
Received October 14, 2021, accepted October 22, 2021, date of publication November 2, 2021, date of current version November 11, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3125105

RCD: Radial Cell Decomposition Algorithm for
Mobile Robot Path Planning
OMNIA A. A. SALAMA1, MOHAMED E. H. ELTAIB2, HANY AHMED MOHAMED1,3,
AND OMAR SALAH 1
1Department of Mechanical Engineering, Faculty of Engineering, Assiut University, Asyut 71516, Egypt
2Department of Mechanical Engineering, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh 33511, Egypt
3Mechanical Engineering Department, Higher Technological Institute, 10th of Ramadan City 44634, Egypt

Corresponding author: Omar Salah (omar.salah@aun.edu.eg)

ABSTRACT Finding the optimum path for mobile robots is now an essential task as lots of autonomous
mobile robots are widely used in factories, hospitals, farms, etc. Many path planning algorithms have been
developed to finding the optimum path with the minimum processing time. The vertical cell decomposition
algorithm (VCD) is one of the popular path planning algorithms. It is able to find a path in a very short time.
In this paper, we present a new algorithm, called the Radial cell decomposition (RCD) algorithm, which can
generate shorter paths and a slightly faster than VCD algorithm. Furthermore, the VCD algorithm cannot
be applied directly to obstacles in special cases, like two vertices have the same x-coordinate; on the other
hand, the RCD algorithm can be applied to these special cases directly. In addition to that, the RCD algorithm
is very suitable for corridor environments, unlike the VCD algorithm. In this paper, the RCD algorithm is
described and tested for both cluttered and corridor environments. Furthermore, Two different algorithms
A*, and Vertical cell decomposition are compared to the RCD algorithm. Simulation results confirm the
effectiveness of the RCD algorithm in terms of path length and processing time.

INDEX TERMS Path planning, radial cell decomposition, vertical cell decomposition.

I. INTRODUCTION
Robots in the industry are evolving quickly from large
manually controlled machines to small autonomous mobile
robots [1]. Fast performance, high accuracy, flexibility, and
safety of autonomous mobile robots led to the proliferation
in agriculture [2], medical [3], and industrial applications [4].
Finding the optimal path between two points in an uncon-
trolled environment is a substantial task that autonomous
mobile robots should be able to do [5]. After finding the opti-
mal path, mobile robots can save time and effort by moving
heavyweights from one place to another easily and safely
without human intervention [6]. The environment around the
robot can be static [7] if all obstacles are fixed in place
or dynamic if some obstacles are moving or changing their
place [8]. For known environments, the map is created before
the process of planning a path. Although for unknown envi-
ronments, the map is built gradually while the robot discover-
ing the environment [9]. A massive number of applications of
path planning have motivated researchers to develop different

The associate editor coordinating the review of this manuscript and

approving it for publication was Heng Wang .

types of methods and algorithms in this field [10]. Most of
these methods are trying to find the shortest path [11] from a
start location to a destination/ goal position. Although, some
research is focusing on finding the safest path [12], while
others are focusing on reducing the computational time [13].
Classification of path planning algorithms is based on the
algorithm itself and the environment [14]. Some path plan-
ning methods are global while others are local [15]. Global
methods, also called off-line methods, are considering the
entire work-space before the path planning process; while
local methods, also called online methods, are considering a
small area around the robot [16]. A complete method [17] is
a method that guarantees to find a path between two points
if one exists, while an incomplete method [18] does not
guarantee to find a path even if one exists.

Path planning methods are classified into three main meth-
ods [19]; potential fields, sampling-based, and combinatorial
methods As shown in Figure1. Potential field path planning
is inspired by nature by considering the robot as a charged
particle moving in a magnetic field [20]. The robot must be
attracted by the goal and repelled by obstacles. The potential
function is the sum of an attractive potential attracting the

149982 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-4888-3933
https://orcid.org/0000-0002-4408-9153


O. A. A. Salama et al.: RCD: Radial Cell Decomposition Algorithm for Mobile Robot Path Planning

robot towards the goal and a repulsive potential pushing the
robot away from obstacles [21]. One main disadvantage of
potential fields is the local minimum trap. However some
researchers have overcome this issue by using an optimiza-
tion based approaches as in [22]. Two important advantages
of potential fields are the low calculation cost and the ability
to be used with both local and global path planning.

Sampling-based path planning algorithms convert the con-
tinuous map into a discrete map consists of a set of nodes
that is created randomly and roads that connecting nodes
in a certain way [23]. A collision detection function [24]
is used to ensure that all nodes and roads are in free space
then, a graph search algorithm is used to find the shortest
path between any two nodes [25]. Probabilistic Roadmaps,
PRM, [26] is a well-known algorithm that randomly creates a
predetermined number of nodes. Then, it tries to connect each
node to the nearest node or all nodes less than a predetermined
distance. Finally, after the roadmap is created, the start and
goal configurations are added to the roadmap and a graph
search algorithm is used to find the shortest path from a start
position to a goal position [27]. This algorithm is helpful
in the case of a multi-query problem, where multiple goal
positions are required to be added to the [28]. In the case
of a single query problem, it is wasteful to create a map
that covers the entire free space. Another familiar algorithm
is used in single query problems is the Rapidly Exploring
Random Trees, RRT, algorithm [29]. This algorithm con-
siders the start and goal positions in the sampling process.
A tree rooted at the start position is created where each new
node is connected to the closest node within a predetermined
distance k . The algorithm continues to add nodes to the
tree until it reaches the goal position [30]. Sampling-based
methods are more efficient in practical problems and higher
dimension configuration spaces, Cspaces, [31]. They are prob-
abilistically complete methods, but their performance is low
in narrow passages and they are not suitable for dynamic
environments [32].

Combinatorial methods, Grid-based methods, [25] are
complete and exact algorithms [33] that find a path with-
out approximation. These algorithms encode the topology
of the robot’s free space globally using some structures
while describing the geometry of the free space locally [34].
An important advantage of these methods is that they provide
an upper limit on the time needed to solve the problem [35].
First, the free space is decomposed into a finite number of
cells. Second, an adjacency graph is created by determining
which cells are adjacent. Finally, a graph search algorithm is
used to find the shortest path connecting start and goal posi-
tions [36]. A* and Dijkstra [37] algorithms are two examples
of grid-based methods that divide the free space into a set of
cells of equal size, i.e., grids. Each cell is represented as a
node in the adjacency graph and the distance between every
two nodes is the weight of the edge connecting them [38].
A robot can move only in a lattice around the current cell.
The more the number of cells, the more the computation time
and the better the resulting path [39]. For large environments,

this decomposition results in a huge number of cells which
results in a better and shorter path but a slower algorithm [40].
The large number of nodes need very long time to be pro-
cessed which make these algorithms not suitable for practi-
cal problems. Instead of dividing the free space into equal
cells, cell decomposition methods divide the free space into
a small number of cells which decreases the computation
time [41]. Lower computation time and faster execution of the
algorithm are two advantages of cell decomposition methods
over grid-based methods [42]. Triangulation and vertical cell
decomposition are two popular cell decomposition methods
[43]. Triangulation is done by first triangulate the free space
into a set of 2-simplicial, triangles, then create the adjacency
graph by representing each triangle with a node and connect
every two adjacent cells by an edge in the graph [44]. This
algorithm is complete, but it is complicated to use in practice
due to its computational complexity.

