
Received October 13, 2021, accepted October 22, 2021, date of publication November 2, 2021, date of current version November 12, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3125069

Cross Tensor Approximation Methods for
Compression and Dimensionality Reduction
SALMAN AHMADI-ASL 1, CESAR F. CAIAFA 2, ANDRZEJ CICHOCKI 1,3 (Life Fellow, IEEE),
ANH HUY PHAN 1, (Member, IEEE), TOSHIHISA TANAKA 4, (Senior Member, IEEE),
IVAN OSELEDETS1, AND JUN WANG1
1CDISE, Skolkovo Institute of Science and Technology (SKOLTECH), 121205 Moscow, Russia
2Instituto Argentino de Radioastronomía—CCT La Plata, CONICET/CIC-PBA/UNLP, Villa Elisa 1894, Argentina
3RIKEN Center for Advanced Intelligence Project (AIP), Tokyo 103-0027, Japan
4Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan

Corresponding author: Salman Ahmadi-Asl (s.asl@skoltech.ru)

This work was supported in part by the Ministry of Education and Science of the Russian Federation under Grant 075.10.2021.068. The
work of Cesar F. Caiafa was supported in part by the Grant PICT 2017-3208 and Grant UBACYT 20020170100192BA (Argentina).

ABSTRACT Cross Tensor Approximation (CTA) is a generalization of Cross/skeleton matrix and CUR
Matrix Approximation (CMA) and is a suitable tool for fast low-rank tensor approximation. It facilitates
interpreting the underlying data tensors and decomposing/compressing tensors so that their structures, such
as nonnegativity, smoothness, or sparsity, can be potentially preserved. This paper reviews and extends state-
of-the-art deterministic and randomized algorithms for CTAwith intuitive graphical illustrations. We discuss
several possible generalizations of the CMA to tensors, including CTAs: based on fiber selection, slice-tube
selection, and lateral-horizontal slice selection. The main focus is on the CTA algorithms using Tucker and
tubal SVD (t-SVD) models while we provide references to other decompositions such as Tensor Train (TT),
Hierarchical Tucker (HT), and Canonical Polyadic (CP) decompositions. We evaluate the performance of
the CTA algorithms by extensive computer simulations to compress color and medical images and compare
their performance.

INDEX TERMS CUR algorithms, cross approximation, tensor decomposition, tubal SVD, randomization.

I. INTRODUCTION
Tensor decompositions are efficient and widely used tools
for multi-way data processing (analysis) and, in particular,
they can be utilized to compress the data tensors without
destroying their intrinsic multidimensional structure. In the
past few decades, several types of tensor decompositions
have been introduced, such as CANDECOMP/PARAFAC
also called Canonical Polyadic Decomposition (CPD)
[1], [2], Tucker decomposition [3]–[5] and its special case,
Higher-Order SVD (HOSVD) [6], Block Term decomposi-
tion (BTD) [7]–[9], Hierarchical Tucker (HT) decomposition
[10], [11], Tensor Train/Tensor Chain (TT-TC) decomposi-
tion [12]–[14], tubal SVD (t-SVD) [15]–[17], each of which
generalizes the notion of matrix rank to tensors in an efficient
way. They have been successfully applied in many applica-
tions such as signal processing [18], machine learning [19],

The associate editor coordinating the review of this manuscript and
approving it for publication was Manuel Rosa-Zurera.

blind source separation [18], [20], chemometrics, [21], fea-
ture extraction/selection [22]. For a comprehensive study on
tensors and their applications, we refer to [23]–[25]. It is of
interest to decompose a data tensor in such a way that some
parameters of the underlying tensor decomposition, e.g., the
factor matrices or the core tensor of the Tucker decom-
position, preserve the structure of the original data tensor,
e.g., smoothness, nonnegativity, or sparsity. Themain reasons
for such interests are 1- fast low tensor rank approximation,
2- achieving higher compression ratio, and 3- data interpre-
tation issues. Skeleton or Cross tensor/matrix approximation
(CTA/CMA) or equivalently tensor/matrix CUR approxima-
tion is an efficient framework for attaining the mentioned
goals. The main characteristic of the CTA algorithms, which
makes them useful for handling very large-scale data tensors,
is to occupy less memory and reduce computational complex-
ity. Regarding the higher compression capability, for exam-
ple, in the case of matrices (second-order tensors), the SVD of
sparse matrices does not provide sparse factor matrices while

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 150809

https://orcid.org/0000-0002-2614-0146
https://orcid.org/0000-0001-5437-6095
https://orcid.org/0000-0002-8364-7226
https://orcid.org/0000-0002-5509-7773
https://orcid.org/0000-0002-5056-9508

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

the cross-skeleton approximation achieves this goal, lead-
ing to more compact data representation. The CTA methods
have similar properties for compressing structured data ten-
sors. Besides, regarding the interpretation issue, for example,
as mentioned in [26], a vector [1/2] age − (1/

√
2) height +

(1/2) income being as one of the significant uncorrelated
factors for a data set of people’s features is difficult to be
interpreted. Kuruvilla et al. in [27] also claimed: ‘‘it would
be interesting to try to find basis vectors for all experiment
vectors, using actual experiment vectors and not artificial
bases that offer little insight.’’ This motivates computing a
low-rank approximation as close as SVD but with individual
columns/rows of the original data matrix; see [26], [27], for
a detailed discussion on this topic.

