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ABSTRACT A new mixture generalized Pareto distribution is introduced. Then, some of its attributes are
explored. Themaximum likelihoodmethod and expectationmaximization (EM) algorithm have been applied
to estimate the parameters for complete and right-censored data. In a simulation study, the bias, absolute bias
and mean squared error of the maximum likelihood estimator are compared with those related to the EM
estimator. The results show that the absolute bias and mean squared error of the EM estimator are smaller
than the related values for the maximum likelihood estimator. Finally, to illustrate its usefulness, the model
has been applied to describe real data sets.

INDEX TERMS Generalized Pareto distribution, mixture model, maximum likelihood estimator,
EM algorithm.

I. INTRODUCTION
The Pareto distribution is a power-law distribution that was
originally used to describe wealth distribution. Additionally,
it may be useful in describing observations from scientific,
geophysical, actuarial, social, and quality control events and
many other fields. The Pareto model may be applied to situ-
ations, where an equilibrium is found in the distribution of
‘‘small’’ to ‘‘large’’ values. In many cases, we may point
to: the sizes of files transferred on the internet network by
TCP/IP, which consists of many smaller files and few larger
ones; the hard disk drive error rates, which consist of many
small error rates and few large ones; the sizes of human
settlements, which consist of many small values related to
hamlets/villages and few large values related to cities; the
oil reserves volumes in oil fields, which consist of many
small fields and few large fields and many other examples.
Among many studies in this field, Burroughs and Tebbens [1]
analyzed observations from earthquakes and forest fire areas,
and Schroeder et al. [2] fitted the data from disk-driven sector
errors to this distribution.
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To provide more flexible distributions, various generaliza-
tions of the Pareto distribution have been proposed. Among
them, Akinsete et al. [3] studied the beta Pareto distribu-
tion, Nassar and Nada [4] and Mahmoudi [5] considered
the beta generalized Pareto, Zea et al. [6] presented the beta
exponentiated Pareto distribution, Alzaatreh et al. [7] intro-
duced the gamma Pareto distribution, ElbataL [8] investi-
gated the Kumaraswamy exponentiated Pareto distribution,
Bourguignon et al. [9] introduced the Kumaraswamy Pareto
distribution, Mead [10] defined one generalized beta expo-
nentiated Pareto distribution, Clifton et al. [11] applied one
extended version of the Pareto distribution for novelty
detection, and Papastathopoulos and Tawn [12] applied the
extended generalized Pareto models to the tail estimation
problem. Recently, Jayakumar et al. [13], Tahir et al. [14],
Korkmaz et al. [15], Elbatal and Aryal [16], and Chananet
and Phaphan [17] proposed new distributions based on the
Pareto model.

One generalized Pareto distribution, i.e., the GP(α, β, θ )
distribution, can be defined by the probability density
function (pdf)

f (x) =
0(α + θ )
0(α)0(θ )

1
β

( x
β
)θ−1

(1+ x
β
)α+θ

, x > 0, (1)
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where α > 0, β > 0, θ > 0, see Beirlant et al. [18] and
Wiborg [19]. When α→∞ and λ = θβ

α
are fixed constants,

this model tends to the gamma distribution with pdf

f (x) =
1
0(θ )

(
θ

λ
)θxθ−1e−

θ
λ
x , x > 0. (2)

In this paper, we propose a new model based on a mixture
of the GP distribution (1). The proposed model extends mix-
tures of the exponential, gamma, or Pareto distributions and
has sufficient flexibility to describe many real situations.

The paper is organized as follows. In Section 2, the new
model is defined, and some of its statistical and reliability
attributes are studied. In Section 3, the parameters of the
model are estimated for the complete and right-censored
data by the maximum likelihood estimator (MLE) and EM
algorithm. The behavior of the estimators of the parameters
has been investigated by a simulation study in Section 4.
In Section 5, the proposed model is fitted to real data sets
to show its applicability.

II. THE NEW MODEL
We propose a generalized Pareto mixture GPM (α, β, γ ) by
the pdf

f (x) =
α

β(γ + 1)
(1+

x
β
)−α−1[γ + (α + 1)

x
β + x

],

x ≥ 0, α > 0, β > 0, γ > 0. (3)

which is a mixture of GP(α, β, 1) and GP(α, β, 2) with
weights γ

γ+1 and 1
γ+1 , respectively.

Since the GPmodel tends to the gamma distribution, a spe-
cial limiting case of the GPM is the quasi Lindley distribution
studied by Shanker [20].

