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ABSTRACT Enormous number of images are generated daily in all areas of life, including social media,
medical and navigation images. Moreover, the development of smart phones among other specialized
media-capturing devices has witnessed great advances during the last decade. Consequently, the storage,
transmission, and analysis of images become essential and frequent tasks. Thus, various research efforts tried
to address the image compression problem from different computational perspectives. This article presents a
novel multilevel lossy compression algorithm for grayscale images, namely Image-as-Protein (IaP), that is
inspired by the translation of DNA sequences into protein sequences that occurs inside live beings. Because
of the high similarity of the resulting textual protein sequence, it can be tackled by general text compression
techniques with competitive compression ratios. Various qualitative comparisons and quantitative measures
such as BPP, SSIM and PSNR have been carried out on multiple grayscale image benchmark datasets. The
experimental results showed that the proposed algorithm is promising compared to the famous JPEG lossy
image compression standard.

INDEX TERMS DNA, grayscale images, image compression, image sequences, image storage, JPEG, JPG,
lossy compression, protein sequences.

I. INTRODUCTION
Many people deal with enormous amount of images in var-
ious aspects of their daily life, from their awakening to
their sleep. Social media applications, e-commerce appli-
cations, navigation maps, medical diagnoses, governmental
procedures are some examples of applications that store and
transmit images immensely. Various research efforts tried
to address the image compression problem from different
perspectives. There are two types of images: raster and vector.
Raster images are composed of two-dimensional array of
pixels, whereas vector images are stored as geometrical and
mathematical expressions [1]. Every pixel in each raster
image represents a point in that image, and the resolution and
color depth of an image determines its total size.
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In a grayscale image, each pixel is stored in one byte
and takes a value between zero and 255 according to its
intensity. The value of black pixels is zero, whereas the value
of white pixels is 255. Grayscale images are widely used by
the research community as they are easy to understand and
manipulate than color images. So, many research problems
can be initially attempted in grayscale level. Furthermore,
satellite and medical images are grayscale by nature.

A. IMAGE COMPRESSION
The enhancements applied to the current image capturing
devices have increased both the resolution and color depth
of images to an amazing degree. Thus, image compres-
sion represents a vital and challenging topic because of
its direct effect on the storage of images and its trans-
mission over internet. Many image compression techniques
have been published in the last decades, some of them are
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lossless [2, Chapter 7], whereas others are lossy [3]. In loss-
less image compression, decompression of the compressed
image retrieves exactly the original image. On the contrary,
in lossy image compression, some insignificant features of
the original image are intentionally neglected by the compres-
sion algorithm. So, the decompressed image is not exactly
the same as the original image. Some fields require the loss-
less image compression algorithms, especially if any loss
in the original image is not tolerated. In this article, ideas
from Biology have been employed to develop out-of-the-box
lossy image compression algorithm that provides the commu-
nity with multiple lossy compression options for grayscale
images.

B. BIOLOGICAL PRELIMINARIES
A clone of the human’s genetic material resides in almost
every cell of his body. That genetic material consists of
very long double-stranded DNA sequences (Figure 1). In a
biological process entitled theCentral Dogma [4], parts of the
DNA sequences, namely Genes, are transcribed (converted)
into mRNA (simply, RNA) sequences which in turn are used
to synthesize various corresponding protein sequences to
perform essential biological tasks.

Sequencing machines have been invented since three
decades to convert the complete genetic material of some
creature into long digitalDNA sequences [5]–[8]. These digi-
talDNA sequences have been stored into computers for future
computational analysis and manipulation. Hence, the role of
computer scientists was to build computer algorithms to com-
putationally analyze these very long sequences to discover
and treat diseases, and to know variations among creatures.
For more details about the computational conversion of DNA
sequences to protein and the computational genome assem-
bly, the reader can refer to [9].

A DNA sequence is composed of two complementary
strands (Figure 1). The building blocks of each strand are
four chemical bases that are digitally represented by the four
characters {A, C, G, and T}. The sequence of characters
CGTACGTCCGTGCGTGCGTCCGTA is an example of
a single DNA strand with 24 characters. As a computational
shortcut, every ‘‘T’’ base in the given DNA strand is substi-
tuted by a ‘‘U’’ base to obtain the RNA sequence with no need
to the complementary DNA strand. So, any RNA sequence
can be represented by four characters {A, C, G, and U}.
So, the RNA sequence corresponding to the past DNA strand
is CGUACGUCCGUGCGUGCGUCCGUA. The protein
production (translation) process converts every three adjacent
RNA bases, namely a Codon, into one protein unit called
AminoAcid (AA). Prior to translating the RNA sequence into
a protein, unnecessary parts of the RNA sequence (Introns)
are cutted in a process called Splicing, and the remaining
intended parts (Exons) are used to build the desired protein
sequence. Any protein sequence is built from 20 different
AminoAcids (AAs): {A, C, D, E, F, G, H, I, K, L, M, N, P,
Q, R, S, T, V, W, and Y}. The RNA Codons as well as its
corresponding AminoAcid characters are listed in Figure 2.

Assuming that there are no cuts required, the later RNA
sequence generates a protein sequence with the following
eight characters: RTSVRASV.

During the past decades, biologists discovered how the
biological systems inside the living creatures are working
in a perfect manner. This article proposes a novel multi-
level lossy image compression algorithm, namely Image-
as-Protein (IaP) that is inspired by the inherent perfect
organization and synthesization of the biological sequences
inside living creatures. More specific, IaPmimics the biolog-
ical translation ofDNA sequences into protein sequences that
constantly occur inside the cells of live beings. Applying that
translation process on pixels of image results in textual pro-
tein sequence that can effectively be encoded using general
text compression techniques.