FIGURE 1. Classification of path planning methods.

Vertical cell decomposition depends on the plan sweep
algorithm from computational geometry [45]. By partitioning
the free space,Cfree, into a finite number of 2-cells and 1-cells
which are either trapezoidal or triangular. Each 1-cell is a
vertical line that represents the border between every two
2-cells and each 2-cell is the interior of the trapezoid or the
triangle [46]. A topological graph [47], i.e., a roadmap, rep-
resenting adjacency relations between cells is built from cell
decomposition. Two 2-cells are adjacent if they are sharing
the same 1-cell in between. Nodes in the graph represent
the 2-cells while edges represent the adjacency relations
between cells [48]. edges are weighted with Euclidean dis-
tance between nodes. Once the Graph is built correctly, two
nodes representing the start and goal positions are added
to the graph and a graph search algorithm is used to find
the shortest path from start to goal across the graph [49].
This algorithm is suitable for large environments, but it does
not result in the shortest path if compared to algorithms
like A* and Dijkstra. Vertical cell decomposition uses the
line sweep algorithm which requires all obstacles to be in
general positions, where no obstacle has vertical edges and
all vertices have distinct X-coordinate, [35], [50], [51]. Spe-
cial cases are ignored in cell decomposition planning by
performing random perturbations in some random direction.
Performing random perturbations can be very frustrating in
practice because most of the implementation time is devoted

VOLUME 9, 2021 149983



O. A. A. Salama et al.: RCD: Radial Cell Decomposition Algorithm for Mobile Robot Path Planning

to fixing such special cases which unnecessarily complicate
the solution [35], [50].

In this paper, a new cell decomposition algorithm, Radial
Cell Decomposition (RCD), is introduced. RCD algorithm
is applied directly to environments that have some obstacles
in special cases, have some vertical edges or two points
with the same x-coordinate, without the need to convert
them to general positions. This saves the time of changing
special cases back into general positions and reducing the
complexity of cell decomposition algorithms. According to
that, the RCD algorithm makes it easier to find a path throw
corridor environments than using other cell decomposition
algorithms since corridor maps have a lot of vertical edges.
The remaining sections of the paper are organized as follows:
Section II presents a detailed explanation of the proposed
algorithm, RCD algorithm, together with the pseudocode of
the algorithm. Section 3 shows examples and simulations of
three different algorithms while results of simulations and
comparisons are presented in section 4. Finally, conclusions
and some remarks are given in section 5.

II. MATERIAL AND METHOD
Radial Cell Decomposition is a cell decomposition method
that uses the concept of partitioning the free space into a set
of cells. A 2D bounded mapW ⊂ R2 is used to represent the
environment. W includes a set of static polygonal obstacles
O = {O1,O2, . . . ,Om} where m is the cardinality of set O
and a robot A represented as a point, located initially at start
position qs and assumed to move to a goal position qg. The
set of vertices used to represent obstacles configuration Cobs
is V = {v1, v2, . . . , vn} where n is the number of vertices V .
Finding a path using RCD algorithm is done throw the

following steps which shown in Figure 2:

1) First, computing the decomposition itself, i.e., divid-
ing the free space into a set of bounded cells C =
{c1, c2, . . . , cj} where j is the cardinality of set C as
shown in Figure 2a.

2) Second, building the adjacency graph G that represents
Cfree and all feasible paths the robot can traverse as
shown in Figure 2b.

3) Third, applying A* algorithm on graph G to find the
shortest path between any two nodes as shown in
Figure 2c.

Radial cell decomposition (RCD) decomposes the free
space into a set of cells C shaped like part of a disk by drawing
arches at obstacle vertices. The algorithm first selects the
most left vertex from boundaries polygon to be the center
node cc, center of all developed arches, then, it sorts all
polygon vertices V by their distance from cc. For each vertex
v ∈ V try to extend two arches cw and ccw throw Cfree until
Cobs is hit. Each arch extends from vertex v until it hits the
first obstacle above or under it. As shown in Figure 3, four
possible cases are depending on the possibility of extending
an arch in each direction:

• Case1: two arches CW and CCW are extended from v.

FIGURE 2. The three steps of radial cell decomposition algorithm.

FIGURE 3. The four possible cases for a vertex v : a) extending two arches
cw and ccw, b) extend a ccw arch, c) extend a cw arch, and d) no arches
can be extended.

• Case2: one arch CCW is extended from v.
• Case3: one arch CW is extended from v.
• Case4: no arches to extend from v.
Partitioning the Cfree according to these arches results in

Radial Cell Decomposition shown in Figure 4a. The free
space is decomposed into 2-cells and 1-cells where each
2-cell is the set of points in the interior of the resulting cell and
each 1-cell is the set of points that form the arch shared by two
adjacent cells. As shown in Figure 4a, cells (c1, c2, . . . , c18)
are the free cells resulted from Radial cell decomposition.
These cells are represented in the adjacency graph by nodes
as shown in Figure 4b. Edges in the graph represents the
adjacency relations between the free cells. A path is then com-
puted by searching the graph for the Consecutive nodes that
will connect start node to goal. An example of the resulted
path is shown in Figure 4.

After decomposition is correctly maintained, an adjacency
graph G is built, as shown in Figure 4b, to solve different path
planning queries. Each free cell is represented by a node in
the adjacency graph. Two nodes are connected by a road if
they are adjacent. Start and goal positions are then connected
to the graph. Finally, the adjacency graph is searched for the
best route from start to goal using a graph search algorithm
like A* algorithm. The computed path shown in Figure 4a is
the set of Consecutive nodes that connect start node to goal
node which represented in Figure 4b by pink nodes.

A. COMPUTING DECOMPOSITIONS
As mentioned in section II, computing decompositions is
the first stage in the problem of finding a path by cell

149984 VOLUME 9, 2021



O. A. A. Salama et al.: RCD: Radial Cell Decomposition Algorithm for Mobile Robot Path Planning

FIGURE 4. Radial decomposition of the free space into 2-cells and 1-cells
is shown in (a), and the resulting adjacency graph is shown in (b).

decomposition methods. The input to the algorithm is the
boundary description of boundary polygon and obstacles O.
In order to collect these information, a camera is installed
above the environment to take images of the environment.
Using image processing technique images can be analyzed to
extract the desired information. The coordinates of boundary
polygon and obstacles are extracted. The output is the set
of decomposed cells stored in list CC . The following is the
detailed explanation of Computing decompositions stage.

1) Given the map of the surroundings, the most left vertex
of boundaries polygon is defined as the center node cc.

2) Information of all polygons in the map is extracted
by image processing. These information is then stored
in two excel sheets that will be used as inputs to the
algorithm. The first excel sheet, named ‘‘vertices’’,
contains the ID of each vertex, its coordinates, and the
euclidean distance to cc. The second excel sheet, named
‘‘obstacle edges’’, contains the ID of each edge, the IDs
of its endpoints, and the equation of this edge.

