjhk (t) ≤ µik (t) ∀i ∈ I , k ∈ K , t ∈ T (9)

∑
i∈I

∑
j∈J

δijk (t) ≤ 1 ∀k ∈ K , t ∈ T (10)

∑
g∈(I∪J)

δgjk (t) = 1 ∀j ∈ N , k ∈ K , t ∈ T (11)

∑
g∈(I∪J)

δigk (t)−
∑

h∈(I∪J)

δhik (t) = 0 ∀i ∈ I , k ∈K , t ∈T

(12)
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∑
g∈(I∪J)

δgjk (t)−
∑

h∈(I∪J)

δjhk (t) = 0 ∀j∈J , k ∈K , t ∈ T

(13)
t∑

τ=1

q̃tj + short
t−1
j −

t∑
τ=1

∑
i∈M

∑
k∈K

xijk (t) ≤ short tj

∀j ∈ J , t ∈ T (14)∑
j∈J

xijk (t) ≤ Qk ∀i ∈ I , k ∈ K , t ∈ T (15)

−Ma(1− δijk (t))−
(
entjk (t)− entik (t)− dij/v

)
≤ 0

∀i ∈ I , j ∈ I ∪ J , k ∈ K , t ∈ T (16)

Ma(1− δijk (t))−
(
entjk (t)− entik (t)− dij/v

)
≥ 0

∀i ∈ I, j ∈ I ∪ J, k ∈ K, t ∈ T (17)

−Ma(1− δijk (t))−
(
entkj (t)− Stik (t)− dij/v

)
≤ 0

∀i ∈ I , j ∈ I ∪ J , k ∈ K , t ∈ T (18)

Ma(1− δijk (t))−
(
entkj (t)− Stik (t)− dij/v

)
≥ 0

∀i ∈ I , j ∈ I ∪ J , k ∈ K , t ∈ T (19)

−Ma(1− δjik (t))−
(
endik (t)− entjk (t)− dij/v

)
≤ 0

∀i ∈ I , j ∈ I ∪ J , k ∈ K , t ∈ T (20)

Ma(1− δjik (t))−
(
endik (t)− entjk (t)− dij/v

)
≥ 0

∀i ∈ I , j ∈ I ∪ J , k ∈ K , t ∈ T (21)

endik (t) , entjk (t) ≥ 0 ∀i ∈ I , j ∈ I ∪ J , k ∈ K , t ∈ T

(22)

yi (t) ∈ {0, 1} ∀i ∈ I , t ∈ T (23)

xijk (t) ≥ 0 ∀i ∈ I , j ∈ J , t ∈ T (24)

µik (t) ∈ {0, 1} ∀i ∈ I , k ∈ K , t ∈ T (25)

ujk (t) ∈ {0, 1} ∀j ∈ J , k ∈ K , t ∈ T (26)

δhgk (t) ∈ {0, 1} ∀g ∈ I ∪ J , h ∈ I ∪ J , k ∈ K , t ∈ T

(27)

Constraints (5) and (6) ensure that only the selected TRDC
can allocate vehicles and provide services for demand points.
Constraint (7) ensures that the amount of relief shipped out
shall not exceed the supply of the TRDC. Constraint (8)
ensures that vehicle k starts from TRDC i and drives through
demand point j only when demand point j is assigned to
TRDC i in the period t . Constraints (9) and (10) ensure
that each route k serviced by vehicle k starts at one TRDC.
Constraint (11) ensures that each demand point can only
be served by one route in period t . Constraint (12) ensures
that each vehicle returns to the departure TRDC in each
period. Constraint (13) ensures that each route is contin-
uous. Formula (14) calculates the number of emergency
supplies out of stock at each demand point in each period.
Constraint (15) ensures that the total demand assigned to
each vehicle does not exceed the loading capacity of the
vehicle. Constraints (16) to (21) explain the start time,
delivering services, and return journey in each period,
using vehicle. Constraints (22)–(27) ensure that the deci-
sion variables are binary integers and have non-negative
values.

C. ROBUST COUNTERPART OF THE MMRLRP
Considering the uncertain demand of relief in the MMRLRP,
a robust optimization method is used to describe the uncer-
tainty of the model. Before deducing the robust counterpart
of the MMRLRP, the robust optimization method proposed
by Bertsimas and Sim [21] and Najafi et al. [55] is introduced
as follows:

min Z =
∑
j∈J

cjxj (28)

s.t.
∑
j∈J

aijxj ≤
τi∑
s=1

b̃is ∀i (29)

xj ≥ 0 ∀j (30)

In the constraint of the optimization problem, some ele-
ments of the coefficient b̃is are uncertain and take the value
of
[
b̄is − b̂is, b̄is + b̂is

