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ABSTRACT In this paper, a novel iterative detection technique that combines deep learning (DL) and
the approximated algorithm of successive over relaxation (SOR) is proposed to achieve high reliability
and reduce the computational complexity. Recently, as the demanded data rates increase, the massive
multiple-input and multiple-output (MIMO) system has drawn attention in wireless communication.
In massive MIMO, the implementation of traditional detectors for high reliability has become impractical,
and the reduction for the complexity of detectors has emerged as a practical implementation challenge. The
existing DL-based detection technique of orthogonal approximate message passing network (OAMPNet)
can provide high detection performance. However, the computational complexity is too high for the
implementation in massive MIMO systems. The proposed detection technique uses SOR algorithm to
reduce the computational complexity, and the relaxation parameter of SOR is adaptively determined by a
learning algorithm. A non-linear estimator using the DL algorithm is combined with the SOR algorithm
to achieve high reliability, and regardless of the size of the MIMO system, only the size of the DL
architecture determines the complexity of the non-linear estimator. Simulation results show that the proposed
detector outperforms the conventional linear detector based on minimum mean square error (MMSE) and
achieves high reliability with lower complexity than OAMPNet in various channel environments with spatial
correlation.

INDEX TERMS Massive MIMO, MIMO detection, deep learning, DNN, SOR, iterative detector.

I. INTRODUCTION
Multiple-input multiple-output (MIMO) is a critical tech-
nique that enables independent data transmission of multiple
streams to increase data throughput and gains diversity bene-
fits to improve link reliability. The use of multiple antennas is
essential in the fifth-generation (5G) wireless communication
to address the explosive growth of incremental data along
with the fast growth of wireless communications [1].
For the high spectral efficiency that can be achieved by
employing MIMO systems, a large scale MIMO system
well known as massive MIMO has been proposed as a key
technology in 5G wireless communication [2], [3]. To obtain
the multiplexing gain that increases a channel capacity
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proportional to the number of antennas used, the receiver
has to accurately restore the transmitted original data from
the transmitter, and this requires a well designed detection
technique. Recently, smart applications utilizing artificial
intelligence and machine learning have been mentioned as
a new paradigm towards the sixth-generation (6G) wireless
communication [4]. Many studies that use deep learning (DL)
algorithms in the field of communication systems including
the physical layer have been conducted due to the successful
cases of DL application in various fields, and this has led
to the emergence of DL-based detection techniques [5]–[8].
The goal of MIMO detection is to infer the original
signal from the transmitter. The most commonly known
optimal detection technique is the maximum likelihood (ML)
detector [9]. However, the exhaustive search algorithm ofML
detector exponentially increases the complexity proportional
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to the modulation order and the number of transmit antennas.
To balance between computational complexity and accuracy,
suboptimal detection techniques are classified into linear
and non-linear algorithms [10]. The representative linear
detection techniques known to have low complexity are
based on the zero-forcing (ZF) and minimum mean square
error (MMSE) algorithms. In general, the non-linear detec-
tion technique as a more advanced technique includes more
complex signal processing, e.g., the interference cancellation
basedMIMOdetectors are known as ordered successive inter-
ference cancellation (OSIC) and decision feedback equalizer
(DFE) [11], [13]. The iterative detector, such as approximate
message passing (AMP), provides asymptotically optimal
detection performance for large independent and identically
distributed (i.i.d.) Rayleigh fading channels [12]. The tree
search based MIMO detectors known as QR decomposition-
based M (QRDM) and sphere decoding (SD) reduce the
computational complexity by exploring a limited number of
reference signals compared to the ML detector based on the
brute force search [13]–[15].

With the advances in hardware devices and big data,
DL algorithms have drawn much attention in various fields
including speech processing and computer vision. The
deep neural network (DNN) known as a representative DL
algorithm has the potential for optimizing communication
systems, and it was shown that DL-based detection tech-
niques can achieve the same optimal detection performance
as ML detector [16]. The DL-based detection techniques can
be divided into two categories: data-driven and model-driven
algorithms. Data-driven detectors replace conventional detec-
tion techniques with classic fully connected layers of DNN
that can solve the detection problem without communication
expertise. Therefore, purely data-driven detectors that only
design the entire signal processing as a neural network
architecture using the end-to-end learning algorithm are
considered as a black box [17], [18]. The completely
learned data-driven detector provides better accuracy than
conventional detection techniques without accurate channel
information, and it can be adaptively trained and operated
according to various channels. However, the data-driven
detector with many trainable parameters to optimize for a
specific channel requires many training samples. In [19],
a model-based iterative successive interference cancella-
tion (SIC) detector was redesigned as the data-driven detector
to fully exploit the potential of DNN, and an algorithm
that can learn with fewer training samples was proposed.
To solve the aforementioned problems of considering the
DL algorithm as a black box and requiring a large number
of training samples, model-driven detectors are designed
to improve detection performance by combining existing
detection techniques with trainable parameters, and such
architecture is mainly referred to as a network. In [20],
the first model-driven detector, known as detection network
(DetNet), was designed by unfolding iterations of a projected
gradient descent algorithm into a neural network. DetNet
provides high detection performance for ideal channels and

low-order modulations of binary phase shift keying (BPSK)
and quadrature phase shift keying (QPSK), but still has
many trainable parameters. In addition, DetNet has poor
accuracy for correlated channels and high-order modulations.
In [21], [22], a model-driven detector was proposed by
unfolding the orthogonal AMP (OAMP) of iterative detector
into a neural network. OAMPNet achieves high detection
performance even for correlated channels and high-order
modulations, and has only two trainable parameters per one
iteration compared to DetNet.

