
Received October 26, 2021, accepted October 31, 2021, date of publication November 2, 2021, date of current version November 9, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3125000

Meta-Optimization of Bias-Variance Trade-Off
in Stochastic Model Learning
TAKUMI AOTANI , (Graduate Student Member, IEEE),
TAISUKE KOBAYASHI , (Member, IEEE),
AND KENJI SUGIMOTO , (Member, IEEE)
Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan

Corresponding author: Takumi Aotani (aotani.takumi.ap2@is.naist.jp)

This work was supported by the Japan Science and Technology Agency (JST) Precursory Research for Embryonic Science and Technology
(PRESTO), Japan, under Grant JPMJPR20C3.

ABSTRACT Model-based reinforcement learning is expected to be a method that can safely acquire the
optimal policy under real-world conditions by using a stochastic dynamics model for planning. Since
the stochastic dynamics model of the real world is generally unknown, a method for learning from state
transition data is necessary. However, model learning suffers from the problem of bias-variance trade-off.
Conventional model learning can be formulated as a minimization problem of expected loss. Failure to
consider higher-order statistics for loss would lead to fatal errors in long-term model prediction. Although
various methods have been proposed to explicitly handle bias and variance, this paper first formulates a new
loss function, especially for sequential training of the deep neural networks. To explicitly consider the bias-
variance trade-off, a new multi-objective optimization problem with the augmented weighted Tchebycheff
scalarization, is proposed. In this problem, the bias-variance trade-off can be balanced by adjusting a weight
hyperparameter, although its optimal value is task-dependent and unknown. We additionally propose a
general-purpose and efficient meta-optimization method for hyperparameter(s). According to the validation
result on each epoch, the proposed meta-optimization can adjust the hyperparameter(s) towards the preferred
solution simultaneously with model learning. In our case, the proposed meta-optimization enables the bias-
variance trade-off to be balanced for maximizing the long-term prediction ability. Actually, the proposed
method was applied to two simulation environments with uncertainty, and the numerical results showed that
the well-balanced bias and variance of the stochastic model suitable for the long-term prediction can be
achieved.

INDEX TERMS Machine learning algorithms, systems modeling, Pareto optimization, bias-variance
trade-off.

I. INTRODUCTION
Reinforcement learning (RL) [1] is one of the promising
methods for robots to adaptively acquire their own policies
in the real world. In recent years, RL has been applied in
environments with high uncertainty, where there are multiple
actors (eg. human-containing systems [2], [3] and multi-
agent systems [4], [5]). RL-based agents attempt stochas-
tic actions during exploration, which may have a negative
impact on the environment. Safe learning, which mitigates
risk during exploration such as collision, is required in these
environments.

The associate editor coordinating the review of this manuscript and

approving it for publication was Bilal Alatas .

Model-based RL is expected to take safety into account
by using stochastic dynamics models in planning. One such
approach is model predictive shielding (MPS), which utilizes
an idea called shielding [6], [7]. MPS uses the stochastic
dynamics model, and shielding intervenes in the agent’s
action to ensure that state transitions satisfy safety con-
straints. Intervention by shielding is triggered when the agent
is prone to go into the states outside of the safety constraints
(predicted by the dynamics model). Similarly, tube model
predictive control (tube MPC) is another model-based plan-
ning method that explicitly considers safety. Uncertainty in
dynamics prediction propagates in a time-evolving manner.
The region surrounding a possible transition state is called
tube, and planning within this tube is performed in tube
MPC [8]–[10]. However, these methods do not provide how
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to obtain the accurate dynamics model for the target environ-
ment, while that is mandatory in them.

Learning with the deep neural networks (DNNs) is widely
applied to achieve the stochastic model prediction in recent
years. The objective function for training is generally formu-
lated as the minimization problem of expected prediction loss
for the next state. The expectation is regarded as a first-order
moment, namely, this approach does not optimize higher-
order moments, such as variance. Hence, if a large prediction
error occurs even once during the prediction of a long-term
trajectory, all subsequent states will become outliers. With
the fact that the prediction model can be given as a prob-
ability distribution, Bayesian theory has been appropriately
utilized to consider the uncertainty of the model [11], [12].
In particular, Chua et al. [12] has proven a simple ensemble
method, in which multiple models are prepared and trained
simultaneously. In their work for the latest model-based RL,
the learned models made stable planning possible. The mod-
els are however approximated with DNNs, hence the number
of parameters would be huge if multiple models are used.
In addition, the number of models required for the target envi-
ronment must be determined empirically. Although robust
control theory that explicitly considers model uncertainty or
input uncertainty have been proposed [13], [14], they assume
linearity and cannot be directly applied to nonlinear stochas-
tic models. A learning method that predicts the stochastic
nonlinear dynamics by DNNs with limited size is required
for practical use.

If DNNs with limited size try to reduce the uncertainty of
model, a well-known problem in regression, called the bias-
variance trade-off [15], cannot be ignored. While the bias can
be reduced by the conventional minimization problem of the
expected loss, that raises the risk degrading the generalization
performance caused by the increase of the variance. On the
other hand, if the variance is somehow reduced excessively,
the average prediction performance would be deteriorated.
Even though both bias and variance can be reduced in DNNs
with sufficiently large size [16], [17], the bias-variance trade-
off still need to be considered for practical use. We notice
the important fact that the optimal balance of the trade-off
is task-dependent and basically non-trivial. With the same
awareness of the issue, various bias-variance decompositions
for regression problems have been proposed [18]–[21]. The
conventional methods, however, cannot be applied to model
training with DNNs for model-based RL. Therefore, a new
decomposition suitable for sequential training of the deep
neural networks is needed.

In this paper, we propose a comprehensive algorithm to
obtain an optimal balance between bias and variance for the
meta-objective required in model-based RL. We first attempt
to formulate the bias-variance trade-off as a multi-objective
optimization (MOO) problem. From a statistical point of view
on the loss of the entire dataset, we note that the bias and
variance can be represented by the mean loss and the worst
loss. The argument begins with the fact that the expected

loss function of the minimization problem for a given dataset
is an equally-weighted sum of the losses for each data.
In other words, the conventional method can be interpreted
as a method to obtain a Pareto solution by evaluating the
loss of each data equivalently. The optimization based on
scalarization with the linear weighted sum, however, cannot
obtain Pareto solutions on the non-convex part. Therefore,
we apply the augmented weighted Tchebycheff scalariza-
tion [22], [23], which can effectively find non-convex Pareto
frontiers, to each data loss. The weighted sum of the mean
loss and the worst loss is derived as a newminimization target
in this scalarization. That is, the next step is to apply the
augmented weighted Tchebycheff scalarization again so that
arbitrary Pareto solutions among the statistics (i.e. mean and
worst) can be found.