3) Sort the set of all vertices V by their distance from
center node cc, this step can take O(n logn) time [52].

4) Loop over the sorted list V , each visit to a vertex v ∈ V
is an event, at each event three main actions happen:

• An arch A centered at node cc passing through v
and extending until it hits the first obstacle in both
directions is created.

• A list L of some Cobs edges that intersects with A
is updated. By maintaining L in a balanced binary
search tree, updating L at each event will need
O (logn) time instead of O (n) for insertion and
deletion of edges [53].

• According to the fact that arch A is dividing the
free space into smaller cells, a list of closed cells
CC , which are the cells that are fully discovered,
is updated. Also, a list of opened cells OC is
updated. This list contains the cells that are opened
and created by A but will be completed and closed
by another arch in a future event.

5) For each vertex v, let eupper and elower to be the two
edges containing v. Draw an imaginary circle, Cim,
from cc passing throw v. There are four possible cases
depending on the position of eupper and elower to Cim.
An explanation of each case is shown next:

• Case 1: both eupper and elower are outside Cim
Insert eupper and elower into list L. Two cases may occur:
(a) All vertices of the current obstacle lie outside

Cim as shown in Figure 5. First, create two new
cells, one with eupper and one with elower , and
add both to list OC . Second, close the last cell
in OC with the new arch A, add it to list CC ,
and remove it from OC .

(b) Some vertices of the current obstacle lie inside
Cim as shown in Figure 6. Create one new cell
with eupper and elower and add it to list OC .

• Case 2: eupper is outside and elower is inside Cim as
shown in Figure 7
Delete elower from list L and insert eupper to list L. Create
one new cell with eupper and add it to listOC . Search list
OC for the opened cell contains elower , add it to list CC ,
and remove it from list OC .

• Case 3: eupper is inside and elower is outside Cim as
shown in Figure 8
Delete eupper from list L and insert elower to list L. Create
one new cell with elower and add it to listOC . Search list
OC for the opened cell contains eupper , add it to list CC ,
and remove it from list OC .

• Case 4: both eupper and elower are inside Cim
Delete eupper and elower from the list L. Create two new
arches Acw and Accw. Two cases may occur:
(a) All vertices of the current obstacle lie inside

Cim as shown in Figure 9. First, Create one new
cell with both arches and add it to the list OC .
Then, Search listOC for the cell contains eupper
and close it with Accw. Do the same for the cell
contains elower , close it with Acw. Finally, add
both cells to list CC and remove them from list
OC .

(b) Some vertices of the current obstacle lie outside
Cim as shown in Figure 10. Close one cell with
eupper and elower , add it list CC , and remove it
from list OC .

The closed listCC is the set of decomposed cells that are
used for building the adjacency graph. If the decompo-
sition was applied correctly, list CC should contain all
decomposed cells while OC should be empty at the last
vertex in V .

VOLUME 9, 2021 149985



O. A. A. Salama et al.: RCD: Radial Cell Decomposition Algorithm for Mobile Robot Path Planning

FIGURE 5. Case 1a, two arches are developed at vertex v , one cell is
closed by arch A, and two cells are opened, the upper cell is opened by
eupper and Aupper and lower cell is opened by elower and Alower .

FIGURE 6. Case 1b, the arch is not developed at vertex v , and one cell is
opened by eupper and elower .

FIGURE 7. Case 2, one upper arch is developed at vertex v , an opened
cell contains elower is closed by arch A, and a new cell is opened by
eupper and arch A.

B. BUILDING ADJACENCY GRAPH
The adjacency graph is built using listCC , after the decompo-
sition of the space is completed. This is done by looping over
cells in listCC . In this case an extraO(n) time will be needed.
A better approach, that saves time [35], is incrementally
building G at each visit to v ∈ V while decomposing the free
space. Each free cell ci is represented in G by a node qi which
can be any point such that qi ∈ ci. These nodes can be cells
centroids or a point near to the centroid. Each node, i.e., cell
ci is connected by an edge to its neighbor nodes N (ci) ⊂ C,
∀ci ∈ C whereN (ci) are the cells that share 1-cell with cell ci.
There are two approaches to represent the decomposition

in a graph G. One simple way is to represent each 1-cell,
arch, by a node located at its center. An edge will connect two
nodes if both nodes belong to a different border of the same
2-cell ci. This representation of G is shown in Figure 11a.
Another way is to represent each 2-cell by a node located
near to its centroid and each 1-cell by a node located at its
center then connect the node representing the 2-cell by nodes
in its boundaries, i.e., 1-cells, this representation is shown
in Figure 11b. Note that the first representation reduces the
number of nodes in G which reduces the time needed by the
A* algorithm to find the shortest path from G. The number
of nodes and roads resulted from the second representation
are larger, but it solves the problem of discontinuity of the

Algorithm 1: Radial Cell Decomposition
Result: List of Decomposed Cells CC
Input: vertices and edges of obstacles and boundaries polygon
Cc = the most left vertex of boundary polygon, vi = current
visited vertex from list V , ri = distance from Cc to vi, obsi =
obstacle contains vi, eupper = upper edge contains vertex vi,
elower = lower edge contains vertex vi, T = an empty AVL
tree, OC = an empty List of opened cells, CC = an empty
List of closed, cells, ock = last cell in list OC

Sort list vertices V from lower ri to higher values
foreach vi ∈ V do

if both eupper and elower were outside the circle of radius ri
then

Insert both eupper ,elower to tree T
if obsi lies outside the circle of radius ri then

A1 = a CW arch of radius ri from vi
A2 = a CCW arch of radius ri from vi
add A1,A2 to ock , insert ock to CC , and delete it
from OC

create cell oc1, insert it to OC , eupper ∈ oc1
create cell oc2, insert it to list OC , elower ∈ oc2

else
create cell oci, insert it to list OC ,
elower , eupper ∈ oci

end
else if eupper is outside the circle of radius ri while elower
is inside the circle then

Insert eupper to T and delete elower from T
Ai = a CCW arch of radius ri from vi
Search OC for cell contains elower , add Ai to it, insert
it to CC , and delete it from OC

discover cell oci, insert oci to list OC , Ai ∈ oci
else if elower is outside the circle of radius ri while eupper
is inside the circle then

Insert elower to T and delete eupper from T
Ai = a CW arch of radius ri from vi
Search OC for cell contains eupper , add Ai to it, insert
it to CC , and delete it from OC

discover cell oci, insert oci to list OC , Ai ∈ oci
else if both eupper and elower are inside the circle of radius
ri then

Delete both eupper ,elower from tree T
if obsi lies inside the circle of radius ri then

A1 = a CW arch of radius ri from vi
A2 = a CCW arch of radius ri from vi
discover cell oci, insert oci to list OC ,
A1,A2 ∈ oci

Search OC for two cells contain elower and
eupper , add A1,A2 to them, delete them from
OC , and insert them to CC

else
Search OC for cell contains elower and eupper ,
delete them from OC , and insert them to CC

end
end

roadmap with corridor environments. It is very effective with
corridor environments as shown in section IV. Once G is
correctly built, the A* algorithm can be applied to find the
shortest path throw nodes and edges in G.