A. MOTIVATION AND CONTRIBUTIONS
For massive MIMO systems, most existing detection tech-
niques including OAMPNet as a DL-based detector are
too complex to be implemented. In addition, near optimal
detection performance can be achieved by using the con-
ventional linear detectors by the channel hardening property
that makes fading channels behave like a deterministic
channel. To achieve the same performance as the linear
MMSE detector and reduce the computational complex-
ity, many iterative linear detectors utilizing the channel
hardening property were proposed, and these approaches
can solve the problem of calculating the matrix inver-
sion [23]. Iterative algorithms for solving linear systems
are generally classified into two categories: Stationary and
Krylov subspace-based algorithms. Typical detectors using
stationary algorithm include the jacobi, Gauss Seidel (GS),
and successive over relaxation (SOR) detectors [24], [25].
The representative detector based on Krylov subspace
is the conjugate gradient (CG) detector [26]. Moreover,
to balance between computational complexity and high
accuracy by using DL algorithm for massiveMIMOdetection
techniques, MMNet, learning CG network (LcgNet) and
jacobi-based detection network were proposed in [27]–[29].
Inspired by studies for massive MIMO detectors to deal
with the implementation issue, this paper proposes a novel
DL-based detection technique that can extend the detec-
tion performance and benefits of OAMPNet to massive
MIMO systems. The proposed detector is designed as the
iterative framework of MIMO detection like AMP, OAMP,
and OAMPNet.

The main contributions of this paper can be summarized as
follows:
• In the iterative framework, a linear estimator and a non-
linear estimator are iterated as one block. In this paper,
the SOR detector is introduced as a linear estimator of
the proposed detector to alleviate the implementation
complexity problem, and the SOR detector with the
aid of the relaxation parameter can provide MMSE
detection performance and has robustness even when the
channel hardening property becomes weak.

• The detection algorithms of the iterative framework
require studies on an appropriate non-linear estimator
that can improve the detection performance of a specific
linear estimator. For example, the OAMP detector uses
an MMSE-based linear estimator and a denoising-based
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non-linear estimator. This paper proposes a DNN-based
denoiser as a novel non-linear estimator for the SOR
detector and shows that the proposed denoiser can be
combined with the SOR detector through the end-to-
end learning algorithm. The DL algorithm optimizes the
proposed detector for specific channel environments and
makes it possible to detect original signals with high
detection performance.

• In the simulation results, the convergence analysis
for the proposed detector is presented to select the
appropriate number of iterations, and the high detection
performance of the proposed detector and its adaptabil-
ity to various channels are verified. Although the number
of parameters to be learned increases compared to
OAMPNet per one iteration, simulation results show that
the proposed detector has high robustness to channels
with spatial correlation due to its high flexibility using
more training parameters.

• The computational complexity is mainly related to
the implementation issue for massive MIMO. This
paper discusses the computational complexity analysis
between the proposed detector and OAMPNet, and this
supports that the proposed detector can significantly
reduce the computational complexity compared to
OAMPNet in massive MIMO systems.

B. PAPER OUTLINE
The rest of this paper is organized as follows. In Section II,
the systemmodel is presented, and the iterative linear detector
and OAMPNet are introduced. Section III presents the main
idea of the proposed detector and details the training process
and the computational complexity. Section IV presents the
implementation details, the convergence and learning curve
analyses, and the performance evaluation for the proposed
detector, and Section V provides the conclusion.

C. NOTATIONS
In this paper, lower and upper cases, bold lowercase, and bold
uppercase letters are used for scalars, vectors, and matrices,
respectively. ai,Ai,j denotes the i-th and (i, j)-th elements
of the vector a and matrix A. (·)H denotes the conjugate
transpose for the matrix of arbitrary size. E denotes the
expectation operation. R and C denote the real and complex
value. |·| denotes the cardinality of a set. ‖·‖ denotes the
Euclidean norm of a vector. tr (·) denotes the trace operation.
In denotes identity matrix of size n.

II. PRELIMINARY
A. SYSTEM MODEL
For uplink massive MIMO systems, it is considered that
the base station (BS) with Nb antennas simultaneously
communicates Nu user equipments (UEs) with a single
antenna. The received signal y ∈ CNb×1 at BS is expressed as
follows,

y = Hx+ n, (1)

where H ∈ CNb×Nu is the channel matrix, n ∈ CNb×1

is the i.i.d. complex Gaussian noise with zero mean and
variance σ 2, and x ∈ SNu×1 is the transmitted symbol vector
that S denotes constellation points given by a quadrature
amplitude modulation (QAM). All points of S are normalized
to unit average power, and it is assumed that accurate channel
information is known at BS.

