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ABSTRACT The high-precision positioning of the shearer is the key technology to realize the automation
of longwall mining. Since mine is a Global Position System (GPS)-denied environment, highly autonomous
Inertial Navigation System (INS)/odometer integrated navigation has been widely used. At present, the
shearer positioning method based on INS/odometer has been challenging to meet the requirements of long-
time and high-precisionmining. Aiming at the high-precision navigation in the complexmining environment,
this paper constructs a comprehensive rail kinematics model of the shearer that does not rely on external
sensors. By analyzing the kinematic characteristics of the shearer and the scraper conveyor during the
longwall mining process, a method of information fusion and navigation system fault diagnosis based on
the assistance of the shearer rail kinematics model was proposed. According to the working principle of the
shearer rails and hydraulic supports, the characteristics of the trajectory deviation caused by the sensor fault
of the hydraulic support are analyzed. Combined with the engineering requirements of shearer mining, the
model fault identification was carried out by the fading probability ratio detection algorithm. The simulation
results show that the proposed algorithm effectively improves the positioning of shearer accuracy in multiple
cutting cycles. At the same time, it avoids the influence of the rail deviation caused by the rail kinematics
model fault on the positioning of the shearer.

INDEX TERMS Underground environment, shearer, rail kinematics model, information fusion, autonomous
navigation, fault detection.

I. INTRODUCTION
Coal is the primary fossil energy and plays a vital role in the
world energy structure. Because the mine is a closed envi-
ronment, explosive gas and dust can easily lead to coal mine
safety accidents [1]. Since the U.S. Bureau of Mines pro-
posed computer-aided coal mining technology in the 1980s,
the high-precision autonomous positioning of underground
shearers has become a significant technical challenge in the
process of automation [2].

Inertial navigation system (INS) is widely used to posi-
tion underground equipment due to its highly autonomous
and reliable navigation performance. As early as the 1980s,
Sammacro [3] developed a navigation system based on
gyroscopes, magnetic heading sensors, and inclinometers to
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measure the attitude of underground mine equipment for
autonomous mining operations. However, INS inevitably has
error divergence when it calculates position and attitude
through numerical product, which is the inherent limitation.
Therefore, the inertial error is usually corrected through exter-
nal information. Reid et al. [4] utilized the motion char-
acteristics of the sharer, the accumulated errors of the INS
are corrected by zero velocity update (ZUPT). Although the
ZUPT is simple and easy to implement, the shearer needs to
be stopped periodically. Whenever the shearer starts moving,
errors will continue to accumulate.

The long-term positioning accuracy of the odometer is bet-
ter than INS. Meanwhile, the odometer has excellent auton-
omy and stability. Therefore, the integrated navigation of
INS/odometer is the primary method for coal shearer posi-
tioning. Wang and Wang [5] utilized the position and speed
information to fuse through information filtering, which
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significantly improved the positioning accuracy of the shearer
compared with the pure inertial positioning. Ralston et al. [6]
earlier put forward the conception of using a wireless sen-
sor network to locate underground mine mobile equipment.
Fan et al. [7] positioned the shearer by using the time of
arrival (TOA) positioning method through the UWB base
station installed on the hydraulic support and labels installed
on the shearer, which effectively reduces the positioning error
of INS. To solve the mixed line-of-sight and non-line-of-
sight errors caused by underground environmental barriers,
Cao et al. [8] proposed an interactive multi-model algorithm
based on the Gaussian mixture model to reduce the frequent
switching between line-of-sight and non-line-of-sight scenes.
However, it is difficult to install and calibrate the base sta-
tion used for shearer positioning. The label may not always
receive the base station signal due to the occlusion in the posi-
tioning process. In addition, researchers have also conducted
extensive studies on visual perception methods [9], infrared
radiation methods [10], Doppler velocimetry method [11],
and other methods [12]. Since active sensing sensors are
usually affected by the complex environment of the shearer’s
working face, their availability and reliability are difficult to
guarantee.