The remaining sections of this article are outlined as fol-
lows: Section II briefly introduces the research efforts of lossy
image compression and how some of these efforts tried to
compress images using ideas fromBiology. The proposed IaP
compression algorithm is detailed in Section III, whereas the
results are presented and discussed in Section IV. At the end,
Section V concludes the article.

II. RELATED WORK
This section highlights the research efforts reviewing the
lossy image compression techniques. Next, the JPEG stan-
dard and its modern competitors are contrasted from the com-
patibility perspective. At last, the section reviews the research
articles that use DNA sequences in image compression.
Hussain et al. [10] and Thakur et al. [11] published two

review articles that summarize various state-of-the-art lossy
and lossless image compression methods. The authors talked
about lossy image compression methods including Pre-
dictive Coding, Transform Coding (including Karhunen-
Loeve Transform (KLT), Discrete Cosine Transform (DCT),
Discrete Fourier Transform (DFT), and Walsh-Hadamard
Transform (WHT)), and the JPEG compression standard.
Moreover, they discussed various quantitative quality mea-
sures such as Mean-Square-Error (MSE), Peak-Signal-to-
Noise-Ratio (PSNR), and Structure-Similarity-Index-Metric
(SSIM) [12], [13].
JPEG is the most dominant lossy image compression stan-

dard invented by the Joint Photographic Experts Group [14].
It has been used for the past three decades to this day
to compress images in various quality levels. Images lossy
compressed by JPEG take the extension ‘‘.jpeg’’ or ‘‘.jpg’’.
However, the quality of compressed images is affected by
different artifacts such as ringing, blocking, and blurring
effects. As the intended size of the compressed file decreases,
the image quality decreases to an unsatisfactory level.

Several research efforts tried to eliminate or reduce the
artifacts resulting in the JPEG decompressed images based
on various Artificial Intelligence models of Artificial Neu-
ral Networks (ANNs) and deep learning [15]–[19]. These
ANNs models are trained to learn end-to-end mappings of
artifacts features between the distorted images and their
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FIGURE 1. The conversion of a DNA sequence to a protein sequence from the Central
Dogma prespective. (www.helmholtz-muenchen.de).

FIGURE 2. The protein AminoAcids resulting from the different RNA
codons [9, p.185].

corresponding original versions. After the learning phase
is done, ANNs take a distorted decompressed image with
artifacts as an input, and produce an imagewith higher quality
(less or no artifacts) with the absence of its original version.
Although these ANNs have massive learning capabilities,
their major drawback is the time consumption of their training
phase.

Alternatively, the last decade has seen the emergence
of promising image compression alternatives. JPEG-XR
[20], [21] and JPEG-XT [22], [23] tried to enhance the com-
pression quality with the same compression ratio compared to
JPEG.Although they are backward compatible with the JPEG
standard, they still face standardization and compatibility
issues.

On the other hand, the Better Portable Graphics
(BPG) [24] standard was invented by Bellard in 2014 to
replace JPEG. Although the compression ratio of BPG is

sometimes competitive to JPEG [25], it still has no built-
in native support in popular browsers unless its decoder is
implemented in integrated JavaScript libraries. Furthermore,
WebP [26] is an image compression standard developed by
Google to retain higher image quality for the same com-
pressed size compared to JPEG. WebP provides both lossy
and lossless image compression, however, it is still not
supported by famous browsers such as Safari [27].

The incompatibility issues of the aforementioned JPEG
alternatives forced websites to keep more than one version
of the same image, as only portion of the website visitors
are using compatible browsers. So, instead of saving stor-
age, these modern alternatives resulted in storage overhead.
Moreover, each alternative has its own strengths and weak-
nesses regarding time consumption, decoder compatibility,
and image quality. As a matter of fact, having one com-
pression standard that perform perfectly for all images does
not exist till this moment. Thus, in Section IV, the authors
decided to compare the proposed IaP compression levels with
the JPEG compression standard.

Bandyopadhyay and Chakraborty [28] introduced an
image compression technique that encodes a given image
using four differentDNA encoding methods and selecting the
method with the minimum number of bits in total. It was
encoding an image by solely storing the DNA sequence of
some organism appearing in that image. However, the authors
did not clarify how the enormous space of bits representing
the image pixels were exactly fitted into the selected DNA
sequence that is in fact very shorter. Moreover, the decom-
pression process was not illustrated.

Dimopoulou et al. [29] proposed an image encoding tech-
nique that stores a given image by synthesizing the biological
DNA sequences corresponding to its Discrete Wavelet Trans-
form (DWT), and then storing the synthesized sequences into
a laboratory tube. Although the proposed idea is creative, it is
impractical because it is time and money consuming as it
needs real sequencingmachines as well as biotechnology spe-
cialists and assets for both image encoding and restoration.
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TABLE 1. The Analogy between the process of biological protein Synthesization process (Figure 1) and the proposed compression algorithm (IaP).

FIGURE 3. The proposed Image-as-Protein (IaP) multilevel lossy image compression framework.

FIGURE 4. An illustrative example of selective translation of six image pixels to the OriginalAAs and CumulativeAAs protein sequences. The DNA codon
‘CGT’ is converted to RNA codon ‘CGU’ before getting the ‘R’ AminoAcid.

It is worthy to note that very few research efforts used
the DNA characters as a different representation of the corre-
sponding image pixels for the purpose of image compression.
Nevertheless, the more complex representation of an image
as a protein sequence has not yet been introduced by any
research in the literature.

III. THE PROPOSED ALGORITHM: Image-as-Protein (IaP)
This section details the proposed lossy image compres-
sion algorithm with all its levels. It basically depends on

compressing a given grayscale image by encoding its pix-
els into a DNA sequence which in turn is translated into
a sequence of characters similar to the biological protein
sequences (Figure 3). Table 1 shows the analogy between
the biological protein translation process and proposed (IaP)
compression algorithm.