To solve the problem of handling complex values for the
implementation of DL algorithm, the equivalent real valued
representation that is twice the original size can be expressed
for an arbitrary column vector a and matrix A as follows,

Ã =
[
<(A) =(A)
−=(A) <(A)

]
, ã =

[
<(a)
=(a)

]
, (2)

where< (·) and = (·) denote the real and imaginary parts. The
real valued representation of equation (1) is as follows,

ỹ = H̃x̃+ ñ. (3)

For detecting received signals, the ML detector provides
optimal detection performance by solving the optimization
problem known as NP-hard as follows,

x̂ = arg min
x∈SNu×1

‖y−Hx‖ , (4)

where x̂ is selected as the minimum distance between the
received signal and all combinations from the shifted con-
stellation by the channel matrix. However, its computational
complexity has led to a variety of researches for non-linear
detectors with near ML performance and less complexity.

B. ITERATIVE LINEAR DETECTOR
For massive MIMO systems, high detection performance can
be achieved by a linear solution of equation (4) as follows,

x̂ = arg min
x∈SNu×1

‖y−Hx‖ ' A−1HHy, (5)

where A = HHH is based on ZF, and A = HHH+ σ 2INu
is based on MMSE. The channel hardening property of
massive MIMO systems make the matrix ofHHH diagonally
dominant, and this means that the large size and ratio ρ =
Nb/Nu makes the channel more deterministic. In addition, the
channel hardening property enables that the matrix inversion
operation of A−1 with the O

(
Nu3

)
complexity is calculated

as an iterative approach of solving the linear system.
The GS detector using one promising approximated

algorithm can achieve MMSE performance without matrix
inversion operation. The matrixA based onMMSE is divided
into three parts as follows,

A = L+ Adiag + LH , (6)

where L, Adiag and LH are strictly lower triangular matrix,
diagonal matrix and strictly upper triangular matrix, respec-
tively. The GS detector is expressed as follows,

x(n+1) = x(n) +
(
L+ Adiag

)−1 (z− Ax(n)
)
, (7)

where z = HHy is defined as a received signal vector after
matched filter, x(n) is the estimation of x for n iterations.
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The above equation can be expressed in form of elements for
matrix as follows,

x(n+1)i = x(n)i +
1
Ai,i


zi −

Nu∑̀
=i
Ai,`x

(n)
`

−

i−1∑̀
=1
Ai,`x

(n+1)
`

 , (8)

where x(n)i is the i-th element for the estimated signal
with n iterations. According to equation (8), the previously
estimated element as a feedback signal is used to calculate the
following estimated element, and the feedback architecture
improves the approximation performance.

Iterative linear detectors based on approximation algo-
rithms suffer from drastic performance degradation in situa-
tions where the diagonal dominance is weakened. Therefore,
to alleviate the problem by adjusting the weight of diagonal
elements on the approximation performance, a relaxation
parameter w is combined with the GS detector as follows,

x(n+1) = x(n) + w
(
wL+ Adiag

)−1 (z− Ax(n)
)
. (9)

The above equation is called the SOR detector, and the
form of elements is expressed as follows,

x(n+1)i = x(n)i +
w
Ai,i


zi −

Nu∑̀
=i
Ai,`x

(n)
`

−

i−1∑̀
=1
Ai,`x

(n+1)
`

 . (10)

Although the relaxation parameter improves the detection
performance, it is difficult to select an appropriate relaxation
parameter from various channels.

C. ITERATIVE ARCHITECTURE FOR OAMPNET
The MIMO detector can be modeled as iteratively combined
linear and non-linear estimators such as the AMP detector
that provides a computationally tractable option for large
system dimensions. In [12], it was proven that the AMP
detector can achieve near optimal detection performance by
solving equation (4) with low complexity for i.i.d. Rayleigh
fading channels. However, the AMP detector does not work
well in ill-conditioned environments including correlated
channels. Therefore, to apply the AMP architecture to various
channels, the OAMP detector uses an MMSE-based linear
estimator as follows [30],

Wk =
2Nu

tr
(
ŴkH

)Ŵk , (11)

Ŵk = v2kH
H
(
v2kHHH

+ σ 2INb
)−1

, (12)

where the non-linear estimate v2k called state evolution is
calculated as follows,

v2k =
‖y−Hxk‖2 − Nbσ 2

tr
(
HHH

) . (13)