The balance between the bias and the variance can be
adjusted using a hyperparameter given by the above pro-
cess. The Pareto solution to be used, called the preferred
solution, is therefore selected by tuning this hyperparameter
from the set of Pareto solutions according to the higher-level
objective in general. The simplest way to find a preferred
solution is brute-force exploration of the related hyperparam-
eter(s), although this approach is computationally expensive
as a matter of course. As a more advanced method, meta-
optimization of parameters included in lower-level objec-
tives [24] has been developedwith several forms: e.g. gradient
descent (GD) [25]–[28]; RL [29]–[31]; evolutionary search
(ES) [32]–[34]; and Bayesian optimization (BO) [35], [36].
However, these conventional methods have the limitation of
assuming the differentiability of the meta objective and/or
requiring multiple lower-level learning trials.

Hence, we propose a general-purpose and efficient meta-
optimization method based on a policy gradient method [37].
Specifically, the proposed method learns a policy that outputs
hyperparameters stochastically. In each epoch, twin models
are trained using the mean and sampled values of the policy,
respectively, and the trained models are validated against
the meta objective. The difference in the validation results
would be related to only the sampled hyperparameters, not
the training results, and therefore, the log-likelihood of the
policy with the sampled hyperparameters, weighted by the
difference in the validation results, can be maximized so
as to optimize the meta objective. Before starting the next
epoch, the twin models are remade from either of the old
twins. In this method, the meta objective is not differenti-
ated, and multiple trials are not necessary since the hyper-
parameters are optimized at the same time as the DNNs
parameters.

The contributions in this paper are three folds:
1) Formulation of the bias-variance trade-off as a MOO

problem
2) Development of a general-purpose and efficient meta-

optimization method
3) Numerical verification of the proposed formulation

with the meta-optimization on two simulations for the
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environments with uncertainty due to human operation
and presence of other agents

II. RELATED WORK
A. BIAS-VARIANCE DECOMPOSITION
Traditionally, the problem of bias-variance trade-off has been
pointed out in data-driven learning. Various bias-variance
decompositions are presented for several loss functions
(e.g. mean-squared loss [15], [38], zero-one loss [38], and
log-likelihood type loss [39]) used in regression. For the
selection of regression models to avoid overfitting, the bias-
variance have been decomposed as accuracy and complexity
according to the information criterion [40]. In recent years,
several bias-variance decompositions have been proposed to
treat the trade-off as aMOO problem. In this section, we char-
acterize the proposed decomposition method by comparing it
with conventional methods.

A semi-parametric Gaussian copula regression that is
robust to multiple datasets is proposed [20]. In generating the
cumulative distribution function used for the prior distribu-
tion, the parameters of the quantile estimate adjust the bias
and variance. However, the idea is not directly applicable to
model training with neural networks.

A decomposition method has been proposed for model
selection of Bayesian networks, where the evaluation func-
tion is defined by the accuracy and complexity using the
minimal description length (MDL) [18]. Applying MDL to
general DNNs where each node (neuron) has a real number
of outputs and is large in scale, is, however, difficult. Since the
data is sampled online, selecting the best model in advance,
is also not suitable for the model-based RL.

Several methods have been presented for RL, focusing on
the bias-variance trade-off of the policy gradient estimation.
The method of using regularization by a Kullback–Leibler
divergence for variance reduction [19] is discussed by
restricting the problem to hyperparameters used in RL.
A method that deals with the merge of gradients appearing in
off-policy and on-policy learning [21] is also a decomposition
method unique to RL.

Although various bias-variance decompositions have been
proposed as described above, the methods suitable for safe
model learning used in model-based RL, which is the target
of this method, have not been well investigated. The proposed
method does not analyze existing loss functions such as
[15], [38], [39], but defines a new loss function by providing a
decomposition that deals with the bias and variance of the loss
values themselves. By focusing on DNNs, which have been
traditionally used for learning stochastic models of dynamics,
the loss function is defined in a form that is easy to handle
in model-based RL. Furthermore, the proposed loss function
is naturally derived by interpreting the conventional loss
function as a MOO problem, and is not applied at the model
selection stage as in [18]. This feature is an essential condition
for model-based RL, which assumes online learning.

B. META-OPTIMIZATION
A learning algorithm trains DNNs based on a task-specific
(low-level) loss function. According to a user-desired (high-
level) meta-objective (e.g. generalizing across different tasks
and long-term prediction accuracy like our setting), meta-
optimization methods aim to optimize hyperparameters
in the learning algorithm and/or the low-level loss function.
The reason why various methods have been proposed is that
the conditions to be satisfied differ depending on the problem.
In this section, we qualitatively check the performance of
the conventional and proposed meta-optimization methods
while summarizing the necessary requirements for general
meta-optimization. The comparison results are summarized
in Table 1.

First, minimization of the low-level loss function is gen-
erally with high computational cost due to large dataset for
training DNNs. The meta-optimization methods should be,
therefore, highly efficient. The number of hyperparmeters to
be optimized is problem-dependent (e.g. one in our case and
hundreds in optimization of the architecture of DNNs), and
therefore, scalability is important. Furthermore, versatility is
also important to employ arbitrary meta-objective, loss func-
tion, architecture of DNNs, and so on. In particular, differ-
entiability of meta-objective function over hyperparameters
cannot be assumed since it absolutely limits the applicable
problems. Hence, the following four requirements are raised:
i) high efficiency; ii) high scalability; iii) arbitrariness of
target; and iv) no use of gradient.

a: HIGH EFFICIENCY
Since meta-optimization is performed at a higher layer of the
low-level learning, using the results of low-level learning is
generally necessary [24]. While meta-optimization may aim
to improve the efficiency of low-level learning, improving
the efficiency of meta-optimization itself is also important,
in order to reduce time cost and computational resources.
In this evaluation, we examine whether or not to complete
meta-optimization is possible from a single trial of a limited
number of low-level learners.

GD-based methods [25]–[28] directly optimize the target
hyperparameters, and thus have higher efficiency. RL-based
methods are fundamentally less efficient because they require
wide exploration and many trials [29]. Some methods
[30], [31], however, achieved high efficiency with using the
gradient of meta-objective or low-level loss, by limiting the
application to RL. BO can also achieved high efficiency by
finding the points to be explored. On the other hand, ES-based
methods [32]–[34] are well known as less efficient because
they use multiple trials or many low-level learners.

b: HIGH SCALABILITY
When meta-optimization methods are applied to optimize
a large number of hyperparameters, the complexity of
search space increases combinatorially. Since the order of
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TABLE 1. Comparison of recent meta-optimization methods with four indices: only our method satisfies all the indices introduced here.

computational complexity with respect to the number of
hyperparameters is directly related to the versatility, a scal-
able method is desired to be developed.