]
, where b̄is is the nominal value of b̃is

and b̂is is the maximum deviation from b̄is. Let τi be the total
number of uncertain parameters available in constraint i, and
let 0i be the uncertainty robustness budget, which takes a
value in the interval [0, |τi|]. Specifically, b0ic coefficients
vary in the constraint i, and one coefficient varies in the range
of (0i − b0ic) b̂iti . So, the right-hand side of the inequation
can be rewritten as:

τi∑
s=1

b̃is =
τi∑
s=1

b̄is − β (τi, 0i) (31)

To ensure that the inequality holds, a protective function
β (τi, 0i) is proposed as follows:

β (τi, 0i) = max{
Si ∪ {ti} |Si ∈ τi,

Si ∈ b0ic , ti ∈ τi\Si

}
{∑
s∈τi

b̂is + (0i − b0ic) b̂iti

}

(32)

Therefore, the optimization model (28) can be rewritten as

min Z =
∑
j∈J

cjxj (33)

s.t.
∑
j∈J

aijxj + max{
Si ∪ {ti} |Si ∈ τi,

Si ∈ b0ic , ti ∈ τi\Si

}
{∑
s∈τi

b̂is+(0i−b0ic) b̂iti

}

≤

∑
s∈τi

b̄is ∀i (34)

xj ≥ 0 ∀j (35)

Finally, the robust counterpart of the optimization
problem (28) is written as follows:

min Z =
∑
j∈J

cjxj (36)

s.t.
∑
j∈J

aijxj + 0iri +
∑
s∈τi

pis ≤
τi∑
s=1

b̄is ∀i (37)

ri + pis ≥ b̂is ∀i, s ∈ τi (38)
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xj ≥ 0 ∀j (39)

pis ≥ 0 ∀i, s ∈ τi (40)

ri ≥ 0 ∀i (41)

Since Eq. (14) involves uncertain parameters, the
MMRLRP deduces its robust counterpart using the robust
optimization method proposed by Bertsimas and Sim [21].

In constraint (14), the set of uncertain coefficients is rep-
resented as τj, which represents the number of uncertain
demand points in route k . The uncertain parameter 0j is
proposed to control the robustness of the solution. Based
on the constraint (14), the protective function β

(
τj, 0j

)
is

defined as follows:

β
(
τj, 0j

)
= max{

Si ∪
{
tj
} ∣∣Sj ∈ τj,

Sj ∈
⌊
0j
⌋
, tj ∈ τj\Sj

}
∑
s∈τj

q̂js +
(
0j −

⌊
0j
⌋)
q̂jtj


∀j ∈ K , t ∈ T (42)

Thus, constraint (15) can be rewritten as

t∑
τ=1

q̄tj+β
(
τj, 0j

)
≤ short tj − short

t−1
j +

t∑
τ=1

∑
i∈M

∑
k∈K

xijk (t)

∀j ∈ N , t ∈ T (43)

According to robust optimization theory, the robust coun-
terpart of formula (43) can be represented as

t∑
τ=1

q̄tj + 0jrj +
∑
s∈τj

pjs ≤ short tj − short
t−1
j

+

t∑
τ=1

∑
i∈M

∑
k∈K

xijk (t) ∀j ∈ N , t ∈ T (44)

s.t. rj + pjs ≥ q̂js ∀j, s ∈ τi (45)

pjs ≥ 0 ∀j, s ∈ τi (46)

rj ≥ 0 ∀j (47)

where rj and pjs are dual auxiliary variables of the robust
counterpart model.

IV. AN IMPROVED MOEA HEURISTIC ALGORITHM
As a variant of the typical LRP, the MMRLRP is an
NP-hard problem. To efficiently obtain Pareto optimal
solutions, an improved MOEA heuristic algorithm is pro-
posed, which combines a decomposition strategy with the
framework of PICEA-g. The proposed algorithm outperforms
other state-of-the-art MOEAs on multi-objective benchmark
problems [46]. The Tchebycheff decomposition strategy
is a widely used multi-objective optimization method to
recombine neighbourhood solutions to improve the diversity
and superiority of algorithms. The algorithm is denoted as
PICEA-g-td, in which the key operators are described as
follows.

A. GENETIC OPERATORS
PICEA-g-td is a general framework of evolutionary algo-
rithms that is composed of the initial population, crossover
operators, mutation operators, and selection operators based
on the fitness of the solutions.

1) ENCODING SCHEME
To determine the MMRLRP, a natural number permuta-
tion encoding is used to represent the solution. In each
chromosome Chτg in period t , five vectors express the selec-
tion of the TRDCs, the allocation of vehicles, the route
planning of the demand points, the allocation of relief sup-
plies and the shortage of relief supplies, where τ ∈ NG is
the number of generations, and g = 1, 2, . . . ,NP, NP is the
number of chromosomes in the population. The solution Chτg
is encoded as follows.