Furthermore, OAMPNet improves the detection perfor-
mance through DL algorithm and is expressed for k iterations
as follows,

rk = xk + γkWk (y−Hxk) , (14)

xk+1 = ηk
(
rk ; σ 2

k

)
, (15)

where γk is the trainable parameter for the linear estimator, ηk
is the non-linear estimation function, and the linear estimator
can be differently expressed as rk = xk +wk affected by the
i.i.d. Gaussian noise wk with zero mean and variance σ 2

k . For
the non-linear estimator, the variance σ 2

k should be calculated
iteratively as follows,

σ 2
k =

1
Nu

tr
(
CkCH

k

)
v2k +

θ2k σ
2

Nu
tr
(
WkWH

k

)
, (16)

where Ck = INu − θkWkH and the θk is the trainable
parameter for non-linear estimator. In order to eliminate the
noise wk , the non-linear estimator ηk is used as the optimal
denoiser for the i.i.d. Gaussian noise as follows,

E [xi|ri, σk ] =
1
R

∑
xi∈S

xi exp

(
−
‖ri − xi‖

2σ 2
k

)
, (17)

where R =
∑

xj∈S exp
(
−
‖r−xj‖

2

2σ 2k

)
. OAMPNet with two

trainable parameters per one iteration has very high detection
performance for various channels. However, the MMSE-
based linear estimator and the noise variance calculation
per iteration require high complexity for large system
dimensions, and this becomes an obstacle that prevents the
application of OAMPNet to massive MIMO systems.

III. PROPOSED ITERATIVE DETECTOR
In this section, the modified SOR detector is first presented
as the linear estimator, and then the detailed description
of the DNN-based denoiser as the non-linear estimator is
presented. The proposed detector combines the SOR detector
and the DL algorithm to achieve the detection performance
of OAMPNet while reducing the computational complexity
in massive MIMO systems. Finally, the training process and
complexity of the proposed detector are discussed.

A. MODIFIED SOR DETECTOR
In order to achieve high detection performance by using
the learning algorithm, the SOR detector with trainable
parameters is proposed. Prior to the description, to avoid
confusion about the term iteration, this paper uses the term
layer as one iteration of the proposed detector, and linear
iteration means iteration of the SOR detector. The proposed
detector using the modified SOR detector is expressed for the
k layers as follows,

x(n+1)k = x(n)k + θ
(n)
k wk

(
wkL+ Adiag

)−1 (z− Ax(n)k
)
,

(18)

rk = x(n+1)k , (19)

x(1)k+1 = ηk (rk) , (20)
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where n is the iteration number of the modified SOR detector
for the linear estimator, θ (n)k ∈ R is the n-th weight parameter
that is mostly set to default value as 1 for existing iterative
linear detectors, wk ∈ R is a relaxation parameter for the
linear estimator of the k-th layer, and ηk denotes the DNN-
based denoiser described in the following subsection.

The initial vector x(1)k uses previous result of the non-
linear estimator, and the x(1)1 is the zero vector. The
weights and relaxation parameters are optimized through the
training process, and therefore the modified SOR detector
can obtain adequate flexibility. This solves the problem
that selects an appropriate relaxation parameter. Although
trainable parameters increase the computational complexity,
the modified SOR detector still requires lower complexity
than the linear estimator of OAMPNet that calculates the
matrix inversion.

B. DNN-BASED DENOISER
The SOR detector provides a result different from the linear
MMSE detector for insufficient iteration, and it is difficult to
mathematically characterize the noise of the SOR detector to
utilize the denoiser for i.i.d. Gaussian noise. For simplicity,
equation (17) is referred to as the Gaussian denoiser.
The DNN-based denoiser that implements the Gaussian
denoiser as a data-driven algorithm is designed to combine
with the modified SOR detector. In general, the DNN has
multiple inputs and a fully connected layer architecture that
consists of input and output layers, l hidden layers, and
neurons. However, the Gaussian denoiser is implemented
as the element-wise denoising function. Therefore, in order
to imitate the Gaussian denoiser as a DNN, the DNN-
based denoiser follows the single input architecture depicted
in Fig. 1 and can be expressed as follows,

x(k+1)i = ζ ◦ ψ ◦3l ◦ ϕ ◦3l−1 ◦ ϕ ◦ · · · ◦ ϕ ◦31

(
r (k)i

)
,

(21)

where ◦ denotes the connection of subsequent function
operation, 3l is the l-th dense layer that means a fully
connected layer calculating the output of No size from the
input of Ni size with weight Wl ∈ RNo×Ni and bias zl ∈ RN

o ,
ϕ is the element-wise rectifier linear unit (ReLU) activation
function, ψ is the element-wise softmax function, and ζ
is the proposed function to obtain the result of non-linear
estimator. For high flexibility of the non-linear estimator, one
hidden layer consists of a dense layer and the ReLU activation
function, and this can achieve high detection performance
with sufficiently large training samples. The output layer uses
the dense layer of |S| output with the softmax function to
represent the posterior probability of the Gaussian denoiser.
The z ∈ R|S| is the vector representation for the result of the
output dense layer, and after the calculation of the softmax
function, the output result is expressed as follows,

ψ (z) =

 exp (z1)∑|S|
j=1 exp

(
zj
) , . . . , exp

(
z|S|
)∑|S|

j=1 exp
(
zj
)
 . (22)

FIGURE 1. The architecture of the DNN-based denoiser.