C. FINDING THE PATH
Once G is correctly obtained, a query (qs, qg) can be solved
directly by any graph search algorithms like the A* algo-
rithm [54]. The two cells containing qs and qg are first deter-
mined. Let C0 denote the free cell that contains qs and q0

149986 VOLUME 9, 2021



O. A. A. Salama et al.: RCD: Radial Cell Decomposition Algorithm for Mobile Robot Path Planning

FIGURE 8. Case 3, one lower arch is developed at vertex v , one cell is
closed, and one cell is opened.

FIGURE 9. Case 4a, two arches are developed at vertex v , two opened
cells are closed by arch A, and one cell is opened by arch A.

FIGURE 10. Case 4b, no arch is developed at vertex v , one opened cell is
closed by elower and eupper .

denote the node represents C0 in G. Likewise, let Ck denote
the free cell that contains qg and q0 denote the node represents
Ck in G. After connecting (qs to q0) and (qg to qk ), the graph
G is searched for the shortest path between qs and qg. The
resulting path is the sequence of nodes q0, q1, . . . qk that are
visited by the robot while traveling from point qs to point qg as
shown in Figure 12. If no path was found, the algorithm will
return that no solution exists. A flowchart shown in Figure 13
shows the main steps of the RCD algorithm.

D. ANALYSIS OF RCD ALGORITHM
Starting with n polygonal vertices and n polygonal edges, the
time needed by RCD algorithm isO(nlogn). We will analyze
the time taken by each step of the algorithm in terms of n.

• Sorting all polygonal vertices by their distance to cen-
ter node Cc will take O(nlogn) using quicksort algo-
rithm [55].

• ExtendingO(n) archesCW andCCW is done by finding
the intersecting edges. By maintaining edges stored in a
binary search tree L, insertion and deletion of an edge
will take O(logn) time. So the time needed for this step
is O(nlogn) for all vertices.

• Building the adjacency graph takes O(n) time as the
number of cells and edges in adjacency graph is O(n)

FIGURE 11. Two different representations of the same cell, a) represent
each 1-cell by a node located at its center, b) represents each 2-cell by a
node located near to its centroid, and each 1-cell by a node at its center.

FIGURE 12. The resulting path after applying the A* algorithm to graph G.

and for each cell calculating the center node takes con-
stant time.

(d) By storing closed and opened cells in binary search trees
CC and OC , Search, insertion, deletion of cells takes
O(nlogn) time for all O(n) cells.

• A* algorithm takesO(nlogn) time [56] to find the short-
est path from the adjacency graph.

III. SIMULATION
Two different environments, cluttered and corridors, are used
for simulating RCD algorithm together with the classical
A* and Vertical Cell Decomposition. Each environment was
tested for series of different queries, start and goal positions,
via MATLAB. For each query, a comparison between the
three algorithms is based on the length of the path and the
processing time needed.

For simplification, a robot A is assumed to be a point in
a 2D bounded workspace W that includes some stationary
polygonal obstacles O. Robot A is initially located at start
position qs and should move to goal position qg while avoid-
ing colliding with obstacles. The input to the first algorithm,
classical A*, is the binary image of the map where obstacles
are represented as 1 and free space as 0. The entire map is
discretized into a grid of 100 × 100 nodes and the robot can
move diagonally. At each node x ∈ X , A* calculates f (x) for
all neighbor nodes to find the node with the best route,i.e.,
lowest f (x) that is calculated in (1).

f (x) = g (x)+ h (x) (1)

VOLUME 9, 2021 149987



O. A. A. Salama et al.: RCD: Radial Cell Decomposition Algorithm for Mobile Robot Path Planning

FIGURE 13. Flowchart of the proposed RCD algorithm.

where g (x) denotes the distance from the start node to current
node x and the heuristic function h (x) is the Euclidean dis-
tance from current node x to the goal node. The output of the
algorithm is the length of the path and the time needed by the
algorithm to find the best route. Vertical cell decomposition
and RCD are decomposing the workspace into a set of cells,
i.e., nodes, then create an adjacency graph G. In some cases,
some edges from the generated graph G pass very near toCobs

FIGURE 14. Enlarging Cobs to ensure safer paths.

which may occur in a collision with obstacles. According to
that, obstacles are enlarged by a constant distance to ensure
generating a safer path as shown in Figure 14. After enlarging
obstacles, the new Cobs map is used by the algorithm to
find the shortest path. Input is the description of vertices
and edges of boundary polygon and obstacles. The output is
the sequence of nodes q0, q1, . . . qk that forms the shortest
path from G that connects qs to qg. The resulted path is now
guaranteed to be a safe path.

IV. RESULTS AND DISCUSSION
This section compares the Classical A*, Vertical cell decom-
position, and RCD decomposition through cluttered and cor-
ridor environments in terms of path length and execution
time. In all figures, the start configuration is represented as
a green star while the goal configuration is represented as a
red star, and the resulted path is plotted in blue.

A. CLUTTERED ENVIRONMENTS
In this environment, a set of polygonal obstacles are located
randomly in a bounded polygonal environment. Figure 15
shows the computed path of the three algorithms for the same
cluttered environment. For VCD and RCD algorithms the
roadmap resulted from cell decomposition is colored in pink.
The computed path is colored in blue in the three algorithms.

Table 1 shows a comparison between the three algorithms
depending on two factors, the length of the resulted route
and the processing time. Each case was run 10 times and the
average processing time was recorded. As noticed in table1,
A* algorithm produces the shortest path but it is very slow
if compared to RCD and VCD algorithms. This ability to
save processing time is and advantage of cell decomposi-
tion methods over grid-based methods. Also, the processing
time of A* algorithm is increasing rapidly with the distance
between start and goal positions As the number of processed
nodes are increasing. On the contrary, the time taken by VCD
and RCD algorithms is nearly constant for different queries
as the number of nodes are constant. Note that, the number
of processed nodes in A* algorithm depends on the size of
the map and the resolution of grids. For VCD and RCD
algorithms, the number of nodes in a map depends on the
number of vertices of obstacles. As shown in table 1, paths
generated by RCD algorithm are always shorter than paths
generated by VCD algorithm while the processing time of
RCD is slightly less than the processing time of VCD. This
emphasizes the effectiveness of RCD algorithm in generating
shorter paths if compared to VCD algorithm.

149988 VOLUME 9, 2021



O. A. A. Salama et al.: RCD: Radial Cell Decomposition Algorithm for Mobile Robot Path Planning

FIGURE 15. A cluttered environment is used to evaluate the path resulted
from (a) VCD algorithm, (b) RCD algorithm, and (c) A* algorithm.

TABLE 1. A cluttered terrain is used to compare between A*, VCD and
RCD algorithm in terms of path length and processing time.

As shown in Figure17, four different terrains are used to
compare between Vertical cell decomposition (VCD) and
Radial cell decomposition (RCD) algorithms. The same start
and goal configurations are used in all terrains. The roadmaps
resulted from the decomposition of cell is shown in pinkwhile
the computed path is represented in blue. For both algorithms,
the length of paths and processing time for each terrain in
Figure17 are recorded in table 2. Table 2 shows the that the
length of the paths generated by RCD algorithm are shorter
than those generated by VCD algorithm as shown in the last
column. These results proves that Radial decomposition of
cells produces shorter paths if compared to vertical decom-
position of cells.