In period t , vectorChτ tg1 =
(
Chτ tg11,Ch

τ t
g12, . . . ,Ch

τ t
g1K

)
is a

permutation of K vehicles. The second sub-string Chτ tg2 =(
Chτ tg21,Ch

τ t
g22, . . . ,Ch

τ t
g2K

)
is a K -dimensional integer vec-

tor distributed from 0, 1 to |I |. The vector Chτ tg2 determines
that TRDCs are opened, for example, the number j appears
in Chτ tg2 when TRDC j is selected. The vehicle allocation is
determined byChτ tg1 and Ch

τ t
g2, such that a vehicle represented

by the gene Chτ tg11 is assigned to the depot represented by
Chτ tg21. Vehicle Ch

τ t
g1k is not used to provide the service for

demand points when Chτ tg2k is equal to zero. The third vector

Chτ tg3 =
(
Chτ tg13,Ch

τ t
g13, . . . ,Ch

τ t
g1N

)
is a permutation of J

demand points. The vectorsChτ tg1 andCh
τ t
g3 determine demand

points assignment and routing sequences in each route of the
vehicle, which is allocated to an opened TRDC. The demand
points in the vector Chτ tg3 are assigned to the vehicles in the
vectorChτ tg1 in order. The vectorsCh

τ t
g4 andCh

τ t
g5 represent the

allocation of relief supplies and the shortage of relief supplies.
Of course, all of the assignments must be made to meet the
capacity constraints of the vehicles and the TRDCs.

From the result of Fig. 2, TRDCs 1 2 and 4 are opened;
vehicles 1 and 3 start from TRDC 1; route 1 (vehicle 1) ser-
vices demand points 1, 2, 5, and 6, and route 3 services
demand points 9 and 10, respectively. Vehicle 4 departs from
TRDC 2, services demand points 3, 4, 7, and 8, and then,
returns to TRDC 2. The amount of relief items arriving at
demand point 1 is 81, and the amount of relief items out of
stock at demand point 1 of this period is 112. Because the five
vectors of the chromosome are different, genetic operations
occur in U τ t

g1 , U
τ t
g2 U

τ t
g3 U

τ t
g4 and U

τ t
g5 .

2) CROSSOVER OPERATORS
Considering the multi-period characteristic of the solu-
tion, crossover operations occur within one period of the
chromosome. Crossover operations are used to operate a line
vectorChτ tg , which is randomly selected from a chromosome,
and a period of location-routing planning during the planning
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FIGURE 1. Chromosome representation.

FIGURE 2. Encoding in the improved PICEA-g-td algorithm.

horizon. Chτ tg is as follows.

Chτ tg =
{
Chτ tg1,Ch

τ t
g2,Ch

τ t
g3,Ch

τ t
g4,Ch

τ t
g5

}
(1). For the sub-vectors Chτ tg1, Ch

τ t
g3, Ch

τ t
g4 and Ch

τ t
g5, a two-

point crossover is used to generate offspring, as follows.
First, two sub-vectors Chτ tg1 and Chτ tg′1 are randomly

selected from parent chromosome Chτ tg and chromosome
Chτ tg′ , respectively. Then, two crossover points are randomly
selected in vectors Chτ tg1 and Ch

τ t
g′1.

Chτ tg1 = [1 2 3 |4 5 6| 7 8 9] ; Chτ tg′1 = [5 1 7 |4 2 8| 9 3 6]

Second, Chτ tg1 and Chτ tg′1 keep the numbers before the
first crossover point and exchange the numbers between the
crossover points with each other. The numbers after the sec-
ond crossover point are not considered in this step.

Chτ tg1 = [1 2 3 |4 2 8| ∗ ∗ ∗] ;

Chτ tg′1 = [5 1 7 |4 5 6| ∗ ∗ ∗]

Third, the number before the first crossover point will be
deleted if it appears in the crossover vector.

Chτ tg1 = [1 3 |4 2 8| ∗ ∗ ∗ ∗] ;

Chτ tg′1 = [1 |4 5 6| ∗ ∗ ∗ ∗ ∗]

Finally, according to the sequence of the numbers behind
the first crossover point in the parent chromosome, the

numbers that do not appear will be kept after the second
crossover point.

Chτ tg′ = [1 3 |4 2 8| 5 6 7 9] ; Chτ tg′1 = [1 |4 5 6 7| 2 8 9 3]

(2). For the sub-vector Chτ tg2, a single point crossover oper-
ator is used to generate offspring, as follows.

