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ABSTRACT It is expected that future transport will rely on electric vehicles (EVs) due to their sustainability
and reduced greenhouse gas emissions. However, the rapid increase in electric load penetration causes
several other concerns, including a generation-demand mismatch, increased network active power loss,
a degradation in voltage profile, and decreased voltage stability margin. To overcome the issues mentioned
earlier, proper integration of electric vehicle charging stations (EVCS) at appropriate locations is essential.
The connection of an EVCS to the electricity grid will bring new challenges. Distributed generation (DG)
sources are incorporated with EVCS to lessen the impact of EV charging load. In this study, charging
stations are combined with DG units, which increases the motivation to use EVs. This study proposes an
artificial intelligence (AI) approach, the hybrid of grey wolf optimization and particle swarm optimization,
i.e., HGWOPSO, to investigate the suitable nodes for EVCS and DGs in a balanced distribution system. The
proposed methodology is verified on the IEEE-33 bus and IEEE-69 bus systems. According to the findings,
the obtained results are consistent as compared to other existing techniques. These findings are taken into
consideration to analyze the reliability of electrical distribution networks. It is stated that using adequate
reliability data of appropriately integrated DG and EVs increases the electrical system’s reliability.

INDEX TERMS Artificial intelligence, electric vehicle, charging stations, radial distribution system,
distributed generators, reliability.

I. INTRODUCTION
The substantial increase in temperature and ample release of
carbon footprint due to the excessive usage of conventional
vehicles impose a detrimental effect on the ecology. Global
warming harms the ecological system of the earth due to the
non-uniform rains and temperature rise. So, an electrified
form of transportation, i.e., battery-based transport, is the
need of the hour to overcome the pollution effects caused
by the traditional mode of transportation [1]. The advent
of electric vehicles (EVs) and their increasing development
have many benefits, including saving on fossil fuels and
reducing air pollution. Many countries around the globe are
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adopting the battery-basedmode of transportation for the sake
of pollution minimization. Due to this concern, EVs have
reached 28.8% in Norway, 6.5% in Netherland, and 1.5%
in China. In addition to this, various countries are planning
to employ 100 % EVs as a future transportation mode. It is
expected that almost 35 million EVs will run globally by the
end of 2022. Apart from the fact that EVs are environmentally
beneficial, their charging has the potential to have a profound
influence on the electrical power system’s reliability. Due to
the increment in system load caused by EV charging, the sub-
station reserve capacity and feeder load transfer capabilities
are reduced. During system renovation utilizing other feeders,
the ability of load transfer is also essential. This has an
immediate effect on the system’s reliability [2]. Furthermore,
if EVs are charged using traditional power sources, the goal
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of EV utilization is not accomplished. On the other hand,
the utilization of solar/wind energy for charging the EV load,
maximizes the merits of EVs.

EVs are originally connected to the grid to charge their
batteries. On the other hand, new smart grid technologies
enable increased opportunities in energy transfer to the grid
and are referred to as the vehicle-to-grid (V2G) mode. EVs
that are associated with the power network serve as energy
storage devices [3].

In accordance with electricity directives planned by
European Union, the distribution system operators (DSOs)
are accountable for giving amenities to associated customers
and distributed generations (DGs) as well as delivering net-
work modifications for EV charging stations (EVCS) [4].
The charging locations and periods are outside the control of
DSOs. As a result of the variability in EV charging, system
operation turns out to be serious. A recent study on the
influence of EV integration on generation systems has shown
some interesting results [5]. The focus of reference [6] is on
the impact of EV charging on the power generation system
and CO2 emissions reduction. The influence of EVs on emis-
sions produced from electricity generation and transportation
sectors is investigated in a fictional way.

The influence of EVs on electrical distribution sys-
tems is examined using various EV scenarios and charging
management methodologies [7]. The influence of charging
procedures on the load profile is described [8]. Various pen-
etration levels of EVs to evaluate the influence of EVs on
system power losses are investigated [9]. The impact of EV
charging on distribution transformer aging in the presence of
rooftop solar photovoltaic systems was studied by the authors
in [10]. The influence of charging on low-voltage residential
distribution systems using a case study for the year 2030 is
examined [11]. The integration of EVCS into the distribution
system increases the overall load of the network. The influ-
ence of erecting the EVCS in a distribution network can be
analyzed by properly modeling EVCS in a distribution sys-
tem [12]. A qualitative study has been attempted for the opti-
mal planning of EVCS based on the transportation system,
distribution system, and coupled transportation-distribution
system [13]. The reliability analysis of the distribution net-
work after integrating the EVCS has been described [14].
The author presents the scheduling strategy of EVCS and
provides an insight into how the reliability can be improved
and reduce the negative effect on the power network [15].
The optimum placement of EVCS in the IEEE-33 bus radial
network has been discussed, considering uncertainties related
to the quantity of EVs to be charged [16]. GWO/WOA has
been employed to tackle the aforesaid issues. The EVCS
planning in distribution network superimposed with road
network have been performed. Uncertainties related to EVs
are considered using the 2m Point Estimation Method. Dif-
ferential evolution and Harris Hawks Optimization algorithm
have been utilized for optimizing the objectives [17]. Optimal
placement of EVCS has been performed in the Beijing district
with the aim of minimizing the total cost and power loss [18].

A hybrid approach of chicken swarm optimization and teach-
ing learning-based optimization is used for EVCS allocation
considering various economic and grid operating issues [19].
Authors in [20] present a comprehensive methodology for
effectively placing solar-based EVCS in a distribution net-
work with enhanced voltage profile, minimal power loss, and
lower cost. A stochastic technique is employed to anticipate
projected EV load demand at EVCS, and a Feed-forward neu-
ral network is used to analyze estimated solar power from the
attached PV plant in the suggested methodology. Different
charging procedures were discussed and their impact on daily
peak loads was examined [21]. The incremental investments
for various EV penetration levels, as well as energy losses,
were computed by the authors in [22]. The influence of EV
on distribution system reliability in addition to the negative
effects on voltage and power losses is focused [23]. The
impact of electric motor vehicles on grid reliability is studied
in [24].

Some research works are concentrated on mitigating the
severity of EVs on the power system. In [25], the authors
present a sustainable, intelligent load balancing control
approach for lowering electrical losses and improving system
voltage. Reactive power regulation is utilized in EVCS to
enhance the voltage profile [26]. The reliability and techno-
economic benefits of DG integration have been demon-
strated [27]. Therefore, DGs integration has been proposed as
a viable approach formitigating the charging consequences of
EVs [28]. The author utilized particle swarm optimization for
the EVCS and DGs allocation in an unbalanced radial distri-
bution network [29]. The author suggested a hybrid grey wolf
optimizer for 33-bus, 69-bus, and Indian 85-bus distribution
networks to reduce power loss [30]. Authors have optimally
allocated EVCS and DGs in 30 nodes and 69 nodes radial
DS [31]. Genetic algorithm-based DG placement is per-
formed considering IEEE-16 bus, IEEE-37 bus, and IEEE-75
bus radial DS as a test system [32].