TABLE 2. A comparison between VCD and RCD algorithms in terms of
path length and processing time.

FIGURE 16. Relation between the processing time and number of vertices
in an environment.

The tuning parameter of RCD algorithm is the number
of vertices of obstacles in the environment. The processing
time of RCD algorithm increases as the number of vertices
increases. The processing time needed by RCD algorithm is
O(nlogn)- as discussed in section II-D. Figure16 shows how
the processing time increases when the number of vertices in
the environment increases.

B. CORRIDOR ENVIRONMENTS
For corridor environments, Classic A* and RCD algorithms
were tested and compared. Vertical cell decomposition is
ignored in this scenario since this environment has almost
all its edges in a vertical position which will complicate
the solution- special cases are ignored in VCD algorithm.
On the other hand, RCD algorithm can be applied to corridor
environments directly and a good path will be found. The
ease of applying RCD algorithm to corridor environments
is a great advantage for RCD algorithm over vertical cell
decomposition algorithm. When applying RCD algorithm to
corridor maps, the second representation of the adjacency
graph, discussed in section II-B, will be used to avoid the dis-
continuity while building the adjacency graph which allows
the algorithm to reach any configuration between corridors.
Figure 18 shows the resulted path computed by Classical A*
andRadial Cell Decomposition for the same corridormap and
same start and goal positions.

Table 3 compares between A* and RCD algorithm using
different goal positions. The comparison is done in terms of
path length and processing time for each algorithm. As shown
in Table 3, the processing time of RCD algorithm is very
short if compared to the processing time of A* algorithm.
Also, the processing time of RCD algorithm is almost con-
stant among different queries, while the processing time of
A* algorithm depends on the distance between start and

VOLUME 9, 2021 149989



O. A. A. Salama et al.: RCD: Radial Cell Decomposition Algorithm for Mobile Robot Path Planning

FIGURE 17. Four different cluttered terrains used to compare between
the path resulted from VCD and RCD algorithms using same start and goal
positions.

FIGURE 18. A corridor map is used to compare between paths resulted
from a) A*, b) Radial cell decomposition.

goal configurations. Although A* algorithm produces shorter
paths than RCD algorithm, it consumes processing time up to
6.5 times RCD algorithm. This makes RCD algorithm more
suitable with time sensitive cases.

TABLE 3. A corridor map is used to compare between A* and RCD
algorithms using different queries.

V. CONCLUSION AND FUTURE WORK
This paper proposed a new approach to cell decomposition.
RCD algorithm first divides the environment into a set of free
cells based on a set of arches drawn from the center point.
After decomposition is done properly, an adjacency graph
is created from free cells by two procedures; represent each
arch by a node in its middle and connect every two nodes if
they belong to the border of the same free cell. The second
procedure, is by representing each free cell by a node located
near to its centroid and each arch by a node in its middle then,
connect each free cell node by nodes located in its borders.
The resulted adjacency graph is then used by theA* algorithm
to find the shortest path from a start position to a goal position.

RCD algorithm was tested and verified together with clas-
sical A* algorithm and Vertical cell decomposition in two
different environments, cluttered and corridors. Results of
cluttered environments showed that paths generated by the
RCD algorithm are shorter than those generated by Vertical
cell decomposition by 69.8% on average. Also, the computa-
tion time of the RCD algorithm is less than the computation
time of Vertical cell decomposition by 10-30ms. Also, results
showed that the length of paths found by the classical A*
algorithm are shorter than those found by the RCD algorithm
by 11.35% on average. However, the computation time of
the A* algorithm is up to 6.5 times the computation time of
RCD algorithm. Furthermore, The computation time of A*
is increasing rapidly as the distance between start and goal
positions is increased while it is found to be nearly constant
for RCD and Vertical cell decomposition algorithms.

The previous results confirm the advantage of the RCD
algorithm over classical A* and Vertical cell decomposition
algorithms in terms of computational time in both cluttered
and corridor environments which makes it applicable and
more effective with large environments. Also, results empha-
size the advantage of the RCD algorithm over the Vertical
cell decomposition algorithm in terms of both path length and
computation time in a cluttered environment. Furthermore,
the ease of applying RCD algorithm to obstacles in special
case such as corridor environments is a great advantage of
RCD algorithm over VCD algorithm.

As stated, RCD algorithm is applied to different static envi-
ronments using an image of the environment. On the other
hand, it is very important to apply the proposed algorithm
with dynamic environments. In this case, several images will
be taken at a rate that is appropriate to the changing rate of
obstacles. As a future work, it is very interesting to verify the

149990 VOLUME 9, 2021



O. A. A. Salama et al.: RCD: Radial Cell Decomposition Algorithm for Mobile Robot Path Planning

ability of implementing RCD algorithm in dynamic environ-
ments. Furthermore, refinement of paths generated by RCD
algorithm is an interesting point to consider in future work.

REFERENCES
[1] S. S. Kim, J. Kim, F. Badu-Baiden,M.Giroux, andY. Choi, ‘‘Preference for

robot service or human service in hotels? Impacts of the COVID-19 pan-
demic,’’ Int. J. Hospitality Manage., vol. 93, Feb. 2021, Art. no. 102795,
doi: 10.1016/j.ijhm.2020.102795.

[2] L. C. Santos, F. N. Santos, E. J. Solteiro Pires, A. Valente, P. Costa, and
S. Magalhães, ‘‘Path planning for ground robots in agriculture: A short
review,’’ in Proc. ICARSC, Apr. 2020, pp. 61–66.

[3] M. Javaid, A. Haleem, A. Vaish, R. Vaishya, and K. P. Iyengar, ‘‘Robotics
applications in COVID-19: A review,’’ J. Ind. Integr. Manage., vol. 5, no. 4,
pp. 441–451, Nov. 2020, doi: 10.1142/S2424862220300033.

[4] M. B. Alatise and G. P. Hancke, ‘‘A review on challenges of autonomous
mobile robot and sensor fusion methods,’’ IEEE Access, vol. 8,
pp. 39830–39846, 2020, doi: 10.1109/ACCESS.2020.2975643.

[5] M. G. B. Atia, H. El-Hussieny, and O. Salah, ‘‘A supervisory-based col-
laborative obstacle-guided path refinement algorithm for path planning
in wide terrains,’’ IEEE Access, vol. 8, pp. 214672–214684, 2020, doi:
10.1109/ACCESS.2020.3041802.

[6] A. Abbadi and V. Přenosil, ‘‘Safe path planning using cell decomposition
approximation,’’ in Int. Conf. Dist. Learn. Simul. Commun. (DLSC), Brno,
Czech Republic, May 2015, pp. 8–14.

[7] M. S. Alam, M. U. Rafique, and M. U. Khan, ‘‘Mobile robot path planning
in static environments using particle swarm optimization,’’ Int. J. Electron.,
vol. 3, pp. 2320–4028, 2016.