FIGURE 2. The block structures of the DNN-based denoiser for: a)
general-order modulation (16QAM); b) high-order modulation (64QAM).

To obtain a single value from the DNN of single input, the
result of the non-linear estimator is calculated as follows,

x(k+1)i = ζ ◦ ψ (z) = ψ (z) s

=

∑|S|
i=1 si exp (zi)∑|S|
j=1 exp

(
zj
) , (23)

where s ∈ C|S|×1 is the vector representing all points of S,
and this formula is very similar to the Gaussian denoiser.
The proposed denoiser based on a data-driven algorithm
requires many training samples depending on the number of
neurons related to denoising performance and computational
complexity. This can control the balance between detection
performance and computational complexity. Therefore, it is
very important to choose the appropriate size and number
of the hidden layer. The number of neurons required
for different channels can be slightly different to achieve
satisfactory performance, and the high-order modulation
requires higher denoising accuracy compared to the general-
order modulation. In this paper, the size and number of the
hidden layer for the proposed detector are fixed according
to the modulation order. For the hidden layer of the general-
order modulation as 16QAM, the 1 × 30 first layer and the
30 × 20 second layer are used as illustrated in Fig. 2(a).
For the high-order modulation as 64QAM, the 30 × 30
hidden layer is added to improve the denoising performance
as illustrated in Fig. 2(b). The DNN-based denoiser replaces
the calculation of the noise variance in equation (16) with the
training process, and the high flexibility of DNN allows the
design of various linear estimators like modified SOR.
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C. TRAINING PROCESS
The trainable parameters of the proposed detector are
optimized by offline training, and the learning algorithm is
implemented in Tensorflow utilized the adaptive moment
estimation (ADAM) optimization function [31]. For the
training process, an appropriate loss function is employed
to maximize the improvement of detection performance that
can be achieved through the learning algorithm, and such
loss function plays a critical role in controlling the learning
direction and updating the trainable parameters. In order
to obtain optimal trainable parameters, the mean squared
error (MSE) loss function based on the end-to-end learning
is used and expressed as follows,

L
(
x̃, x̃K

)
=

1
M

M∑
i=1

∥∥∥x̃(i) − x̃(i)K
(
ỹ(i)
)∥∥∥2, (24)

where M is the number of training samples, K is the
layer number of the proposed detector, and the real valued
representation x̃ is used for simple learning. The number
of training parameters that is mainly determined by the
DNN-based denoiser affects the number of required training
samples and computational complexity.

D. COMPLEXITY ANALYSIS
In this subsection, the complexity comparison between the
proposed detector and OAMPNet is approximately presented
except for similar operations as equations of (17) and (23).
The proposed algorithm uses linear iteration of Nlin for the
modified SOR detector. In order to calculate the complexity
of the linear estimator, the form of elements for the modified
SOR detector is expressed as follows,

x(n+1)i = x(n)i

+
wk
Ai,i


θ
(n)
k zi −

Nu∑̀
=i
Ai,`x

(n)
`

−

i−1∑̀
=1
Ai,`

((
θ
(n)
k − 1

)
x(n)` + x

(n+1)
`

)
 .
(25)

The complexity comparison is based on the number
of real multiplications. For the complexity analysis, one
complex-by-real and complex-by-complex multiplications
are equivalent to two and four real multiplications.

The complexity of the iterative detectors in one layer can
be analysed for the operation with the highest computational
complexity. The linear estimator of OAMPNet requires
the matrix inversion operation of O

(
8Nb3

)
. The number

of real multiplications required for one iteration of the
modified SOR detector is calculated as O

(
4Nu2 + 16Nu

)
in equation (25). The non-linear estimator of OAMPNet
has the complexity of O

(
8Nb3

)
for WkWH

k operation in
equation (16). The number of real multiplications required
for the DNN-based denoiser is equivalent to the number
of weights for the DNN using 630 and 1530 weights for
general and high-order modulations in hidden layers and

TABLE 1. The comparison of the computational complexity.

20 × |S| weights in the output layer. The complexity of
the proposed detector is much lower than OAMPNet, and
this makes the implementation of the proposed detector
reasonable in massive MIMO systems. Table 1 expresses the
summary for the complexity comparison and also includes
the complexity of the QRDM detector as a benchmark of the
optimal detection performance in the simulation results.

IV. SIMULATION RESULTS
In this section, the implementation details of the system con-
figuration, channel models, training, and compared detectors
are discussed to evaluate the proposed detector. Then, the
convergence and learning curve analyses for the proposed
detector are presented according to the number of layers
and linear iterations. Finally, the performance evaluation
of the proposed detector is presented compared to existing
detectors.

