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ABSTRACT A hybrid RSS/AOA indoor localization method based on error variance and measurement
noise weighted least squares (ENWLS) is proposed. This method is based on three-dimensional wireless
sensor networks, and achieves high-precision indoor positioning without increasing its complexity. We use
the first-order Taylor approximation to approximate the linear weighted least square (WLS) error, and use
the weighted least squares estimation to roughly estimate the location of the target, then determine the
weight matrix by estimating the linear WLS error variance and the measured noise value on the sensor
node. Simulation results show that our proposed method is better than other existing hybrid RSS/AOA
localization methods.

INDEX TERMS Wireless sensor networks (WSNs), weighted least square (WLS), received signal strength
(RSS), angle of arrival (AOA), localization.

I. INTRODUCTION
In recent years, localization method plays an increasingly
important role in wireless sensor networks (WSNs) [1]–[12].
WSNs are wireless networks composed of sensors. In outdoor
environment, thanks to GPS and cellular network, mobile ter-
minal location can achieve high accuracy. However, in indoor
environment or with serious shadowing effect, satellite
and cellular signals are often interrupted, and localization
becomes a problem. This paper introduces an indoor localiza-
tion method based onWSNs.WSNs are composed of anchors
which locations are known and targets which locations are
unknown. The location of the targets are determined by the
location of the anchors and themeasurements of radio signals.

Traditional radio signals include time of arrival (TOA)
[13]–[17], time difference of arrival (TDOA) [18], [19],
angle of arrival (AOA) [20]–[25] and received signal strength
(RSS) [26]–[32]. Generally, the localization method based on
independent signal has low accuracy. The hybrid localization
methods can be combinations of the four radio signals. It is up
to the sensor hardware to decide which kind of measurement
method to adopt. Usually, one of RSS, TOA and TDOA is
combined with AOA, because RSS, TOA and TDOA are
distance related measurements, while AOA is angle related
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measurement. TOA has good localization accuracy, but it
requires clock synchronization between anchors and targets.
Obviously, realizing this task is highly challenging and will
lead to an increase in the cost and the size of mobile devices.
TDOA only needs the clock synchronization of anchors.
Generally, the locations of anchors are unchanged, so TDOA
can usually be wire and wireless. Compared with TOA,
the hardware requirements of TDOA are lower, but more
anchors are needed to ensure its accuracy. Since the radio
signal travels continuously in the air, AOA can be calculated
according to the phase difference of the radio signal reaching
different antennas. And using antenna arrays is a common
method to measure AOA. In the third-generation mobile
telecommunication, antenna arrays were widely used in the
base stations. Therefore, the base stations can provide AOA
measurements at the mobile terminal and we can use it for
positioning. Well, RSS measurements can also be obtained
through the base stations. RSS and AOA do not require time
synchronization, so they have low requirements for hardware,
but they also have defects. Due to the multipath effect, the
accuracy of RSS and AOA is greatly reduced in complex
terrain, so RSS and AoA are more suitable for open terrain.
The goal of this paper is to achieve open indoor positioning,
so Non Line of Sight (NLOS) is not considered. Using hybrid
RSS/AOA measurements can effectively reduce the impact
of measurement noises and greatly improve the localiza-
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tion accuracy. Due to the strict requirements of TOA and
TDOA for precise timing synchronization in measurement,
the cost of the hybrid TOA/AOAmeasurement and the hybrid
TDOA/AOA measurements are greatly increased. Therefore,
the hybrid RSS/AOA measurements [33]–[36] provides an
attractive low-cost solution for indoor localization problems.