A. THE COMPRESSION ALGORITHM
Figure 3 depicts the proposed multilevel lossy image com-
pression framework. The compression process is divided into
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Algorithm 1 The IaP Compression Algorithm
Input: An (m*n) sequence of grayscale values 〈p1, p2, . . . , pm∗n〉 corresponding to pixels of rows of input image img with

dimensions m rows and n columns
Output: Compressed image file (img.IaP)
DNA_patterns← Patterns〈AAAA0,AAAC1, . . . ,TTTG254,TTTT255〉
DNA_seq← empty_string
for i← 1 to m do

for j← 1 to n do
pxl_value← img[i, j]
DNA_seq← DNA_seq+ DNA_patterns[pxl_value]

RNA_seq← convertDNAtoRNA()
RNA_seq← Padding_RNA_seq(RNA_seq, 12)
(Acids,Codons,CodonBinaryCodes)← loadCodonsTable()
OriginalAAs← empty_string
CodonBits← empty_string
for offset ← 1 to length(RNA_seq) do

originalCodon = RNA_seq[offset : offset + 3]
offset ← offset + 4
acid ← getAcidOfCodon(Acids,Codons, originalCodon)
codonBinCode← getBinaryCodeOfCodon(Codons,CodonBinaryCodes, originalCodon)
OriginalAAs← OriginalAAs+ acid
CodonBits← CodonBits+ codonBinaryCode

(img.IaP_compressed_file)← writeSequencesToFile(OriginalAAs,CodonBits)
return img.IaP_compressed_file

FIGURE 5. The effect of the Selective Translation step over the RNA sequence representing the ‘‘townview’’ image. The red line in subfigure (b) refers to
the OriginalAAs protein subsequence: ‘‘RRRRRPPRPPPPPPHHPLRQIIIISIISIIIMISSSSM QISS IIIIIIRSIRTRSSSRRRRSHISSISSIMIMMMMMQ PHIQMMQIMS
QHHQIQQMIIMMQHHMQHQHMMIIIQMMMIMIM QRRQIIISSIIQIIHHHHHHHHHHHHHHHHHHPHHHHHHHPPHHHHHHHPHHHHHHHHHHQQQIII’’ that
represents a part of the original image in subfigure (a). The red ‘‘R’’ characters in subfigure (b) represent some flat regions in the image with multiple
lines containing the ‘‘R’’ character.

six steps starting by converting the image pixels into a DNA
sequence, and ending by encoding the corresponding protein
sequence and its related information into output files. The IaP
algorithm is summarized in Algorithm 1.

1) STEP 1: SUCCESSIVE ENCODING OF IMAGE PIXELS
INTO DNA AND RNA SEQUENCES
The compression process starts by encoding the input image
into a DNA sequence, by mapping every pixel of the input
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TABLE 2. The 256 DNA patterns (AAAA to TTTT) corresponding to the
grayscale pixel values (0 to 256).

image into a 4-character DNA pattern. Table 2 shows an
example of mapping some possible image pixels to their
corresponding DNA patterns. After that, the resulting DNA
sequence is encoded into an RNA sequence which in turn
is translated to a protein sequence. The translation process
is achieved by mapping every 3 RNA characters (namely, a
Codon) into one AminoAcid (AA) character in the generated
protein sequence.
As an example, for a given grayscale images, the mapping

of a pixel value to its correspondingDNA pattern can be done
using bitwise operations over the 8-bits of the pixel value
from left to right; assigning A to bits ‘‘00’’, C to bits ‘‘01’’,
G to bits ‘‘10’’ and T to bits ‘‘11’’ respectively. However,
generating the above DNA patterns once, and fetching them
directly according to their corresponding pixel values is much
faster. From the textual perspective, the conversion fromDNA
to RNA depends on replacing each ‘T’ character in the DNA
to ‘U’ in the corresponding RNA sequence.

The encoded DNA sequence for a given image is four
times bigger than the original size of the image itself. That’s
because every grayscale pixel value (1 byte) is flattened into
one corresponding DNA pattern (4 characters). Nevertheless,
the resulting DNA sequence is characterized by high similar-
ity because the alphabet of a given DNA sequence contains
only 4 characters A, C, G, T. The same merit applies for
the RNA sequence of that DNA sequence as well. However,
the neighborhood similarity between subsequent characters
in theDNA sequence is not high enough compared to its corre-
sponding protein sequence, which is formed from 20 different
alphabetical characters A, C, D, E, F, G, H, I, K, L, M, N,
P, Q, R, S, T, V, W, Y. That’s because every protein char-
acter can be generated from multiple different RNA Codons
(as shown in Figure 2). So, subsequent RNA Codons would
result in subsequent clones of the same protein character,
especially if the subsequentRNACodons are similar. This fact
coincides with image attributes where the neighbor pixels of
many areas in an image often have values close to each other.