For a random lifetime X , the most important function in
reliability engineering and survival analysis is the reliability
function R(x) = P(X ≥ x) and gives the probability that an
object works (survives) at least until a specified time x. The
reliability function of GPM is

R(x) =
1

γ + 1
(1+

x
β
)−α

(
γ + α + 1−

αβ

x + β

)
,

x ≥ 0, α > 0, β > 0, γ > 0. (4)

Proposition 1: When α > k , the k th moments of
GPM (α, β, γ ) are finite and equal to

E(X k ) =
αβk

γ + 1

[α + 1
α − k

+

k∑
j=0

(−1)k−j
((k
j

)
γ

α − j

−

(
k + 1
j

)
α + 1

α − j+ 1

)]
. (5)

For α ≤ k , it is infinite.
Proof: Because GPM (α, β, γ ) is a mixture of X1 ∼

GP(α, β, 1) and X2 ∼ GP(α, β, 2), we have

E(X k ) =
γ

γ + 1
E(X k1 )+

1
γ + 1

E(X k2 ). (6)

But

E(X k1 ) =
∫
∞

0

α

β

xk

(1+ x
β
)α+1

dx = αβk
∫
∞

1

(y− 1)k

yα+1
dy

= αβk
k∑
j=0

(
k
j

)
(−1)k−j

∫
∞

1
yj−α−1dy. (7)

It is easy to check that for α ≤ k , (7) is infinite, but for
α > k , it can be simplified as follows:

E(X k1 ) = αβ
k

k∑
j=0

(
k
j

)
(−1)k−j

α − j
. (8)

Using a similar approach, we can check that for α ≤ k ,
E(X k2 ) is infinite, and for α > k , we have

E(X k2 ) = α(α + 1)βk
k+1∑
j=0

(
k + 1
j

)
(−1)k+1−j

α−j+ 1
. (9)

Then, the result follows by (7), (8) and (9). �
The quantile function q(p) = F−1(p) for GPM (α, β, γ )

has no closed form and can be numerically computed by
solving the following equation:

(1− p)(γ + 1)
βα

=
1

(β + q(p))α
(γ + α + 1−

αβ

β + q(p)
).

(10)

When the corresponding moments exit, the Pearson’s
moment coefficient of skewness of a random variable X is
defined to be

B = E
(X − µ

σ

)3
=
E(X3)− 3µσ 2

− µ3

σ 3 , (11)

and the kurtosis of X is

K = E
(X − µ

σ

)4
=

E(X4)− 4µE(X3)+ 6µ2E(X2)− 3µ4

σ 4 , (12)

where µ = E(X ), and σ 2 is the variance of X .
Moreover, the skewness and kurtosis of a distribu-

tion can be described in terms of the quantile function.
MacGillivray [21] suggested the following relation for
skewness:

B =
q(1− u)+ q(u)− 2q(0.50)

q(1− u)− q(u)
,

where u ∈ (0, 0.5). When u = 0.25, it reduces to Bowley’s
measure of skewness, Bowley [22]. Moreover, Moor [23]
introduced the kurtosis in terms of the quantile function by

K =
q( 78 )− q(

5
8 )+ q(

3
8 )− q(

1
8 )

q( 68 )− q(
2
8 )

.

In the economics literature, for a cumulative distribution
function (cdf) F , the Lorenz curve is:

L(p) =
pµp
µ
=

∫ q(p)
0 xdF(x)∫ q(1)
0 xdF(x)

.

VOLUME 9, 2021 149373



M. Kayid: One Generalized Mixture Pareto Distribution and Estimation of Parameters by EM Algorithm

and provides a graphical representation of wealth inequality.
In fact, L(p) shows the proportion of overall income or wealth
of the 100×p percent of people with lower income or wealth.
This plot will be a convex plot joining two points (0, 0) and
(1, 1). For an ideal society where every person has identical
income, the Lorenz curve is a straight line that joins these
points. For GPM (α, β, γ ), µ is not finite for α ≤ 1, but µp
is finite, so L(p) is zero and does not describe the wealth
distribution. Fortunately, Prendergast and Staudte [24] have
proposed alternatives in terms of the quantile function, which
replace µ by the median of the distribution and µp by q(

p
2 ).

Precisely

L1(p) = p
q( p2 )

q(0.5)
,

L2(p) = p
q( p2 )

q(1− p
2 )
,

and

L3(p) = 2p
q( p2 )

q( p2 )+ q(1−
p
2 )
.

A. RELIABILITY MEASURES
The failure rate (FR), mean residual life (MRL) and p-
quantile residual life (p-QRL) concepts play important roles
in describing the dynamic attributes of lifetime variables and
have been studied from different perspectives in the reliabil-
ity and survival analysis literature. The FR function of the
GPM (α, β, γ ) is

h(x) =
f (x)
R(x)
=

αγ (β + x)+ α(α + 1)x
(γ + α + 1)(β + x)2 − αβ(β + x)

.

For a distribution with reliability function R, the MRL
function is:

m(x) =
1

R(x)

∫
∞

x
R(t)dt.

The following proposition gives the form of the MRL
function for the proposed model.
Proposition 2: When α > 1, the MRL function of

GPM (α, β, γ ) is finite and of the form

m(x) =
(β + x)(γ + α − αβ + β + 1)

(α − 1)(β + x)(γ + α + 1)− αβ(α − 1)
.

When α ≤ 1, the MRL is infinite.
Proof: It is straightforward to check that∫

∞

x
R(t)dt =

( γ

γ + 1
+
α + 1
γ + 1

) ∫ ∞
x

(1+
t
β
)−αdt

−
α

γ + 1

∫
∞

x
(1+

t
β
)−α−1dt. (13)

The first integral of the right side of (13) is equal to
β

(α−1) (1 +
x
β
)−α+1 when α > 1 and infinite when α ≤ 1.