Methods that aim for local optima based on direct informa-
tion, such as hyperparameter-dependent gradients, generally
have high scalability [25]–[31] by not using global infor-
mation in the search space. On the other hand, in heuristic
methods [32]–[34], it is intractable to find the optimal solu-
tion without many search points on large search space. The
convergence is sacrificed in exchange for not limiting the
search space, which is the reason for the reduced scalability.
In addition, BO [35], [36] uses the Gaussian process [41]
to estimate the model, the computational cost explodes with
respect to the number of search points because samples of
various values need to obtain the global shape of the objective
function.

c: ARBITRARINESS OF TARGET
When dealing with MOO problems such as the bias-variance
trade-off, the meta-objective for selecting one of the Pareto
solution sets cannot be assumed in advance.. A method that
can handle arbitrary meta-objective, rather than a method
requiring the specific meta-objective format, is essential.

Many methods specialize in the typical meta-objectives:
domain generalization [25], [26]; surrogate loss [27];
RL [30], [31], [33]; winning in games [34]; and low-level
learning loss itself [32]. Themeta-heuristics used in ES-based
methods (e.g. CMA-ES [42] and evolution strategies [43]),
however, can potentially be extended to arbitrary targets.
BO [35], [36] is also suitable for handling the arbitrary tar-
gets due to its statistically-generalized design. Some meth-
ods [28], [29] have been proposed that can also handle a
relatively wide range of meta-objectives, although they still
restrict the format of the meta-objectives and the information
required.

d: NO USE OF GRADIENT
A meta-objective for extracting a preferred solution to a
MOO problem may be given only an evaluation value, and
differentiability in the hyperparameters of interest cannot be
assumed. This metric is marked whether the gradient with the
target hyperparameter is used for meta-optimization.

In GD-based methods [25]–[28], the use of gradient is
the key to meta-optimization. One method [29] based on
RL, however, avoids the differentiation of meta-objective

by using stochastic policy. ES-based methods [32]–[34] and
BO [35], [36] are sampling-based and do not require gradient
information.

e: PROPOSAL
The proposed method performs meta-optimization simulta-
neously with low-level learning, and the low-level learning
is limited to a single trial (but with two learners). Both the
conventional method [29] and the proposed method use the
stochastic policy for meta-optimization. However, the pro-
posed method avoids state-dependent exploration by using
only a policy-gradient method instead of RL. Another advan-
tage of using only the policy-gradient method is that there
is no need to design the state on which the meta-objective
depends. Two ideas provide these advantages. The first is that
the proposed method identifies the local gradient direction
from the difference in evaluation between the baseline and the
sample values. The other is to match the states of the two low-
level learners at the beginning of each epoch, thus eliminating
the need to take the states into account for the difference in
learning results. In addition, the meta-objective only needs to
be given a numerical scalar value as an evaluation of the low-
level learners, and there is no need to assume either type or
differentiability.

III. PRELIMINARIES
A. STOCHASTIC MODEL LEARNING IN MARKOV
DECISION PROCESSES
The stochastic dynamics of the environment including the
agent is formulated by a Markov decision process (MDP)
in RL. Given a state st ∈ S ⊂ Rds and an action at ∈
A ⊂ Rda at time t , the next state st+1 is assumed to be
stochastically sampled from the environment-specific state
transition probability pe(st+1 | st , at ). Here, ds and da are the
dimension sizes of the state and the action, respectively. pe is,
however, generally unknown, and model-based RL approxi-
mates it to be a model constructed DNNs parameterized by
θ , pm(st+1 | st , at ; θ ). If pm is accurately acquired, the
agent can predict the future states according to the performed
actions, hence, can plan the best actions to maximize rewards
from the environment.

Therefore, the goal of a stochastic model learning is usu-
ally to fit pm to pe through minimization of expectation of
negative log-likelihood, ln pm, w.r.t. pe. Since pe is a black-
box, the expectation is replaced by Monte Carlo method
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FIGURE 1. Illustration of the contour and the Pareto solution obtained by
the linearly weighted sum: the shape of the contour line is linear; (a) the
Pareto solution of the convex part of the Pareto frontier can be obtained;
(b) however, the Pareto solution of the non-convex part of the Pareto
frontier cannot be obtained.

as sample mean over the dataset obtained from pe, D =
{(sn, an), sn+1}Nn=1, with N tuples. More specifically, θ is
optimized toward θ∗, to minimize the following formula.

θ∗ = arg min
θ

Li(θ ), ∀i ∈ N

Li(θ ) =
1
Ni

∑
si,ai,si+1∈Di

− ln pm(si+1 | si, ai; θ ) (1)

where Di ⊂ D denotes i-th mini-batch with batch size Ni
extracted from D.

B. AUGMENTED WEIGHTED TCHEBYCHEFF
SCALARIZATION
When considering the minimization of M objective func-
tions g1, . . . , gM as a MOO problem, the optimality of the
solution is defined by dominance. The solution x that satis-
fies the following formula dominates the solution x ′ and is

FIGURE 2. Illustration of the contour and the Pareto solution obtained by
the augmented weighted Tchebycheff scalarization: The shape of the
contour line is a linear combination of the L-shaped line and the linear
line; (a) the Pareto solution of the convex part of the Pareto frontier can
be obtained; (b) and, the Pareto solution of the non-convex part of the
Pareto frontier can also be obtained.

expressed as x ≺ x ′.

∀m, gm(x) ≤ gm(x ′) ∧ ∃m, gm(x) < gm(x ′) (2)

The solution that is not dominated by all other solutions is
called the Pareto solution. The set of Pareto solutions is called
the Pareto frontier.

The goal ofMOO is to find the Pareto solution or the Pareto
frontier while taking into account the trade-offs among the
objective functions. To this end, in most cases, a scalarization
function h : RM

→ R with a weight vector w ∈ RM

makes the objective function vector g = [g1, . . . , gM ]> scalar
in order to transform a MOO problem into a set of single-
objective optimization problems. The simplest scalarization
function is the linear weighted sum in the following equation.

h(x) =
M∑
m=1

wmgm(x) (3)
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FIGURE 3. Schematic of the proposed method: Two stochastic models are
learned using the training dataset, and based on the differences between
them, meta policy is simultaneously optimized under the meta objective
using the validation dataset.