2) STEP 2: SELECTIVE TRANSLATION OF RNA
SEQUENCE TO protein SEQUENCE
The main idea behind the proposed encoding process is
gathering as much common features from the image pixels.
Up to this moment, the similarity of the generated pro-
tein sequence is still not promising, and the compression
ratio of the traditionally translated protein sequence is not
expected to be high enough. For example, if the DNA
subsequence for the six successive pixels (108, 109, 110,
110, 109, 108) is: CGTACGTCCGTGCGTGCGTCCGTA.
Thereafter, the corresponding RNA sequence would be:
CGUACGUCCGUGCGUGCGUCCGUA. The traditional
translation of that RNA subsequence divides it into the
following eight successive Codons CGU-ACG-UCC-GUG-
CGU-GCG-UCC-GUA, which in turn are translated into the
protein subsequence RTSVRASV through the mapping
shown at Figure 2. Alternatively, to increase the text sim-
ilarity, the authors divided the resulting protein sequence
into two subsequences: OriginalAAs and CumulativeAAs.
Becausemost of the neighbour pixels in flat regions of a given
image are correlated to each other (with a small difference in
their values), the difference between the DNA patterns of two
successive pixels will almost be in the 4th right most character
of the pattern. So, the same aforementioned RNA sequence
can be partitioned by the biological Exons/Introns Splicing
perspective as follows: CGU-A-CGU-C-CGU-G-CGU-G-
CGU-C-CGU-A. Subsequently, while converting theCodons
in a given RNA sequence into AAs in a protein sequence,
it is better to first accumulate the left Codon (first three char-
acters) of each RNA pattern: (CGU-CGU-CGU-CGU-CGU-
CGU), resulting in the more homogeneous AAs sequence
(RRRRRR), namely (OriginalAAs). From the biological per-
spective, this is analogous to accumulating the Exons that
form the final RNA strand. After building the first part of
the protein sequence (OriginalAAs), the second part (Cumu-
lativeAAs) is built by accumulating the 4th character of each
Codon in the RNA sequence (A-C-G-G-C-A) that will gener-
ate the AAs subsequence (TA). Figure 4 illustrates how the
OriginalAAs and CumulativeAAs are generated.

So, the resulting protein sequence is RRRRRR-TA instead
of RTSVRASV that would result from the normal protein
translation process. At the end, two protein subsequences
are generated: OriginalAAs and CumulativeAAs. The idea of
selective translation led to higher text similarity inside the
OriginalAAs subsequence, especially for very long sequences
resulting from an encoded image. Moreover, as will be dis-
cussed in Step 6, the general lossless text compression tech-
niques are expected to give very promising results when
applied to the OriginalAAs subsequence.
It is worthy to note that the size of the resultant

protein sequence is identical to the size of the origi-
nal uncompressed image. That’s because every pixel is
encoded into 4-characters in the DNA sequence, then every
Codon picked from the DNA sequence is translated into
one AA character in the resultant OriginalAAs protein
sequence. Moreover, the OriginalAAs sequence can give
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TABLE 3. DNA Codons and their corresponding CodonBits for the different AminoAcids. The M and W AminoAcids do not need CodonBits. Three extra
fake characters (J, X, and Z) are used to overcome the need for 3-bit binary codes for the L, R, and S AminoAcids: (L→J, R→X, and S→Z).

FIGURE 6. The CodonBits (CBs) associated with the OriginalAAs sequence resulted from the illustrative image pixels in Figure 4. According to the CBs in
Table 3, the ‘R’ AminoAcid results from 4 different codons. However, the CBs associated with the RNA codon ‘CGU’ and the ‘R’ AminoAcid are ‘11’.
So, when reaching an ‘R’ AminoAcid during decompression, the bits ‘11’ tells the exact codon that the ‘R’ AminoAcid came from.

TABLE 4. Grayscale datasets used for testing the proposed compression algorithm (IaP).

an abstract view of the original image (Figure 5). The
red line in Figure 5.b refers to the subsequence: ‘‘RRRRR
PPRPPPPPPHHPLRQIIIISIISIIIMI SSSSMQISSIIIIIIRSIR
TRSSSRRRRSHISSISSIMIMMMMMQPHIQMMQIMSQ
HHQIQQMIIMMQHHMQHQHMMIIIQMMMIMIMQRR

QIIISSIIQIIHHHHHHHHHHHHHHHHHHPHHHHHHHP
PHHHHHHHPHHHHHHHHHHQQQIII’’ of the Origi-
nalAAs sequence encoding the image. That subsequence
highlights the high similarity of the OriginalAAs sequence
that is gained from the selective translation process.
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FIGURE 7. Sample compression results of the four lossy image compression levels of IaP. In general, IaP-LVL1 and IaP-LVL3 introduce better
compression ratios and acceptable quality when compared to IaP-LVL2 and IaP-LVL4.

3) STEP 3: PADDING OF IMAGE PIXELS
To guarantee the complete encoding of the entire image,
the count of the image pixels should be divisible by 12.
If not, the image pixels can be padded using fake pixel
values. The reason behind the value ‘‘12’’ is to guarantee that
the DNA sequence ends with three complete DNA patterns
(12 characters) that should result into four AminoAcid char-
acters: three OriginalAAs protein characters and one Cumu-
lativeAAs protein character.

4) STEP 4: ENCODING protein Sequence(S)
INTO BINARY File(S)
According to the selected compression level, the image pro-
tein sequence(s) are encoded into binary file(s) that represent
the compressed image. Although the size of the OriginalAAs
sequence is identical to the size of the original image, the
OriginalAAs sequence has very high text similarity, espe-
cially in flat regions. So, applying Huffman encoding to the
protein sequence characters according to their frequencies,

and then applying runlength encoding to the entire sequence
achieves significant compression ratio compared to the orig-
inal image file.

5) STEP 5: ENCODING CodonBits INTO A BINARY
FILE (JUST FOR IaP-LVL3 and IaP-LVL4)
As will be discussed in the next section, the decompression
of the compressedOriginalAAs protein sequence (IaP-LVL1)
results in a low-quality decompressed image. Moreover, the
encoded CumulativeAAs (IaP-LVL2) decreases the compres-
sion ratio, and it do not noticeably contribute to the quality of
the decompressed image.