To meet the positioning requirements of GPS-denied
environment, the Commonwealth Scientific and Industrial
Research Organization (CSIRO) in Australia has proposed
a closed path based reverse correction method [13]. On this
basis, Shibo et al. [14] established the rail kinematics model
to assist positioning according to the motion characteristics
of the shearer on the scraper conveyor and improved the
navigation accuracy of the shearer through Kalman filtering
theory without relying on external sensors. Due to the lack
of further analysis on the mechanical structure of the scraper
conveyor in the mining process, the engineering value of the
algorithm is affected.

The rest of this paper is organized as follows: Firstly,
a Refinementmodel of shearer rail is constructed in section II.
The integration navigation strategy is presented in section III,
which analyses the construction of system model, measure-
ment model, and federated filtering architecture in the work.
A fault detection method of rail kinematics model based on
the fading sequential probability ratio detection algorithm is
proposed in section IV. In section V, the algorithm is verified
by experiment and simulation. The conclusion is summarized
in section VI.

II. REFINEMENT MODEL OF SHEARER RAIL
Comprehensive mechanized coal mining is a process of
coal mining using mechanized and automated equipment.
Fullymechanizedmining equipmentmainly includes shearer,
scraper conveyor, and hydraulic support [15]. In the cutting
process, the shearer breaks the coal along the horizontal
direction of the working face first. After the coal seam falls
off, the scraper conveyor transports the coal to the crusher.
In the cutting process of the shearer, the hydraulic support
will ensure that the top coal will not collapse and control

the longitudinal mining depth of the working face in the
next cycle. Usually, according to the actual situation of the
coal seam, the hydraulic support will push the roof support
system and scraper conveyor after 0.8-1m thick coal body
is cut down by the shearer. The scraper conveyor is used
to transport coal and materials and the rail of the shearer,
so the movement of the shearer is consistent with the track of
the scraper conveyor. The circular cutting track and scraper
conveyor structure are shown in Fig. 2. The longitudinal
distance between each cutting surface (point A to B) can
be measured by the displacement sensor of the shearer’s
hydraulic support. The horizontal plane of the rail kinematics
model is controlled by many hydraulic supports, therefore
a certain error exists between each chute, resulting in the
included angle between chutes. Since each chute is a rigid
body, the movement trajectory of the shearer should be a
broken line that conforms to the movement characteristics of
the scraper conveyor [16].

III. INS/ODOMETER HIGH-PRECISION POSITIONING
ALGORITHM ASSISTED BY RAIL KINEMATICS MODEL
According to the cutting process of the shearer, the cur-
rent cutting trajectory can be predicted according to the rail
kinematics model based on the trajectory of the last cutting,
and the position measurement of the current shearer can be
obtained. The constraint information of the rail kinematics
model is integrated with the traditional INS/odometer. The
system model, measurement model, and fusion framework
are constructed as Fig 1 and Fig 2:

FIGURE 1. Schematic diagram of the longwall fully mechanized mining
process.

A. SYSTEM MODEL CONSTRUCTION
This paper is based on the east-north-up (ENU) coordinate
system. The coordinates and attitude angles are shown in
Fig. 3; the specific structure is shown in Fig. 4.

The angle between the projection Y ′b of the carrier Yb on
the navigation coordinate system XN −O−YN plane and the
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FIGURE 2. Shearer cutting motion track.

FIGURE 3. INS/odometer/rail kinematics model positioning scheme: (N)
is the ENU navigation coordinate and (b) is the body coordinate.

FIGURE 4. The optimal estimation and detection algorithm structure
based on the rail kinematics model.

geographic north YN is the heading angle ψ . The value starts
from YN on XN −O− YN plane and the domain of definition
is 0◦ to 360◦. The angle between the geographic north YN and
the projection Y ′′b of carrier Yb on the navigation coordinate
system ZN−O−YN plane is the pitch angle θ , which produced
by the rotation of the carrier around the horizontal axis Xb.
Reference to coordinate system ZN −O−YN plane, the pitch
angle is positive for upwards and negative for downwards.