In theory, the estimation of the target node location can be
completely accurate according to the exact RSS/AOA mea-
surement. However, due to the RSS/AOAmeasurement error,
the localization problem becomes anNP hard problem. Target
position estimation based on hybrid RSS/AOA measurement
is an optimization problem of non-convex system, and the
challenge is to overcome the noise of the measurement.
Semi-definite programming (SDP) and second-order cone
programming (SOCP) can effectively solve this problem [37].
The SDP/SOCP method proposed by Chang et al. [38] uses
the SDP and SOCP methods to transform the non-convex
system into a convex system, which has good accuracy.
However, the complexity of these methods are too high. The
calculation process may delay the positioning. Therefore,
it is more practical to use the least square (LS) method to
estimate the location after the measurement model is lin-
earized [39]. This method not only has good estimation accu-
racy, but also greatly reduces the complexity. The weighted
least square (WLS) method proposed by Tomic et al. [40]
improves the accuracy of estimation without increasing the
complexity. But the weight that only changes with the dis-
tances between target and anchors is not the best. The error
covariance WLS (ECWLS) proposed by Kang et al. [41]
changes the weight. First, they use the LS method to estimate
the approximate location of the target, and then calculate the
approximate error covariance matrix according to the approx-
imate position. The approximate error covariance matrix is
used as the weight. Due to the limitation of the number of
anchors, the estimation of the variance of measurement noise
has large error. This method directly multiplies the estimated
of the variance of the measurement noise into the weight,
which will increase the error. The two-step error variance-
weighted least squares (TELS) proposed by Watanabe is
based on AOA measurement [42]. He uses the LS method
to estimate the approximate location of the target, and then
calculates the variance as the weight. While he only used
AOAmeasurements, that causes a larger error. The above two
methods only consider the influence of the noise variance of
evaluation function item, but do not consider the influence of
the noise value of themeasurements.When the noise standard
deviation is the same, the one with small noise value should
have more weight.

This paper presents an indoor location method with bet-
ter performance without increasing the complexity, called
error variance and noise value WLS (ENWLS). First, the
approximate location of the target is estimated byWLS. Then,
according to the theoretical derivation and the approximate
location of the target, the variance of each anchor and each
evaluation function are calculated. Second, the noise values
of the measurements are calculated. Finally, the two items

are used as the weight of each anchor and each evaluation
function. This method called ‘‘ECWLS’’. Its performance is
better than the existing methods. The simulation results con-
firm that. Its complexity is the same as the existing method in
linear time. In summary, the main contribution of this paper
is to propose a hybrid RSS/AOA target indoor localization
method witch performance is best.

The rest of this paper is as follows. The Section II intro-
duces the models of the measurements and the related WLS
method. The Section III introduces the establishment of the
problem and the proposed ENWLS method. The Section IV
gives the simulations, the clarifications on comparisons’ fig-
ures and the complexity analyzes. The Section V summarizes
this paper and introduces the future works of the proposed
method.

II. RELATED WORKS
This section describes the model of hybrid RSS/AOA mea-
surement and the overview of three existing weighted local-
ization method with good performance. Their shortcomings
are also described.

In theWLSmethod, the weight that only relates to distance
is not the best. In the ECWLSmethod, due to the limited num-
ber of anchors, the estimation of the variance of measurement
noise is not accurate. In the TELS method, it is assumed that
the variance of measurement noise is the same, the influence
of measurement noise on weight is not considered. And the
RSS measurements are not used in the TELS method, that
reduced the accuracy.

A. SYSTEM MODEL
Consider a wireless sensor networks (WSNs) with N anchors
located at si = [si1, si2, si3]T ∈ R3 for i = 1, · · · ,N ,
and x = [x1, x2, x3]T is the unknown location of the sensor
(target). The distance between the target and the i-th anchor is
‖x− si‖, φi and αi are true azimuth angles and true elevation
angles of AOA, respectively. FIGURE 1 shows the illustration
of anchor and target in 3D place. The true values of RSS are
given by (1). The true values of AOA are given by (2) and (3)

Pi = P0 − 10γ log10
‖x− si‖
d0

, i = 1, . . . ,N (1)

φi = arctan(
x2 − si2
x1 − si1

), i = 1, . . . ,N (2)

αi = arccos(
x3 − si3
‖x− si‖

), i = 1, . . . ,N (3)

where φi ∈ (−π, π) and αi ∈ (−π2 ,
π
2 ).