As a step towards the enhancement of the of the quality of
the decompressed image, extra binary bits (namely Codon-
Bits (CBs)) have been encoded to improve the decompression
quality. During decompression, CodonBits specify the exact
DNA Codon used to produce an intended protein AminoAcid
character during compression. Table 3 shows the 62 Codon-
Bits corresponding to the 62 different Codons that generate
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FIGURE 8. Visual comparison between different JPG quality percentages of the same image. (a) an original TIF image from the 1st Waterloo dataset,
(b) its JPG compressed image with quality 0%, (c) its JPG compressed image with quality 30%, (d) its JPG compressed image with quality 60%, and
(e) its JPG compressed image with quality 90%.

TABLE 5. BPP, SSIM, and PSNR of IaP-LVL1 vs. JPG-% for the (64× 64) test images of the 1st Waterloo grayscale dataset. Dark gray rows represent images
where IaP-LVL1 is superior compared to JPG, whereas, light gray rows represent images where IaP-LVL1 was competitive to JPG with equal or close BPP
value.

18 AminoAcids. Both M and W AminoAcids do not need
CodonBits as each of them is generated from a single Codon.
Figure 6 shows the CodonBits ‘111111111111’ corre-

sponding to the illustrative pixel values depicted in Figure 4.
According to the CBs in Table 3, the ‘R’ AminoAcid results
from four different codons: CGA, CGC, CGG, and CGU.
For example, the CBs associated with the RNA codon ‘CGU’
and the ‘R’ AminoAcid are ‘11’. So, when reaching an ‘R’
AminoAcid during decompression, the bits ‘11’ in the CBs

sequence exactly the ‘CGU’ codon that the ‘R’ AminoAcid
came from.

Although the extra encoded CodonBits increase the size
of the resulting compressed image, it helps getting a decom-
pressed image that is near enough to the original image.
As will be discussed in section IV, CumulativeAAs (for
IaP-LVL2 and IaP-LVL4) of the compressed image can be
safely neglected to increase the compression ratio with lim-
ited negative effect on the quality of the decompressed image.
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FIGURE 9. Visual comparison between the quality of (a) an original TIF image from the 1st Waterloo dataset,
(b) its IaP-LVL1 compressed image, (c) its equivalent JPG-% compressed image, (d) its IaP-LVL3 compressed image, and
(e) its equivalent JPG-% compressed image, based on equal or close BPP values between IaP levels and JPG quality
percentage as illustrated in Tables 5 and 6.

6) STEP 6: COMPRESSING IaP’s OUTPUT FILES
In this step, the application of lossless text compression
techniques, such as Huffman Encoding [2, Chapter 3] and

Run Length Encoding [2, p. 205], to compress the IaP’s
output files is expected to give very promising compres-
sion ratio. Moreover, many general-purpose compression
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FIGURE 10. Visual comparison between the quality of (a) an original TIF image from the 2nd Waterloo dataset, (b) its IaP-LVL1 compressed image,
(c) its equivalent JPG-% compressed image, (d) its IaP-LVL3 compressed image, and (e) its equivalent JPG-% compressed image, based on equal or close
BPP values between IaP levels and JPG quality percentage as illustrated in Tables 7 and 8.

standards, includingGZIP, BZIP2, and LZMA,would be used
to encode the IaP’s output files.

Back to Figure 3, it demonstrates the four different IaP
compression levels for a given image are formed from differ-
ent combinations of the three (OriginalAAs, CumulativeAAs,
CodonBits) sequences resulting from that image. If a given

image img is compressed by IaP-LVL1, its img.IaP com-
pressed file should only contain its OriginalAAs sequence.
Whereas, if img is compressed by IaP-LVL2, its img.IaP
compressed file should contain both its OriginalAAs and
CumulativeAAs sequences. Alternatively, compressing img
by IaP-LVL3means that both its OriginalAAs and CodonBits
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FIGURE 11. Visual comparison between the quality of (a) an original TIF image from the California dataset, (b) its IaP-LVL1
compressed image, (c) its equivalent JPG-% compressed image, (d) its IaP-LVL3 compressed image, and (e) its equivalent
JPG-% compressed image, based on equal or close BPP values between IaP levels and JPG quality percentage as
illustrated in Tables 9 and 10.

sequences are be included in its img.IaP compressed file.
Finally, compressing img by IaP-LVL4 implies that all its
three sequences are included in its img.IaP compressed file.

B. THE PROPOSED DECOMPRESSION ALGORITHM
The decompression process should apply all the steps of
the compression process in backward. First, the binary
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FIGURE 12. Visual comparison between the quality of (a) an original TIF image from the Textures dataset,
(b) its IaP-LVL3 compressed image, and (c) its equivalent JPG-% compressed image, based on equal or
close BPP values between IaP-LVL3 and JPG quality percentage as illustrated in Table 12.
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FIGURE 13. Visual comparison between the quality of (a) an original TIF image from the Textures dataset,
(b) its IaP-LVL3 compressed image, and (c) its equivalent JPG-% compressed image, based on equal or
close BPP values between IaP-LVL3 and JPG quality percentage as illustrated in Table 12.

compressed file is read and decoded using the Huffman and
runlength information implemented in the last compression
step to get the encoded OriginalAAs protein sequence. Next,
a hashmap is built from the reversible mapping of Table 3.
Every protein character is reversely mapped into its original

RNA Codon. If a given image was compressed using
IaP-LVL1 and some protein character could be obtained from
multipleRNACodons, its firstCodon is picked up. This action
affects the quality of the decompressed image compared to
the originally compressed image.
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FIGURE 14. Visual comparison between the quality of (a) an original TIF image from the Textures dataset,
(b) its IaP-LVL3 compressed image, and (c) its equivalent JPG-% compressed image, based on equal or
close BPP values between IaP-LVL3 and JPG quality percentage as illustrated in Table 12.