A. IMPLEMENTATION DETAILS
In order to assume the massive MIMO system, the Nb is
fixed at 64 according to the minimum condition mentioned
in [3], and the Nu of 8 and 16 is used for the performance
comparison at various ratios. The simulated channels adopt
the i.i.d. Rayleigh fading channel and three-dimensional
(3D) channel by widely used Saleh-Valenzuela model [32].
In addition to the i.i.d. Rayleigh fading channel as an
ideal stochastic model, the 3D statistical channel with the
more realistic statistics is presented to show the adaptability
of the proposed detector. Equations for the 3D statistical
channel model are detailed in [32]. For the 3D channel,
it is important to set parameters of the 3D channel model
like the number of scatters assigned to a cluster. The setting
parameter of angular standard deviation (ASD) determines
the randomly generated interval of azimuth angles of arrival
and departure (AoA and AoD) and the zenith angles of
arrival and departure (ZoA and ZoD). These factors affect
the correlation degree of 3D channel environments, and a

VOLUME 9, 2021 148981



J. -Y. Jang et al.: Combined Deep Learning and SOR Detection Technique for High Reliability

TABLE 2. The training and simulation parameters.

limited condition such as 10◦ ASD deteriorates the channel
hardening property. In addition, 3D channel simulations
consider not only the uniform linear array (ULA) of the BS
antenna but also the uniform planar array (UPA) arranged in
a square arrangement (i.e. the 64 BS antennas are arranged in
8× 8). Therefore, simulation results for the 3D channel with
spatial correlation can show the adaptive learning capability
and high detection performance of the proposed detector.
In the simulation, the propagation environment of the 3D
channel adopts the non-line-of-sight (NLOS) environment,
sufficient 20 scatterers, half wavelength for the spacing
between adjacent BS antennas, and 30◦ ASD for moderate
spatial correlation in both ULA and UPA environments.
Furthermore, to provide performance comparisons on the
strong spatial correlation, the ULA environment of 10◦ ASD
is additionally considered.

The performance evaluation is performed with the pro-
posed detector that is sufficiently trained, and datasets consist
of
(
x̃, ỹ

)
pairs generated by the randomness of the channel

matrix H̃, modulated symbol vector x̃ from the QAM, and
received noise vector ñ in equation (3). The noise variance σ 2

is calculated by the signal to noise ratio (SNR), and symbol
error rate (SER) as the detection performance is presented
according to the received SNR that is as follows,

SNR (dB) = 10 log

(
E
[
‖Hx‖2

]
E
[
‖n‖2

] ) . (26)

The offline training is carried out with training samples
that are uniformly generated according to the simulated SNR
range for all training batches. For all channel environments,
the proposed detector is equally trained on 20K iterations
with a batch size of 500 samples. In order to optimize
the trainable parameters, the learning rate is set to 0.003,

and the exponential decay algorithm of 0.97 is applied
after 1K iterations. The training is again performed for
each modulation order, system configuration, and channel
environment.

For various comparisons of detection performance, the
MMSE detector shows the linear detection performance,
and the QRDM detector with full reference signal candidate
that has near ML performance is presented to provide
a baseline of the optimal detection performance in all
simulations. Furthermore, the MMSE-based DFE and AMP
detectors are presented to show the non-linear detection
performance in simulations for the i.i.d. Rayleigh fading
channel, and the AMP detector is updated for 50 iterations.
For the performance comparison for the DL-based detectors,
OAMPNet with 10 layers and DetNet with 30 layers is
presented in all simulations. OAMPNet is trained on 50K
iterations with the batch size of 1K and learning rate of
0.0008, and DetNet is trained on 100K iterations with the
batch size of 3K and learning rate of 0.0003. For more details
on comparison networks including learning parameters, this
paper is referred to [20], [21]. For compared DL-based
detectors, all training datasets are generated randomly from
the simulated SNR range and assume the same condition
for the training sample. Finally, in order to briefly summarize
the implementation details, the setting parameters for training
and simulation are given in Table 2.

B. CONVERGENCE AND LEARNING
CURVE ANALYSES
The convergence rate of the proposed detector is different
according to the number of linear iterations and affects
the computational complexity. According to the complexity
analysis in section III, the non-linear estimator of the
proposed detector occupies an overwhelming proportion of
the computational complexity for one layer. Therefore, using
fewer layers by increasing the convergence rate with a large
number of linear iterations is more efficient in terms of
computational complexity than using deep layers to achieve
the same detection performance. In Figs. 3-4, simulations to
analyse the convergence property and learning curve of the
proposed detector are performed in a 3D channel with a single
base station of ULA arrangement. The number of UEs is set to
16, and 10◦ ASD is considered to investigate the robustness of
the proposed detector in amore challenging environment with
strong spatial correlation. The proposed detector is trained
on datasets randomly generated in simulated ranges of 6-
16dB SNR for 16QAM and 12-22dB SNR for 64QAM,
and the SER and loss are shown for the maximum SNR
of ranges.