The second integral is equal to β
α
(1+ x

β
)−α . Then, the result

follows by some algebra. �

The p-QRL function of a distribution with reliability func-
tion R is defined to be

qp(x) = R−1(p̄R(x))− x = q(1− p̄R(x))− x, x > 0,

(14)

where p̄ = 1− p, and q() is the quantile function and defined
by (10). Similar to the quantile function, the p-QRL func-
tion of GPM has no closed form and should be numerically
computed.

III. ESTIMATION OF THE PARAMETERS
A. THE MLE FOR COMPLETE DATA
Suppose that x1, x2, . . . , xn represent realizations from
GPM (α, β, γ ). The log-likelihood function of the parame-
ters is

l(α, β, γ ; x)

= n lnα − n lnβ − n ln(γ + 1)

−(α + 1)
n∑
i=1

ln(1+
xi
β
)+

n∑
i=1

ln[γ + (α + 1)
xi

xi + β
],

(15)

and the log-likelihood equations are

∂

∂α
l(α, β, γ ; x)

=
n
α
−

n∑
i=1

ln(1+
xi
β
)

+

n∑
i=1

xi
(α + γ + 1)xi + γβ

= 0,

∂

∂β
l(α, β, γ ; x)

= −
n
β
+ (α + 1)

n∑
i=1

xi
β2 + βxi

−(α + 1)
n∑
i=1

xi
γ (xi + β)2 + (α + 1)xi(xi + β)

= 0,

and

∂

∂γ
l(α, β, γ ; x) = −

n
γ + 1

+

n∑
i=1

xi + β
(α + γ + 1)xi + γβ

= 0.

We calculate the MLE by directly maximizing the log-
likelihood function (15) or solving the likelihood equations.

Let l = ln f (X ). Then, the Fisher informationmatrix can be
applied to obtain the variance of the MLE. Here, it is defined
as follows:

K =


E(−

∂2l
∂α2

) E(−
∂2l
∂α∂β

) E(−
∂2l
∂α∂γ

)

E(−
∂2l
∂β∂α

) E(−
∂2l
∂β2

) E(−
∂2l
∂β∂γ

)

E(−
∂2l
∂γ ∂α

) E(−
∂2l
∂γ ∂β

) E(−
∂2l
∂γ 2 )

 . (16)
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FIGURE 1. The pdf (left) and FR function (right) of the GPM for some values of the parameters.

FIGURE 2. The MRL (left) and median residual life (right) of the GPM for some values of the parameters.

The elements of this matrix are complicated expressions
and should be numerically computed. For the iid random
sample Xi, i = 1, 2, . . . , n from GPM (α0, β0, γ0), the
MLE (α̂, β̂, γ̂ ) weakly converges to the multivariate normal
N ((α0, β0, γ0), n−1K−1), where K−1 is the inverse of the
information matrix.

B. EM ALGORITHM FOR COMPLETE DATA
Assume that Xi, i = 1, 2, . . . , n shows an iid random sample
ofGPM (α, β, γ ). Every Xi arises from the GPM distribution.
In the EM algorithm, one indicator latent random variable
Zi is considered, which determines that Xi has been taken
from GP(α, β, 1) or GP(α, β, 2). Precisely, Xi|Zi = 1 ∼
GP(α, β, 1), Xi|Zi = 2 ∼ GP(α, β, 2) and

P(Zi = j) =
1

γ + 1
γ I (j=1), j = 1, 2. (17)

Let2 = (α, β, γ ) for a brief representation. The likelihood
function can be written in the following form.

L(2; x, z) =
n∏
i=1

2∏
j=1

[
fj(xi;α, β)P(Zi = j)

]I (zi=j)
, (18)

where indicator I (zi = j) is equal to 1 when zi = j and
otherwise equal to 0, and fj shows the pdf of GP(α, β, j), i.e.,

fj(xi;α, β) =
α

β
(1+

xi
β
)−α−1

[
(α + 1)

xi
β + xi

]I (j=2)
,

j = 1, 2. (19)

The log-likelihood function is l(2; x, z) = lnL(2; x, z),
which is simplified in (32), see Appendix A.

In the sequel, one specific implementation of the EM
algorithm for estimating the model parameters is presented.
It involves two steps: Expectation (E) andMaximization (M).
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TABLE 1. Simulation results for the MLE and EM estimators of the parameters of the GPM distribution for uncensored data. In every cell, the first, second
and third lines are related to α, β and γ , respectively.

At iteration t , in the E step, the expectation of the log-
likelihood in terms of the current estimate of the conditional
latent variable, Q(2|2t ) = EZ |X ,2t [l(2; x,Z)], is prepared.
Then in theM step, the parameters are estimated in the current
iteration by maximizing the likelihood expectation Q(2|2t ),
prepared in the E step. The iterative process continues until
the iteration does not noticeably improve the expectation.
The simulation results show that this implementation of the
EM algorithm gives a better estimator than the MLE, see
Tables 1 and 2.