Furthermore, the DG allocation problem in the IEEE-33
bus radial distribution system using particle swarm opti-
mization is presented [33]. However, a hybrid of genetic
algorithm and particle swarm optimization is proposed to
reduce power loss and improve voltage profile and stability
for optimal DGs allocation [34]. The impact of renewable-
based DGs on IEEE distribution grids with 33 and 69 nodes,
as well as one of Egypt’s radial distribution networks as a
practical network, is examined within 24 hours at different
loading conditions [35]. Authors in [36] created optimization
models to collectively manage the locations and sizes of
EVCS, solar photovoltaic power plants, and energy storage
systems in power systems while considering future power
strategic management. The author employed modified sin-
gle and multi-objective Harris Hawks Optimization algo-
rithms for obtaining the nodes to optimally locate the DGs
in the radial power network. Finding ideal nodes is done
with the goals of minimizing power loss, preserving voltage
levels, and improving the voltage stability index [37]. The
authors of [38] proposed an indicator for determining the best
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location for DGs in electrical networks. This indicator is
used to address a variety of issues, such as total electrical
loss minimization, energy not supplied, and voltage variation.
By system reconfiguration and the integration of solar/wind-
based DGs, another endpoint, namely annual energy reduc-
tion loss, is seen [39]. Additionally, an innovative two-stage
stochastic programming method is presented, and the uncer-
tainty issues, as well as load fluctuation, are investigated,
particularly for wind and solar energy production [40]. The
overall cost is decreased in this technique by including battery
storage systems into the distribution network and planning
for demand response programs. Simultaneously, due to the
appropriate size of battery energy storage and optimal posi-
tion, the improved reliability of power system reliability is
obtained. A multi-objective optimization model is presented
with the objective of reducing power loss, improving voltage
deviation, and cost in order to assign EVCS and capacitors in
candidate buses optimally [41]. In an unbalanced distribution
system, solar PV units are used to adjust for EV charging
demand [42]. Cost, dependability, power losses, and voltage
profile are all taken into account when synchronizing charg-
ing stations and DGs [43]. Capacity reinforcement with DGs
is recommended to offset the growing penetration of EVs,
with reliability improvement as one of the objectives [44].
The authors in [45] discuss the development of a charging sta-
tion that incorporates wind production and storage. The best
DG penetration level for a specific EV energy consumption
is evaluated [46].

In the vision of the above, the majority of related literature
and studies are focused on the impact of EVs on voltage level
and system losses, with little emphasis on reliability. EVs
are another category of load that enters the grid network,
and the reliability of these EV loads is largely overlooked.
Despite the abundance of research on DG siting and sizing
in the literature, its impact on the reliability of grid net-
works is a growing subject of research that has received
little attention in previous studies. Furthermore, the major-
ity of the prior meta-heuristic optimization algorithm-related
methods presented are complicated in construction, entail a
large set of network parameters, and trap in local optimal
solutions. Additionally, several types of research used a very
rigorous statistical framework that required a lot of infor-
mation based on descriptive approaches. Unlike analytical
processes, metaheuristic methods are easy to adopt, take less
time, have fewer parameters to manage, and can produce
relevant results. The suggested hybrid technique eliminates
these shortcomings while remaining simple to execute and
achieving good convergence. Therefore, the use of a hybrid
intelligent methodology for DGs allocation in the presence of
EVCS in a radial distribution network will be demonstrated
in this work. Hybrid algorithms integrate the best features of
both algorithms to provide superior results.

Inspired by the existing research in the optimal allocation
of EVCS, a hybrid optimization strategy is suggested for the
optimal planning of EVCS. DGs units are utilized to reduce
the charging impact of EVs. DGs are used in the suggested

technique to preserve voltage profile, reduce active power
loss and improve reliability. The integration of EVCS and
DGs to the system adds extra demand to the system, affecting
the power loss. The joint impact of EVs and DG integration
is considered for two standard test systems. The efficacy of
the suggested method is tested in MATLAB, and the results
are equated with present techniques. The fundamental system
reliability indicators, such as the system average interruption
frequency index (SAIFI), system average interruption dura-
tion index (SAIDI), Customer Average Interruption Duration
Index (CAIDI), and expected energy not supplied (EENS)
and average energy not supplied (AENS), etc., are used to
examine the impact on system reliability.

Finally, the contribution of the proposed work is summa-
rized as follows:
• The calculation of objective functions is done using
a faster and effective direct search-based load flow
method.

• The influence of EV penetration on the reliability of the
distribution system is investigated.

• Multiple DG units are appropriately introduced into the
distribution system to reduce the active power losses,
strengthening the voltage profile and enhancing the volt-
age stability index.

• Integration of DG units with charging stations to
enhance the reliability of distribution network.

• To demonstrate the efficiency and performance of
the proposed HGWOPSO, standard test networks,
i.e., 33-bus and 69-bus systems are considered.

• The simulation results achieved with the suggested
hybrid method are compared to those obtained with
other methods.

The work will continue to be done in order to com-
plete the contributions as follows: Mathematical formulation
of the problem and objective functions is given in section II.
Section III formulates and explains the basic concepts of reli-
ability parameters. The proposed optimization methodology
is presented in section IV. Essential findings and discussions
are contained in section V. Concluding remarks are given in
section VI.

II. MATHEMATICAL FORMULATION OF PROBLEM
In general, load fluctuates with time at the distribution
side in the electrical power network; however, the best site
and size of EVCS and DG allocation with fluctuating load
is not acceptable. Hence, the following assumptions are
applied to the problem of optimal DG and EVCS allocation
planning [47].

1) Radial distributions systems are balanced in nature.
2) Constant capacities EVCS are employed.
3) DGs having power factor unity are used in radial DS.
4) The DGs output is not time-varying.
5) The load has constant active and reactive power.
DGs are represented as negative loads in this work because

they do not modulate the bus voltage. The best location
and capacity of DG should be attained without violating the
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system constraint, which must be validated at every iteration
using load flow analysis. Active power losses, voltage profile
improvement, and voltage stability enhancement are basic
objective functions that are investigated.

A. DIRECT APPROACH METHOD FOR POWER FLOW
The majority of distribution networks are radial in construc-
tion and have a low reactance to resistance ratio. Conven-
tional load flow-based technique such as Gauss-Seidel and
Newton Raphson is ineffective. Hence, power flow is per-
formed in this article utilizing a direct search-based load flow
approach [48].

The proposed power flow method relies on forming two
matrices, such as bus injection to branch current (BIBC) and
branch current to bus voltage (BCBV). Simple multiplication
of these two matrices is done to find load flow solutions.
A simple 6-bus distribution network is depicted in Fig. 1.,
where P1 − P5 represents the branch currents and Z12 − Z56
are the impedance of respective branches.

FIGURE 1. A simple 6-bus distribution network.

The current injected at node i can be calculated as

Ii =
(
Pi + jQi

Vi

)∗
(1)

where, Ii, Pi, Qi and Vi denotes the current, real power,
reactive power, and voltage at ith bus respectively.

The current in Eq. (1) can be further disintegrated to its
active and reactive parts.

Real (Ii) =
Picosθ i + Qisinθ i

|Vi|
(2)

Imag (Ii) =
Pisinθ i − Qicosθ i

|Vi|
(3)

where, θi designate the voltage angle at ith bus.
B is the branch current matrix as illustrated in Fig. 1, and

matrix P is calculated using Kirchhoff’s current law (KCL)
with the help of Eq. (3).

P1
P2
P3
P4
P5

 =

1 1 1 1 1
0 1 1 1 1
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1



I1
I2
I3
I4
I5

 (4)

[P] = [BIBC] [I ] (5)

On the other hand, the voltage drops at each bus in relation
to the reference bus is computed using Kirchhoff’s voltage
law (KVL) as follows:

V1
V1
V1
V1
V1

−

V2
V3
V4
V5
V6

 =

Z12 0 0 0 0
Z12 Z23 0 0 0
Z12 Z23 Z34 0 0
Z12 Z23 Z34 Z45 0
Z12 Z23 0 0 Z36



P1
P2
P3
P4
P5

 (6)

[1V ] = [BCBV ] [P] (7)

Inserting the value of matrix P from Eq. (4) to Eq. (6),
we get:

V1
V1
V1
V1
V1

−

V2
V3
V4
V5
V6

 =

Z12 0 0 0 0
Z12 Z23 0 0 0
Z12 Z23 Z34 0 0
Z12 Z23 Z34 Z45 0
Z12 Z23 0 0 Z36



∗


1 1 1 1 1
0 1 1 1 1
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

 ∗

I1
I2
I3
I4
I5

 (8)

[1V ] = [BCBV ] [BIBC] [I ] (9)

[1V ] = [DLF] [I ] (10)

where DLF stands for distribution load flow matrix, which is
used to determine voltage drop at each bus in relation to the
reference bus. The following two steps are used to determine
DLF.