Fig. 3(a) shows the SER performance of the proposed
detector according to the number of layers for 16QAM.
In order to evaluate the effect of linear iterations on the
convergence rate, the proposed detectors with linear iterations
from 1 to 5 are presented in Fig. 3(a). The proposed detector
with 1 linear iteration shows a very low convergence rate
at 5 layers and over, and there is a large performance
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FIGURE 3. The convergence of the proposed detector on the 3D channel
with a single BS of ULA arrangement for Nu = 16 and 10◦ ASD according
to different modulations: (a) 16QAM, (b) 64QAM.

gap compared to that with more linear iterations than 1.
This means that the 1 linear iteration is very inefficient for
channels with strong spatial correlation to achieve the optimal
detection performance that the proposed detector can reach.
On the other hand, the SER performance of the proposed
detector with 5 linear iterations converges to the maximum
using only 5 layers. Fig. 3(b) shows the SER performance
for the proposed detector according to the number of linear
iterations for 64QAM. This result is presented to observe
the detection performance limit that can be achieved by
increasing linear iterations with a fixed number of layers.
Since the high-order modulation like 64QAM requires higher
accuracy for the iterative linear detector, it is easy to observe
the performance difference according to the linear iterations.
In Fig. 3(b), the proposed detector with a single layer has poor
detection performance compared to that with more layers
than 1, and it is shown that an appropriate number of layers
should be selected. The increase in the performance limit
according to the number of layers gradually decreases, and
the proposed detector approaches the maximum achievable
performance when the number of layers increases from 4 to 5.

FIGURE 4. The loss for the proposed detector on the 3D channel with a
single BS of ULA arrangement for Nu = 16 and 10◦ ASD.

These results show that the proposed detector can achieve
high performance by adjusting the number of layers and
linear iterations even for high-order modulation and the
correlated channel.

Fig. 4 shows the loss of the proposed detector with 5 layers
and 5 linear iterations according to the number of training
iterations. The loss to observe the learning curve is calculated
by equation (24). In this result, the validation batch size of
20K samples is used, and the validation is performed for
every 200 training iterations. The loss decreases significantly
before 10K training iterations and fluctuates with various
widths. Variations in the learning curve that do not decrease
continuously are caused by randomly generated datasets with
different channel condition numbers that affect the detection
performance, and the learning curve appears to converge.
This means that learning the proposed detector with 20K
iterations can minimize the loss and provide high detection
performance.

C. PERFORMANCE EVALUATION
Simulation results show the detection performance for
general-modulation of 16QAM and high-order modulation of
64QAM, and simulations are performed over an SNR range
of 10dB to clearly show SER differences. The number of
layers of the proposed detector is fixed at 5, and the number of
linear iterations is selected based on the convergence analysis
for various simulations.

Fig. 5 shows the SER performance comparisons on
different channel models where the number of UEs is set
to 16. In the performance comparison of Fig. 5(a), the i.i.d.
Rayleigh fading channel is assumed, and all comparison
detectors show performance differences within the range of
about 1dB SNR for 16QAM. However, for 64QAM, AMP
shows a drastic robustness problem in the range of 18-20dB
SNR, and DetNet has poor detection performance compared
to MMSE. On the other hand, the proposed detector provides
better detection performance for both modulations than
MMSE and non-linear detectors except for QRDM. For the
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FIGURE 5. The detection performance comparison for general and high
order modulation according to different channel environments of
Nu = 16: (a) ideal Rayleigh fading model, (b) Saleh-Valenzuela model.

proposed detector of Fig. 5(a), 1 and 3 linear iterations
are used for 16QAM and 64QAM, and this is sufficient to
achieve the optimal detection performance since the i.i.d.
Rayleigh fading channel is ideal for the channel hardening
property that affects the approximation performance of the
iterative linear method. In Fig. 5(b), the 3D channel with
a single BS of ULA arrangement of 30◦ ASD is assumed,
and the performance comparison of the DL-based detectors
is presented. In the performance comparisons of Fig. 5(b),
the SER performances for the QRDM and MMSE detectors
are shown similar to Fig. 5(a), within approximately 1dB
SNR difference, and therefore the same number of linear
iterations for the proposed detector is adopted. The proposed
detector and OAMPNet provide nearly the same detection
performance as the QRDM detector for both modulations,
but DetNet still shows a large performance loss for 64QAM.
This means that DetNet has limits for high-order modulation.
The QRDM algorithm detects symbol combinations by
minimizing the accumulated squared Euclidean distance
in a tree-based searching algorithm, and this efficiently

FIGURE 6. The detection performance comparison on the 3D channel
with a single BS of ULA arrangement of 10◦ ASD according to different
numbers of UEs: (a) Nu = 8, (b) Nu = 16.

achieves near-ML detection performance according to the
number of reference signal candidates. However, the QRDM
detector with full reference signal candidates still has high
computational complexity compared to other detectors due to
the overall complexity of calculating the squared Euclidean
distance proportional to |S|2 for each layer of a tree
of Nu depth in addition to channel matrix inversion and
QR decomposition. These results show that the proposed
algorithm can achieve equivalent performance to OAMPNet
and QRDM detector with lower complexity under the ideal
channel model. In addition, this means that the DNN-
based denoiser is successfully combined with the modified
SOR detector.