In the case of actual measurement error, the measurements
of RSS and AoA are given by (4)

P̂i = Pi + ni (4a)

φ̂i = φi + mi (4b)

α̂i = αi + vi (4c)

where ni,mi, vi are themeasurement errors. Themeasurement
errors in reality are very complicated. We use the noise value
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FIGURE 1. Illustration of anchor and target in 3D place.

of positive distribution to simulate the real situations. ni, mi,
vi are the independent white zero mean Gaussian noises of
received power, azimuth and elevation respectively, and are
modeled as ni ∼ N

(
0, σ 2

ni

)
,mi ∼ N

(
0, σ 2

mi

)
, vi ∼ N

(
0, σ 2

vi

)
.

B. WEIGHTED LEAST SQUARES (WLS)
In [40], the WLS method is proposed. By resorting to spher-
ical coordinates, ‖x− si‖ was expressed as uiT (x− si) for
i = 1, · · · ,N . For simplicity, the unit vector ui was defined
by the values of RSS with actual measurement error as

ui =
[
cos φ̂i sin α̂i, sin φ̂i sin α̂i, cos α̂i

]T
(5)

Equation (4a), (4b) and (4c) can be transformed into

λ̂iuiT (x− si) = ηd0 + ε1i (6)

ciT (x− si) = ε2i (7)(
cosαiuiT − kT

)
(x− si) = ε3i (8)

where λ̂i = 10
P̂i
10γ , η = 10

P0
10γ , ci = [− sinφi, cosφi, 0]T ,

k = [0, 0, 1]T .
WLS is used to estimate the value of x as

x̂WLS = argmin
x

N∑
i=1

(
wi
(
λ̂iuiT (x− si)− ηd0

))2
+

N∑
i=1

(
wi
(
ciT (x− si)

))2
+

N∑
i=1

(
wi
(
cosαiuiT − kT

)
(x− si)

)2
(9)

The problem (9) can be written in a vector form as

min
x
‖W (Ax− b)‖ (10)

where

A =



...

λ̂iuiT
...

ciT
...

cosαiuiT − kT
...


∈ R3N×3,

b =



...

λ̂iuiT si + ηd0
...

ciT si
...(

cosαiuiT − kT
)
si

...


∈ R3N ,

W = diag ([w,w,w]) , wi = 1−
d̂i
N∑
i=1

d̂i

, d̂i = d010
P0−P̂i
10γ .

The closed-form solution in (10) is (11)

x̂WLS =
(
ATWTWA

)−1
ATWTWb (11)

However, the weight that only relates to distance is not the
best.

C. ERROR COVARIANCE WLS (ECWLS)
In [41], the ECWLS method is proposed. First, transform
the measurement model (4a), (4b), (4c) into (6), (7), (8)
respectively. Then the approximate location of the target is
roughly calculated by the LS method in [39] as

xLS =
(
ATA

)−1
ATb (12)

ε1i, ε2i and ε3i in (6), (7), (8) can be expressed as

ε1i = λ̂i cos φ̂i sin α̂i (x1 − si1)

+λ̂i sin φ̂i sin α̂i (x2 − si2)

+λ̂icos2α̂i (x3 − si3)− ηd0 (13a)

ε2i = − sin φ̂i (x1 − si1)+ cos φ̂i (x2 − si2) (13b)

ε3i =
1
2
sin 2α̂i cos φ̂i (x1 − si1)

+
1
2
sin 2α̂i sin φ̂i (x2 − si2)

+sin2α̂i (x3 − si3) (13c)

Assuming that the measurement noises are small enough,
λ̂i, sin φ̂i and cosα̂i are expanded by second-order Taylor
expansion as follows,

λ̂i = 10
Pi+ni
10γ = λi10

ni
10γ

≈ λi

(
1+ γ ni +

1
2
γ 2n2

i

)
(14a)
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sin φ̂i = sin (φi + mi)

≈ sinφi + cos (φi)mi −
1
2
sin (φi)m2

i (14b)

cos α̂i = cos
(
α̂i + vi

)
≈ cosαi − sin (αi) vi −

1
2
cos (αi) v2i (14c)

where γ = ln 10
10γ .