Step 1: set branch impedance vector Zb from the branch
data.

Step 2: convert branch impedance vector to a diagonal
matrix, with all upper and lower elements save to zero sets
to zero except the element in the main diagonal positions and
multiply the resulting matrix with I to obtain 1V.

B. MULTI-OBJECTIVE FUNCTIONS
The principal target of this research work is to find out the
optimum nodes for EVCS and DGs placement in the radial
distribution system for lessening the active power losses of
the network, monitoring the voltage profile within required
limits, and enhancing voltage stability index (VSI), keeping
in view that, all the subjected constraints must not be violated.
EVCS supplies current for charging EVs. The EV battery
capacity is defined in kilowatt-hour (kWh) and ampere-hour
(Ah). The EVCS is modeled in such a way that it delivers
only real current for EV charging [29]. When EVCS is placed
at any bus of the distribution network causes an increment
in real power only. Hence, it necessitates the placement of
EVCS at that node (bus) where the minimum branch cur-
rent flows. Regarding this, Fig. 2. shows a portion of the
distribution network in which EVCS is located at (k + 1)th

bus and available connected load at the same bus takes
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power from the grid.

min (F1 (x) ,F2 (x) ,F3 (x)) x ∈ 


subjected to gu (x) = 0 u = 1, 2, 3 . . . ., t

hv (x) = 0 v = 1, 2, 3 . . . ., s

xL ≤ x ≤ xU (11)

where, gu (x) are the equality constraint, hv (x) are the
inequality constraint, t and s are the numbers of equality and
inequality constraints, xL and xU are the lower bound and
upper bound of variables, 
 is the variable space.

FIGURE 2. EVCS located at the bus of radial distribution system.

1) ACTIVE POWER LOSS (APL)
The largest power loss in an electric network typically occurs
over the distribution system, which impacts annual sales.
Consequently, the APL minimization is the major concern
while allocating EVCS and DGs in radial distribution net-
works. The load flow analysis of the distribution network is
conducted to determine the APL, i.e., base case power loss.
The direct approach-based load flow analysis is performed in
this article [48]. The active power loss after the load flow is
determined using Eq. (12), and it depends on the amount of
current drawn/injected into the bus [49].

APL =
∑Nbr

i=1
|Pi|2 ∗ Ri = TPS(R) ∗ |BIBC ∗ I |2 (12)

where, Pi is the current flowing in ith branch, Ri is the resis-
tance of ith branch, R is the branch resistance matrix, which
contains all of the branches’ resistances.

Because EVCS functions as a high load, it increases APL
when it is deployed at any node in the distribution system.
Therefore, the goal is to choose the bus that increases APL to
the minimum. The additional losses of the distribution system
can be offset by arranging the DGs optimally. The primary
function of DG is to inject real and reactive power into
the network, compensating for the losses caused by EVCS
deployment.

When current I is disintegrated into its real and imaginary
parts, Eq. (12) becomes as given below:

APL = TPS (R)∗
[
(BIBC ∗ Real (I))2+(BIBC∗Imag (I))2

]
(13)

By putting the real and imaginary parts of current from
Eq. (2) and Eq. (3) respectively to Eq. (13), the overall real
power loss can be given as:

min F1 = TPS (R) ∗
(
BIBC ∗

Psinθ + Qcosθ
|V|

)2

+TPS (R)

∗

(
BIBC ∗

Pcosθ + Qsinθ
|V|

)2

(14)

2) VOLTAGE DEVIATION INDEX (VDI)
The voltage quality of the bus is measured in terms of the
voltage deviation index. As a result, bus VDI must be min-
imized in order to produce a more controlled bus voltage
profile over the radial distribution network. Bus VDI is used
as an objective function in the proposed optimal EVCS and
DG allocation and is expressed as [50]:

min F2 =
∑Nbus

k=1
(VkVref)2 (15)

Each bus’s voltage magnitude must lie between the mini-
mum value (0.95 p.u) and maximum value (1.05 p.u).

3) VOLTAGE STABILITY INDEX (VSI)
In light of the voltage deviation alone, the distribution sys-
tem’s security level is insufficient. As a result, VSI is sug-
gested as one of the main functions in this effort for enhanced
voltage profiles. The distribution system’s maximum VSI
indicates that the bus can maintain its voltage profile within
acceptable limits under varying loading conditions. The util-
ity strives to keep the VSI of the distribution system near-
unity of all buses for the safe operation of the system. VSI of
distribution system can be formulated as follows:

VSI k+1 = |Vk |4 − 4 ∗
[
Pk+1Xj − Qk+1Rj

]2
− 4

∗
[
Pk+1Rj − Qk+1Xj

]
|Vk |2 (16)

where, VSIk+1 represents the VSI of (k + 1)th bus, Rj and
Xj represents the resistance and reactance of jth branch con-
necting the k th and (k + 1)th bus, Pk+1 denotes the active
power at (k + 1)th bus and Qk+1 indicates the reactive power
at (k + 1)th bus.

During the operation, the voltage level of the entire net-
work must be increased by maximizing the bus with the
lowest VSI value. As a result, the objective function for
maximization of VSI is given as [51]:

maxF3 =
1

min (VSI k+1)
(17)

C. OPERATIONAL CONSTRAINTS
The constraints subjected for the EVCS and DGs allocation
in the radial distribution network are presented below.

1) EQUALITY CONSTRAINTS
a: ACTIVE AND REACTIVE POWER BALANCE
The active and reactive power delivered by electric substation
and DG must be equal to the summation of APL, active and
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reactive power demand, and additional CS load capacity.

Psubstation+
∑Nbus

k=1
PDG(k) =

∑Nbr

j=1
Pjloss(k, k + 1)

+

∑NbUS

k=1
PD,k+PkEVCS (18)

Qsubstation +
∑NbUS

k=1
QDG(k) =

∑Nbr

j=1
Qjloss(k, k + 1)

+

∑NbUS

k=1
QD,k (19)

where, PsubstationandQsubstation are the real and reactive power
supplied by electric substation respectively, PD,kandQD,k
are the active and reactive power demand at k th bus,
PDG (k) andQDG(k)are the total real and reactive power
injected by DGs at k th bus, Pjloss and Qjloss represents the
real and reactive power loss in the jth branch, PkEVCS is
the charging station load at k th bus and NbrandNbus denotes
the number of branches and buses in the distribution network,
respectively.

2) INEQUALITY CONSTRAINTS
a: VOLTAGE LIMIT CONSTRAINT
Each bus’s voltage magnitude ranges between
0.95 to 1.05 p.u.

Vmin ≤ Vk ≤ Vmaxk = 1, 2, 3 . . . .Nbus (20)

b: LINE CURRENT CONSTRAINT
The actual current flows in each line should not exceed the
maximum limit of line current.

Ij ≤ Imaxj j = 1, 2, 3 . . . .Nbr (21)

where, Ij represents the actual current flows in jth line and
Imaxj is the maximum limit of line current.

c: ACTIVE AND REACTIVE POWER INJECTED BY DG
The active and reactive power injected by DGs should lie
within some specified limits.

PminDGk ≤ PDGk ≤ P
max
DGk (22)

QminDGk ≤ QDGk ≤ Q
max
DGk (23)

PminDGk and PmaxDGk are the minimum and maximum active
power limits of k th DG respectively and QminDGk and Q

max
DGk are

the minimum and maximum active power limits of k th DG.

d: DG UNIT’S PENETRATION∑NDG

k=1
PDGk ≤ %J×

∑Nbus

k=1
PLk (24)

where J represents maximum DG unit penetration in the
distribution system, NDG is the number of DGs installed in
the system.