In the case of scalarization by linear weighted sum, the con-
tour line in the search space is just a linear line. Therefore, the
Pareto solution in the non-convex part of the Pareto frontier
cannot be obtained (see Figs. 1 (a), (b)).

The augmented weighted Tchebycheff scalarization,
defined by the following equation, is widely used as one of the
scalarization functions that can deal with non-convex Pareto
frontiers [22], [44].

h(x) = max
1≤m≤M

wm(gm(x)− um)

+α

M∑
m=1

wm(gm(x)− um) (4)

where um is called a utopia point that strictly dominates gm.
The contour line is a linear combination of the L-shaped line
from the first term and the linear line from the second term
with the hyperparameter α > 0 (see Figs. 2 (a), (b)). As for
the choice of α, the effects are noted that too small α would
cause a weak Pareto solution because the effect of the second
term is relatively insignificant, and too large α would make
the non-convex solutions unreachable because the effect of
the first term is weakened [23], [45].

IV. META-OPTIMIZATION OF BIAS-VARIANCE
TRADE-OFF
A. OVERVIEW
The state transition model with the parameter θ is optimized
to minimize the loss function, i.e. the expected value of the
negative log-likelihood, defined in eq. (1). Although this
approach is effective when the stochastic behavior is rela-
tively small, it does not take into account the variance of

losses and worst-case scenarios, which are represented by
higher-order moments, and thus can lead to large prediction
errors in reality. Particularly in the case of RL and MPC
applications, the resultingmodel is used for long-term predic-
tion, and if the prediction fails even once during the period,
subsequent predictions from that point may fail. This problem
is caused mainly by a bias-variance trade-off.

This paper proposes a method to adjust the balance of
the bias-variance trade-off by simultaneously minimizing the
expected loss and the worst loss, which are theoretically
derived later. In this case, since learning the state transition
model becomes a MOO problem, a loss function scalarized
by the augmented weighted Tchebycheff scalarization can be
applied. In light of the fact that the size of the Pareto solu-
tion set is generally innumerable, a general-purpose meta-
optimization method is also proposed to obtain the preferred
solution depending on the given meta-objective. A schematic
diagram of the entire proposed method is shown in Fig. 3.

B. FORMULATION OF MOO PROBLEM
1) INTER-DATA MOO: IDMO
To avoid complication, the loss function of the conventional
method, eq. (1), is redefined as follows:

Lmean
θ =

1
N

N∑
i=1

li,θ (5)

li,θ = − ln pm(si+1 | si, ai; θ )− u (6)

where u is a utopia point, which is given commonly to all data
as u = min− ln pm(si+1 | si, ai; θ ). The above objective
function can be interpreted as the linear weighted sum with
objectives for each data and equivalent weights wi = 1/N .
That is, the conventional way can be regarded as an inter-data
multi-objective (IDMO) optimization problem.

According to this interpretation, we formulate this IDMO
optimization problem based on the augmented weighted
Tchebycheff scalarization that can obtain all Pareto solutions.

θ∗ = arg min
θ

LIDMO
θ

LIDMO
θ =

α̃

N

N∑
i=1

li,θ +
1
N

max
i
li,θ

∝ Lmean
θ + αLworst

θ (7)

where Lworst
θ = maxi li,θ is the worst loss, and α̃ is

the hyperparameter in the augmented weighted Tchebycheff
scalarization. Since the solution is not changed by constant
multiplication of the loss function, eq. (7) can be used under
α = 1/(α̃N ).

As shown in the above formula, the application of the
augmented weighted Tchebycheff scalarization to the IDMO
optimization naturally leads to a loss function that explicitly
considers the mean loss and the worst loss, which correspond
to the bias and the variance, respectively. Therefore, the bias-
variance trade-off can be adjusted by setting α appropriately.
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TABLE 2. Reachability to non-convex solutions.

2) STATISTICS-PERSPECTIVE MOO: SPMO
The loss LIDMO

θ obtained above can be again interpreted
as a linear weighted sum of the statistics Lmean

θ and Lworst
θ

weighted by the ratio 1 : α. When the Pareto frontier for
Lmean
θ and Lworst

θ is non-convex, the Pareto solutions that
cannot be obtained at the statistical level would be worth
considering.

We, therefore, apply the augmented weighted Tcheby-
cheff scalarization again to such a statistics-perspectivemulti-
objective (SPMO) optimization problem as follows:

LSPMO
θ = max

(
Lmean
θ , αLworst

θ

)
+β

(
Lmean
θ + αLworst

θ

)
(8)

where β denotes the hyperparameter in the augmented
weighted Tchebycheff scalarization. Since each loss is non-
negative, its statistics, Lmean

θ and Lworst
θ , are also non-

negative, and no utopia point is needed. Note that, in the case
of α ≥ 1, the above formula is essentially equivalent to eq. (7)
since the first term is always Lworst

θ .

3) SUMMARY OF PROPOSED LOSSES
The properties of the loss functions based on the proposed
multi-objective optimization problems are summarized in
Table 2.

First, from the perspective of IDMO, the conventional loss
function, the mean loss Lmean

θ , can be interpreted as a linear
weighted sum of the objectives. Since the linear weighted
sum cannot yield non-convex solutions, a loss LIDMO

θ was
formulated based on the augmented weighted Tchebycheff
scalarization.

Furthermore, since LIDMO
θ was derived as a linear sum

of the mean loss and the worst loss, a loss LSPMO
θ was

formulated by applying the augmentedweighted Tchebycheff
scalarization to those statistics again. The lossLSPMO

θ implic-
itly includes LIDMO

θ , and the non-convex solutions can be
obtained even in IDMO.

C. META-OPTIMIZATION OF HYPERPARAMETER
Even though the hyperparameter α of the loss functions
(LIDMO
θ and LSPMO

θ ) shown in the previous section con-
tributes significantly to the bias-variance tradeoff, no clear
metric has been defined to determine its value. In this section,
we propose a general-purpose meta-optimization method for
α under an arbitrary meta-objective, Lmeta, given as a high-
level design metric.

This meta-optimization problem can be formulated as
follows:

α∗ = arg min
α

Lmeta(θ∗(α),Dval)

s.t. θ∗(α) = arg min
θ

L{IDMO,SPMO}
θ (α,Dtrn) (9)

where Dtrn and Dval are the training and validation datasets,
respectively, and are generated such that Dtrn

∩ Dval
= ∅,

Dtrn
∪ Dval

= D are satisfied.
To solve this meta-optimization problem, we first suppose

that α ∈ [0, 1] (this restricted range is for distinguishing
IDMO and SPMO) is sampled from a meta-policy π(α; φ)
constructed as a probability distribution parameterized by φ.
The purpose is converted to optimize φ to minimize Lmeta

stochastically.