[8] A. Vemula, K. Muelling, and J. Oh, ‘‘Path planning in dynamic environ-
ments with adaptive dimensionality,’’ in Proc. Int. Symp. Comb. Search
(SoCS), Jul. 2016, pp. 107–116.

[9] J. van den Berg, D. Ferguson, and J. Kuffner, ‘‘Anytime path
planning and replanning in dynamic environments,’’ in Proc. IEEE
Int. Conf. Robot Automat. (ICRA), May 2006, pp. 2366–2371, doi:
10.1109/ROBOT.2006.1642056.

[10] M. G. B. Atia, O. Salah, and H. Ei-Hussieny, ‘‘OGPR: An obstacle-guided
path refinement approach for mobile robot path planning,’’ in Proc. IEEE
Int. Conf. Robot. Biomimetics (ROBIO), Dec. 2018, pp. 844–849, doi:
10.1109/ROBIO.2018.8665080.

[11] X.-Z. Gao, Z. Hou, X.-F. Zhu, J.-T. Zhang, and X.-Q. Chen,
‘‘The shortest path planning for manoeuvres of UAV,’’ Acta
Polytechnica Hungarica, vol. 10, pp. 214672–214684, Jan. 2013,
doi: 10.12700/aph.10.01.2013.1.13.

[12] X. Hu, L. Chen, B. Tang, D. Cao, and H. Hee, ‘‘Dynamic path planning for
autonomous driving on various roads with avoidance of static and moving
obstacles,’’Mech. Syst. Signal Process., vol. 100, pp. 482–500, Feb. 2018,
doi: 10.1016/j.ymssp.2017.07.019.

[13] D. Berenson, P. Abbeel, and K. Goldberg, ‘‘A robot path planning frame-
work that learns from experience,’’ in Proc. IEEE Int. Conf. Robot.
Automat., May 2012, pp. 3671–3678, doi: 10.1109/ICRA.2012.6224742.

[14] A. Liaqat, W. Hutabarat, D. Tiwari, L. Tinkler, D. Harra, B. Morgan,
A. Taylor, T. Lu, and A. Tiwari, ‘‘Autonomous mobile robots in manufac-
turing: Highway code development, simulation, and testing,’’ Int. J. Adv.
Manuf. Technol., vol. 104, nos. 9–12, pp. 4617–4628, Oct. 2019, doi:
10.1007/s00170-019-04257-1.

[15] P. Marin-Plaza, A. Hussein, D. Martin, and A. D. L. Escalera, ‘‘Global
and local path planning study in a ROS-based research platform for
autonomous vehicles,’’ J. Adv. Transp., vol. 2018, p. 10, Feb. 2018, doi:
10.1155/2018/6392697.

[16] Z. Shiller, ‘‘Off-line and on-line trajectory planning,’’ inMotion and Oper-
ation Planning of Robotic Systems, 1st ed, Cham, Switzerland: Springer,
2015, pp. 29–62, ch. 2.

[17] A. Le, M. Arunmozhi, P. Veerajagadheswar, P.-C. Ku, T. H. Minh,
V. Sivanantham, and R. Mohan, ‘‘Complete path planning for a tetris-
inspired self-reconfigurable robot by the genetic algorithm of the trav-
eling salesman problem,’’ Electronics, vol. 7, no. 12, p. 344, 2018, doi:
10.3390/electronics7120344.

[18] Q. Luo, H. Wang, Y. Zheng, and J. He, ‘‘Research on path plan-
ning of mobile robot based on improved ant colony algorithm,’’
Neural Comput Appl., vol. 32, no. 6, pp. 1555–1566, Apr. 2020,
doi: 10.1007/s00521-019-04172-2.

[19] L. Yang, J. Qi, D. Song, J. Xiao, J. Han, and Y. Xia, ‘‘Survey of robot
3D path planning algorithms,’’ Nural. Comput. Appl., vol. 2016, p. 22,
Jul. 2016, doi: 10.1155/2016/7426913.

[20] Y. Rasekhipour, A. Khajepour, S.-K. Chen, and B. Litkouhi, ‘‘A potential
field-based model predictive path-planning controller for autonomous road
vehicles,’’ IEEE Trans. Intell. Transp. Syst., vol. 18, no. 5, pp. 1255–1267,
May 2017, doi: 10.1109/TITS.2016.2604240.

[21] S. B. Germi, M. A. Khosravi, and R. Fesharakifard, ‘‘Adaptive GA-based
potential field algorithm for collision-free path planning of mobile robots
in dynamic environments,’’ inProc. 6th RSI Int. Conf. Robot. Mechatronics
(IcRoM), Oct. 2018, pp. 28–33, doi: 10.1109/ICRoM.2018.8657601.

[22] F. Bayat, S. Najafinia, andM. Aliyari, ‘‘Mobile robots path planning: Elec-
trostatic potential field approach,’’ Expert Syst. Appl., vol. 100, pp. 68–78,
Jun. 2018, doi: 10.1016/j.eswa.2018.01.050.

[23] C. I. Vasile, X. Li, and C. Belta, ‘‘Reactive sampling-based path planning
with temporal logic specifications,’’ Int. J. Robot. Res., vol. 39, no. 8,
pp. 1002–1028, Jun. 2020, doi: 10.1177/0278364920918919.

[24] X. Chu, Q. Hu, and J. Zhang, ‘‘Path planning and collision
avoidance for a multi-arm space maneuverable robot,’’ IEEE Trans.
Aerosp. Electron. Syst., vol. 54, no. 1, pp. 217–232, Feb. 2018, doi:
10.1109/TAES.2017.2747938.

[25] S. K. Debnath, R. Omar, N. B. A. Latip, S. Shelyna, E. Nadira,
C. K. N. C. K. Melor, T. K. Chakraborty, and E. Natarajan, ‘‘A review
on graph search algorithms for optimal energy efficient path planning for
an unmanned air vehicle,’’ Indonesian J. Electr. Eng. Comput. Sci., vol. 15,
no. 2, pp. 743–749, Aug. 2019, doi: 10.11591/ijeecs.v15.i2.pp743-749.

[26] W. Khaksar, T. S. Hong, M. Khaksar, and O. Motlagh, ‘‘A low disper-
sion probabilistic roadmaps (LD-PRM) algorithm for fast and efficient
sampling-based motion planning,’’ Int. J. Adv. Robot. Syst., vol. 10, no. 11,
p. 397, Jan. 2013, doi: 10.5772/56973.

[27] M. Korkmaz and A. Durdu, ‘‘Comparison of optimal path planning
algorithms,’’ in Proc. 14th Int. Conf. Adv. Trends Radioelecrtronics,
Telecommun. Comput. Eng. (TCSET), Feb. 2018, pp. 255–258, doi:
10.1109/TCSET.2018.8336197.

[28] K. E. Bekris, B. Y. Chen, A. M. Ladd, E. Plaku, and L. E. Kavraki,
‘‘Multiple query probabilistic roadmap planning using single query plan-
ning primitives,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Oct. 2003, pp. 656–661, doi: 10.1109/IROS.2003.1250704.

[29] I. Noreen, A. Khan, and Z. Habib, ‘‘A comparison of RRT, RRT* and
RRT*-smart path planning algorithms,’’ Int. J. Comput. Sci. Netw. Secur.,
vol. 16, no. 10, pp. 20–27, Oct. 2016, doi: 10.1109/IROS.2003.1250704.