The domain of definition is −90◦ to 90◦. The angle between
the projection Z ′b of the carrier Zb on the navigation coordi-
nate system ZN−O−XN plane and the navigation coordinate
system ZN axis is defined as the roll angle γ . Reference to the
coordinate system ZN−O−XN plane, right tilt is positive, left
tilt is negative, and the domain of definition is−180◦ to 180◦.
The error equations of strapdown INS are selected as

the state equations of the integrated navigation system. The
odometer scale factor error and installation error also need to
be considered. The state values are set as follows:

Xk =
[
φ δv δp εb εr ∇ s

]
where, φ =

[
ϕE ϕN ϕU

]
is the platform error angle,

δv =
[
δvE δvN δvU

]
is the east, north and vertical velocity

error of the carrier. δp =
[
δλ δL δh

]
is the longitude,

latitude and height errors of the carrier, respectively. εb =[
bbx bby bbz

]
is the 3-axis gyroscope random constant [17].

εr =
[
εrx εry εrz

]
is the first-order Markov process ran-

dom noise of the 3-axis gyroscope. Because the zero bias
of the accelerometer is trivial and relatively stable, it can
be calibrated through the turntable. To reduce the amount of
calculation, the random constant of the accelerometer is not
modeled.∇ =

[
∇x ∇y ∇z

]
is the first-orderMarkov process

random noise of the 3-axis accelerometer. s is the scale factor
error of the odometer. According to the error equation of
navigation system [16], the state equation is obtained:

Xk = 8k|k−1Xk−1 + Gk−1W k−1 (1)

where, the subscripts k and k − 1 stand for the sampling time
index. 8k|k−1 is the one-step transfer matrix of the system,
Gk−1 is the system noise matrix, and W k−1 is the system
noise.

B. MEASUREMENT MODEL CONST RUCTION
According to the movement characteristics of the shearer,
there are multiple moments of static state in the cutting
process of the shearer, and the cumulative error of the speed
can be corrected periodically through zero speed correction.
The measurement equation is as follows:

ZZUPT ,k = HZUPT ,kXk + VZUPT ,k

=

 vIE − 0
vIN − 0
vIU − 0

 =
 δvEδvN
δvU

+
wZUPT1wZUPT2
wZUPT3


=
[
03×3 diag

[
1 1 1

]
03×13

]
Xk +

wZUPT1wZUPT2
wZUPT3


(2)

where ZZUPT ,k is the difference between the measurement
information of zero velocity correction and the velocity infor-
mation of the INS, HZUPT ,k is the measurement coefficient
matrix, and VZUPT ,k is the measurement noise.

The odometer is a kind of sensor that can provide the dis-
tance relative to the initial position and has better long-term
accuracy than INS. According to the working principle of
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the shearer walking device, the equipped odometer can only
provide the forward pulse of the body coordinate. The current
position of the shearer can be obtained through the scale
factor of the odometer pulse and the attitude information
provided by the INS. The measurement model is as follows:

PO,k = PO,k−1 + Cn
b k−11dC,k−1

= PO,k−1 + Cn
b k−1((p−1p)Mk − (p−1p)Mk−1)

(3)

where Mk and Mk−1 are the number of pulses. PO,k and
PO,k−1 are the position of the shearer under the navigation
system. Cn

b is the attitude transfer matrix, p and 1p are the
true value of the scale factor and the error of the scale factor
of the odometer. The measurement equation is:

ZO,k = HO,kXk + VO,k

=

 LIE − LOE
λIN − λON
hIU − hOU

 =
 δLEδλN
δhU

+
wO1wO2
wO3


=

 01×6 Rm 0 0 01×9 −1M cosψ cos θ
01×6 0 Rn cosL 0 01×9 −1M sinψ cos θ
01×6 0 0 1 01×9 −1M sin θ

Xk

+

wO1wO2
wO3

 (4)

where ZO,k is the difference between the position measure-
ment of odometer and the position of INS, HO,k is the
measurement coefficient matrix of odometer,VO,k is the mea-
surement noise. L, λ and h represent longitude, latitude and
altitude, respectively. θ and ψ represent the pitch angle and
the heading angle, respectively. RM and RN are the radius of
curvature of the earth’s meridian circle and the unitary circle,
and1M is the difference of pulse number at continuous time.
According to the rail kinematics model, the trajectory

position information of the current cutting shearer can be
predicted. Different working conditions will lead to different
speeds of the shearer in each cutting cycle. When the shearer
moves over a fixed distance, the expected point of the rail
kinematics model matches the estimated point of the current
position. The measurement model is constructed as follows:

PCE,k = PCE,k−1 + dC,k−1 sin(ψ)+ wCE,k (5)

PCN ,k = PCN ,k−1 + dC,k−1 cos(ψ)+ wCN ,k (6)

where, PCE,k and PCN ,k are respectively the east and north
position of shearer given by the rail kinematics model; dC,k−1
is the advancing distance of shearer hydraulic support relative
to the vertical direction of the working face; wCE,k and wCN ,k
is the position noise of chute.

wCE,k = ri,k sin(oi) sin(ψ)+ bi (7)

wCN ,k = ri,k sin(oi) cos(ψ)+ bi (8)

where, ri,k is the distance that the shearer moves in the
chute, o is the angle between the chute and the horizontal
cutting surface of the shearer. bi is the noise measured by

the displacement sensor [18]. The measurement equation is
as follows:

ZC,k = HC,kXk + VC,k

=

[
(LIE − LCE )Rm

(λIE − λCE )Rn cosL

]
=

[
RmδL

Rn cosLδλ

]
+

[
wCE
wCN

]
=

[
01×6 Rm 0 01×11
01×6 0 Rn cosL 01×11

]
Xk +

[
wCE
wCN

]
(9)

where, ZC,k is the difference between the measurement of
the rail kinematics model and the output position of INS.
HC,k and VC,k are the measurement coefficient matrix and
measurement noise of the rail kinematics model, respectively.

Federated filter is a two-stage data fusion structure con-
sisting of several sub-filters working in parallel to com-
plete Kalman filter calculation. In this paper, two sub-filters
based on INS/odometer and INS/rail kinematics model are
designed. The INS/odometer sub-filter and the INS/rail kine-
matics model sub-filter are corrected by position of odometer
output and the rail kinematics model output respectively,
and the ZUPT is carried out when the cutting stops. The
information fusion of inertial state recursion and measure-
ment is carried out by EKF respectively [19]. Then, the local
estimations and the corresponding covariances are fused by
a global filter to obtain the global optimal estimation. The
information fusion equation is as follows:

Pg =

 N∑
j=1

P−1j

−1 (10)

X̂g = Pg

 N∑
j=1

P−1j X̂ j

 (11)

where Pg is the covariance matrix of the estimated state, P j
corresponds to the estimated error covariance matrix of each
sub-filter, X̂g is the global optimal estimation result, X̂ j is the
state estimation of the sub-filter, N represents the number of
sub-filters, j stands for the j-th sub-filter [20].

IV. FAULT DIAGNOSIS OF RAIL KINEMATICS MODEL
BASED ON FEDERATED FILTER
The scraper conveyor of the shearer is usually controlled by
nearly 200 hydraulic supports. If the sensors of hydraulic sup-
ports fail and the faults are not timely isolated, the accuracy
of the rail kinematics model will decrease. According to the
mining regulations of the shearer, the scraper conveyor needs
to maintain the horizontal bending angle of each chute and
the horizontal cutting trajectory deviation should be less than
the index requirements of the scraper conveyor. In this paper,
a fault detection algorithm of fading probability ratio based
on the federated filter is proposed.

A. FADING PROBABILITY RATIO FAULT DETECTION
MODEL BASED ON FEDERATED FILTER
The rail kinematics model caused by the fault of the hydraulic
support measurement sensor is shown in Fig. 5.
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FIGURE 5. Schematic diagram of rail kinematics model.