Alternatively, if the same image was compressed using
IaP-LVL3, then the CodonBits stream should be decoded
beforehand. In this case, if it is unknown from which RNA
Codon a protein character is generated, then the CodonBits
of that character are used to exactly know its original RNA
Codon.

Every decoded protein character results in an RNA
Codon that results in the three leftmost characters of some

DNA pattern. So, given the original protein sequence rep-
resented by the OriginalAAs sequence, every three protein
characters will result in three RNA Codons that can be used
to build three DNA patterns.

After decoding three subsequent RNA Codons form the
OriginalAAs sequence, if the image was compressed using
IaP-LVL2, then one character from the CumulativeAAs
sequence is decoded to obtain the fourth character for each
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TABLE 6. BPP, SSIM, and PSNR of IaP-LVL3 vs. JPG-xx% for (64× 64) test images of the 1st Waterloo grayscale dataset. Dark gray rows represent images
where IaP-LVL3 is superior compared to JPG, whereas, light gray rows represent images where IaP-LVL3 was competitive to JPG with equal or close BPP
value.

TABLE 7. BPP, SSIM, and PSNR of IaP-LVL1 vs. JPG-% for test images of the 2nd Waterloo grayscale dataset. Dark gray rows represent images where
IaP-LVL1 is superior compared to JPG, whereas, light gray rows represent images where IaP-LVL1 was competitive to JPG with equal or close BPP value.

of the three previously decoded DNA patterns. If the given
image was compressed using IaP-LVL1 or IaP-LVL3, then
the fourth character for each of the three previously decoded
DNA patterns is randomly guessed. Finally, the subsequent
DNA patterns are used to lookup their corresponding pixel
values as illustrated in Table 2.

IV. RESULTS AND DISCUSSION
This section illustrates all the experimental results conducted
on the proposed IaP algorithm, including the experimental

environment, the implementation details, the attempted
datasets and their compression results using IaP and JPEG
compression algorithms based on quantitative and qualitative
measurements.

A. EXPERIMENTAL ENVIRONMENT
The initial prototype of the proposed IaP algorithm is imple-
mented in Python 3. The CV2 OpenCV package is used to
generate the JPG compressed images from the original TIF
images for all the attempted datasets. In addition, the SSIM
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TABLE 8. BPP, SSIM, and PSNR of IaP-LVL3 vs. JPG-% for test images of the 2nd Waterloo grayscale dataset. Dark gray rows represent images where
IaP-LVL3 is superior compared to JPG, whereas, light gray rows represent images where IaP-LVL3 was competitive to JPG with equal or close BPP value.

measurements [12], [13] are calculated using the SSIM pack-
age.Moreover, the numpy package is used to build the decom-
pressed images and calculated the PSNR values. The runtime
was measured using the timeit package. Finally, the zipfile
package was used by IaP to encode and decode the protein
and CodonBits streams.

Regarding the general text compression phase applied to
the IaP’s output files (Figure 3), the authors tried differ-
ent combinations of lossless text compression algorithms,
including Huffman-Encoding and Run-Length-Encoding.
Moreover, many general-purpose compression standards,
including GZIP, BZIP2, and LZMA, have been attempted to
encode the IaP’s output files. However, LZMA gave the best
compression ratio for the IaP’s output files, and BZIP2 comes
next. So, the results introduced in this section are based on
LZMA encoding of the IaP’s output files.

B. DATASETS
The proposed IaP algorithm is tested using the datasets listed
in Table 4. IaP was run over the original grayscale images
included in the 1st Waterloo, 2nd Waterloo, California, and
Textures datasets. The reader can zoom in all the images
included in the following figures to visually assess their
quality. However, for more convenient comparison, these
images have been uploaded as a supplementary ZIP file at the
following link: (https://bit.ly/3BR0wGP). The supplementary
ZIP file includes the original TIF images in PNG format,
the JPG compressed images, the IaP compressed images in
ZIP format, and the IaP decompressed images with .IaP
extension.

C. QUANTITATIVE AND QUALITATIVE COMPARISON
BETWEEN IaP AND JPG
This subsection starts by comparing the four compression
levels of IaP. Next, a comparative study between the IaP
and JPG lossy compression algorithms is introduced. Figure 7
compares the compression ratios and the quality of the four
levels of IaP. Although the Bits-Per-Pixel BPP of IaP-LVL2
approaches or exceeds the BPP of IaP-LVL3, the quality of
the decompressed image (measured by SSIM and PSNR) is
not significantly improved compared to IaP-LVL1. In general,
the BPP, SSIM, and PSNR values of the four levels imply that
IaP-LVL2 and IaP-LVL4 (that include the CumulativeAAs
component) are not as effective as using the CodonBits
component.

As shown in Figure 3, the CumulativeAAs sequence is the
second component of any image compressed by IaP-LVL2
and IaP-LVL4. However, based on the sample results of the
four IaP levels shown in Figure 7, including the Cumula-
tiveAAs sequence in the image’s compressed file increases
its size with insignificant quality enhancement for the
decompressed image in both levels. So, the CumulativeAAs
sequence is ignored analogous to skipping the Introns while
building the biological protein sequence. Consequently, only
the results of IaP-LVL1 and IaP-LVL3 are considered in this
section.

The size of the compressed image, represented by Bits-Per-
Pixel (BPP), is the main criterion in comparing a specific
IaP level to JPG. For a given image compressed by some
IaP level, a corresponding JPG compressed image with the
nearest BPP value. The quality percentage of the generated
JPG image is represented by the expression (JPG-x%), where
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TABLE 9. BPP, SSIM, and PSNR of IaP-LVL1 vs. JPG-% for test images of the California dataset. Dark gray rows represent images where IaP-LVL1 is
superior compared to JPG, whereas, light gray rows represent images where IaP-LVL1 was competitive to JPG with equal or close BPP value.

x is the quality percentage. A higher x value means higher
BPP value and better compression quality (higher SSIM and
PSNR values). After that, the SSIM and PSNR of that JPG
image are calculated.Figure 8 illustrates the (JPG-%) quality
percentage for different JPG versions of the same image. The
SSIM and PSNR values of each version is written underneath.