[30] C. Wong, E. Yang, X.-T. Yan, and D. Gu, ‘‘Optimal path planning
based on a multi-tree T-RRT* approach for robotic task planning
in continuous cost spaces,’’ in Proc. 12th France-Japan 10th
Europe-Asia Congr. Mechatronics, Sep. 2018, pp. 242–247,
doi: 10.1109/MECATRONICS.2018.8495886.

[31] D. Devaurs, T. Siméon, and J. Cortés, ‘‘Efficient sampling-based
approaches to optimal path planning in complex cost spaces,’’ in Algo-
rithmic Foundations of Robotics XI. Cham, Switzerland: Springer, 2015,
pp. 143–159.

[32] M. Elbanhawi and M. Simic, ‘‘Sampling-based robot motion
planning: A review,’’ IEEE Access, vol. 2, pp. 56–77, 2014, doi:
10.1109/ACCESS.2014.2302442.

[33] M. N. Zafar and J. C. Mohanta, ‘‘Methodology for path planning and
optimization of mobile robots: A review,’’ Proc. Comput. Sci., vol. 133,
pp. 141–152, Jan. 2018, doi: 10.1016/j.procs.2018.07.018.

[34] S. K. Debnath, R. Omar, S. Bagchi, E. N. Sabudin, M. H. A. S. Kandar,
K. Foysol, and T. K. Chakraborty, ‘‘Different cell decomposition path
planning methods for unmanned air vehicles—A review,’’ in Proceedings
of the 11th National Technical Seminar on Unmanned System Technology.
Singapore: Springer, 2021, pp. 99–111, ch. 8.

[35] S. M. LaValle, ‘‘Combinatorial motion planning,’’ in Planning Algorithms,
1st ed. Cambridge, U.K.: Cambridge Univ. Press, 2006, pp. 249–252, ch. 6.
[Online]. Available: https://lavalle.pl/planning/book.pdf

[36] P. Raja and S. Pugazhenthi, ‘‘Optimal path planning of mobile robots:
A review,’’ Int. J. Phys. Sci., vol. 7, no. 9, pp. 1314–1320, Feb. 2012, doi:
10.5897/IJPS11.1745.

[37] H. Wang, Y. Yu, and Q. Yuan, ‘‘Application of Dijkstra algorithm in robot
path-planning,’’ in Proc. 2nd Int. Conf. Mechanic Autom. Control Eng.,
Jul. 2011, pp. 1067–1069, doi: 10.1109/MACE.2011.5987118.

[38] A. K. Guruji, H. Agarwal, and D. K. Parsediya, ‘‘Time-efficient A* algo-
rithm for robot path planning,’’ Proc. Technol., vol. 23, no. 1, pp. 144–149,
2016, doi: 10.1016/j.protcy.2016.03.010.

VOLUME 9, 2021 149991

http://dx.doi.org/10.1016/j.ijhm.2020.102795
http://dx.doi.org/10.1142/S2424862220300033
http://dx.doi.org/10.1109/ACCESS.2020.2975643
http://dx.doi.org/10.1109/ACCESS.2020.3041802
http://dx.doi.org/10.1109/ROBOT.2006.1642056
http://dx.doi.org/10.1109/ROBIO.2018.8665080
http://dx.doi.org/10.12700/aph.10.01.2013.1.13
http://dx.doi.org/10.1016/j.ymssp.2017.07.019
http://dx.doi.org/10.1109/ICRA.2012.6224742
http://dx.doi.org/10.1007/s00170-019-04257-1
http://dx.doi.org/10.1155/2018/6392697
http://dx.doi.org/10.3390/electronics7120344
http://dx.doi.org/10.1007/s00521-019-04172-2
http://dx.doi.org/10.1155/2016/7426913
http://dx.doi.org/10.1109/TITS.2016.2604240
http://dx.doi.org/10.1109/ICRoM.2018.8657601
http://dx.doi.org/10.1016/j.eswa.2018.01.050
http://dx.doi.org/10.1177/0278364920918919
http://dx.doi.org/10.1109/TAES.2017.2747938
http://dx.doi.org/10.11591/ijeecs.v15.i2.pp743-749
http://dx.doi.org/10.5772/56973
http://dx.doi.org/10.1109/TCSET.2018.8336197
http://dx.doi.org/10.1109/IROS.2003.1250704
http://dx.doi.org/10.1109/IROS.2003.1250704
http://dx.doi.org/10.1109/MECATRONICS.2018.8495886
http://dx.doi.org/10.1109/ACCESS.2014.2302442
http://dx.doi.org/10.1016/j.procs.2018.07.018
http://dx.doi.org/10.5897/IJPS11.1745
http://dx.doi.org/10.1109/MACE.2011.5987118
http://dx.doi.org/10.1016/j.protcy.2016.03.010


O. A. A. Salama et al.: RCD: Radial Cell Decomposition Algorithm for Mobile Robot Path Planning

[39] W. Zeng and R. L. Church, ‘‘Finding shortest paths on real road networks:
The case for A*,’’ Int. J. Geograph. Inf. Sci., vol. 23, no. 4, pp. 531–543,
Apr. 2009, doi: 10.1080/13658810801949850.

[40] V. Kunchev, L. Jain, V. Ivancevic, and A. Finn, ‘‘Path planning and obstacle
avoidance for autonomous mobile robots: A review,’’ in Proc. Int. Conf.
Knowl.-Based Intell. Inf. Eng. Syst. Berlin, Germany: Springer, Oct. 2006,
pp. 537–544.

[41] B. K. Patle, A. Pandey, D. R. K. Parhi, and A. Jagadeesh, ‘‘A review: On
path planning strategies for navigation of mobile robot,’’Defence Technol.,
vol. 15, pp. 582–606, Aug. 2019, doi: 10.1016/j.dt.2019.04.011.

[42] R. Gonzalez, M. Kloetzer, and C. Mahulea, ‘‘Comparative study of tra-
jectories resulted from cell decomposition path planning approaches,’’ in
Proc. 21st Int. Conf. Syst. Theory, Control Comput. (ICSTCC), Oct. 2017,
pp. 49–54, doi: 10.1109/ICSTCC.2017.8107010.

[43] L. S. C. Pun-Cheng, M. Y. F. Tang, and I. K. L. Cheung, ‘‘Exact
cell decomposition on base map features for optimal path finding,’’
Int. J. Geogr. Inf. Sci., vol. 21, no. 2, pp. 175–185, Jan. 2007, doi:
10.1080/13658810600852206.

[44] J. Chen, C. Luo, M. Krishnan, M. Paulik, and Y. Tang, ‘‘An enhanced
dynamic Delaunay triangulation-based path planning algorithm
for autonomous mobile robot navigation,’’ Proc. SPIE, vol. 7539,
pp. 253–264, Jan. 2010.

[45] B. Dugarjav, S.-G. Lee, D. Kim, J. H. Kim, and N. Y. Chong, ‘‘Scan match-
ing online cell decomposition for coverage path planning in an unknown
environment,’’ Int. J. Precis. Eng. Manuf., vol. 14, no. 9, pp. 1551–1558,
Sep. 2013, doi: 10.1007/s12541-013-0209-5.