The discrete measurement model of federated filter sub-
filter under fault is as follows:

ZC,k = H(k)Xk + VC,k + f C,k (12)

where, HC,k is the measurement matrix of the subsystem,
VC,k is the measurement noise, and f C,k is the fault infor-
mation. According to the rail kinematics model, the fault
information model is as follows:

f C,k = Cn
b((l + b) sin81 + (l + b) sin82

+ · · · + (l + b) sin8n) (13)

where, 8 is the included angle between each chute of the
bending section and the longitudinal line (coal wall line of the
mining face) of the scraper conveyor, b is the length of each
chute, l is the chord length corresponding to the horizontal
included angle α between the chute of the bending section.
Because of the small value of α, the chord length and arc
length can be regarded as equal, l can be expressed as:

l =
πaα
180

(14)

The innovation value of the sub-filter at time k can be
obtained by the following formula:

V k = Zk −Hk X̂k/k−1 = vk + ζ k (15)

where ζ k is the system disturbance. When the system is not
disturbed, the continuous-time innovation sequence sample is{
v1 v2 · · · vk

}
, the sample satisfies v ∼ N (v̄k , σ k), v̄ is the

sample mean, σ 2
k is the sample variance. The variance of the

sub-filter can be obtained by the following formula:

σ 2
k = HkPk/k−1HT

k + Rk (16)

where Pk/k−1 is the one-step prediction mean square error,
Rk is measurement noise.

In the fault analysis of an integrated navigation system, the
binary hypothesis is usually made for the mean value of the
innovation sequence v̄ of the sub-filter:{

H0 = v̄ = 0 0
H1 = v̄ 6= 0 1

(17)

where H0 and H1 represent system fault and fault free,
respectively.

According to the above formula, the prior probability under
the binary fault hypothesis is as follows:

p (vk | H0) =
1

√
2πσ k

exp
[
−
1
2
(
vk
σ k

)2
]

(18)

p (vk | H1) =
1

√
2πσ k

exp
[
−
1
2
(
vk − ξ k
σ k

)2
]

(19)

According to the maximal posterior probability criterion,
the likelihood ratio of the innovation sequence samples in
continuous time is as follows:

λk = ln(
k∏

k=1

p(vk | H1)
p(vk | H0)

)

= ln

[
k−1∏
k=1

p (vk | H1)

p (vk | H0)

]
+ ln

[
p (vk | H1)

p (vk | H0)

]

=

k−1∑
k−1=1

(vk−1 − v̄k−1)T (vk−1 − v̄k−1)− vTk−1vk−1
2σ 2

k−1

+
(vk − v̄k)T (vk − v̄k)− vTk vk

2σ 2
k

= λk−1 +1λk (20)

It can be seen from the above formula that as k increases,
the proportion of the mean value of the innovation sample
v̄k becomes smaller and smaller. Since the sensitivity of the
detection algorithm is constantly decreasing, the weight of
the historical sample mean is reduced by introducing a fad-
ing factor, thereby improving the sensitivity of the detection
algorithm. The mean value of the innovation sample after
introducing the fading factor is as follows [21], [22]:

dk =
1− b
1− bk

(21)

v̄ = (1− dk )
k−1∑

k−1=1

vk−1 + dkvk (22)

where, b is the fading factor.
The statistic is as follows:

λk =

k−1∑
k−1=1

bλk−1 +1λk (23)

Fault detection criteria are as follows:

J =

{
λk > T1
λk 6 T0

(24)

where T is the threshold. j = 1 means that the rail kinematics
model is faulty. j = 0 means that the rail kinematics model is
faulty-free.

V. EXPERIMENTS
A. SIMULATION VERIFICATION
To verify the effectiveness of the algorithm proposed in this
paper, a simulation experiment is carried out. According to
the actual working conditions of the shearer, a 360m working
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FIGURE 6. Comparison of shearer horizontal cutting trajectory.

TABLE 1. Simulation setting of main sensors.

face of the shearer is designed, and the scraper conveyor is
composed of 200 chutes. Whenever a cutting cycle is com-
pleted, the hydraulic support advances 1m toward the coal
body. Thewhole process simulates five cutting cycles, and the
total time is 6.4 hours. The influence of rail kinematics model
on the positioning accuracy of the shearer is compared. The
simulation settings of the main sensor performance parame-
ters are as follows:

According to the measurement characteristic of the rail
kinematics model and the actual motion state of the shearer,
the horizontal position of shearer is analyzed. Fig. 6 shows the
trajectory comparison between the positioning result with or
without the assistance of the rail kinematics model and the
real trajectory. Fig. 7 and 8 show the east and north position
errors with or without the rail kinematics model, respectively.
The trajectory without the assistance of the rail kinematics
model has a divergence trend over time in multiple cutting
cycles due to the scale factor error and heading angle error
of the shearer. The maximum positioning error occurs at the