III. THE HYBRID GREY WOLF–PARTICLE SWARM
OPTIMIZATION (HGWOPSO) ALGORITHM
The EVCS and DG allocation problem is associated with
discrete bus numbers, whereas capacity of DG unit is decided
by operational constraints. GWO and PSO would not yield
the same results after every iteration due to the stochastic
behavior of the problem, exclusively in sophisticated sys-
tems. Therefore, it is a challenging task to investigate the
optimum solution. On the other hand, the proposed hybrid
approachHGWOPSO solves this issue.With the combination
of GWO and PSO, a hybrid strategy is proposed. PSO’s
flaw is that it can’t access the best answer across a large
search area and is trapped in local optima. While GWO
has the shortcoming of inefficient exploitation. Therefore,
a combination of GWO and PSO is used to overcome the
shortcomings of each method. The key ability is to com-
bine the PSO’s exploitation skills with the GWO’s explo-
ration capabilities in order to keep a proper exploration and
exploitation to avoid local optima and arrive at an optimal
solution with ease. HGWOPSO is presented in this work,
in which GWO updates the initial population and then PSO
updates the updated solutions [52]. Furthermore, the pro-
posed hybrid approach is selected to efficiently tackle the
optimization problem because it provides high-speed conver-
gence and the capability of handling discrete aswell as integer
variable problems involving a smaller number of control
parameters.

A. PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM
Kennedy and Eberhart, in 1995, devised the PSO as a nature-
inspired optimization method [53]. PSO uses a swarm-based
exploration method to find the global optimal. Its motivation
is derived from the behavior of birds. The particles are taken
and moved across the exploration area to search for the opti-
mal population that solves the challenge. Particles are formed
in a multidimensional exploration field, and each particle
alters its location based on past knowledge and that of its
neighbors. Also, particles are directed by the optimal location
that they and their neighbors have reached [53]. The PSO’s
advantages are that it is simple to use and does not require
numerous parameter modifications. The following rules can
be used to adjust the position [54]:

if x > pbestx, vx − randxa, else vx = vx + randxa

if y > pbesty,vy − randxa, else vy = vy + randxa

where pbest denotes the highest position ever attained. rand
signifies a random number lies between 0 and 1, and a is
the position adjusting constant. The velocity must also be
updated in accordance with the requirements below.

if x > gbestx, vx = vx − randxb, else vx = vx + randxb

if y > gbesty, vy = vy − randxb, else vy = vy + randxb

where gbest is the overall swarm’s best location so far, and b
is the constant for altering velocity.
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B. GREY WOLF OPTIMIZATION (GWO) ALGORITHM
Mirjalili et al. are the ones who first introduced GWO in the
year 2014 [55]. It takes its cues from the natural behavior and
chasing method of grey wolves. They follow a strict leader-
ship system in a pack. The group’s leaders are known as alpha
(α) wolves. Grey wolves are divided into two categories. The
alpha comes under the first category, while the rest of the pack
members are considered in the second category. They assist
the alphas. The beta (β) wolves are their name. Furthermore,
delta (δ) wolves have a lower priority than those of the
previous two categories of wolves. Their goal is to surrender
to alpha and beta wolves while maintaining influence over
omegawolves. The omegas (ω) are the wolves with the lowest
priority, as they must obey the foremost grey wolves. The
mathematical representations of the GWO technique are as
follows [55]:

1) SOCIAL HIERARCHY OF GREY WOLVES
Alpha wolf is known as the best suitable solution in the math-
ematical description of the grey wolf hierarchy. As a result,
beta wolf is the second most acceptable solution, while delta
is the third most suitable alternative. The omegas represent
the farthest solutions. The hunting process is guided by alpha,
beta, and delta in the GWO approach. The omegas should
only follow the same steps as the wolves with higher priorities
and obey them.

2) ENCIRCLING THE PREY
The grey wolves enclosing the prey while hunting. The encir-
cling of grey wolves can be modeled using Eq. (25) and (26).

−→
D =

∣∣∣−→C .−→Xp (t)−−→X (t)
∣∣∣ (25)

−→
X (t + 1) =

−→
Xp (t)−

−→
A .
−→
D (26)

where t indicates the iteration,
−→
A and

−→
C represents the

constant (coefficient) vectors, position vector of prey and
wolf are represented by

−→
Xp and

−→
X respectively.

−→
A and

−→
C can be formulated as follows:

−→
A = 2−→a .−→r1 −

−→a (27)
−→
C = 2.−→r2 (28)

The value of −→a declines proportionally from two to zero
over the entire iterations. −→r1 and −→r2 are the arbitrary random
vectors taken between 0 and 1.

3) HUNTING MECHANISM OF GREY WOLVES
The alphas, betas, and deltas often drive the hunting process
as they have more knowledge in predicting the location of
the prey. The rest of the exploration mediators must follow
the location of the optimal mediator and make adjustments as
needed [56].

−→
Dα =

∣∣∣−→C .−→Xα −−→X ∣∣∣ ;−→Dβ = ∣∣∣−→C .−→Xβ −−→X ∣∣∣ ;
−→
Dδ =

∣∣∣−→C .−→Xδ −−→X ∣∣∣ (29)

−→
X1 =

−→
Xα −

−→
A1.
−→
Dα;
−→
Z2 =

−→
Xβ −

−→
A2.
−→
Dβ;

−→
X3 =

−→
Xδ −

−→
A3.
−→
Dδ (30)

−→
X (t + 1) =

−→
X1 +

−→
X2 +

−→
X3

3
(31)

4) ATTACKING PROCESS OF GREY WOLVES
A is a number that falls between [−2a, 2a]. If |A| is greater
than one, the wolves will attack their prey. Exploitation refers
to the ability to attack the prey, while exploration is the skill
of determining a prey. The population is led away from the
prey by the erratic values of A. If |A| is greater than 1, the
wolves will depart from their prey.

5) THE HGWOPSO ALGORITHM IMPLEMENTATION FOR
EVCS AND DG ALLOCATION
Optimum allocation of DG units and the EVCS decreases
system losses due to the addition of EVCS in the radial
distribution system. It also improves voltage profile and sta-
bility. In this research analysis, EVCS and DG’s allocation
problems are addressed using the proposed HGWOPSO tech-
nique. Fig. 3. displays the flow chart of the suggested hybrid
algorithm.

The steps mentioned below explain the working of the
HGWOPSO algorithm.

Step 1: Initializing the maximum iterations.
Step 2: Initializing the number of search agents (NSA).
Step 3: Running GWO algorithm.
Step 4: The points minimized by GWO are passed through

PSO as initial points.
Step 5: Running PSO algorithm.
Step 6: Updated points are passed back to the GWO

algorithm.
Step 7: Increasing the iteration one by one.
Step 8: If the termination conditions are fulfilled, go to

step 9; otherwise, go to step 3.
Step 9: The gbest solution is the desired solution of

HGWOPSO technique.
The tuned parameters of the proposed HGWOPSO

algorithm are NSA=30, swarm size=50, maximum
iterations=100, inertia weight=0.4 to 0.9, and values of
cognitive and social acceleration coefficients are 2.01 and
2.02, respectively.