1) THE E STEP
Suppose that the estimate of the parameters 2t is known
at iteration t . Then, the conditional distribution of Zi can
be computed by the well-known Bayes theorem as follows.
It is simplified in Appendix A, (33). After the simplification,
we have

pi1,t =
γt (βt + xi)

γt (βt + xi)+ (αt + 1)xi
, i = 1, 2, . . . , n,

and pi2,t = 1− pi1,t . These probabilities are known as mem-
bership probabilities at iteration t and are used to construct the
expectation function Q(2|2t ) = EZ |X ,2t [l(2; x,Z)]. The
simplified expression in Appendix A, (34), shows that
the expectation is a sum of two expressions, one of which
depends on α and β, and the other depends on γ . We can thus
write

Q(2|2t ) = Q1(α, β|2t )+ Q2(γ |2t ), (20)

where

Q1(α, β|2t ) = n ln
α

β
−

n∑
i=1

(α + 1) ln(1+
xi
β
)

+

n∑
i=1

pi2,t
[
ln(α + 1)+ ln

xi
β + xi

]
, (21)

and

Q2(γ |2t ) =
n∑
i=1

pi1,t ln γ − n ln(γ + 1). (22)

149376 VOLUME 9, 2021



M. Kayid: One Generalized Mixture Pareto Distribution and Estimation of Parameters by EM Algorithm

TABLE 2. Simulation results for the MLE and EM estimators of the parameters of the GPM distribution when the censorship rate is 20 percent. In every
cell, the first, second and third lines are related to α, β and γ , respectively.

TABLE 3. Number of successive failure for the air conditioning system.

2) THE M STEP
In this step, the parameters at iteration t + 1 are estimated by
maximizing Q(2|2t ) in terms of 2. Specifically,

2t+1 = argmax
2

Q(2|2t ),

By (20), this problem can be reduced to two separate
maximization problems as follows:

(αt+1, βt+1) = argmax
α,β

Q1(α, β|2t ), (23)
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TABLE 4. Remission times of the bladder cancer.

TABLE 5. Results of fitting the data sets to some models.

and

γt+1 = argmax
γ

Q2(γ |2t ), (24)

The maximization problem (23) has no analytical solution
and should be numerically solved. However, by solving the
equation ∂

∂γ
Q2(γ |2t ) = 0, we obtain

γt+1 =

∑n
i=1 pi1,t∑n
i=1 pi2,t

.

The iterative process can be terminated if for a predefined
small ε > 0, Q(2t+1|2t+1) < Q(2t |2t )+ ε.

C. THE MLE FOR RIGHT-CENSORED DATA
Now, suppose that we have a right-censored iid random sam-
ple from GPM (α, β, γ ). The random variable Xi is said to be
censored from right by a censorship randomvariableCi, when
Xi > Ci, so we only know that the event time is greater than
Ci. Thus, the observations are Ti = min(Xi,Ci) and di, where
di = 1; if the event is not censored, Xi ≤ Ci, and di = 0;
if it is censored, Xi > Ci. Let (ti, di), i = 1, 2, . . . , n show a
right-censored sample; then, the log-likelihood function is:

l(α, β, γ ; t, d) =
n∑
i=1

di ln f (ti)+
n∑
i=1

(1− di) lnR(ti).

where f and R are the density and reliability functions of the
GPM distribution, respectively. The log-likelihood function
reduces to

l(α, β, γ ; t, d)

=

n∑
i=1

di
[
lnα − lnβ − ln(γ + 1)

]

−

n∑
i=1

di(α + 1) ln(1+
ti
β
)+ ln[γ + (α + 1)

ti
ti + β

)]

+

n∑
i=1

(1− di)
[
− ln(1+ γ )− α ln(1+

ti
β
)

+ ln(γ + α + 1−
αβ

ti + β
)
]
.

D. EM ALGORITHM FOR RIGHT-CENSORED DATA
In the presence of latent variable Zi, which is defined in
the previous sections, the likelihood function for the right-
censored data is:

L(2; t,d, z)

=

n∏
i=1

2∏
j=1

[
fj(ti;α, β)P(Zi = j)

]I (zi=j)di
×

n∏
i=1

2∏
j=1

[
Rj(ti;α, β)P(Zi = j)

]I (zi=j)(1−di)
, (25)

where P(Zi = j) and fj are defined by (17) and (19),
respectively, and Rj shows the reliability function of fj. The
log-likelihood function lnL(2; t,d, z) has been simplified in
Appendix A, (35).

1) THE E STEP
Suppose that the estimate of the parameters at iteration t ,2t ,
is known; then, the conditional distribution of Zi is equal to
pij,t = diP(Zi = j|Xi = ti,2t )+ (1−di)P(Zi = j|Xi > ti,2t )
and can be computed by the well-known Bayes theorem (see
Appendix A, (36)).
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Specifically, taking j = 1,

pi1,t = di
γt (βt + ti)

γt (βt + ti)+ (αt + 1)ti

+(1− di)
γt

γt + αt + 1− αβ
βt+ti

,

i = 1, 2, . . . , n, (26)

and pi2,t = 1 − pi1,t . Then, using (35), the expectation
function at iteration t is Q(2|2t ) = EZ |t,d,2t [l(2; t,d, z)].
In Appendix A, (37) and (38) show that Q(2|2t ) is a sum
of two expressions, one of which solely depends on α and β,
and the other depends on γ . In other words,