TABLE 2. The position RMSE of each cutting cycle.

end of each cutting cycle. As listed in Table 2, the Root Mean
Square Error (RMSE) of the east direction is 0.886m, 0.964m,
0.939m, 0.98m, 1.041m, and the RMSE of the north direction
is 0.853m, 1.002m, 0.851m, 0.923m, 0.970m, respectively.
Because the longitudinal displacement of shearer cutting sur-
face is constrained by the measurement of kinematic model,
the distance in the first cutting process also restrains the
continuous divergence of odometer position recursion as a
measurement. Therefore, the divergence of the shearer can
be significantly restrained. The RMSE of the east direction is
0.420m, 0.446m, 0.592m, 0.663m, 0.816m, and the RMSE of
north direction is 0.18m, 0.239m, 0.208m, 0.226m, 0.214m,
respectively. It can be seen from the comparison that the
error of the traditional INS/odometer positioning method will
continue to increase with the mining of the shearer. However,
the proposed algorithm does not diverge significantly in five
cutting cycles. The positioning error in each cutting cycle is
smaller than that of the traditional algorithm, which signifi-
cantly improves the positioning accuracy of the shearer.
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FIGURE 7. Comparison of east position errors.

FIGURE 8. Comparison of north position errors.

To improve the reliability of the rail kinematics model
and meet the engineering requirements of shearer cutting, the
possible faults are simulated to verify the detection and isola-
tion effects of the proposed algorithm on the rail kinematics
model. According to the motion characteristics of the rail
kinematics model, the simulation injected the measurement
deviation with horizontal angle of 1◦ for every two chutes
from 2825s to 3131s. The length of each chute is 1.8m, and
the fault formed is shown in Fig. 9. Two different chi-square
detection algorithms are used to compare with the algorithm
in this paper, namely residual chi-square detection [23] and
dual-state chi-square detection [20], which are currently com-
monly used fault detection methods.

It can be seen from Fig. 10 and Fig. 11 that the fault
function detection value and the detection result of the algo-
rithm in this paper can accurately reflect the fault. After the
threshold is exceeded, the faulty rail kinematics model is iso-
lated in time. The residual chi-square detection and two-state

FIGURE 9. Rail kinematics model fault.

FIGURE 10. Detection amount comparison of residual chi-square
detection, dual-state chi-square detection and fading sequential
probability ratio detection.

FIGURE 11. Threshold comparison of residual chi-square detection,
dual-state chi-square detection and fading sequential probability ratio
detection.

chi-square detection are not sensitive to the soft fault, and the
fault rail kinematics model will affect the positioning accu-
racy of the navigation system. It can be seen from Fig. 12 that
after the fault measurement is isolated, the north position
error does not change significantly. In a relatively short period
of time, the odometer can ensure a higher position accuracy of
the shearer. Compared with the traditional residual chi-square
detection algorithm and state chi-square detection algorithm,
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FIGURE 12. North error comparison of residual chi-square detection,
dual-state chi-square detection and fading sequential probability ratio
detection.

FIGURE 13. Experimental equipment and experiment scene.

the proposed algorithm significantly improves the positioning
accuracy of the shearer and ensures the reliability of the
system.

B. EXPERIMENTAL VALIDATION
The validity of the algorithm for shearer positioning is fur-
ther verified by the actual data obtained from the unmanned
vehicle. The scenario is shown in Fig. 13. The unmanned
vehicle is the Apollo unmanned mobile platform, which is
equipped with optical fiber INS, odometer and dual antenna
RTK (Real-Time Kinematic). The high precision optical fiber
INS is installed in the middle of the unmanned vehicle
and the odometer is connected to the wheel of the mobile
carrier. The dual antenna RTK is mounted on the top of
the vehicle as a reference track. The parameters of each
sensor are shown in Table 3. The unmanned vehicle first
performed an initial alignment for 5 minutes and then carried
out five cutting cycles along the straight line of the play-
ground runway at a speed of about 0.2m/s, which took about
20 minutes.