First, two sub-vectors Chτ tg2 and Chτ tg′2 are randomly
selected from parent chromosome Chτ tg and chromosome
Chτ tg′ , respectively. Then, one crossover point is randomly
selected in vectors Chτ tg2 and Ch

τ t
g′2.

Chτ tg2 = [1 3 1 3 3 |1 4 4 2] ; Chτ tg′2 = [2 1 4 4 2 |1 1 1 4]

Second, Chτ tg2 and Ch
τ t
g′2 keep the numbers before the first

crossover point and exchange the numbers after the second
crossover point with each other.

Chτ tg2 = [1 3 1 3 3 |1 1 1 4 ] ; Chτ tg′2 = [2 1 4 4 2 |1 4 4 2 ]

3) MUTATION OPERATORS
After the procedure of the crossover operations, mutation
operations are used to operate a line vector Chτ tg , which is
randomly selected from a chromosome and means a period
of location-routing planning during the planning horizon.

Chτ tg =
{
Chτ tg1,Ch

τ t
g2,Ch

τ t
g3,Ch

τ t
g4,Ch

τ t
g5

}
(1). For the sub-vectors Chτ tg1, Chτ tg3,Ch

τ t
g4 and Chτ tg5,

a reverse sequence mutation is used to generate offspring.
We take the mutation of Chτ tg1 as follows.
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First, two inverse points are randomly selected within a
sub-vector Chτ tg1.

Chτ tg1 = [1 2 3 |4 5 6 7 | 8 9]

Second, the numbers between the two inverse points are
inversed to obtain offspring.

Chτ tg1 = [1 2 3 |7 6 5 4| 8 9]

(2). For the sub-vector Chτ tg2, reverse sequence mutation,
shift mutation and exchange mutation are randomly used
to generate offspring. The exchange mutation operator is as
follows.

First, two genes are randomly selected within the sub-
vector Chτ tg2.

Chτ tg2 =
[
1 31 3 3 1 4 4 2

]
Second, the numbers of two selected genes are exchanged

to obtain offspring.

Chτ tg2 =
[
1 3 4 3 3 1 1 4 2

]
The shift mutation randomly selects a number within the

sub-vector Chτ tg2 and then shifts its content, which represents
the TRDC that belongs to the vehicle in the corresponding
location in the sub-vector Chτ tg1.
First, one gene is randomly selected within the sub-vector

Chτ tg2.

Chτ tg2 =
[
1 3 1 3 3 1 4 4 2

]
Second, a random number is generated from the inte-

gers 0 toM and shifts the selected number to obtain offspring.

Chτ tg2 =
[
1 3 1 3 4 1 4 4 2

]
4) CHROMOSOME POST-OPTIMIZATION
After the crossover operators and the mutation operators,
there might be some new chromosomes that do not satisfy
the constraints of robust optimization. The post-optimization
procedure aims to readjust these chromosomes to meet the
constraints. For each vectorChτ tg , the procedure calculates the
number of vehicles that are allocated to the opened TRDCs
through the information of the sub-vectorsChτ tg1 andCh

τ t
g2 and

then checks whether the capacities of the vehicles satisfy all
relief of the demand points under the robustness constraints.
A zero in the sub-vector Chτ tg2 is replaced by a random integer
between 1 and |I |; in other words, a new vehicle is used for
epidemic logistics services.

B. PROCEDURE OF PICEA-g-td
1) FRAMEWORK OF PICEA-g-td
PICEA-g-td is a universal co-evolutionary algorithm inwhich
the solutions co-evolve with a set of goal vectors. In the
search process, the goal vectors are updated and guide the
solutions towards the Pareto optimal front. The framework of
PICEA-g-td is an (µ+ λ) elitist approach. At the beginning

of the calculation, N candidate solutions and Ng goal vec-
tors are generated at random. N new candidate solutions are
produced by genetic operators, and Ng new goal vectors are
generated randomly in solution space in each iteration. The
last-generation solutions and goal vectors are combined with
the new candidate solutions and goal vectors in a pool, with
N best candidate solutions andNg best goal vectors according
to the fitness function [21], [56].

Considering that the values of multiple objectives are dif-
ferent, PICEA-g-td does not directly use the objective value
of a solution as the fitness value. The fitness assignment
precept has two rules. First, a candidate solution gain a fitness
value if they dominate a particular set of goal vectors, and
the fitness value is shared between other solutions that also
dominate these goals. Second, goal vectors gain fitness values
that are inversely proportional to the number of candidate
solutions that dominate the vector, and a goal vector has a
low fitness when it is dominated by more candidate solu-
tions [53], [54]. The framework of PICEA-g-td is as follows:

2) A NEIGHBOURHOOD STRATEGY BASED ON THE
TCHEBYCHEFF DECOMPOSITION
Researchers have applied evolutionary algorithms to handle
the multi-objective optimization problems and have achieved
great success. However, evolutionary algorithms have many
difficulties in solving optimization problems that have more
objectives [57]. The decomposition approach is demon-
strated to have superiority in engineering applications [58].
To develop the treatment of PICEA-g, the Tchebycheff
decomposition strategy is proposed to determine the neigh-
bourhood of the evolutionary algorithm in this study. In the
Tchebycheff decomposition approach, a set of uniformly dis-

tributed vectors
(
λ1, λ2 . . . , λN

)
is generated and then used

to convert a multi-objective optimization problem into a set
of scalar optimization sub-problems, as follows:

gte
(
x
∣∣λi, z∗ ) = min max

1≤i≤m

{
λi
∣∣∣∣fi (x)− z∗∣∣ } (48)

where λ = (λ1, λ2, . . . , λm)with
m∑
i=1
λi = 1, and λi ≥ 0 is the

weight vector of a sub-problem for amulti-objective problem.
z∗ =

(
z∗1, z

∗

2, . . . z
∗
m
)
is an ideal reference vector, for which

z∗i ≤ min {f (x) |x ∈ �}.
To obtain the optimal value of the solutions in each

objective, the proposed algorithm, called the PICEA-g-td,
constructs a neighbourhood using the Tchebycheff decom-
position approach for each solution and ensures that only
adjacent sub-problems can be used to optimize each other.
In the PICEA-g-td, the neighbourhood strategy selects the
nearest T weight vectors to build the neighbourhood for each
weight vector depending on their Euclidean distance. Calcu-
lating the sub-problems of solutions, each solution selects a
parent solution from the neighbourhood individuals indepen-
dently. Only adjacent sub-problems can be used to optimize
the solution and the excellent individuals of some dimension
can be used to produce offspring.
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FIGURE 3. PICEA-g-td framework.

The neighbourhood strategy based on the Tchebycheff
decomposition is as follows:

Step 1: Input solution set x = {x1, x2, . . . , xN } and a set of
uniformly distributed weight vectors λ = (λ1, λ2, . . . , λm);
Step 2: Calculate the objectives of all solutions and set

the ideal reference point z∗ =
(
z∗1, z

∗

2, . . . z
∗
m
)
with z∗i ≤

min {f (x) |x ∈ �};
Step 3: Calculate sub-problems of solution x =

{x1, x2, . . . , xN } by Eq. (36);
Step 4: Construct the neighbourhoodB (i) = {i1, i2, . . . , ir }

for each sub-problem by calculating the Euclidean distance
between the weight vectors;

Step 5: With gte of solutions as criteria, individuals in
the neighbourhood of the sub-problem are selected as paired
individuals for the individual i (i = 1, 2, . . . ,N );

Step 6: Generate offspring by cross-operation between
individual i (i = 1, 2, . . . ,N ) and the paired individuals;

Step 7: Output parent individuals and child individuals.

V. COMPUTATIONAL EXPERIMENTS
A. DESCRIPTION OF EXPERIMENTS AND PERFORMANCE
OF PICEA-g-td ALGORITHMS
To verify the performance of the PICEA-g-td algorithm,
24 test instances are randomly generated based on the test
data sets C1, C2, R, and RC. For example, a problem called
C1-3-5-50 means that five candidate locations to set up the
TRDCs and 50 demand points are selected randomly for
dataset C1, and the planning horizon consists of three periods.
The capacity of the TRDCs is considered to be insufficient,
and the rental cost for all TRDCs is 2000 Yuan. We assume
that there are sufficient homogeneous vehicles to transport
relief supplies and that these vehicles have a loading capacity
50. Without loss of generality, a package of relief supplies,

including medicine and daily supplies, is assumed to be
worth 50 Yuan and is sent to the demand points. For those
problems, the nominal value of the relief demand is equal to
the demand of the test data sets, and the maximum deviation
from the nominal value is equal to 10% of the nominal value
in each demand point. The cost of transportation is correlated
with the distance between points and the transportation cost
per unit distance c is equal to 1.7. Considering there could be
a shortage of relief supplies, we consider that the penalty for a
shortage of relief is ten times the value of the relief (αs = 10).

The algorithm described in Section 4 is coded inMATLAB
2017, and all results are obtained using a 2.50 GHz Intel Core
i5-6200U CPU with 8 GB of RAM running in Windows 10.
All test instances were solved by NSGA-II, MOEA/D,
PICEA-g, and PICEA-g-td. Considering that the MMRLRP
problem is NP-hard, we cannot expect to obtain the set of
all Pareto optimal solutions exactly. Ten runs are performed
for the test instances to obtain the approximate solutions. The
parameters of the four algorithms mentioned above are given
in Table 1.