Q(2|2t ) = Q1(α, β|2t )+ Q2(γ |2t ), (27)

where

Q1(α, β|2t ) =
n∑
i=1

di
[
ln
α

β
− (α + 1) ln(1+

ti
β
)

+pi2,t ln(α + 1)+ pi2,t ln
ti

ti + β

]
+

n∑
i=1

(1− di)
[
− α ln(1+

ti
β
)

+pi2,t ln(α + 1−
αβ

ti + β
)
]
, (28)

and

Q2(γ |2t ) = −n ln(γ + 1)+ ln γ
n∑
i=1

pi1,t , (29)

2) THE M STEP
Similar to the uncensored case, the estimation of the param-
eters at iteration t + 1 will be computed by maximizing
Q(2|2t ) in terms of 2. By (27), Q(2|2t ) is a sum of two
separate statements, so it follows that

(αt+1, βt+1) = argmax
α,β

Q1(α, β|2t ), (30)

and

γt+1 = argmax
γ

Q2(γ |2t ). (31)

The maximization problem (30) cannot be analytically
solved and should be numerically solved. However, it is easy
to check that the solution of (31) is

γt+1 =

∑n
i=1 pi1,t∑n
i=1 pi2,t

.

IV. SIMULATION STUDY
Because the GPM is a mixture model, we can apply the
following steps to generate a random sample with size n
from it:
1. Generate one random instance of binomial distribu-

tion with parameters n and γ
γ+1 . Let the generated

instance be n1.

2. Generate one random sample with size n1 from
GP(α, β, 1) and one random sample with size n2 =
n − n1 from GP(α, β, 2). Then, we combine these two
samples to provide one random sample of GPM.

3. To generate a right-censored sample with censorship p,
we take the random censorship variable Ci to follow the
degenerate distribution with mean t∗. Then, t∗ can be
computed by solving equation t∗ = q(p̄), where q() is
the quantile function and defined in (10).

The results of a simulation study to estimate the parameters
of GPMhave been abstracted in Tables 1 and 2 for uncensored
data and right-censored data with censorship rate p = 0.2,
respectively. In every run, r = 500 replicates of samples with
sizes n = 80 and 100 were generated. Then, the parameters
were estimated by the maximum likelihood method or EM
algorithm. The EM algorithm is an iterative method to find
maximum likelihood and can be applied when the model
depends on some latent variables, e.g. the mixture or com-
peting risk models. For MLE, we use the built-in ‘‘optim’’
function of R with the default optimization method ‘‘Nelder-
Mead’’. In bothMLE and EM approaches, for real parameters
α, β and γ , the initial points have been generated from the
uniform distribution on the intervals (0, α), (0, β) and (0, γ )
respectively. For real data, we should guess some different
initial values for parameters and then compare the results
by AIC criterion and Kolmogorov–Smirnov (K-S) statistic.
Unfortunately, checking the conditions for terminating the
EM process in every EM iteration, makes the simulation runs
very slow and time consuming. So, we tested the EM algo-
rithm for many times to find a big constant that is sufficiently
large for EM iterations to converge. In this way, we found that
20 iterations is sufficient.

For each parameter, the bias (B), absolute bias (AB) and
mean squared error (MSE) were computed. Every cell of
these tables shows the A, AB and MSE for α, β and γ from
top to bottom. The results related to the maximum likelihood
method and EM algorithm are presented on the left and right
sides, respectively. The results show smaller values of AB
and MSE for the EM algorithm, which indicates that the EM
algorithm outperforms the maximum likelihood method.

V. APPLICATIONS
Table 3 shows the number of successive failures for the air
conditioning system of 13 Boeing 720 jet airplanes that were
analyzed by Tahir et al. [25] and many others. We fit the
GPM to this data set by the maximum likelihood method and
EM algorithm. Additionally, the Gumbel-Lomax (GuLx) and
Weibull-Pareto (WP) distributions, which exhibit decreasing
and upside-down bathtub-shaped FR functions, were fit to
this data set. Table 5 shows the estimates of the parame-
ters, K-S statistic, Dn = supx{Fn(x) − F(x)} where Fn(x)
is the empirical distribution function, and its corresponding
p-value. Akaike information criterion (AIC) is also included
in this table. Large values of the K-S statistic and/or the AIC
clearly indicate poor fit, so we can compare the fitted models
using these measurements. The K-S statistic calculated for
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FIGURE 3. Empirical distribution and fitted GPM distribution for data sets of Table 3 (left) and Table 4 (right).

GPM (in particular by the EM algorithm) is smaller than
others. Based on this criterion, GPM performs better than the
others. However, based on the AIC, GuLx shows a better fit.
The empirical and fitted CDFs are shown in Figure 3, left
panel, visually confirming that the estimated GPM distribu-
tion is very close to the empirical distribution function.

Table 4 shows a dataset corresponding to the remission
times (in months) of a random sample of 128 bladder cancer
patients, referring to Tahir et al. [26]. The results of fitting
GPM, GuLx andWP to this dataset are also shown in Table 5.
The K-S statistics and the AIC for GPM show smaller values
than GuLx and WP, indicating that GPM is a good candidate
to describe this dataset. Figure 3, right panel, which draws the
empirical and fitted CDFs, confirms a very good fit.