Tables 5 to 12 respectively compare the performance of
IaP and JPG algorithms over the 1st Waterloo, 2nd Water-
loo, California, and Textures datasets according to the BPP,
SSIM, and PSNRmeasurements. TheMSE value between the
pixels of the original and decompressed images is calculated
using (Equation 1). The PSNR value [30] is calculated using
(Equation 2) based on the obtained MSE value. The PSNR
value of 100 implies that its MSE value is zero. The third
column of each of these tables lists the quality percentage of
JPG with the nearest BPP value for the specified IaP level.
The next columns compare a specific IaP level with JPG
with three measures respectively: BPP, SSIM, and PSNR.
An (*) preceeding an image name in the following tables
refers to a IaP compressed image with superior performance
compared to its JPEG compressed version with close or

equal BPP value. In that case, the image row is highlighted
in dark gray. In this subsection, an algorithm with better
performance for some image usually means that it resulted
in a compressed image with smaller BPP value but higher
quantitative measure(s) (SSIM, PSNR) for the decompressed
image. Alternatively, Figures 9 to 14 visually compare the
performance of IaP and JPG over some images from the same
aforementioned datasets.

MSE(x, y) =
1
mn

m∑
i=1

n∑
j=1

(xij − yij)2 (1)

where:
x = original image
y = decompressed image
m = number of rows in original image
n = number of columns original image
xij = pixel value from original image
yij = pixel value from decompressed image

PSNR(x, y) = 10 log10(
[max(max(x),max(y))]2

MSE(x, y)
) (2)
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TABLE 10. BPP, SSIM, and PSNR of IaP-LVL3 vs. JPG-% for test images of the California dataset. Dark gray rows represent images where IaP-LVL3 is
superior compared to JPG, whereas, light gray rows represent images where IaP-LVL3 was competitive to JPG with equal or close BPP value.

Table 5 shows the compression results of IaP-LVL1 and
JPG for the 1st Waterloo dataset, whereas, Table 6 compares
IaP-LVL3 with JPG for the same dataset. Table 5 shows
the four images ‘‘circles.tif’’, ‘‘crosses.tif’’, ‘‘horiz.tif’’, and
‘‘text.tif’’ where the SSIM and PSNR measures of IaP-LVL1
are significantly better than JPG. For the ‘‘squares.tif’’ image,
IaP-LVL1 still has lower BPP value and competitive SSIM
value. At last, JPG has better quality for the rest of images.
In Table 6, the performance of IaP-LVL3 is much better than
JPG for the same four images ‘‘circles.tif’’, ‘‘crosses.tif’’,
‘‘horiz.tif’’, and ‘‘text.tif’’ based on equal or close BPP
values. Moreover, the IaP-LVL3 gains better performance
compared to JPG for images ‘‘bridge.tif’’, ‘‘camera.tif’’,
‘‘goldhill1.tif’’.

By zooming in Figure 9, it is clear that JPG has bad quality
for the first four images compared to the same decompressed
images of both IaP-LVL1 and IaP-LVL3. For the last three
images of the same figure, although JPG has better perfor-
mance than IaP-LVL1, both JPG and IaP-LVL3 are competing
for lower BPP and higher SSIM and PSNR values.
Table 7 shows the compression results of IaP-LVL1 and

JPG for the 2nd Waterloo dataset, whereas, Table 8 compares

IaP-LVL3 with JPG for the same dataset. As shown in
Table 7, IaP-LVL1 has much better performance for image
‘‘france.tif’’ compared to JPG. For the ‘‘frog.tif’’ and
‘‘library.tif’’ images, IaP-LVL1 still has better performance
compared to JPG. In Table 8, the performance of IaP-LVL3
is noticeably better than JPG for images ‘‘france.tif’’,
‘‘frog.tif’’, and ‘‘library.tif’’ based on equal or close BPP val-
ues. Moreover, the performance of IaP-LVL3 is competitive
for images ‘‘mandrill.tif’’, ‘‘mountain.tif’’, ‘‘peppers2.tif’’.
Zooming in images of Figure 10 reflects the same aforemen-
tioned inductions.

Table 9 shows the compression results of IaP-LVL1 and
JPG for the California grayscale dataset, whereas, Table 10
compares IaP-LVL3with JPG for the same dataset. As shown
in Table 9, JPG has the best performance for most of
the California images. However, IaP-LVL1 has better per-
formance for images ‘‘5.1.13.tif’’ and ‘‘gray21.512.tif’’.
Moreover, IaP-LVL1 has the best performance for image
‘‘ruler.512.tif’’. On the contrary, the performance of IaP-
LVL3, as presented in Table 10, is very competitive to JPG for
images with light gray entries. Moreover, IaP-LVL3 has the
best performance for images ‘‘5.1.13.tif’’, ‘‘gray21.512.tif’’,
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TABLE 11. BPP, SSIM, and PSNR of IaP-LVL1 vs. JPG-% for test images of the Textures dataset. Dark gray rows represent images where IaP-LVL1 is
superior compared to JPG, whereas, light gray rows represent images where IaP-LVL1 was competitive to JPG with equal or close BPP value.
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TABLE 12. BPP, SSIM, and PSNR of IaP-LVL3 vs. JPG-% for test images of the Textures dataset. Dark gray rows represent images where IaP-LVL3 is
superior compared to JPG, whereas, light gray rows represent images where IaP-LVL3 was competitive to JPG with equal or close BPP value.

and ‘‘ruler.512.tif’’. Zooming in these three images at the top
of Figure 11 proves this fact. For the last four images in the
same figure, JPG is better than IaP-LVL1, but IaP-LVL3 has
better performance (BPP values) compared to JPG.