Using xLS instead of x and substitute (14) for (13), get the
estimates of ε1i, ε2i and ε3i as

ε̂1i = ηd0γ ni + λi (ri cosαi − sin (αi) di3) vi

+
1
2
ηd0γ 2ni2 −

1
2
λiri sin (αi)mi2

−
1
2
λi
(
ri sin α̂i + cos (αi) di3

)
v2i (15a)

ε̂2i = −rimi (15b)

ε̂3i = (cos (2αi) ri − sin (2αi) di3) vi

−
1
4
sin (2αi) rim2

i
− (sin (2αi) ri − cos (2αi) di3) v2i

+
1
2
sin (2αi) ri − sin2 (2αi) di3 (15c)

where ri =
√
(xLS1 − si1)2 + (xLS2 − si2)2, di3 = xLS3 − si3,

λi = 10
P̂i
10γ = 10

P0−10γ log10
‖xLS−si‖

d0
10γ . The value of Pi, φi and αi

are estimated by xLS as Pi, φi and αi as follows,

Pi = P0 − 10γ log10
‖xLS − si‖

d0
(16a)

φi = tan−1
(
xLS2 − si2
xLS1 − si1

)
(16b)

αi = cos−1
(
xLS3 − si3
‖xLS − si‖

)
for i = 1, · · · ,N . (16c)

Calculation of σ̂ni , σ̂mi , σ̂vi

σ̂ 2
ni =

1
N

N∑
i=1

(
P̂i − Pi

)2
(17a)

σ̂ 2
mi =

1
N

N∑
i=1

(
φ̂i − φi

)2
(17b)

σ̂ 2
vi =

1
N

N∑
i=1

(
α̂i − αi

)2 (17c)

The covariance matrix is composed of the variances and
covariances of ε̂1i, ε̂2i and ε̂3i. The variances and covariances
of ε̂1i, ε̂2i and ε̂3i are as

Var
(
ε̂1i
)
= E

((
ε̂1i − E

[
ε̂1i
])2)

= (ηd0γ )2σ̂ 2
ni+(λi (ri cosαi−sin (αi) di3))

2σ̂ 2
vi

+
1
2

(
ηd0γ 2

)2
σ̂ 4
ni +

1
2
(λiri sin (αi))2σ̂ 4

mi

+
1
2

(
λi
(
ri sin α̂i + cos (αi) di3

))2
σ̂ 4
vi (18a)

Var
(
ε̂2i
)
= E

((
ε̂2i − E

[
ε̂2i
])2)
= r2

i
σ̂ 2
mi (18b)

Var
(
ε̂3i
)
= E

((
ε̂3i − E

[
ε̂3i
])2)

= (cos (2αi) ri − sin (2αi) di3)2σ̂ 2
vi

+
1
8
(sin (2αi) ri)2σ̂ 4

mi

+2(sin (2αi) ri − cos (2αi) di3)2σ̂ 4
vi (18c)

Cov
(
ε̂1i, ε̂3i

)
= E

((
ε̂1i − E

[
ε̂1i
]) (
ε̂3i − E

[
ε̂3i
]))

= (λi (ri cosαi − sin (αi) di3))

(cos (2αi) ri − sin (2αi) di3) σ̂ 2
vi

+
1
4
λiri2 sin (αi) sin (2αi) σ̂ 4

mi

+λi
(
ri sin α̂i + cos (αi) di3

)
(sin (2αi) ri − cos (2αi) di3) σ̂ 4

vi (18d)