VI. CONCLUSION
A new generalized Pareto model was introduced and some
of the statistical and reliability properties were investigated.
The proposed model can be applied in a variety of real-world
situations, such as reliability and survival data where equi-
librium is found in the distribution from ‘‘small’’ to ‘‘large’’
values, etc. The parameters of the proposed model were esti-
mated using the MLE and EM algorithms. Simulation results
confirm that EM performs better than MLE.

APPENDIX A
SOME DETAILED INFORMATION
The log-likelihood function related to the EM algorithm for
complete data can be simplified as follows.

l(2; x, z)

= lnL(2; x, z) =
n∑
i=1

2∑
j=1

I (zi = j)

×

{
ln
α

β
− (α + 1) ln(1+

xi
β
)

+I (j = 2)
[
ln(α + 1)+ ln(

xi
β + xi

)
]

+I (j = 1) ln γ − ln(γ + 1)
}

=

n∑
i=1

I (Zi = 1)
[
ln
α

β
− (α + 1) ln(1+

xi
β
)+ ln γ

− ln(1+ γ )
]
+ I (Zi = 2)

[
ln
α

β
− (α + 1) ln(1+

xi
β
)

+ ln(α + 1) = ln
xi

xi + β
− ln(1+ γ )

]
. (32)

Membership probabilities of the EM algorithm for com-
plete data are simplified as follows.

pij,t
= P(Zi = j|Xi = xi,2t )

=
f (Xi = xi|Zi = j,2t )P(Zi = j|2t )

f (Xi = xi|2t )

=

αt
βt
(1+ xi

βt
)−αt−1

[
(αt + 1) xi

βt+xi

]I (j=2)
γ
I (j=1)
t

1
γt+1∑2

j=1
αt
βt
(1+ xi

βt
)−αt−1

[
(αt + 1) xi

βt+xi

]I (j=2)
γ
I (j=1)
t

1
γt+1

=
γt (βt + xi)I (j = 1)+ (αt + 1)xiI (j = 2)

γt (βt + xi)+ (αt + 1)xi
,

i = 1, 2, . . . , n, j = 1, 2. (33)

Expectation function of the EM algorithm for complete
data can be written as follows.

Q(2|2t )

= EZ |X ,2t [l(2; x,Z)]

=

n∑
i=1

EZi|Xi,2t

2∑
j=1

I (zi = j)
[
ln
α

β
− (α + 1) ln(1+

xi
β
)

+I (j = 2)(ln(α + 1)+ ln
xi

xi + β
)+ I (j = 1)
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× ln γ − ln(γ + 1)
]
=

n∑
i=1

P(Zi = 1|Xi,2t )

×

[
ln
α

β
− (α + 1) ln(1+

xi
β
)− ln γ − ln(γ + 1)

]
+P(Zi = 2|Xi,2t )

[
ln
α

β
− (α + 1) ln(1+

xi
β
)

+ ln(α + 1)+ ln
xi

β + xi
− ln(γ + 1)

]
= n ln

α

β
−

n∑
i=1

(α + 1) ln(1+
xi
β
)

+

n∑
i=1

pi2,t
(
ln(α + 1)+ ln

xi
β + xi

)
+

n∑
i=1

pi1,t ln γ − n ln(γ + 1). (34)

The log-likelihood function related to the EM algorithm for
right-censored data has been simplified aa follows.

l(2; t,d, z)

= lnL(2; t,d, z)

=

n∑
i=1

di
2∑
j=1

I (zi = j) ln
[
fj(ti;α, β)P(Zi = j)

]

+

n∑
i=1

(1− di)
2∑
j=1

I (zi = j) ln
[
Rj(ti;α, β)P(Zi = j)

]
=

n∑
i=1

diI (Zi = 1)
[
ln
α

β
− (α + 1) ln(1+

ti
β
)+ ln γ

− ln(γ + 1)
]
+

n∑
i=1

diI (Zi = 2)
[
ln
α

β
− (α + 1)

× ln(1+
ti
β
)+ ln(α + 1)+ ln

ti
ti + β

− ln(γ + 1)
]

+

n∑
i=1

(1− di)I (Zi = 1) ln
[
(1+

ti
β
)−α

γ

γ + 1

]
+

n∑
i=1

(1− di)I (Zi = 2) ln
[
(1+

ti
β
)−α

×(α + 1−
αβ

ti + β
)

1
γ + 1

]
(35)

Membership probabilities of the EM algorithm for right-
censored data.

pij,t
= diP(Zi = j|Xi = ti,2t )+ (1− di)P(Zi = j|Xi > ti,2t )

= di
f (Xi = ti|Zi = j,2t )P(Zi = j|2t )

f (Xi = ti|2t )

+(1− di)
P(Xi > ti|Zi = j,2t )P(Zi = j|2t )

f (Xi > ti|2t )

= di

αt
βt
(1+ ti

βt
)−αt−1

[
(αt + 1) ti

βt+ti

]I (j=2)
γ
I (j=1)
t

1
γt+1∑2

j=1
αt
βt
(1+ ti

βt
)−αt−1

[
(αt + 1) ti

βt+ti

]I (j=2)
γ
I (j=1)
t

1
γt+1

+(1− di)