[46] B.-C. So and J.-W. Jung, ‘‘Mobile robot path planning with opposite
angle-based exact cell decomposition,’’ Adv. Sci. Lett., vol. 15, no. 1,
pp. 144–148, Aug. 2012, doi: 10.1166/asl.2012.4061.

[47] C. P. Bonnington and C. H. Little, ‘‘Maps,’’ in The Foundations of Topo-
logical Graph Theory. New York, NY, USA: Springer, 2012, pp. 23–35.

[48] H. Choset, E. Acar, A. A. Rizzi, and J. Luntz, ‘‘Exact cellular decom-
positions in terms of critical points of Morse functions,’’ in Proc. IEEE
Int. Conf. Robot. Automat. (ICRA), vol. 3, Apr. 2000, pp. 2270–2277, doi:
10.1109/ROBOT.2000.846365.

[49] D. Glavaški, M. Volf, and M. Bonkovic, ‘‘Robot motion planning using
exact cell decomposition and potential field methods,’’ in Proc. WSEAS
Int. Conf. Simul. Modeling Optim., Jan. 2009, pp. 126–131.

[50] M. Kloetzer and N. Ghita, ‘‘Software tool for constructing cell decom-
positions,’’ in Proc. IEEE Int. Conf. Automat. Sci. Eng., Aug. 2011,
pp. 507–512, doi: 10.1109/CASE.2011.6042492.

[51] H. M. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. Kavraki, S. Thrun, and R. C. Arkin, ‘‘Cell Decompositions,’’ in
Principles of Robot Motion: Theory, Algorithms, and Implementations.
Cambridge, MA, USA: MIT Press, 2005, p. 162, ch. 6.

[52] K. Mehlhorn, ‘‘Sorting,’’ in Data Structures and Algorithms 1: Sorting
and Searching, vol. 1. Berlin, Germany: Springer, 2013, pp. 40–101,
ch. 2. [Online]. Available: https://www.worldcat.org/title/data-structures-
and-algorithms-1-sorting-and-searching/oclc/310937425

[53] J. A. Storer, ‘‘Trees,’’ in An Introduction to Data Structures and Algo-
rithms. Boston, MA, USA: Springer, 2012, pp. 127–160, ch. 4, doi:
10.1007/978-1-4612-0075-8.

[54] F. Duchoň, A. Babinec, M. Kajan, P. Beňo, M. Florek, T. Fico,
and L. Jurišica, ‘‘Path planning with modified a star algorithm for
a mobile robot,’’ Proc. Eng., vol. 96, pp. 59–69, Aug. 2014, doi:
10.1016/j.proeng.2014.12.098.

[55] A. Y. Bhargava, ‘‘Introduction to algorithms,’’ in Grokking Algo-
rithms: An Illustrated Guide for Programmers and Other Curious
People. USA: Simon and Schuster, 2016, pp. 10–19, ch. 1. [Online].
Available: https://edu.anarcho-copy.org/Algorithm/grokking-algorithms-
illustrated-programmers-curious.pdf

[56] A. Niewola and L. Podsedkowski, ‘‘L* algorithm—A linear com-
putational complexity graph searching algorithm for path planning,’’
J. Intell. Robotic Syst., vol. 91, nos. 3–4, pp. 425–444, Sep. 2018,
doi: 10.1007/s10846-017-0748-6.

OMNIA A. A. SALAMA received the B.Sc. degree
(Hons.) from the Department of Mechanical Engi-
neering, Faculty of Engineering, Mechatronics
Section, Assiut University, Assiut, Egypt, in 2016.
She was a Teaching Assistant with the Depart-
ment of Mechanical Engineering, Faculty of Engi-
neering, Assiut University. Her research interests
include mechatronics, path planning, robotics, and
algorithms.

MOHAMED E. H. ELTAIB received the B.Sc.
degree in mechanical design and production
engineering from Mansoura University, Egypt,
in 1986, the M.Sc. degree in mechanical engi-
neering from Assiut University, Egypt, in 1993,
and the Ph.D. degree in the area of tactile sens-
ing for robotics and medical applications from the
University of Dundee, U.K., in 2001. In 2001,
he joined the Department of Mechanical Engineer-
ing, Assiut University, as an Assistance Professor,

where he was an Associate Professor, from 2014 to 2019. From 2007 to 2018,
he was on a sabbatical leave from Assiut University, where he joined the
Mechanical Engineering Department, Qassim University, Qassim, Saudi
Arabia. In July2019, he joined the Mechanical Engineering Department,
Faculty of Engineering, Kafrelsheikh University, Egypt, as an Associate
Professor. His research interests include CAD/CAM, mechatronics, tactile
sensors for robotics and medical applications, haptic displays for virtual
simulators, adaptive neuro-fuzzy inference systems, smart piezoelectric actu-
ators, piezoelectric-based energy harvesting, nanopositioning, and robotic
path planning.

HANY AHMED MOHAMED is currently the
Chair with the Mechanical Engineering Depart-
ment, Higher Technology Institute, Ramadan,
Egypt. He has supervised and discussed many
master’s and doctoral theses (more than 30 theses)
and teaching many undergraduate and postgradu-
ate course. He has published more than 70 articles
in different journals and participated in the number
of 23 research published in scientific conferences.
He received the State Incentive Award in Engi-

neering Sciences from the Ministry of Higher Education and Scientific
Research, Egypt, in 2003; the Scientific Excellence Award for Best Research
inMechanical Engineering, Assiut University, in 2005; and the participation,
attendance, and presentation of research in many international scientific
conferences.

OMAR SALAH received the B.Sc. degree (Hons.)
from the Department of Mechanical Engineering,
Mechatronics Section, Assiut University, in 2007,
and the M.Sc. and Ph.D. degrees in mechatron-
ics and robotics engineering from the Innovation
Design Engineering School, Egypt-Japan Univer-
sity of Science and Technology (E-JUST), in 2012
and 2015, respectively. He has worked as an
Exchange Researcher with Waseda University,
Japan. He also worked as a Postdoctoral Research

Fellow with LARICS, Zagreb University, Croatia. He is currently a Lec-
turer with the Department of Mechanical Engineering, Faculty of Engineer-
ing, Assiut University. His current research interests include mechatronics,
robotics, path planning, and assistive devices.

149992 VOLUME 9, 2021

http://dx.doi.org/10.1080/13658810801949850
http://dx.doi.org/10.1016/j.dt.2019.04.011
http://dx.doi.org/10.1109/ICSTCC.2017.8107010
http://dx.doi.org/10.1080/13658810600852206
http://dx.doi.org/10.1007/s12541-013-0209-5
http://dx.doi.org/10.1166/asl.2012.4061
http://dx.doi.org/10.1109/ROBOT.2000.846365
http://dx.doi.org/10.1109/CASE.2011.6042492
http://dx.doi.org/10.1007/978-1-4612-0075-8
http://dx.doi.org/10.1016/j.proeng.2014.12.098
http://dx.doi.org/10.1007/s10846-017-0748-6