IV. IMPACT OF EVCS AND DGS ON RELIABILITY OF
DISTRIBUTION SYSTEM
The reliability study of the electrical distribution system has
emerged as a demanding area of research. The possibility that
a system will perform satisfactorily for a particular period
under a specific set of operating constraints is referred to as
reliability [14]. The reliability of generation, transmission,
and distribution is prioritized in electrical network reliability
studies. The amount of consumer satisfaction is strongly cor-
related to the distribution network’s reliability. Quantitative
data for the failure rate, repair rate, average outage duration,
and the number of customers on load points of the distribution
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FIGURE 3. Flow chart of HGWOPSO.

network is needed to evaluate the distribution network’s reli-
ability indices [57]. Some of the reliability indices which
are predominantly used to evaluate the system’s reliability
are SAIFI, SAIDI, CAIDI, EENS, AENS, ASAI, and ASUI.
They are also employed in this research work to judge the
reliability of the distribution system. An appropriate set of
indices must be determined based on the application to attain
the reliability evaluation.

A. CALCULATION OF STATISTICAL PARAMETERS FOR
RELIABILITY AT DIFFERENT LOAD POINTS
The reliability indices strongly depend on various statistical
parameters such as failure rate, repair rate, average outage
duration. The reliability parameters can be calculated at dif-
ferent load points i.e., qth load point as follows.

Average failure rate
(
ρq
)
=

∑
k∈z

numk

×FRk failure/year

Annual outage duration (Uq) =
∑

k=z
FRkDqk hour/year

Average outage duration
(
Dq
)
=

Uq

ρq
hour

where FRk is the average failure rate of the kth element,
z is the number of elements in the distribution system, numk
denotes the number of kth elements in the distribution system,
Dqk represents the period of failure at qth load point due to
failure of kth element, ρq is the average failure rate at qth load
point and Uq denotes the annual outage duration at qth load
point.

B. FORMULAE OF RELIABILITY INDICES OF
DISTRIBUTION SYSTEM
The reliability indices are characterized into load-oriented
and customer-oriented indices. The complete categorization
of reliability analysis of distribution system is depicted in
Fig. 4.

A broad overview and mathematical formulae of differ-
ent load and customer-oriented reliability indices are as
follows [57].

1) CUSTOMER ORIENTED RELIABILITY INDICES
These indices have increased the reliability of power sys-
tems in terms of improving consumer or load facilities.
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An extensive outline and mathematical formulae of different
customer-oriented reliability indices are as follows.

The SystemAverage Interruption Frequency Index (SAIFI)
is calculated as the ratio of the total number of interruptions
to the total number of customers served each year, as given
in Eq. (32). SAIFI depicts the state of the system in terms of
interruption. It is measured in failures/customers. year.

SAIFI =

∑zq
q=1 ρqNq∑zq
q=1 Nq

failures/customer .year (32)

FIGURE 4. Categorization of reliability indices of distribution network.

The System Average Interruption Duration Index (SAIDI)
is a fraction of total continuous interruptions divided by the
number of customers served per year, as provided in Eq. (33).
SAIDI depicts the state of the system in terms of interruption
time. It is measured in hour per customer year.

SAIDI =

∑zq
q=1UqNq∑zq
q=1 Nq

hour per customer .year (33)

The Customer Average Interruption Duration Index
(CAIDI) is the ratio of the overall time of continuous interrup-
tions to the total number of interruptions served by customers
in a year, as shown in Eq. (34). CAIDI calculates the average
outage time for any individual customer. It is measured in
hour/customer. interruption.

CAIDI =
SAIDI
SAIFI

CAIDI =

∑zq
q=1UqNq∑zq
q=1 ρqNq

hour/customer .interruption (34)

The Average Service Availability Index (ASAI) is
expressed in per unit (p.u.). It is defined as the ratio
of total available hours in a year to total desired hours,

as specified in Eq. (35).

ASAI =

∑
Nq × 8760−

∑zq
q=1UqNq∑

Nq × 8760
(p.u) (35)

The Average Service Unavailability Index (ASUI) is
expressed in per unit (P.U.) and is defined as the ratio of total
unavailable hours in a year to total desired hours, as specified
in Eq. (36)

ASUI = 1− ASAI (p.u) (36)

2) ENERGY OR LOAD ORIENTED RELIABILITY INDICES
Load-oriented reliability indices are determined at different
load points as follows.

The network’s Expected Energy Not Supplied (EENS) is
measured in MWh/year and equals the sum of all consumers’
EENS as shown in Eq. (37). The EENS is an indication of
energy insufficiency.

EENSq =
∑[(

Demand at qthload point
)
∗

annual outage duration at qthload point

]
EENSq = LqUq MWh per year (37)

The Average Energy Not Supplied (AENS) index indicates
howmuch energy isn’t served within a given period, as shown
in Eq. (38). It is expressed in MWh per customer per year.

AENS =

∑
(EENS at qthload point)

Total number of customers at all load points

AENS =

∑zq
q=1 LqUq∑zq
q=1 Nq

MWh percustomer per year (38)

where Lq is average demand/load at qthloadpoint, EENSq
denotes the expected ENS at qthloadpoint, zq is the total
number of load points, Nq represents the total number of
customers at qth load point. The steps employed for the
calculation of reliability indices is indicated in Fig. 5.

The interruption in power system network occurs due to
following causes.

1) outages resulting in disturbance.
2) Failure of power system equipment leads to

interruption.
3) Load shedding occurs due to abrupt rise in demand.
4) Planned preservation of equipment necessitating an

interruption.

V. RESULTS AND DISCUSSION
This section describes the implementation of the proposed
hybrid algorithm first on benchmark functions, and further,
it is applied to the 33 and 69 bus systems. Also, the impact
of EVCS and DG integration on the two considered standard
systems in terms of reliability indices, i.e., SAIFI, SAIDI,
CAIDI, etc., has been evaluated and explained in detail.
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FIGURE 5. Flow chart for the computation of reliability indices.

A. PERFORMANCE OF PROPOSED ALGORITHM ON
BENCHMARK FUNCTION
The proposed HGWOPSO is first applied to seven stan-
dard mathematical benchmark functions for validation. The
complete details of these functions and their outcomes are
provided in Tables 1 and 2, respectively. Comparative results
in terms of maximum iterations and optimal solution of seven
mathematical benchmark functions for 30 independent runs
validate that the proposed optimization technique is superior
to GWO and PSO. HGWOPSO converges to a global opti-
mumwithout getting stuck in local optimal solution, resulting
in faster convergence.

The suggested HGWOPSO is then employed in the IEEE
33-bus and 69-bus radial distribution systems for the location
and sizing of EVCS and DG units. The results are com-
pared with GWO and PSO for the single objective func-
tion corresponding to (1) minimizing the active power loss
(2) minimization of voltage deviation (3) maximizing the
voltage stability index. The proposed HGWOPSO algorithm
is executed in MATLAB R2016a on an Intel i7, 3.2 GHz,
4 GB RAM, desktop PC.

B. IEEE-33 BUS BALANCED RADIAL DISTRIBUTION
SYSTEM
The detailed diagram of IEEE 33 bus radial distribution
system along with two DG and two EVCS is shown in
Fig. 6. The IEEE-33 bus distribution network has 33 nodes
and 32 branches. The system is allowed to operate
at 100 MVA and 12.66 kV. It has total real power loads
of 3715 kW and total reactive power loads of 2300 kVar.
Charging stations are assumed to have 30 charging points,
and each charger consumes 50 kW. So, CS can charge 30 EVs
at the same time. The optimal number of CS needs to be
placed at the optimal bus in the distribution network. Since
CS installation increases the active power loss of the network.
Hence, DGs are optimally placed to compensate for the losses
due to installed EVCS. The power loss is optimized using the
suggested HGWOPSO method. Before installing EVCS and
DG, a direct approach-based load flow study is carried out to
determine the base case losses. The active and reactive power
values before installing EVCS and DGs are observed to be
201.9 kW and 134.7 kVAr, respectively. Also, the minimum
voltage appears at bus 18 of magnitude 0.9131 p.u. Whereas
the minimum value of VSI comes out to be 0.6953 p.u.