×

(1+ ti
βt
)−αt

[
αt + 1− αβ

βt+ti

]I (j=2)
γ
I (j=1)
t

1
γt+1∑2

j=1(1+
ti
βt
)−αt

[
αt + 1− αβ

βt+ti

]I (j=2)
γ
I (j=1)
t

1
γt+1

= di
γt (βt + ti)I (j = 1)+ (αt + 1)tiI (j = 2)

γt (βt + ti)+ (αt + 1)ti
+(1− di)

×

γt I (j = 1)+ (αt + 1− αβ
βt+ti

)I (j = 2)

γt + αt + 1− αβ
βt+ti

,

i = 1, 2, . . . , n, j = 1, 2. (36)

Expectation function of the EM algorithm for right-
censored data is equal to

Q(2|2t )

= EZ |t,d,2t [l(2; t,d, z)]

=

n∑
i=1

diP(Zi = 1|t,d,2t )

×

[
ln
α

β
− (α + 1) ln(1 =

ti
β
)+ ln γ − ln(γ + 1)

]
+

n∑
i=1

diP(Zi = 2|t,d,2t )
[
ln
α

β
− (α + 1) ln(1+

ti
β
)

+ ln(α + 1)+ ln
ti

ti + β
− ln(γ + 1)

]
+

n∑
i=1

(1− di)P(Zi = 1|t,d,2t )

×

[
− α ln

ti
ti + β

+ ln γ − ln(γ + 1)
]

+

n∑
i=1

(1− di)P(Zi = 2|t,d,2t )

×

[
− α ln

ti
ti + β

+ ln(α + 1−
αβ

ti + β
)− ln(γ + 1)

]
,

(37)

After simplification, it reduces to

Q(2|2t )

=

n∑
i=1

di
[
ln
α

β
− (α + 1) ln(1+

ti
β
)

+pi2,t ln(α + 1)+ pi2,t ln
ti

ti + β

]
+

n∑
i=1

(1− di)
[
− α ln(1+

ti
β
)+ pi2,t ln(α + 1−

αβ

ti + β
)
]

= −n ln(γ + 1)+ ln γ
n∑
i=1

pi1,t . (38)

ACKNOWLEDGMENT
The author thanks four anonymous reviewers for their useful
comments that lead to this improved version of the paper.

VOLUME 9, 2021 149381



M. Kayid: One Generalized Mixture Pareto Distribution and Estimation of Parameters by EM Algorithm

REFERENCES
[1] S. M. Burroughs and S. F. Tebbens, ‘‘Upper-truncated power law distribu-

tions,’’ Fractals, vol. 9, no. 2, pp. 209–222, Jun. 2001.
[2] B. Schroeder, S. Damouras, and P. Gill, ‘‘Understanding latent sector errors

and how to protect against them,’’ ACM Trans. Storage, vol. 6, no. 3,
pp. 1–23, Sep. 2010.

[3] A. Akinsete, F. Famoye, and C. Lee, ‘‘The beta-Pareto distribution,’’
Statistics, vol. 42, no. 6, pp. 547–563, Dec. 2008.

[4] M. M. Nassar and N. K. Nada, ‘‘The beta generalized Pareto distribution,’’
J. Statist., Adv. Theory Appl., vol. 6, no. 1/2, pp. 1–17, 2011.

[5] E. Mahmoudi, ‘‘The beta generalized Pareto distribution with application
to lifetime data,’’ Math. Comput. Simul., vol. 81, no. 11, pp. 2414–2430,
Jul. 2011.

[6] L.M. Zea, R. B. Silva, M. Bourguignon, A.M. Santos, and G.M. Cordeiro,
‘‘The beta exponentiated Pareto distribution with application to bladder
cancer susceptibility,’’ Int. J. Statist. Probab., vol. 1, no. 2, pp. 8–19,
Oct. 2012.

[7] A. Alzaatreh, F. Famoye, and C. Lee, ‘‘Gamma-Pareto distribution and its
applications,’’ J. Mod. Appl. Stat. Methods, vol. 11, no. 1, pp. 78–94, 2012,
doi: 10.22237/jmasm/133584516.

[8] I. Elbatal, ‘‘The Kumaraswamy exponentiated Pareto distribution,’’ Econ.
Qual. Control, vol. 28, no. 1, pp. 1–8, 2013, doi: 10.1515/eqc-2013-0006.

[9] M. Bourguignon, R. B. Silva, L. M. Zea, and G. M. Cordeiro, ‘‘The
Kumaraswamy Pareto distribution,’’ J. Stat. Theory Appl., vol. 12, no. 2,
pp. 129–144, 2013, doi: 10.2991/jsta.2013.12.2.1.

[10] M.Mead, ‘‘An extended Pareto distribution,’’ Pakistan J. Statist. Operation
Res., vol. 10, pp. 313–329, Oct. 2014.

[11] D. A. Clifton, L. Clifton, S. Hugueny, and L. Tarassenko, ‘‘Extending the
generalised Pareto distribution for novelty detection in high-dimensional
spaces,’’ J. Signal Process. Syst., vol. 74, no. 3, pp. 323–339, Mar. 2014,
doi: 10.1007/s11265-013-0835-2.