φ∗ = arg min
φ

Eα∼π (α; φ)[Lmeta(θ∗(α),Dval)] (10)

The gradient of the above objective function over φ can be
computed following the policy gradient method.

∇φEα∼π (α; φ)[Lmeta(θ∗(α),Dval)]

= Eα∼π (α; φ)[Lmeta(θ∗(α),Dval)∇φ lnπ (α; φ)]

= Eα∼π (α; φ)[{Lmeta(θ∗(α),Dval)− b}∇φ lnπ (α; φ)]

(11)

where b denotes the baseline, which is not related to α. Since
the expectation of the term for b is zero, it can be added freely
as long as it does not depend on α, which greatly reduces the
variance of the learning results.

To design b, we provide twin models, pbasem and psample
m ,

which are with exactly the same θ before each epoch. In each
epoch, they are trained with ᾱ = E[π (α; φ)] and α ∼
π (α; φ), resulting in θbase and θsample, respectively. Since
pbasem is not involved in α, Lmeta with θbase can be utilized
as the baseline. In addition, we can separate whether the
variation in Lmeta comes from α or training, and extract only
the contribution of α by subtracting this baseline from Lmeta

with θsample.
Hence, with Lmeta(θbase,sample,Dval) =: Lmeta

θbase,sample
, the

meta-objective function for φ, Jφ , can be given as follows:

Jφ = 1Lmeta lnπ (α; φ) (12)

1Lmeta
= Lmeta

θsample
− Lmeta

θbase
(13)

where the expectation operation in eq. (11) is eliminated
by one-sample Monte Carlo approximation as well as the
standard policy gradient method.

Afterwards, to start the new epoch with the twin models
parameterized by the same θ , they are renewed from the
superior model.{

θbase← θsample (1Lmeta
≤ 0)

θsample← θbase (1Lmeta > 0)
(14)

The proposed method can perform the model learning
and the meta-optimization simultaneously at each epoch.
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FIGURE 4. Human-operated single-agent environment: The robot is
operated by an expert (human); The expert aims to land the robot on the
landing field at zero speed.

FIGURE 5. Multi-agent environment: four agents work in the same
environment; the task of agents 1–3 (predators) is to catch an
agent 4 (prey); the task of the agent 4 is to run away from the agent 1-3
on the screen.

In addition, the additional computational cost for the meta-
optimization is only to learn the twin model, resulting in
sufficiently low computational cost and high efficiency. There
are no requirements on the learning algorithm, the meta-
objectives, and so on. That is, the proposed method is suf-
ficiently versatile. Even if the number of hyperparameters
is increased, the computational cost of the policy gradient
method is merely proportional to it, keeping high scalability.

V. EXPERIMENTS
A. COMMON CONDITIONS
In order to validate the effectiveness of the proposed method,
model learning with two types of meta-objective is conducted
with datasets collected in numerical simulations. One meta-
objective is simply the minimization of the linear weighted
sum of the mean and worst losses to verify whether the
proposed meta-optimization method succeeds in making rea-
sonable adjustments. Another is the minimization of the
negative log-likelihood in the long-term prediction as more

TABLE 3. Hyperparameters in human-operated single-agent environment.

TABLE 4. Hyperparameters in multi-agent environment.

practical case. In the following, the proposed method com-
bining IDMO/SPMO and meta-optimization will be referred
to as IDMO+MO/SPMO+MO, respectively.

Themodel to learn the stochastic dynamics is configured as
a three-layered neural network with 100 neurons in each hid-
den layer, and the meta-policy is configured as a one-layered
neural network with 100 neurons in hidden layer, in all trials.
All hidden layers are configured as fully connected layers,
and the activation function is the ReLU (Rectified Linear
Unit). These networks output a multivariate diagonal Gaus-
sian distribution and a Beta distribution, respectively, and
implemented by Pytorch. They are optimized with one of the
state-of-the-art stochastic GD optimizer, t-Adam [46], which
is robust to noise and outliers in dataset.

Two types of simulation environments are prepared:
1) a human-operated single-agent environment; and
2) a multi-agent environment. Details of each environment
is described below.

In both environments, their dataset were randomly divided
in proportions such that Ntrn : (Nval + Ntst) = 7 : 3 and
Nval : Ntst = 7 : 3, where Ntrn, Nval, and Ntst are the numbers
of training, validation, and test data, respectively. For each
training condition, 10 trials of model learning in 200 epochs
are performed with different random seeds to confirm the
statistical performance.

1) HUMAN-OPERATED SINGLE-AGENT ENVIRONMENT
This environment is ‘‘LunarLanderContinuou-v2’’ provided
by OpenAI Gym [47] (see Fig. 4). The robot moves in the
environment by the thrust of the main engine and the left
and right engines. The state space of the robot is eight-
dimensional: two-dimensional absolute position and veloc-
ity; attitude and angular velocity; and two states of contact
between the ground and each foot. The action space of the
robot is two-dimensional: thrust of main engine; and thrust
of left and right engines. The task to be accomplished is to
softly land on the landing field and stop.

To train the stochastic dynamics model, we manually col-
lected state transition data {(st , at ), st+1}. The data collector
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generated the action sequences as an expert with the aim of
realizing the task. The number of data in this dataset D is
N = 70, 394. The manually-collected dataset would contain
bias in the states visited, and such a dataset is prone to bias
and/or variance of the trained model.

In this environments, all the following trials are conducted
with the hyperparameters shown in Table 3.

2) MULTI-AGENT ENVIRONMENT
This environment based on [48] consists of four agents and
two objects, which are randomly placed at the beginning of
each episode (see Fig. 5). The source codes of this environ-
ment can be downloaded fromGithub:https://github.
com/openai/multiagent-particle-envs). The
state space of the agents 1–3 (predators) is 16-dimensional:
two-dimensional absolute position and velocity of itself;
two-dimensional relative positions of the other agents and
objects; and two-dimensional velocity of the agent 4 (prey).
The state space of the agent 4 (prey) is fourteen-dimensional:
two-dimensional absolute position and velocity of itself;
and two-dimensional relative positions of other agents. Each
agent has a discrete action space for determining the moving
direction (up/down/left/right).