The specific calculation of C is as

C =

D11 0 D13
0 D22 0

D31 0 D33

 (19)

where D11, D22, D33, D13, D31 are diagonal matrices,
D11 = diag

(
Var

(
ε̂1i
))
, D22 = diag

(
Var

(
ε̂2i
))
, D33 =

diag
(
Var

(
ε̂3i
))
, D13 = D31 = diag

(
Cov

(
ε̂1i, ε̂3i

))
. Then,

the covariance matrix of these error terms are used as the
weight to calculate the final estimate as

xECWLS =
(
ATC

−1
A
)−1

ATC
−1

b (20)

However, due to the limited number of anchors, the esti-
mation of the variance of measurement noise is not accurate.
This causes a large error.

D. TWO-STEP ERROR VARIANCE-WEIGHTED LEAST
SQUARES (TELS)
In [42], the TELS method is proposed. Unlike WLS and
ECWLS, TELS only uses AOA measurements for localiza-
tion. The closed form solution of the target is obtained by the
LS method as

x̃LS =
(
ÃT Ã

)−1
ÃT b̃ (21)

where

Ã =



...

cTi
...

cosαiuTi − kT
...


∈ R2N×3,

b̃ =



...

cTi si
...(

cosαiuTi − kT
)
si

...


∈ R2N .
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By using the geometric relationship of trigonometric func-
tions, ε2i, ε3i in (4) can be transformed into (22)

ε2i = − (x1 − si1) sin φ̂i + (x2 − si2) cos φ̂i
≈ −rimi (22a)

ε3i = (x1 − si1) cos φ̂i cos α̂i
+ (x2 − si2) sin φ̂i cos α̂i
− (x3 − si3) sin α̂i ≈ −divi (22b)

where di =
∥∥x̃LS − si

∥∥. Define that the estimations of ε2i and
ε3i are ε̂2i = −rimi and ε̂3i = −divi.
The variances of ε̂2i and ε̂3i are calculated as

Var
(
ε̂2i
)
= E

((
ε̂2i − E

[
ε̂2i
])2)
= r2

i
σ 2
mi (23a)

Var
(
ε̂3i
)
= E

((
ε̂3i − E

[
ε̂3i
])2)
= d2

i
σ 2
vi (23b)

Assuming that σmi = σvi . Replace σmi and σvi with σ .
Then, (23) can be written as

Var
(
ε̂2i
)
= r2

i
σ 2 (24a)

Var
(
ε̂3i
)
= d2

i
σ 2 (24b)

The weight matrix relates to (24) as

w̃1i =
σ 2

Var
(
ε̂2i
) (25a)

w̃2i =
σ 2

Var
(
ε̂3i
) (25b)

Then, these error terms is used as the weight to calculate
the final estimate as

xTELS =
(
ÃT W̃−1Ã

)−1
ÃT W̃−1b̃ (26)

The advantage of the TELS method is that, it doesn’t need
previous environmental information. Although environmen-
tal information is uncertain, it always changes in a certain
range. RSS measurements are very easy to get. Therefore, the
measurement accuracy will be reduced if the RSS measure-
ments are not used. And the influence of measurement noise
on weight is not considered in this method.

In order to improve the accuracy, we add the RSS mea-
surements into the method with appropriate weight, which is
related to error variance and the measured noise value on the
sensor nodes.

III. PROBLEM FORMULATION AND THE
PROPOSED METHOD
This section gives the ML estimate which is difficult to solve
and the ENWLS method is described. First, calculate the
approximate value of xWLS with the WLS method. Then
calculate weight matrix C and S with xWLS . Finally, calcu-
late the approximate value of xENWLS , with the weight, CS.
FIGURE 2 shows a flowchart of the proposed method and the
symbol expression and definition of the main variables in this
section are listed in Table 1.

FIGURE 2. The flowchart of the ENWLS method.

TABLE 1. The symbol and definition of main variables.