To compare the efficiency of the algorithms, a widely used
performance indicator called the set coverage (C-metric) is
used to analyse Pareto approximation solutions obtained by
those algorithms [59]. In a minimization multi-objective opti-
mization problem, the C-metric can be described as follows:

C (A,B) =
{y ∈ B |∃x ∈ A : x ≺ y }

|B|
(49)

where A and B are two Pareto solutions obtained by the two
algorithms. The definition of theC (A,B) is the percentage of
the Pareto solutions in algorithm B that are dominated by at
least one solution in the Pareto solutions in algorithm A. Note
that C (A,B) might not necessarily is equal to 1 − C (B,A).
By conducting 10 runs on 24 test instances, the other three
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TABLE 1. Algorithm parameters.

algorithms are compared with the PICEA-g-td algorithm, and
the median C-metric values are shown in Table 2.

The superior results of the median C metric are in bold-
face. As seen from Table 2, the average values C (A,B),
C (A,C) and C (A,D) are larger than C (B,A), C (B,A) and
C (D,A), which means that more Pareto solutions obtained
by the PICEA-g-td algorithm dominate Pareto solutions
obtained by the other three algorithms but fewer Pareto
solutions obtained by the other three algorithms dominate
Pareto solutions obtained by the PICEA-g-td algorithm.
Taking test instance C1-3-5-50 as an example, it can
be seen that 13.83% of solutions obtained by PICEA-g
are dominated by solutions obtained by PICEA-g-td and
3.42% of solutions obtained by PICEA-g-td are dominated
by solutions obtained by PICEA-g. Similarly, 30.51% of
solutions obtained by MOEA/D are dominated by solu-
tions obtained by PICEA-g-td, and 0.83% of solutions
obtained by PICEA-g-td are dominated by solutions obtained
by MOEA/D. 46.94% of Pareto solutions obtained by
the NSGA-II are dominated by Pareto solutions obtained
by PICEA-g-td, and 2.54% Pareto solutions obtained by
PICEA-g-td are dominated by Pareto solutions obtained
by NSGA-II.

As seen from the results of the MMRLRP problem, the
improved algorithm, named PICEA-g-td, is better than the
MOEA/D and NSGA-II algorithms, which are two types of
multi-objective algorithms that have wide application and
excellent performance. Interestingly, the quality of Pareto
solutions obtained by PICEA-g-td is better in terms of the
total cos. Because the number of Pareto solutions obtained
is small in the test instances with few demand points and
planning periods, both PICEA-g-td and PICEA-g are prone to
excessive convergence and obtained narrow C metric values.
However, the results of the 24 test instances still show that the
proposed algorithm outperforms the other algorithms.

B. TEST INSTANCES
This part addressed the epidemic logistics of Wuhan, China,
during the COVID-19 outbreak (coronavirus disease 2019).
To stop the spread of the disease, the Chinese government
blocked Wuhan city. Providing supplies to module hospitals,
which are important places for responding to the epidemic,
poses a challenge to epidemic logistics when the demand
for medical supplies changes over time, with the develop-
ment of the epidemic. In this study, we mainly aim at the
16 module hospitals in Wuhan with 3 candidate TRDCs to
supply humanitarian relief during the outbreak. The location
of the candidate TRDCs and demand points are numbered
from 1 to 3 and from 4 to 19, respectively, as shown in
Figure 4. We consider the standard carton (36×26×30cm3)
as a transportation unit that contains surgical masks, medicine
and other relief for a patient. The relief is gathered from other
cities in China, which is beyond the domain of this research.

Depending on some data released for public use by the
government, relief-related information included the TRDC
locations, the number of module hospital beds, and the nom-
inal value of relief demand estimated by the number of beds
in the module hospital. Although many parameters related to
the MMRLRP model have been obtained, more parameters
must be determined before solving TRDC locations and route
planning for epidemic logistics. Because some data are not
yet released for public use by the government, we insert man-
made data to test themodel and algorithm, which will not lead
to essentially different results.

Assumptions and parameters are as follows:
(1) In Wuhan city, three candidate TRDCs are Jieli

logistics park, Cuiyuan cold chain logistics park,
and Baowan logistics park. TRDCs existed before
the COVID-19 outbreak, and the use costs can be
estimated if a candidate TRDC is selected. The infor-
mation on the TRDCs is shown in Table 3;
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TABLE 2. Results of PICEA-g-td (A), PICEA-g (B), MOEA/D (C), and NSGA-II (D) using the C metric.
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FIGURE 4. The map of the TRDCs and demand points.