This experiment can be regarded as a partially observable
MDP (POMDP), where each agent does not share the actions
of all the agents and the agent 4 does not know the positions
of two objects. As a result, it is difficult to infer the true
dynamics pe from the observable states of each agent, and the
model pm will always contain uncertainty. Therefore, higher-
order moments (the worst loss in our case) must be properly
considered.

Tomake the dataset for this environment, the action of each
agent at each time was designed as follows:

• Predator (i.e., the agents i ∈ {1, 2, 3}) pursues the
agent 4.

ai =


aleft |dhi,4| ≥ |d

v
i,4| & dhi,4 ≤ 0

aright |dhi,4| ≥ |d
v
i,4| & dhi,4 > 0

adown |dhi,4| < |d
v
i,4| & dvi,4 ≤ 0

aup |dhi,4| < |d
v
i,4| & dvi,4 > 0

(15)

• Prey (i.e., the agent 4) run away from the agents 1–3.

a4 =



aleft |dh
4,ihmin
|≤|dv4,ivmin

| & dh
4,ihmin

>0

aright |dh
4,ihmin
|≤|dv4,ivmin

| & dh
4,ihmin
≤0

adown |dh4,ihmin
|> |dv4,ivmin

| & dv4,ivmin
>0

aup |dh
4,ihmin
|> |dv4,ivmin

| & dv4,ivmin
≤0

,

ihmin = arg min
i
|dh4,i|, ivmin = arg min

i
|dv4,i| (16)

where a{left,right,down,up} represents left, right, down, upmove-
ment, d {h,v}i,j is the relative position of the agent j in the
horizontal, vertical direction from the agent i. The action of
each agent is collected to keep each agent within 90% of the

FIGURE 6. Learning results of α on human-operated single-agent
environment and eq. (17): as wwm increased, the α approached 1, and
vice versa; the positive correlation between wwm and α was captured.

vertical and horizontal limits of the screen. With such ad-hoc
controllers, the dataset D is collected with N = 30, 000.
In this environment, all the following trials are conducted

with the hyperparameters shown in Table 4. Note that all
the agents are with the same hyperparameters, although the
results of random initialization are different.

B. META-OBJECTIVE: LINEAR WEIGHTED SUM OF
MEAN AND WORST LOSSES
In this validation, the meta objective is defined as the linear
weighted sum of the mean and worst losses for the validation
dataset Dval, as shown in the following equation.

Lmeta
θ = (1− wwm)Lmean

θ (Dval)+ wwmLworst
θ (Dval) (17)

where wwm ∈ [0, 1] denotes the priority of the worst loss.
Bias and variance must be adjusted for optimization of this
meta-objective. The proposed method is applied to each
of the 21 loss functions generated by varying wwm with
0.05 increments in the range [0, 1], thereby validating the
meta-optimization for α, which should be positively corre-
lated with (but not linearly proportional to) wwm.

1) HUMAN-OPERATED SINGLE-AGENT ENVIRONMENT
The learning results by the proposed method in human-
operated single-agent environment are shown below. Each
value in the following graphs represents the mean and 95 %
confidence interval over 10 trials of the values obtained in the
final five epochs.

The transition of the learned α with evenly-spaced wwm
is shown in Fig. 6. As can be seen in Fig. 6, α tends to
increase with the increase of wwm for both IDMO+MO and
SPMO+MO methods. In other words, the proposed meta-
optimization was able to capture the positive correlation
between the two variables α and wwm.

The transitions of mean and worst losses shown in
Figs. 7 (a) and (b), show that the learning results con-
verge to different values depending on the change of α.
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FIGURE 7. Learning results of the mean and worst losses on
human-operated single-agent environment and eq. (17): (a) the mean
loss was decreased as wwm increased; (b) the worst loss was increased
as wwm increased; as a result, a model suitable for the meta-objective
was learned.

Since minimizing the mean loss of the validation data is close
to the meta-objective with small wwm, the stochastic model
was trained to focus on the mean loss at the expense of
the worst loss, and vice versa. Compared to SPMO+MO,
IDMO+MO shows less variation in the learning results, even
though α varies in a similar range. This is because SPMO can
cover all Pareto solutions in α ∈ [0, 1], whereas IDMO is
affected by the mean loss even in α = 1. Probably thanks to
this capability of SPMO, it succeeded inminimizing themean
loss with small wwm less than one of IDMO, and the worst
loss with large wwm more stably than IDMO (i.e. smaller
confidence interval).

A simple simulation with the meta-objective of minimiz-
ing the weighted sum of the mean and worst losses for the
validation data shows numerically that the proposed meta-
optimization method can adaptively adjust the bias-variance
trade-off at the same as model learning. Since the simulation
environment is human-operated single-agent environment,

FIGURE 8. Learning results of α on multi-agent environment and eq. (17):
as wwm increased, the α approached 1, and vice versa; the positive
correlation between wwm and α was captured.

the proposed method would be effective in dealing with
uncertainty in human-involved biased datasets. In particular,
the comparison results show that SPMO+MO can handle a
wider range of trade-off than IDMO+MO.

2) MULTI-AGENT ENVIRONMENT
The results of applying the proposed method into the multi-
agent environment are shown below, as well in the previous
section.

The transition of the learned α with evenly-spaced wwm
is shown in Fig. 6. As well in the human-operated single-
agent environment, the proposed meta-optimization method
was able to captured the positive correlation between α and
wwm in both model learning methods. However, α saturated
near 1 even when wwm was relatively small compared to
Fig. 6, suggesting that this environment is prone to large
variance.

The mean and worst losses of the learning results (see
Fig. 9) also show the similar tendency to Fig. 7, although
the range of change in the case with IDMO was increased
since the variance would be dominant. In addition, it can be
seen that the model accuracy of SPMO was inferior to that of
IDMO in both mean and worst losses when prioritizing the
worst loss with large wwm. This is probably because IDMO
always uses the gradients of both the mean and worst losses,
while SPMO uses either of them per batch depending on
the max operator. Therefore, even with the same epochs, the
number of uses of data to update the parameters is reduced,
resulting in delaying the model learning itself. This drawback
may be mitigated by annealing β from the large initial value,
for example.

C. META-OBJECTIVE: ACCURACY OF
LONG-TERM PREDICTION
In this validation, the meta-objective is defined as the mean
loss in long-term prediction for the validation dataset Dval,
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FIGURE 9. Learning results of the mean and worst losses on multi-agent
environment and eq. (17): (a) the mean loss was decreased as wwm
increased; (b) the worst loss was increased as wwm increased; as a result,
a model suitable for the meta-objective was learned.

as shown in the following equation.