A. PROBLEM FORMULATION
Based on theGaussian noisemeasurementmodels (1), (2), (3)
and (4), we can formulate the ML estimator of target location
x as follows,

min
x

N∑
i=1

1
σ 2
ni

(
P̂i − P0 + 10γ log10

‖x− si‖
d0

)2

+

N∑
i=1

1
σ 2
mi

(
φ̂i − arctan(

x2 − si2
x1 − si1

)
)2

+

N∑
i=1

1
σ 2
vi

(
α̂i − arccos(

x3 − si3
‖x− si‖

)
)2

(27)

However, this problem is non-convex and difficult to solve.

B. COMPUTATION OF WEIGHT MATRIX C
The weight matrixC is related to the variances of each anchor
and each evaluation function item. Assuming that |ni|, |mi|

and |vi| � 1. Using a first-order Taylor approximation, ε1i,
ε2i, ε3i in (6), (7), (8) are written as (28), (29), (30)

ε1i = ηd0
ln 10
10γ

ni (28)

ε2i = −
(
cos φ̂i (x1 − si1)+ sin φ̂i (x2 − si2)

)
mi (29)

ε3i = ‖x− si‖ sinα̂ivi (30)

The variances of (28), (29), (30) are calculated as

V (ε1i) =
(
ηd0

ln 10
10γ

)2

σ 2
ni

(31a)

V (ε2i) =
(
cos φ̂i (x1 − si1)+ sin φ̂i (x2 − si2)

)2
σ 2
mi

(31b)

V (ε3i) =
(
‖x− si‖ sinα̂i

)2
σ 2
vi

(31c)

Due to the limited number of anchor nodes, the estimations
of σni , σmi , σvi are not accurate. So, assume that σni = σmi =
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σvi = σ . The influence of different standard deviation and
noise value of each anchor and each evaluation function item
will be reflected in weight matrix S. (31) can be written in a
equivalent form as

V (ε1i) =
(
ηd0

ln 10
10γ

)2

σ 2 (32a)

V (ε2i) =
(
cos φ̂i (x1 − si1)+ sin φ̂i (x2 − si2)

)2
σ 2

(32b)

V (ε3i) =
(
‖x− si‖ sinα̂i

)2
σ 2 (32c)

The weights of each anchor and each evaluation function
item are inversely proportional to their variance, so the weight
matrix C can be written as

C1i =
1

V (ε1i)
(33a)

C2i =
1

V (ε2i)
(33b)

C3i =
1

V (ε3i)
for i = 1, · · · ,N (33c)

It does not affect the final estimate that multiply each term
of the weights in C by σ 2. Replace x with the estimate of x,
x̂WLS . So, (33) can be written as

C1i =
σ 2

V (ε1i)
=

1(
ηd0 ln 1010γ

)2 (34a)

C2i =
σ 2

V (ε2i)

=
1(

cos φ̂i
(
x̂WLS1 − si1

)
+ sin φ̂i

(
x̂WLS2 − si2

))2
(34b)

C3i =
σ 2

V (ε3i)
=

1(∥∥x̂WLS − si
∥∥ sinα̂i)2

for i = 1, · · · ,N (34c)

The matrix C consists of C1, C2 and C3

C = diag (C1,C2,C3) (35)

C. COMPUTATION OF WEIGHT MATRIX S
The weight matrix S is related to the values of ni, mi and vi.
ni, mi and vi can be estimated by x̂WLS as

n̂i = P̂i − P0 + 10γ log10

∥∥x̂WLS − si
∥∥

d0
(36a)

m̂i = φ̂i − arctan(
x̂WLS2 − si2
x̂WLS1 − si1

) (36b)

v̂i = α̂i − arccos(
x̂WLS3 − si3∥∥x̂WLS − si

∥∥ )
for i = 1, · · · ,N (36c)

The weight matrix S can be written as (37) and (38)

S1i = 1−

∣∣n̂i∣∣
N∑
i=1

∣∣n̂i∣∣+ N∑
i=1

∣∣m̂i∣∣+ N∑
i=1

∣∣v̂i∣∣ (37a)