FIGURE 6. Connection diagram of IEEE 33-bus system with two EVCS and
two DGs.

1) EFFECT OF EVCS AND DG INTEGRATION ON SYSTEM
LOSS IN 33-BUS SYSTEM
The addition of EVCS to the distribution network raises the
APL while lowering the voltage profile due to the increased
loading of EVs. Therefore, there is a requirement to allocate
the EVCS in the most efficient way possible, resulting in the
lowest possible rise in APL. It’s worth noting that installing
a fixed capacity EVCS on bus 2 results in a power loss of
only 211.7 kW. To meet customer demand and ensure the
availability of EVCS for EV users, an increasing number of
EVCS must be installed to address the power loss issues. The
best placement of the second EVCS at bus 19 results in a total
active power loss of 214.8 kW.

Five different scenarios are addressed in this work for
validating the methodology. The scenarios are given below:

Scenario 1: Balanced IEEE 33-bus radial distribution net-
work with existing loads only
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TABLE 1. List of standard mathematical benchmark functions.

TABLE 2. Comparison of results obtained from HGWOPSO, GWO and PSO applied on standard benchmark functions.

Scenario 2: Addition of one EVCS in radial distribution
network

Scenario 3: Addition of one more EVCS in distribution
network

Scenario 4: Addition of one DG in radial distribution
network

Scenario 5: Simultaneous allocation of two DGs
The placement of DG in an optimal location with an

optimal size result in minimization of APL, improvement in
voltage profile, and enhancement in VSI. A large number of
research articles has focused on minimizing APL due to the
domination of I2R losses in the power system. TheAPL, VDI,
and VSI are calculated before the reliability evaluation. This
is done to evaluate the reliability of the system by determining
the best DG size, DG location, power loss, VDI, and VSI.

Two DGs are installed in the 33 bus network to reduce the
charging impact of EVs.When one 2.56MWDG is optimally
located at bus 6, it results in a 103.6 kW active power loss.
The power loss is reduced to 85.5 kW when two DGs with

capacities of 0.0845 MW and 1.1568 MW are situated opti-
mally at bus numbers 13 and 30 in the distribution network.
Table 3. illustrates the APL values when EVCS and DGs are
installed sequentially in 33 bus distribution networks.

TABLE 3. APL values after the placement of EVCS and DGs using
HGWOPSO in 33-bus system.

Also, the varying power loss values after placing EVCS
and DGs are depicted in Fig. 7. The comparison analysis of
the size and location of EVCS and DG and their impact on
power loss is portrayed in Table 4. Also, it is realized from
Table 4 that results obtained by implementing HGWOPSO
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TABLE 4. Comparison of optimal size, location and APL of EVCS and DG obtained using HGWOPSO, GWO and PSO for 33-bus system.

are superior to GWO and PSO for the same parameter
consideration.

FIGURE 7. Effect of EVCS and DG integration on active power loss in
33-bus system.

FIGURE 8. Convergence plot for active power loss using HGWOPSO, GWO,
and PSO in 33-bus network.

Likewise, the efficacy of the proposed hybrid technique,
i.e., HGWOPSO, is confirmed by comparing the obtained
results with those of other existing techniques such as GWO
and PSO.

The proposed technique results in active power loss of
85.5 kW which is lesser than those of GWO (87.1 kW) and
PSO (88.7 kW). Fig. 8. shows the converging nature of the
active power loss over the course of iteration using proposed

HGWOPSO, GWO, and PSO. Also, it is evident from the
convergence characteristics that HGWOPSO has a faster rate
of achieving optimal solutions as compared to standalone
GWO and PSO.

2) EFFECT OF EVCS AND DG INTEGRATION ON VOLTAGE
PROFILE AND VOLTAGE STABILITY
INDEX IN 33-BUS SYSTEM
As similar to system loss, integration of EVCS imposes a
detrimental effect on the voltage profile and VSI. Due to
the increased loading of EVs, the system’s voltage profile
and voltage stability index deteriorates. These disturbances
are compensated by the suitable incorporation of DG units
at appropriate node in the distribution system. The voltage
profile of the 33- bus system when multiple EVCS and DGs
are sited in the system is depicted in Fig. 9.

The voltage at each bus continues to decrease as the charg-
ing load grows, as seen in Fig. 9. When one 1500 kW EVCS
is optimally placed on bus 2, the voltage profile of the entire
system falls. Furthermore, as the number of EVCS grows, the
voltage profile degrades.

FIGURE 9. Voltage profile of 33 bus system after integrating EVCS and DG
units.

DGs are integrated into the distribution system along with
EVCS to ensure that the system runs smoothly. Integration of
DG units creates positive impacts on the voltage profile of the
system. Improvement in voltage profile after incorporating
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DG units is shown in Fig. 9. The voltages on all the buses
fluctuate depending on the distribution system’s actual and
reactive power losses. As a result, real power support is
required for real power loss reduction, which enhances volt-
age levels by mitigating I2R losses. Also, it is observed that
the improvement in bus voltages takes place when many DGs
are located. Also, it is noted that the size of a single DG is
greater than the combined size of two DG units. In the case of
one DG, the minimum magnitude of voltage is 0.9511 p.u at
bus number 18; for simultaneous allocation of two DG units,
the minimum voltage is improved to 0.9685 p.u at bus 33.
So, it is deduced that minimum voltage improves with the
employment of multiple DGs.

The addition of EVCS and DG units to the distribution
network impacts the voltage stability index as it does on the
voltage profile. The base case (before installing EVs and
DGs) value of VSI is 0.6953 p.u. It drops to 0.6924 p.u when
one EVCS of capacity 1500 kW is optimally installed at
bus number 2. DGs implementation in distribution networks
enhances the VSI. It can be noticed from Fig. 10. that VSI
enhances when a greater number of DGs are situated opti-
mally in the distribution system.

FIGURE 10. VSI for 33 bus system for different scenarios.

When one DG is placed causes the VSI to be increased to
the value of 0.8181 p.u. Similarly, VSI becomes 0.8798 p.u.
on the implementation of two DGs. Also, VSI is investigated
for different scenarios using the suggested hybrid technique
and compared to other techniques in order to demonstrate
its superiority. The VSI results obtained using the two tech-
niques for the 33-bus system are tabulated in Table 5.

TABLE 5. Comparison Of VSI Values For Different Scenarios In 33-Bus
System.

C. IEEE-69 BUS BALANCED RADIAL DISTRIBUTION
SYSTEM
The proposed algorithm HGWOPSO is now implemented on
IEEE 69-bus radial DS for the optimal allocation of EVCS
and DG. The detailed diagram of the IEEE 69-bus distribu-
tion system is shown in Fig. 11. Two fixed capacity EVCS
and three type 1 DG have been considered. The details of
the IEEE 69-bus DS are as follows: The IEEE-69 bus DS
has 69 nodes and 68 branches. The system is allowed to
operate at 100MVAand 12.66 kV. It has total real power loads
of 3801.4 kW and total reactive power loads of 2693.6 kVAr.
As that of IEEE 33-bus radial distribution system, the objec-
tive functions, i.e., power loss minimization, improvement
in voltage profile, and maximizing VSI, are optimized using
HGWOPSO and compared with those of GWO and PSO.

FIGURE 11. Connection diagram of IEEE 69-bus system with two EVCS
and three DGs.

To validate the methodology for the proposed work, the
following scenarios are considered.