Lmeta
θ =

1
K

K∑
k=1

l(H ,k)θ

l(h,k)θ = − ln pm(stk+h+1 | s̄tk+h, atk+h; θ )− u

s̄tk+h =

{
stk h = 0
E[pm(· | s̄tk+h−1, atk+h−1; θ )] otherwise

(18)

where H denotes the horizon of the prediction period and
K denotes the number of sequences. Namely, it predicts the
state sequence based on the state at t and the action sequence
from t in the dataset, and the prediction accuracy at the end
of the prediction period is employed as the meta-objective.

In such a long-term prediction, the stochastic model is
desired to be trained not only to improve the accuracy of
the one-step prediction, but also to avoid outliers during the
prediction period. This meta-objective, therefore, requires the
optimal balance of the bias-variance trade-off, which is diffi-
cult to be revealed analytically. In order to verify whether the
proposed meta-optimization method on SPMO can properly

FIGURE 10. Learning results of α on human-operated single-agent
environment and eq. (18) with H = 10: α was learned to be close to 1; the
worst loss was emphasized in the long-term prediction in this
environment.

FIGURE 11. The results of the scores on human-operated single-agent
environment and eq. (18) with H = 10: the score was reduced more in the
case of SPMO+MO than in the case of IDMO+MO; namely, SPMO+MO
improved the meta-objective.

find the optimal balance, we experiment with H = {1, 10} as
below.

1) HUMAN-OPERATED SINGLE-AGENT ENVIRONMENT
The learning results as box plots for the values obtained
in the final five epochs in the human-operated single-agent
environment are shown below.

First, the results for the time-horizon H = 10 are
shown. Fig. 10 shows the results for meta-learned α. In both
the SPMO+MO and IDMO+MO cases, α converged to
around 1, indicating that the meta-optimization was done in
a way that emphasized the worst loss.

The meta-objective obtained by the baseline model is
shown in Fig. 11. Fig. 11 shows that smaller meta-objective
is obtained by using SPMO+MO. The reason for this can be
understood from the results of the mean and worst losses for
each method shown in Figs. 12 (a) and (b). In the case of
IDMO+MO, the mean loss was still minimized even under
α ' 1, and the gap between it and the worst loss was
enlarged. This gapwould cause overlearning to themean loss,
and induced outliers during the long-term prediction. In con-
trast, SPMO+MO obtained the larger mean loss than that of
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FIGURE 12. Learning results of the mean and worst losses on
human-operated single-agent environment and eq. (18) with H = 10:
IDMO+MO obtained the large difference between the mean and worst
losses, which means that the variance of the learned stochastic model
was large; in contrast, SPMO+MO succeeded in keeping the difference
between the mean and worst losses small, resulting in that fatal errors in
long-term prediction were less likely to occur, as indicated in Fig. 11.

IDMO+MO, but the gap between it and the worst loss and the
variance of their losses were smaller, thereby achieving the
stable prediction without overlearning. In addition, Fig. 13
shows that, both proposed methods reduce the meta-objective
more than the conventional method using mean loss (Mean).
Only SPMO+MO resulted in the same degree of reduction
as the case of using the worst loss (Worst).

Next, the results for the time-horizon H = 1 are described
below. According to the minimization results for α shown in
Fig. 14, the smaller α, i.e. prioritizing the mean loss, would
be better for this setting. This is a reasonable result because
the meta-objective is the same as the low-level loss for model
training when α = 0, namely the worst loss is no longer
considered. SPMO+MO succeeded in obtaining the smaller
α than one of IDMO+MO, which may yield a slightly better
result in the meta-objective shown in Fig. 15.
It is clear from Fig. 16, which shows the mean and worst

losses with H = 1, and Fig. 12 why α was not sufficiently
small in IDMO+MO. That is, although IDMO+MOobtained
the different α, the mean and worst losses were almost the
same, indicating a low dependency on α. On the other hand,
in SPMO+MO, the mean loss was minimized to the same

FIGURE 13. The comparison of the scores on human-operated
single-agent environment and eq. (18) with H = 10: the scores of both
SPMO+MO and IDMO+MO were reduced more in the cases of the maen
loss, and only SPMO yielded results comparable to the case of the worst
loss; namely, the proposed methods leads to a better Pareto solution
than the conventional method, and the results suggest that convergence
to the worst loss was the optimal solution.

FIGURE 14. Learning results of α on human-operated single-agent
environment and eq. (18) with H = 1: α was adjusted to be close to 0; the
mean loss was emphasized to predict only the next step (H = 1 with the
validation dataset.

FIGURE 15. The results of the scores on human-operated single-agent
environment and eq. (18) with H = 1: The scores obtained from the
meta-optimization were comparable for both methods.

level as in IDMO+MO, and the worst loss was explic-
itly ignored instead. Such a high dependency on α enables
SPMO+MO to find the preferred solution that satisfies the
meta-objective as much as possible. Fig. 17 shows that, both
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FIGURE 16. Learning results of the mean and worst losses on
human-operated single-agent environment and eq. (18) with H = 1: since
the worst loss was not needed to be minimized in this configuration,
SPMO+MO ignored it to prioritize the mean loss.

FIGURE 17. The comparison of the scores on human-operated
single-agent environment and eq. (18) with H = 1: the scores of both
SPMO+MO and IDMO+MO were reduced more in the cases of the maen
loss and the worst loss; namely, the proposed methods leads to a better
Pareto solution than the conventional method.

proposedmethods reduce the meta-objective more thanMean
and Worst. This indicates that the proposed methods can
obtain the learning results with less meta loss by using the
intermediate Pareto solution between Mean and Worst. Since
Mean lowers the meta loss more than Worst, α converged to
a value that emphasizes mean loss, is reasonable.

FIGURE 18. Learning results of α on multi-agent environment and
eq. (18) with H = 10: α was trained to be close to 1; the worst loss was
emphasized in the long-term prediction in this environment, as in the
case of the human-operated single-agent environment.

FIGURE 19. The results of the scores on multi-agent environment and
eq. (18) with H = 10: the score was reduced more in the case of
SPMO+MO than in the case of IDMO+MO, as in the case of the
human-operated single-agent environment.