S2i = 1−

∣∣m̂i∣∣
N∑
i=1

∣∣n̂i∣∣+ N∑
i=1

∣∣m̂i∣∣+ N∑
i=1

∣∣v̂i∣∣ (37b)

S3i = 1−

∣∣v̂i∣∣
N∑
i=1

∣∣n̂i∣∣+ N∑
i=1

∣∣m̂i∣∣+ N∑
i=1

∣∣v̂i∣∣
for i = 1, · · · ,N (37c)

The matrix S consists of S1, S2 and S3

S = diag (S1,S2,S3) (38)

D. THE ENWLS ESTIMATE
First, calculate the approximate value of x with the WLS
method in (11).

Then, calculate weight matrix C and S with x̂WLS . The
ENWLS estimator for the target location, xENWLS , is derived
as follows

xENWLS = argmin
x

N∑
i=1

C1iS1i
(
λiuiT (x− si)− ηd0

)2
+

N∑
i=1

C2iS2i
(
ciT (x− si)

)2
+

N∑
i=1

C3iS3i
((

cosαiuiT − kT
)
(x− si)

)2
(39)

By expressing (39) in matrix form, the estimated target
position becomes a closed-form solution as

x̂ENWLS =
(
ATCSA

)−1
ATCSb (40)

IV. ANALYSIS OF RESULTS
In this section, we verify the performance of the proposed
method via computer simulations. All observations are gen-
erated by using (4). The target and anchors are randomly
deployed inside a box with an edge length B = 15m for
each Monte Carlo run (Mc). As considered in most existing
projects, the reference distance is set to d0 = 1m, the
reference path loss to P0 = −10 dBm. The PLE changes
according to the environmental conditions, so perfect knowl-
edge of the PLE is virtually impossible to obtain in practice.
Here, we assume that PLE is a random value in interval
[2.2, 2.8] for eachMonte Carlo run. Performance is evaluated
by calculating the root mean square error (RMSE), defined

as RMSE =

√
1
Mc

Mc∑
i=1

∥∥xi − x̂i∥∥2, where Mc is the Number

of runs, xi is the true location of target in the i-th run, x̂i is
the estimated location of target in the i-th run. Mc is set to
50000. Obviously, the lower RMSE, the better performance.
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TABLE 2. Variables of FIGURE 3 to 7.

FIGURE 3. RMSE versus standard deviation of elevation angle noise, σvi .

The variables of FIGURE 3 to 7 are given in TABLE.1, where
σni represents the standard deviation of received power noise,
σmi represents the standard deviation of azimuth angle noise,
σvi represents the standard deviation of elevation angle noise,
N represents the number of anchor nodes. We compare the
performance of our method with the SR-WLS method in [9],
the LS method in [39], the WLS method in [40], the ECWLS
method in [41], the TELS method in [42] and the SDP/SOCP
method in [38].

A. DIFFERENT STANDARD DEVIATIONS OF AZIMUTH
ANGLE, ELEVATION ANGLE AND RECEIVED POWER
FIGURE 3 shows the relationship between RMSE and the
standard deviation of elevation angle noise, σvi . Set the stan-
dard deviation of azimuth angle noise σmi to 10 deg, the stan-
dard deviation of received power noise σni to 6 dBm and the
numbers of anchors N to 10. As shown in FIGURE 3, RMSE
of all considered methods increases with the increase of σvi .
The weight matrix C of the proposed method ENWLS con-
siders the influence of the different noise values of the differ-
ent measurements. Due to the rationality of the weight of the
proposedmethod, it is the best among all consideredmethods.

FIGURE 4 shows the relationship between RMSE and the
standard deviation of azimuth noise, σmi . Set the standard
deviation of azimuth angle noise σvi to 10 deg, the standard
deviation of received power noise σni to 6 dBm and the
numbers of anchors N to 10. As shown in FIGURE 4, since
the weight of the proposed method relates to the noise values,
its performance is better than that of the others.