TABLE 3. Experiment setting of main sensors.

Fig. 14 is a comparison of the trajectory with or without
the assistance of the rail kinematic model and the reference.
Fig. 15 and Fig. 16 are respectively the comparison of the
east and north position errors with or without the assistance
of rail kinematics model. The errors in both the east and
north directions diverge without the assistance of the rail
kinematic model. The positioning error diverges faster in the
east direction than in the north direction. The main reason is
that there is no effective measurement in the cutting direction
of the shearer. The change of error conforms to the rule that
the error of the INS/odometer integrated navigation system
first increases and then decreases during the back-and-forth
motion.

TABLE 4. The position RMSE of each cutting cycle.

As shown in Table 4, the east position RMSE of the tradi-
tional INS/odometer integrated navigation is 0.30m, 0.37m,
0.53m, 0.69m, 0.88m. and the RMSE of the north direc-
tion is 0.90m, 0.90m, 0.87m, 0.84m, 0.88m during the five
cutting processes, respectively. Combined with Fig. 17, the
positioning method based on the rail kinematics model can
effectively suppress the divergence of the heading angle,
thereby improving the positioning accuracy in the longitu-
dinal direction between the cutting surfaces. The position
RMSE of the proposed algorithm based on the rail kinematics
model is 0.29m, 0.28m, 0.26m, 0.27m, 0.26m in the east
direction and 0.88m, 0.89m, 0.82m, 0.82m, 0.80m in the west
direction respectively in the five cutting processes. The posi-
tioning accuracy of the proposed algorithm is significantly
higher than that of the traditional INS/odometer integrated
navigation.

It is worth noting that the movement of the shearer at the
working face is well constrained by the odometer. Because of
the round-trip motion, the odometer errors will be partially
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FIGURE 14. Comparison of shearer horizontal cutting trajectory.

FIGURE 15. Comparison of east position errors.

FIGURE 16. Comparison of north position errors.

offset and therefore diverge slowly. Since the heading angle
of the vehicle in the experiment is about 172◦, the con-
straint in the north direction is not obvious in the ENU

FIGURE 17. Comparison of heading angle error.

coordinate. In contrast, the constraint in the east direction is
better.

According to the effect of the proposed algorithm on fault
detection and isolation of the rail kinematics model in the
actual environment, the reliability of the model is verified
by the experiment. A segment of fault is added to the rail
kinematics model mentioned above. The specific detection
effect is shown in Fig. 18 and Fig. 19.

As can be seen from Fig. 20, after the fault is identi-
fied and isolated, the positioning accuracy is significantly
improved. In comparison, the traditional method is not com-
pletely isolated from faults, leading to the obvious fluctuation
of position errors. The proposed algorithm has better fault
identification efficiency compared with traditional resid-
ual chi-square detection and two-state Chi-square detection.
It can effectively avoid the wrong correction of shearer posi-
tion caused by model fault and improve underground mining
safety.
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FIGURE 18. Detection amount comparison of residual chi-square
detection, dual-state chi-square detection and fading sequential
probability ratio detection.

FIGURE 19. Threshold comparison of residual chi-square detection,
dual-state chi-square detection and fading sequential probability ratio
detection.

FIGURE 20. East error comparison of residual chi-square detection,
dual-state chi-square detection and fading sequential probability ratio
detection.

VI. CONCLUSION
A refined rail kinematics model is constructed through ana-
lyzing the movement characteristics between the shearer,

the scraper conveyor, and the hydraulic support in longwall
mining. Combined with the INS and odometer information
carried by the shearer, this paper proposes a high-precision
positioning algorithm for the shearer based on the rail kine-
matics model. To deal with the low positioning accuracy
caused by the fault of the rail kinematics model, a fault
detection and isolation algorithm based on fading sequential
probability ratio is proposed. Simulation and experimental
results show that the multi-source information fusion by a
federated filter with fault detection function can significantly
suppress the position divergence of multiple cutting cycles
of the shearer without relying on external sensors. When a
measurement fault occurs in the rail kinematics model, the
fault can be identified and isolated in time, thereby ensuring
the positioning accuracy and robustness of the shearer.
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