Scenario 1:Balanced IEEE 69-bus radial DS with existing
loads only

Scenario 2: Addition of one EVCS in radial distribution
network

Scenario 3: Addition of one more EVCS in distribution
network

Scenario 4: Addition of one DG in radial distribution
network

Scenario 5: Simultaneous allocation of two DGs
Scenario 6: Simultaneous allocation of three DGs

1) EFFECT OF EVCS AND DG INTEGRATION ON SYSTEM
LOSS IN 69-BUS SYSTEM
The base case active and reactive power loss in the 69-bus sys-
tem is calculated to be 224.9 kW and 102.1 kVAr respectively.
Similar to the 33-bus system, the addition of EVCS creates
power loss issues in the 69-bus system. When one EVCS
is optimally installed at bus 28 results in an active power
loss of 225.31 kW. It is recommended to install the large
number of charging infrastructures on the way of EV users
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to increase the wide adoption of EVs. To this end, one more
EVCS is placed at bus 6, which leads to a further increment
in power loss of 254.45 kW. It is realized that the addition of
charging infrastructures is essential for the survival of EVs
but at the same time causes detrimental effects on the health
of power system. Thus, compromise has to be made between
the power system health and charging infrastructure. DGs
are added to reduce the charging impact of EVs. However,
the implementation of DGs on optimal nodes compensates
for the power loss issues. In this context, when one DG of
1.8726 MW capacity is optimally placed at bus 61 results in
an active power loss of 83.2 kW.When twoDGs are located at
buses 17 and 61, their sizes are 0.5312 MW and 1.7815 MW,
respectively, providing a reduced APL of 71.7 kW. Also, APL
is reduced to the value of 69.4 kWwhen three DGs with sizes
0.5268MW, 0.3801MW, and 1.7190MW are installed at bus
numbers 11, 18, and 61, respectively. When EVCS and DGs
are placed successively in a 69-bus distribution network, the
APL values are shown in Table 6.

TABLE 6. APL Values After The Placement Of EVCS And Dgs Using
HGWOPSO in 69-bus system.

Table 7 shows a comparison of the size and placement
of EVCS and DG, as well as their impact on power loss.
In addition to this, Fig. 12. shows the varied power loss values
after installing EVCS and DGs.

The efficacy of the suggested hybrid technique,
HGWOPSO, is also proven by comparing the acquired find-
ings to those of other existing techniques like GWO and PSO.

The proposed technique results in an active power loss
of 69.4 kW, which is lower than the 70.5 kW and 71.7 kW
incurred by GWO and PSO respectively.

Fig. 13. depicts the converging nature of active power
loss throughout the duration of iteration using proposed
HGWOPSO, GWO, and PSO. In addition, the convergence
curve clearly shows that HGWOPSO achieves optimal solu-
tions faster than isolated GWO and PSO.

2) EFFECT OF EVCS AND DG INTEGRATION ON VOLTAGE
PROFILE AND VOLTAGE STABILITY INDEX IN
69-BUS SYSTEM
The addition of EVCS disrupts the voltage profile of this sys-
tem, which is similar to that of a 33-bus network. Theminimal
voltage of magnitude 0.9091 p.u. exists at bus 65 in the base
case.When EVCS is installed at bus 28, the minimum voltage
value is dropped to 0.9015, which occurs at bus 65. When

FIGURE 12. Effect of EVCS and DG integration on active power loss in
69-bus system.

FIGURE 13. Convergence plot for active power loss using HGWOPSO,
GWO and PSO in 69-bus network.

one more EVCS is added to node 6, the minimum voltage
drops even lower to 0.8997 p.u. As a result, EVCS installation
degrades the voltage profile of the system. DG units are
integrated along with EVCS to maintain a healthy voltage
profile. The voltage profile improves with the incorporation
of DG units. In the case of one DG only, the minimum voltage
is improved to 0.9683 p.u. at bus 27. When two DGs are
optimally placed, the minimum voltage value comes out to
be 0.9789 p.u. at bus 65. Moreover, simultaneous allocation
of DG units further improves the bus voltage, i.e., the min-
imum voltage of 0.9790 p.u. at bus 65. Fig. 14. shows the
voltage profile of the 33-bus system when EVCS and DGs
are integrated.

VSI is influenced in the same way as voltage profile with
the gradual increase of charging loads. The value of VSI
before integrating EVCS is observed to be 0.6833 p.u. but
it is decreased to 0.6709 p.u when charging load is added
on bus 28. In the same way, VSI further drops to 0.6615 p.u
with the addition of another EVCS at bus 6. Thus, the incor-
poration of charging infrastructures badly affects the system
in terms of VSI. This problem is compensated by the inte-
gration of DGs into the distribution network. VSI improves
to 0.8792 p.u. in the presence of one DG only. Further
improvement in VSI takes place with the incorporation of
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TABLE 7. Comparison Of Optimal Size, Location And APL Of EVCS And DG Obtained Using HGWOPSO, GWO And PSO For 69 Bus System.

TABLE 8. Comparison Of VSI Values For Different Scenarios In 69-Bus
System.

TABLE 9. Consumer Information At Different Load Points For 33-Bus
System [14].

more DG units. Integration of two DGs improves the VSI
to 0.9083 p.u. While in the case of three DGs, it becomes
0.9185 p.u. In regard to this, improvement in VSI is seen in
Fig. 15. by incorporating DGs.

In addition, VSI is explored for various scenarios using the
recommended technique and compared to other techniques
in order to establish its superiority. The VSI findings for the
69-bus system obtained using the two techniques are shown
in Table 8.

D. EFFECT OF INTEGRATED EVCS AND DGs ON
RELIABILITY OF 33 BUS AND 69 BUS
DISTRIBUTION NETWORKS
The reliability indices are obtained to demonstrate the con-
sequence of integrating EVCS and DG units on the system

TABLE 10. Statistical Input Parameters At Different Load Points For
33-Bus System [14].

reliability. The reliability indices for the electrical network
are calculated considering quantitative information about
failure and repair rate, average outage time and number of
customers at each load points. The reliability indices consid-
ered in this article are SAIFI, SAIDI, CAIDI, EENS, AENS,
ASAI, and ASUI.

1) RELIABILITY ANALYSIS FOR 33-BUS SYSTEM
The major goal of this section is to offer a detailed exam-
ination of the impact of the EV charging station and DG
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TABLE 11. Effect Of EVCS And DGs Integration On Different Reliability Indices In 33 Bus System.

TABLE 12. Statistical Input Parameters At Different Load Points For
69-Bus System [58].

TABLE 13. Consumer Information At Different Load Points For 69-Bus
System [58].

placement on the IEEE 33 bus system’s reliability. Reliability
indices are estimated for all the above-mentioned scenarios,
i.e., after the placement of EVCS and DGs. Customer infor-
mation and other statistical parameters such as failure rate,
repair rate, and average outage time for the 33-bus system
are stated in Table 9 and Table 10, respectively.

Both consumer and load (energy) oriented indices dete-
riorate after the installation of EVCS. On the other hand
DGs integration into the distribution system enhances both
types of reliability indices. This is due to the fact that DGs
enable immediate and efficient bus voltage management,
which improves power transfer capability and reduces power
loss by regulating supplied power to the system. They also
directly alter the power flow by controlling injected power.
It is realized from Table 11 that the value of reliability
indices worsens after the allocation of EVCS. The value of
SAIFI before installing EVCS and DG, i.e., base case is
0.0982 failures/customer. year. After installing a fast-
charging station with 30 charging points on bus 2, the SAIFI
increased to 0.1195 failures/customer. year. The value of

FIGURE 14. Voltage profile of 69 bus system after integrating EVCS and
DG units.

FIGURE 15. VSI for 69 bus system for different scenarios.