FIGURE 5 shows the relationship between RMSE and
the standard deviation of RSS noise, σni . Set the standard
deviation of azimuth angle noise σmi to 10 deg, the standard
deviation of received power noise σvi to 10 deg and the
numbers of anchors N to 10. As shown in FIGURE 5, RMSE
of the LS method and the SR-WLS method increase rapidly

FIGURE 4. RMSE versus standard deviation of azimuth angle noise, σmi .

FIGURE 5. RMSE versus standard deviation of received power noise, σni .

with the increase of σni . This is because the weight of RSS
measurement is too large. Due to the weight matrix S, the
RMSE of the proposedmethod does not increase significantly
with the increase of σni . That is because when σni rises, the
weight matrix S will reduce the weight of the function term
corresponding to σni to avoid larger error. This is also the
reason why the WLS method and the TELS method are also
relatively stable. The proposed method is stable and more
accurate.

B. DIFFERENT NUMBERS OF ANCHORS
FIGURE 6 shows the relationship between RMSE and the
number of anchors, N , when the measured standard deviation
is large. Set the standard deviation of azimuth angle noise
σmi to 10 deg, the standard deviation of elevation angle noise
σvi to 10 deg, the standard deviation of received power noise
σni to 6 dBm. As shown in FIGURE 6, when the measured
standard deviation is large, the RMSE of the proposedmethod
is the best among all methods except when N = 3. When
N = 3, the RMSE of the WLS method is a little better than
the proposed method. That is because the number of anchor
nodes is too small, resulting in inaccurate estimation of noise
value, so there is a large error in the weight matrix S of the
proposed method ENWLS. That causes a negative impact on
the RMSE. This is also the reason why the ECWLS method
has theworst performancewhenN = 3. However, in practice,
the number of anchor nodes is generally more than 3, so the
proposed method still has the best performance in practice.
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FIGURE 6. RMSE versus N , when the measured standard deviation is
large.

FIGURE 7. RMSE versus N , when the measured standard deviation is
small.

TABLE 3. Complexity.

FIGURE 7 shows the relationship between RMSE and the
number of anchors, N , when the measured standard deviation
is small. Set the standard deviation of azimuth angle noise
σmi to 4 deg, the standard deviation of elevation angle noise
σvi to 4 deg, the standard deviation of received power noise
σni to 2dBm. Due to the rational use of RSS data, the perfor-
mance of ENWLS is better than that of TELS. As shown in
FIGURE 7, when the measured standard deviation is small,
the RMSE of the proposed method is the best among all
considered methods.

C. COMPLEXITY ANALYSIS
TABLE.3 shows the complexity of the six methods. Because
usingWLS to calculate the approximate location of the target
localization only requires O (N ), then replace W with CS
and use WLS again only requires O (N ). Therefore, as with
the WLS methods, the calculation amount of this method is
O (N ). The complexity of this method is low enough for real-
time applications.

However, the complexity of the SR-WLS method and the
SDP/SOCP method are O (KN ) and O

(
N 3.5

)
, respectively.

Due to using SDP and SOCP methods, the complexity of
the SDP/SOCP method is the highest, which may delay the
positioning.

V. CONCLUSION
This paper proposes an indoor target localization method,
ENWLS, based on hybrid RSS/AOA measurement in 3D
wireless sensor networks. This method uses the approximate
WLS method, its weight matrix is related to error variance
and measurement noise. Its complexity is the same as the
existing method in linear time. Simulation results show that
this method has better performance than the existing hybrid
RSS/AOA position method.

As the future work on this method, the system model will
be considered closer to the actual situation. We will consider
multi-user situation. Users can also receive RSS measure-
ments from each other, which will make the positioning more
accurate. Multipath effect will be considered. We will try
to reduce the impact of multipath effect through rigorous
mathematical derivation. In the actual situation, the interior
structure may be complicated. Therefore, we will add the
impact of NOLS, so that our method can be applied in more
actual scenarios.
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