(2) Considering that the emergency relief items are
transported in a standard carton (unit), the loading
capacity and other parameters of the vehicle are given
in Table 4;

(3) Taking 7 days as a planning horizon, we plan daily
for relief supplies for module hospitals. Considering
the development of the epidemic, we consider that the
demand for module hospitals are stochastic;

(4) In each period, the relief demand of each module
hospital is related to the number of beds, as shown
in Table 5. In the case study, we consider that the relief
demand (such as masks and medicine) is uncertain.
The present study considers one relief item for each
patient [60];

(5) Using satellite maps, the distance between traffic ver-
texes can be assessed in Table 6;

(6) To avoid the potential risk of virus transmission, as in
practice, vehicles returns to the starting TRDC after
all of the demand points are served, to prevent drivers
from being quarantined.

We have demonstrated the superiority of PICEA-g-td over
NSGA-II, MOEA/D and PICEA-g in the previous section.
Here, we take a test case to illustrate the decision design
of the proposed robust optimization model when addressing
uncertain demand parameters. First, we assume that the actual
values of the uncertain demand are randomly assigned around
the predicted nominal value and within the given interval.

In other words, the actual demands are randomly generated
into the interval

[
qtj − q̂

t
j , q

t
j + q̂

t
j

]
. The MMRLRP model

considers the demand uncertainties and adopts the robust
optimization model proposed by Bertsimas and Sim [21].
In the robust optimization model, both the budget of uncer-
tainty 0 and the data variability α are key parameters used to
address these uncertainties. To test the influence of uncertain
parameters on the robust model, a series of experiments with
different uncertain parameters are designed. The budget of
uncertainty 0 is set to the interval [0, J ]. Ten percent of
the relief demand parameters in the planning window are
uncertain but accurately predicted when the value of 0 is
equal to 0.1, whereas if the value of 0 is J , all of the relief
demand parameters in the planning window are considered
to deviate from these nominal demand values. Simultane-
ously, we test three demand variability α (0.1, 0.2, and 0.3),
which correspond to deviations of relief demand in epidemic
logistics.

Figures 5, 6 and 7 show the results of the MMRLRPmodel
with three demand variability α (0.1, 0.2, and 0.3) and budget
of uncertainty 0 (0 = 0, 1, . . . , J) solved by the proposed
PICEA-g-td algorithm, respectively.

In the above experiments, the actual values of the uncer-
tain relief demands are assigned randomly by varying them
around the predicted nominal values and within the given
intervals. In other words, the actual data could be larger or
smaller than the predicted nominal values. Figure 5 shows
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TABLE 3. Candidate depots’ parameters.

TABLE 4. Parameters of vehicles.

FIGURE 5. Comparative results of the four objectives with different uncertain
parameters

(
α = 0.1

)
.

FIGURE 6. Comparative results of the four objectives with different uncertain
parameters

(
α = 0.2

)
.

three objective (the total backing time, the total cost, and
the disutility of relief service) statistical results of the Pareto

solution with different uncertain parameters α = 0.1
and 0 (0 = 0, 1, . . . , J). To eliminate the influence of the
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TABLE 5. Parameters of module hospitals.

FIGURE 7. Comparative results of the four objectives with different uncertain
parameters

(
α = 0.2

)
.

measuring unit on the statistics of the multi-objective Pareto
solution, each result of the three solutions in the Pareto

solution set is normalized to the interval (0, 1). In other
words, the comparative results of the three objectives are
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TABLE 6. Parameters of traffic network (distance (km)).

nzj = zj/zjmax , (j = 1, 2, 3), and zjmax is the maximum value
of the jth dimension of all Pareto solution sets obtained
from 7 experiments.

According to the statistical results, the analysis conclusions
are as follows: (1) The uncertain parameter α have the great
impact on the total cost. The Pareto solution obtained is
better when the uncertainty coefficient α is small (α = 0.1).
Increasing the budget of uncertainty 0 can reduce the total
cost when the uncertain parameter α is large, which mainly
benefit from reducing penalty costs in the shortage of emer-
gency supplies; (2) increasing the budget of uncertainty0 has
led to an increase in the total transportation time, due to the

addition vehicles are used to ensure fewer shortages of relief.
Because adjustment of transport scheme for each period in
the MMRLRP model, the total transportation time is roughly
stable; (3) Increasing the budget of uncertainty 0 can bring a
certain total cost and obtain fairer Pareto solutions. However,
a big0 has little significance to reduce the total transportation
time and improve the fairness distribution when the budget of
uncertainty 0 increases to a certain value(such as 0 is greater
than 0.3 when α = 0.2). So, it is important to accurately
predict the relief demand of demand points for emergency
supplies distribution. In addition, an appropriate budget of
uncertainty 0 can improve the performance of the Pareto
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FIGURE 8. Solution minimizing the total arrival time.

FIGURE 9. Solution minimizing the total cost.