2) MULTI-AGENT ENVIRONMENT
The learning results in themulti-agent environment are shown
below. As well as the case of the human-operated environ-
ment, the results for the time-horizon H = 10 depicted in
Fig. 18 obtained α ' 1. In addition, as shown in Fig.19,
SPMO+MO could minimize the meta-objective much more
than IDMO+MO. The reason for this result is also the same
as for the previous environment: i.e. SPMO+MO acquired
the generalized model by appropriate suppression of over-
learning confirmed from a small gap between the mean and
worse losses in Fig.20, while IDMO+MO did not. Note
that both losses were smaller in IDMO+MO, but they were
computed for the training data. In addition, Fig. 21 shows
that, only SPMO+MOreduces themeta-objective to the same
level as Worst.

On the other hand, even under the meta-objective with
H = 1, α was adjusted toward 1 to emphasize the worst loss
in both methods (see Fig. 22). As a result, Figs. 23 and 24
indicate that SPMO+MO and IDMO+MO obtained com-
parable performance. Fig. 25 shows that, both proposed
methods reduce the meta-objective slightly more than Mean

VOLUME 9, 2021 148795



T. Aotani et al.: Meta-Optimization of Bias-Variance Trade-Off in Stochastic Model Learning

FIGURE 20. Learning results of the mean and worst losses on multi-agent
environment and eq. (18) with H = 10: SPMO+MO succeeded in keeping
the difference between the mean and worst losses smaller than that of
IDMO+MO, as in the case of the human-operated single-agent
environment.

FIGURE 21. The comparison of the scores on multi-agent environment
and eq. (18) with H = 10: the score of SPMO+MO was almost the same
level as that of in the cases of the worst loss; namely, the results suggest
that convergence to the worst loss was the optimal solution.

andWorst. Contrary to the case of the human-operated single-
agent environment, since Worst lowers the meta loss more
thanMean, α converged to a value that emphasizes worst loss,
is reasonable.

The reason why α was optimized to be close to 1 even
with H = 1 comes from the fact that this environment is par-
tially observable (i.e. POMDP). Specifically, state transitions
that occur in response to unobservable states are unavoid-
ably expressed as uncertainty, hence the uncertainty of state

FIGURE 22. Learning results of α on multi-agent environment and
eq. (18) with H = 1: α was optimized towards 1 unlike the case of the
human-operated single-agent environment; this result suggested that the
multi-agent environment was with high uncertainty and required the
larger variance to cover it.

FIGURE 23. The results of the scores on multi-agent environment and
eq. (18) with H = 1: the scores obtained from the meta-optimization were
comparable for both methods.

transitions is inherently large in POMDP. The model trained
with the mean loss cannot capture this uncertainty, and there-
fore it lacks generality to the validation and test data even if
it is consistent with the meta-objective. To reduce the number
of unexpected events as much as possible, the worst loss can
be useful to make the variance of the model wider.

D. DISCUSSION
As investigated above, the optimal hyperparameters that lead
to the preferred solution depend not only on the meta-
objective but also on the contents of the dataset and the model
architecture, hence it is not infeasible to give them analyt-
ically in advance. The proposed meta-optimization method
based on the policy gradient allows us to obtain the preferred
solution by adjusting the hyperparameters in a data-driven
manner at the same time as learning the model. In addition,
adjusting all hyperparameters will have little effect, namely
we must make sure that which hyperparameters have the
capability to find the Pareto frontier, as like α in SPMO.

One of the concerns is the exploration performance of
the meta-optimization methods. Although the augmented
weighted Tchebycheff scalarization theoretically guarantees
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FIGURE 24. Learning results of the mean and worst losses on multi-agent
environment and eq. (18) with H = 1: (a) the mean loss was kept at the
same level for both methods; (b) the worst loss was also comparable for
both methods.

FIGURE 25. The comparison of the scores on multi-agent environment
and eq. (18) with H = 1: the scores of both SPMO+MO and IDMO+MO
were reduced slightly in the cases of the maen loss and the worst loss;
namely, the proposed methods leads to a little better Pareto solution
than the conventional method.

the reachability of all Pareto solutions, optimizing the hyper-
parameters with the policy gradient method may lead to
local solutions in the meta-objective. To address this open
issue, adding an auxiliary term to the meta-objective function
defined in eq. (12) to facilitate the exploration (e.g. entropy
of the meta-policy [49]) may increase the reachability of the
global optimal solution.

Another concern is the effect of the variation of the opti-
mization target on the stochastic model learning. In the

proposed method, the loss function, which is defined as a
MOO problem used in stochastic model learning, is modified
at each epoch due to the simultaneous low-level learning
and meta-optimization. As in curriculum learning [50], adap-
tive changes in the optimization target sometimes provide
opportunity to escape from the local solutions, but vice versa.
In combination with the exploration facilitation described
above, this problem may be solved in practice, but deeper
investigation is necessary.

Finally, this paper has developed the meta-optimization
method starting frommodel learning for the model-based RL.
Although this model learning is done in an offline manner
with datasets already constructed, the model-based RL often
involves planning and adding data using the model even in
the process of learning [51], [52]. How the proposed method
affects such online applications remains an open issue.

VI. CONCLUSION
This paper proposed a stochastic model learning method
that is adjustable the bias-variance trade-off of the stochas-
tic model according to higher-level objective. The proposed
method consists of the loss function derived from the two-
step MOO problem with inter-data and statistic-perspective
objectives, and the meta-optimization of the hyperparame-
ter in the loss function. Specifically, we first pointed out
that the conventional loss for model learning is described
as the inter-data MOO problem. The inter-data MOO was
reformulated as the multiple single objective optimizations
using the augmented weighted Tchebycheff scalarization.
Furthermore, by applying the augmented weighted Tcheby-
cheff scalarization again to the weighted sum of the mean and
worst losses naturally obtained above, we defined the loss
function as the stochastic-perspective MOO problem. The
meta-optimization method was newly developed to balance
the bias and the variance of the resulting stochastic model by
adjusting the hyperparameter in the proposed loss function.
Inspired by the policy-gradient method, that can be accom-
plished simultaneously with model learning only during a
single trial with two model learners. The proposed method
was applied to the human-operated single-agent and multi-
agent environments with different types of uncertainty. First,
the weighted sum of the mean loss and the worst loss was
used as the meta-objective. The results showed that the hyper-
parameter was able to be adjusted according to the weight
between the mean and worst loss with positive correlation.
Next, the long-term prediction accuracy was used as another
practical meta-objective. We found that the proposed method
can improve the long-term prediction accuracy by revealing
the best balance of the bias-variance trade-off and avoiding
overfitting to the training data.

As mentioned in the discussion, the exploration perfor-
mance should be guaranteed in order to acquire global
solution. The analysis of the learning dynamics during meta-
optimization is not completed yet. Furthermore, by extending
the proposed method in an online learning manner, it can be
integrated with model-based RL in the near future.
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