SAIDI and CAIDI also increased to 0.6321 hour per cus-
tomer. year and 5.2915 hour/customer. interruption when
one EVCS is allocated at bus 2. Likewise, deprivation of
EENS and AENS is also observed in the case of one CS
placement. The base value of AENS is 1.9369 MWh per
customer per year. Its value increased to 10.2612 MWh per
customer per year after the integration of one EVCS. As the
EVCS is integrated into the distribution network, the energy is
supplied to meet the load requirement, and thus, the indices
associated with the energy not supplied are increased. The
increment in reliability indices is not desirable from the
perspective of the distribution system. Also, the value of
ASAI decreases with the incorporation of charging loads.
It refers to the condition that the availability of electricity
decreases with increasing charging loads. Further, all reli-
ability indices are evaluated when two EV charging loads
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FIGURE 16. Variation in reliability indices with integration of EVCS and DGs in 33-bus system.

are placed at buses 2 and 19. When two charging station
loads are shared between two nodes, the reliability is higher
than when the two charging stations are concentrated on a
single node. In some circumstances, when strong nodes of
the electrical power network and high-traffic-density nodes
of the transportation network merge, the paths connecting to
that node become too crowded. As a result, distributing the
charging stations has the added benefit of making the charg-
ing capability available to a broader number of EVs traveling
in diverse routes, minimizing overcrowding of traffic on the
particular paths leading to the bus where charging loads are
concentrated.

Thus, it is desirable to inject some amount of energy
into the distribution system to improve its reliability. One
of the alternatives is to make use of DGs, which injects
active and reactive power into the system depending on the
requirement. Multiple DGs are optimally integrated into the
network, which enhances the system’s reliability. All reli-
ability indices are investigated after integrating DGs. The
impact of DGs integration on reliability indices is shown
in Table 11. After the placement of one DG at bus 6, the
value of SAIFI decreased to 0.1217 failures/customer. year.
Similarly, the values of SAIDI and CAIDI also decreased
to 0.5238 hour per customer. year and 4.304 hour/customer.
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TABLE 14. Effect Of EVCS And DGs Integration On Different Reliability Indices In 69 Bus System.

FIGURE 17. Variation in reliability indices with integration of EVCS and DGs in 69-bus system.

interruption respectively. Hence, these reliability indices con-
tinue to reduce with the increasing integration of DGs.
As more DGs are introduced into the network, the period of
the disturbance and the number of interruptions that occur
in the system decrease. Therefore, the SAIDI and SAIFI
have been decreased. Furthermore, a reduction in SAIDI and
SAIFI values is desired for improving the reliability of the
distribution system.

It’s worth noting that the EENS and AENS reduce as the
number of DGs increases. The value of AENS is 9.5381MWh
per customer per year with one DG only, whereas it is reduced
to 7.0946 MWh per customer per year when one more DG is
added into the system. As more DGs are incorporated into
the network, the supplied energy to the system improves,
and the indices for energy not supplied decrease. The reduc-
tion in EENS and AENS values is desirable for a reliable
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power system. Hence, the reliability of the electrical system
improves with the integration of DGs with adequate reliabil-
ity data.

Also, DGs integration has positive impacts on electrical
supply-based reliability indices, i.e., ASAI and ASUI. It is
noted from Table 11. ASAI values increase with increasing
DGs integration. The increase in ASAI results in a decrease
in ASUI, which is beneficial for improving system reliability.
Fig. 16. shows the impact of EV charging loads and DG units
on various reliability indices in the 33-bus network.

2) RELIABILITY ANALYSIS FOR 69-BUS SYSTEM
This section of the article provides the impact on the reli-
ability of the 69-bus distribution system after the optimal
integration of EV charging loads followed by DG units. Here,
2 EVCS and 3 DGs are placed, which is different from the
case of the 33-bus system where only two DGs were inte-
grated. Table 12 and Table 13 report the statistical parameters
such as failure rate, repair rate and average outage time, and
customer information for the 69-bus system, respectively.

Similar to the 33-bus system, the addition of charging
loads disturbs the customer as well as load-oriented reliability
indices of the 69-bus system. DGs are integrated to main-
tain the reliability of the power system network by injecting
energy to the system, thereby resulting in power loss reduc-
tion. The effect of integrating EV charging loads and DG
units on various reliability indices in the 69-bus system is
illustrated in Table 14.

As explained in the case of 33-bus system, the value of
all customer-oriented reliability indices, i.e., SAIFI, SAIDI,
and CAIDI increases from the base value after the integration
of EV charging loads which are not desirable for a reliable
power system. Similarly, load-oriented indices, i.e., EENS
and AENS, also degrades due to the addition of EVCS.
The value of all indices increases from their respective base
value when charging loads are integrated. Hence, DGs are
integrated as in case of 33- bus network to bring the system
to operate in reliable mode. With the increasing integration of
DGs, all the reliability indices improve, i.e., SAIFI, SAIDI,
CAIDI, EENS, and AENS reduce, which is required from the
reliability point of view of the distribution system.

Additionally, ASAI decreases when EVCS is placed.
On the other hand, it goes on the increase with the integration
of DGs, which is desirable. Fig. 17. shows the impact of EV
charging loads and DG units on various reliability indices in
the 69-bus network.

VI. CONCLUSION
Electric vehicles are a viable option for reducing
transportation-related pollution. The rising reputation of EVs
has resulted in the setting up of EVCSs; though, the negative
influence of EV charging station loads on the electrical
system cannot be overlooked. This paper presents the EVCS
impact on the IEEE standard system based on a direct
approach-based load flow analysis. The process of charging
electric vehicles necessitates additional power from the grid,
resulting in greater power losses. As a result, DG should be

employed to offset the power losses generated by EVCS.
Type 2 DG is utilized in this work, which repays for the
system’s power loss. Furthermore, a hybrid algorithm called
HGWOPSO has been employed to reduce losses by deter-
mining the optimal node for EVCS and DG placement.

The proposed hybrid algorithm is validated on the IEEE-33
and IEEE-69 bus systems. Additionally, the accuracy of the
suggested method is validated by comparing the outcomes
acquired using other methodological approaches such as
GWO and PSO. It is observed that HGWOPSO shows a sig-
nificant reduction in system losses when compared to GWO
and PSO for 33-bus as well as 69-bus systems.

Apart from the voltage and current constraints, the number
of EV charging loads are fixed, and DGs are added into the
grid network to reduce the system’s losses. It is easy for the
power engineers to choose the number of DGs for compensat-
ing the influence of EVCS by analyzing the mismatch in the
capacity of the additional EVCS load and total system load.
In the IEEE-33 bus system, two DGs satisfactorily improve
the performance of the system, whereas the quantity of DGs
required in the IEEE-69 bus system is four. Although power
losses are minimized, and the voltage profile gets enhanced
on increasing the DGs, the impact of specific fourth DG is
marginal.

In addition, reliability analysis is performed to determine
the cumulative influence of EV loads andDGs on the distribu-
tion system’s health. All reliability indices are investigated in
different scenarios. It is noticed that the placement of EVCS
degrades the reliability of the network in 33-bus and 69-bus
systems. However, results show that the DGs incorporation
along with EVCS improves the reliability indices.

However, the current research work has several limitations,
such as the use of a stochastic approach to construct the EV
load at charging stations in order to estimate the impact of
increased EV demand on the distribution system. Further-
more, rather than conventional DGs, renewable-based DGs,
such as solar/wind, may be included. Additionally, coupled
transportation and distribution networks can be taken as a test
system.

Following are the research problems that can be addressed
in the future:
• By taking into account larger standard IEEE systems like
the 118-bus.

• Subsystem reliability data can also be added, providing
a precise picture of the total system’s reliability.

• The number of branches in a power system can also
be changed to improve reliability, which is referred to
as system reconfiguration. Furthermore, the dependency
on CO2 emissions, as well as the protection and security
of power system components, can also be addressed
when assessing the system’s reliability.

• Amore systematic approach to charging station location
issues could be investigated, taking into account EV
consumers’ activity-based behavior.

• Variations in daytime load, fluctuations in environ-
mental variables such as temperature, irradiance, and
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the wind, which might affect DGs such as solar pho-
tovoltaic and wind turbines, should be considered
appropriately.
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