FIGURE 10. Solution minimizing the disutility of relief service.

solution set of the MMRLRP problem when the demand
cannot be accurately predicted.

Taking the MMRLRP model with demand variability α =
0.2 and budget of uncertainty 0 = 0.5 as an example,
the objectives of the Pareto solution is as follows: Fig. 8
illustrates the Pareto-optimal solution based on objective 1
(minimizing the total travel time), Fig. 9 describes the best
solution of objective 2 (minimizing the total cost), and the
Pareto-optimal solution depending on objective 3 is displayed
in Fig. 10 (minimizing the disutility of relief service). Sixteen
black circles represent the location of module hospitals, and
three candidate TRDCs are represented by red, green and blue
squares. In the MMRLRP model, routes are represented by
closed lineswith different colours. To show the results clearly,
we demonstrate the decision results in the 2, 4, and 6 periods
as follows.

Figure 8 shows the Pareto solution with the minimal total
travel time, and the three objectives are 42.94 hours, 75318.21
Yuan, and 7.88 disutility units, respectively.

Figure 9 shows the Pareto solution with a minimal total
cost, and the three objectives are 50.97 hours, 66571.45 Yuan,
and 8.01 disutility units.

Figure 10 shows the Pareto solution with minimal the
disutility of relief service, and the three objectives are 48.19
hours, 78238.09 Yuan, and 6.77 disutility units.

Comparing the three figures show that some routes appear
in different solutions, such as the two routing decisions of
Figs. 8, 9, and 10 in period 2 and the location decisions
for 2 and 4 periods in three Pareto solutions. Different from
the shortest path principle, some routes can be longer to select
cheaper TRDC 3 in Figs. 9. However, most routing decisions
are close to conventional routing decisions from considering
time and economic factors. Because of the shortage of relief
supplies, all of the TRDCs are used to provide relief for
module hospitals at the early and mid-stage of an outbreak.
We note that in the case of a shortage of relief supplies, all
demand points are delivered depending on the set of fairness
objective in the MMRLRP model. However, more vehicles
start from TRDCs 1 and 3 which close to most module
hospitals in the later period in Figs. 8 when relief supplies
are sufficient.

The Pareto-optimal solutions based on objective 1
(minimizing the total travel time) use three TRDCs to provide
relief to module hospitals, which is the principle that using
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multiple TRDCs in traditional location-routing decisions can
reduce the total service time and total transport distance.
In the solution given by Fig. 8, where the total travel time is
accounted for 42.94 hours, and it took 8.03 hours less than the
solutions given by Fig. 9. The Pareto-optimal solution based
on objective 2(minimal total cost) spend 66571.45 Yuan to
provide relief supplies for the module hospitals, and it is
8746.76 and 12667.45 Yuan less than the solutions given
in Fig. 8 and 10 respectively. Considering the fairness of
emergency logistics, the solution given by Fig. 10 tends to
use more vehicles and is 14.08%, and 15.49% better than
the solutions given by Figs. 8, and 9, respectively, on the
objective of the disutility of relief service. By analyzing
the multi-period decision of the Pareto solution, it is shown
that the MMRLRP model can provide decision-makers with
multiple options considering different objectives.

VI. CONCLUSION AND FUTURE STUDIES
In this paper, we present a multi-periodmulti-objective robust
location-routingmodel with uncertain demand. During public
health outbreaks, the total travel time, the total cost, and
the disutility of relief service are considered as optimiza-
tion objectives throughout the planning horizon. Considering
the stochastic demand, this study uses the robust opti-
mization method proposed by Bertsimas and Sim [21] to
address the uncertainties. By introducing the decomposition
strategy, we propose PICEA-g-td to solve the MMRLRP
models. Twenty-four sets of instances with different demands
and periods are generated randomly to evaluate the perfor-
mance of the proposed PICEA-g-td. The comparison results
showed that PICEA-g-td outperforms PICEA-g, MOEA/D
and NSGA-II in most cases. To further evaluate the perfor-
mance of the MMRLRP, a numerical study with the epi-
demic logistics of the COVID-19 epidemic in Wuhan, China,
is conducted to illustrate the applicability of the proposed
model. Experimental results have shown that the parameter
settings of robust optimization have improved the robustness
of uncertain epidemic logistics systems.

In the future, the following three research directions could
be explored. First, we need to consider disasters with other
characteristics, such as the reliability of routes. Second, it
is necessary to provide relief supplies while evacuating the
affected people, which makes the research more realistic in
the application of disaster scenarios. Third, we do not propose
a prediction method to forecast the uncertainty value and do
not account for the uncertainty other than the relief demand.
Other constraints of the relief location-distribution model,
such as the capacity of different vehicles and the capacity
of the TRDCs, can also be accounted for in post-disaster
conditions in relief distribution.
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