[12] I. Papastathopoulos and J. A. Tawn, ‘‘Extended generalised Pareto mod-
els for tail estimation,’’ J. Stat. Planning Inference, vol. 143, no. 1,
pp. 131–143, Jan. 2013, doi: 10.1016/j.jspi.2012.07.001.

[13] K. Jayakumar, B. Krishnan, and G. G. Hamedani, ‘‘On a new generaliza-
tion of Pareto distribution and its applications,’’ Commun. Statist. Simul.
Comput., vol. 49, no. 5, pp. 1264–1284, May 2020.

[14] A. Tahir, A. S. Akhter, and M. A. Haq, ‘‘Transmuted new Weibull–Pareto
distribution and its applications,’’ Appl. Appl. Math. Int. J., vol. 13, no. 1,
pp. 30–46, 2018.

[15] M. Korkmaz, E. Altun, H. Yousof, A. Afify, and S. Nadarajah, ‘‘The burr X
Pareto distribution: Properties, applications and VaR estimation,’’ J. Risk
Financial Manage., vol. 11, no. 1, p. 1, Dec. 2017.

[16] I. Elbatal and G. Aryal, ‘‘A new generalization of the exponential Pareto
distribution,’’ J. Inf. Optim. Sci., vol. 38, no. 5, pp. 675–697, Jul. 2017.

[17] C. Chananet and W. Phaphan, ‘‘On the new weight parameter of the
mixture Pareto distribution and its application to real data,’’ Appl. Sci. Eng.
Prog., vol. 14, pp. 460–467, Oct. 2020.

[18] J. Beirlant, J. Teugels, and P. Vynckier, Practical Analysis of Extreme
Values. Leuven, Belgium: Leuven Univ. Press, 1996.

[19] R. Wiborg, ‘‘The extended Pareto distribution as default loss model,’’
M.S. thesis, Dept. Math. Natural Sci., Univ. Oslo, Oslo, Norway, 2013.

[20] R. Shanker and A. Mishra, ‘‘A quasi Lindley distribution,’’ Afr. J. Math.
Comput. Sci. Res., vol. 6, pp. 64–71, Apr. 2013.

[21] H. L. MacGillivray, ‘‘Skewness and asymmetry: Measures and orderings,’’
Ann. Statist., vol. 14, no. 3, pp. 994–1011, Sep. 1986.

[22] A. L. Bowley, Elements of Statistics. London, U.K.: P.S. King Son, 1901.
[23] J. Moors, ‘‘A quantile alternative for kurtosis,’’ J. Roy. Stat. SoC., D,

vol. 562, no. 37, pp. 25–32, 1988.
[24] L. A. Prendergast and R. G. Staudte, ‘‘Quantile versions of the Lorenz

curve,’’ Electron. J. Statist., vol. 10, n0. 2, pp. 1896–1926, 2016, doi:
10.1214/16-EJS1154.

[25] M. H. Tahir, M. A. Hussain, G.M. Cordeiro, G. G. Hamedani, M.Mansoor,
and M. Zubair, ‘‘The Gumbel-Lomax distribution: Properties and applica-
tions,’’ J. Stat. Theory Appl., vol. 15, no. 1, pp. 61–79, 2016.

[26] M. H. Tahir, G. M. Cordeiro, A. Alzaatreh, M. Mansoor, and M. Zubair,
‘‘A new Weibull–Pareto distribution: Properties and applications,’’ Com-
mun. Statist. Simul. Comput., vol. 45, no. 10, pp. 3548–3567, Nov. 2016,
doi: 10.1080/03610918.2014.948190.

MOHAMED KAYID received the B.Sc. degree in
mathematics from Minia University, in 1991, the
M.Sc. degree in statistics from Al-Azhar Univer-
sity, in 1999, and the Ph.D. degree in statistics from
South Valley University, in 2003. He is a Professor
of statistics with the Department of Statistics and
Operations Research, King Saud University. His
research interests include reliability theory, pre-
ventive maintenance, stochastic orders, and their
applications. He has published in various inter-

national journals on these issues. He has also varied research interests in
applied statistics. Some of the research methodologies proposed by him and
his coauthors have found interesting applications in the context of reliability
and engineering. His current research interests can be classified into four
broad areas: theory of stochastic ageing and its applications, estimation in
restricted parametric space, theory of stochastic orders, ranking and selec-
tion problems, and related estimation problems. His work in these areas
has received attention among engineers and been referenced in electrical
engineering and computer science journals. He is an elected Reviewer of
American Mathematical Society.

149382 VOLUME 9, 2021

http://dx.doi.org/10.22237/jmasm/133584516
http://dx.doi.org/10.1515/eqc-2013-0006
http://dx.doi.org/10.2991/jsta.2013.12.2.1
http://dx.doi.org/10.1007/s11265-013-0835-2
http://dx.doi.org/10.1016/j.jspi.2012.07.001
http://dx.doi.org/10.1214/16-EJS1154
http://dx.doi.org/10.1080/03610918.2014.948190