Table 11 shows the compression results of IaP-LVL1 and
JPG for the Textures dataset, whereas, Table 12 compares
IaP-LVL3 with JPG for the same dataset. As shown in
Table 11, the performance of IaP-LVL1 is not bad compared
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TABLE 13. Compression quality of different images using different compressors. Various trials of enhanced IaP-LVL1 are listed after applying bilaterial
filter with different parameters and/or adjusting the intensity of the decompressed image. It is clear that Enhanced IaP-LVL1 still retains lower BPP but
higher quality compared to IaP-LVL2.
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to JPG for most of the images. Conversely, IaP-LVL3 has the
best performance compared to JPG for most of the Textures
dataset (Table 12). Figures 12, 13, and 14 visually analyse
the decompressed images of IaP-LVL3 and JPG.With smaller
BPP value, IaP-LVL3 achieved better compression ratio with
image quality as better as the same JPG images.

D. ENHANCING THE QUALITY OF IaP-LVL1
The aforementioned visual analysis of the decompressed
images showed that IaP-LVL1 is efficient for images with
more textures and less gradual regions. That’s because of
intentionally ignoring the least significant character of each
DNA pattern corresponding to each pixel, in addition to
selecting the first Codon corresponding to the AminoAcid
representing that pixel. Moreover, intentionally ignoring
the least significant character of each DNA pattern corre-
sponding to each pixel slightly decreases the intensity of
that pixel. Table 13 shows various trials of denoising the
IaP-LVL1’s decompressed images using bilateral filter [31]
with different parameters and adjusting the images’ inten-
sity. It is clear that the enhanced decompressed images of
IaP-LVL1 still have lower BPP and higher quality com-
pared to IaP-LVL2’s decompressed images. Moreover, the
enhancement trials shows that adjusting the pixel intensity
increases the PSNR value, whereas, applying the bilateral
filter with various parameters increases the SSIM value of
the IaP-LVL1’s decompressed image. On the other hand,
thanks to encoding the CodonBits, IaP-LVL3 has competitive
compression ratio and quality compared to JPG.

E. COLORED IMAGES
A given 8-bit grayscale image consists of a single channel
that is initially encoded into one DNA sequence. Alterna-
tively, RGB images contain three channels (Red, Green, and
Blue). Until this moment, IaP compresses each channel in
an RGB image separately. So, the size of the compressed
RGB image is approximately three times the size of its
compressed grayscale version. This is not the case for JPG
images, where the JPG standard depends on downsampling a
given RGB image by converting it into a different color space
(YCbCr) [32], [33]. As a result, the size of a compressed JPG
color image is noticeably smaller than the same color image
compressed by IaP. This is the reason behind skipping the
experimental compression results of color images.

F. RUNTIME COMPLEXITY ANALYSIS
As illustrated in Algorithm 1, most of the IaP oparations are
proportional to subsequent matrix and vector manipulations
with runtime complexity O(m*n), where m and n respectively
represent the number of rows and columns in a given image.
Of course, the past runtime complexity excludes the com-
pression runtime of the IaP’s output files using text com-
pression libraries. Because IaP is implemented in Python,
measuring its compression/decompression runtime will be an
unfair comparison with other highly optimized compression
standards such as JPG. Thus, implementing IaP in lower level

languages (such as Assembly and C) would result in more fair
runtime comparison.

G. APPLICATIONS OF IaP
The results shown in this section highlight an important
advantage of the IaP algorithm that would serve a wide range
of online applications (such as social media and navigation
maps) with limited bandwidth. Based on the fact that every
image compressed by IaP-LVL3 consists of two components
(theOriginalAAs and CodonBits components), the transfer of
imagewould start by transferring theOriginalAAs component
(as if the image is only compressed by IaP-LVL1). After that,
the quality of the displayed image can be further enhanced
by applying the CodonBits component. On the other hand,
IaP levels can be used for compressing medical, satellite
and security surveillance images according to the acceptable
quality levels in each of these fields.

V. CONCLUSION
This article proposed the IaP algorithm as a novel multilevel
lossy image compression algorithm for grayscale images that
is based on encoding image pixels into a sequence analogous
to the biological protein sequences in living creatures. The
four compression levels of IaP cumulatively cover different
components of the encoded image, however, the 2nd and
4th levels have been excluded from the results because of their
inefficient compression ratios compared to the quality of their
decompressed images.

Various quantitative and qualitative measures have been
applied on different grayscale datasets. Consequently,
IaP-LVL1 introduced acceptable quality with very high com-
pression ratio, whereas, the quality obtained by IaP-LVL3
was very competitive to JPG. Moreover, IaP-LVL1 could
not retain gradual regions, because IaP-LVL1 holds only one
component of the encoded image that loss the small differ-
ences between adjacent pixels of these regions. However,
applying an appropriate filter (such as bilateral filter)
and intensity adjustmentent can raise the quality of the
IaP-LVL1’s decompressed images to competitive levels.
On the other hand, IaP-LVL3 uses the CodonBits compo-
nent that presents successful guidance while decoding the
IaP-LVL3’s compressed images.

In addition, the introduced multilevel compression levels
can effectively be used in multimedia streaming applications,
That’s because the quality of the streamed image can be
enhanced by subsequently transferring and processing sep-
arate components of the IaP’s compressed image.
Finally, the main target of this article is to draw the

attention of the research community to the applicability and
efficiency of such biologically-inspired ideas to gain more
technological advances in the current era.
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