Fig. 6 shows the SER performance comparisons for a more
correlated channel according to the different number of UEs.
In order to assume a highly correlated channel, for the same
channel environment of Fig. 5(b), only ASD is changed to 10,
and this assumption is equivalent to the channel environment
in Figs. 3-4. Therefore, the detector proposed adopts 5 layers
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FIGURE 7. The detection performance comparison on the 3D channel
with a single BS of UPA arrangement of 30◦ ASD according to different
numbers of UEs: (a) Nu = 8, (b) Nu = 16.

and 5 linear iterations based on the results of the convergence
and learning curve analyses. Fig. 6(a) shows that DetNet
suffers from the robustness problem in the 10-12dB SNR
range and shows even lower detection performance than
MMSE at 12dB SNR. In addition, DetNet still suffers a large
performance loss for 64QAM as shown in Fig 5. On the
other hand, the proposed detector achieves the performance
of QRDM for both modulations. The proposed detector has
a very small gap in SER performance compared to QRDM,
and the gap becomes slightly wider as the number of UEs
increases to 16. However, the detector proposed in Fig. 6(b)
still provides higher detection performance than OAMPNet,
and the SER performance differs only within about 1dB SNR
from QRDM for both modulations.

Fig. 7 shows the SER performance comparisons for the 3D
channel with a single BS of UPA arrangement for 30◦ ASD,
and the BS of the UPA arrangement structurally increases
the spatial correlation of the channels. In Fig. 7(a), the
SER performance changes for all comparison detectors are

FIGURE 8. The comparison of the number of real multiplications for
Nu = 16.

very similar to Fig. 6(a), and the proposed detector with
the same number of layers and linear iterations provides
high detection performance in the same SNR range. Unlike
Fig. 6(b), although the performance gap of the proposed
detector from QRDM is slightly wider in Fig. 7(b), it is still
possible to achieve the SER performance close to QRDM
within approximately 1dB SNR difference. The performance
comparisons in Fig. 7 show that the proposed detector has
robustness for channels with spatial correlation and can
achieve better performance than OAMPNet.

Fig. 8 shows the number of real multiplications for iterative
detectors ofK layers according to Table 1. For the complexity
comparison, the number of UEs is set to 16, and 1 and 5 linear
iterations are used for the proposed detector. In Fig. 8, it is
shown that the difference in complexity due to the difference
in the number of linear iterations is relatively small compared
to the increase in complexity as the layer of the proposed
detector becomes deeper. The complexity of OAMPNet that
is mainly determined by matrix inversion operation ofNb size
is very high for massive MIMO. Conversely, the complexity
of the proposed detector is mainly determined by Nu size
and the architecture size of the DNN-based denoiser. This
result shows that the proposed detector can greatly reduce the
computational complexity and requires about 7-15× fewer
real multiplications even for 10 layers than OAMPNet with a
single layer.

V. CONCLUSION
In this paper, a novel iterative detector is proposed for high
reliability in massive MIMO systems. In order to alleviate
the complexity problem and extend OAMPNet benefits to
massive MIMO systems, the proposed detector utilizes the
SOR detector and the DL algorithm, where the difference
from OAMPNet is that it uses the iterative linear detector
and the DNN-based denoiser. The DNN-based denoiser is
designed by imitating the output result of the Gaussian
denoiser. The high flexibility of DNN enables the use of
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SOR detector with trainable parameters, and high detection
performance can be achieved through offline training.

Simulation results show that the proposed detector outper-
forms the linearMMSE detector and provides better detection
performance than OAMPNet. In addition, the proposed
detector is trained and operated for various channels andmod-
ulations. Consequently, the proposed detector can achieve
high reliability with lower complexity than OAMPNet in
massive MIMO systems.

VI. FUTURE WORKS
This section presents some possibilities and an interest-
ing idea for DL approaches that can improve detection
performance by a large ratio compared to the increased
implementation complexity.

The non-linear estimator is replaced with a DNN designed
for signal detection in this paper. This work can be seen
as an initial attempt to combine iterative algorithms with
the DNN for a novel iterative framework. The use of DNN
has the potential to be combined with various iterative
algorithms. In this regard, the aforementioned stationary
and Krylov subspace-based algorithms can be utilized as
linear estimators. There are many possible combinations to
pursue based on this idea. Therefore, it is expected that
more efficient combinations can be derived compared to the
proposed detector.

In addition to the improvement of the linear estimator, the
performance improvement can be also considered by new
DL architectures to design the non-linear estimator. Although
not presented in this paper, a one-dimensional convolution
neural network (CNN) was attempted to replace the non-
linear estimator. The use of CNN can reduce the number of
weights that learn the non-linear estimator compared to the
use of DNN and meaningful performance improvements are
discovered. The analysis and new design of DL architectures
including the CNN for signal detection are left for future
research.
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