In most types of tensor decompositions, there are no guar-
antees that the factor matrices or core tensors involved in
the decompositions preserve the structure of the underly-
ing data tensors unless additional constraints are imposed.
As a result, the decomposition procedure should be formu-
lated as constrained optimization problems. For instance,
the l1-norm as the tightest convex surrogate of l0 norm
imposes sparsity constraint on factor matrices and/or core
tensor [28]. An alternative to the optimization approach is the
Cross/Skeleton technique which uses a part of the data tensor
to compute a tensor decomposition. The CMAmethods com-
pute a low-rank approximation based on a part of individual
columns and rows. They have found applications in deep
learning [29], signal processing [30], [31], scientific com-
puting [32]–[34] and machine learning [35]–[37]. A closely
related matrix approximation is called matrix column selec-
tion or interpolative matrix decomposition. Here, just a part
of columns are sampled [38]–[44], and it can be considered
as a special CMA. The CMA/CTA can be used similarly to
approximate continuous functions; however, throughout the
paper we only focus on the discrete variables (for details,
please see [45]–[47]).

For the CMA methods, the problem is not formulated as
a constrained optimization problem; but instead, a matrix is
represented based on a part of its columns and rows. Gener-
ally, this can be done based on a part of its components which
includes rows and columns as special cases. The sampled
matrix is also called sketched matrix. Four main algorithms
for the CMA are, (see Figure 1):
• Maxvol algorithm [48], [49]
• Cross2D algorithm [50], [51]
• Discrete Empirical Interpolation Method (DEIM)
[52], [53]

• Random sampling algorithms [54].
The main difference between these algorithms is the pro-
cedure of column or row selection. The Maxvol, Cross2D,
and DEIM algorithms are deterministic, while the random
sampling algorithms are probabilistic (e.g., using uniform
distribution). The DEIM algorithm needs estimations of
the top left/right singular vectors to proceed, and this is
also required in a kind of probabilistic sampling technique,
i.e., leverage scores [54]. The Maxvol and Cross2D

FIGURE 1. Four main categories for CMA approaches.

algorithms do not need the top singular vectors, and they
heuristically look for optimal or the most representative
columns and rows.

The main building block of all algorithms for tensor
decomposition is computing low-rank approximation of
unfolding matrices [23], [24]. Here, of course, the CMA
algorithms (either deterministic or randomized algorithms)
can be utilized instead of expensive alternative techniques,
e.g., SVD. For a comprehensive study on randomized algo-
rithms for the Tucker decomposition and TT-TR decompo-
sition, we refer to [55]–[57]. Motivated by the limitation
of algorithms for handling big data tensors and the need for
fast low-rank approximationmethods, the classical CMAwas
generalized to tensors in [58]–[63]. Thework [60] is related to
the TT decomposition, whereas the works [59], [61], [63] are
for the Tucker decomposition and [62] is associated with the
t-SVD. These generalizations have been made from different
perspectives and to the best of our knowledge, there is no
survey paper discussing their similarities and differences.
In particular, it seems that it is rather difficult to distinguish
one CTA from another. This paper attempts to achieve this
goal where different CTA algorithms and their properties are
unified and discussed in detail. Moreover, there is a lack
of graphical illustrations in the literature for describing the
CTA algorithms making the topic difficult to understand,
especially for those who have an engineering background.
Here, we provide some useful and intuitive illustrations with
unifying notations. We mainly discuss three possible gener-
alizations of the CMA to tensors including, see Figure 2:

• Fiber selection
• Slice and tube selection
• Lateral and horizontal slices selection

where the last one deals with tubal product (t-product)
[15]–[17], [64].

In general, fiber or slice selection can be performed in
either a deterministic or randomized way. If fibers or slices
are sampled based on prior probability distributions such as
uniform, length-squared, or leverage score probabilities [54],
then the algorithms are referred to as randomized CTA; oth-
erwise, they are called deterministic CTA. However, for the
brevity of the presentation, in the rest of the paper, we only
use the CTA term and highlight when the underlying selection
is randomized. In the randomized CMA case, the accuracy of

150810 VOLUME 9, 2021

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

FIGURE 2. Different types of CTA approaches.

obtained approximations highly depends on the prior proba-
bility distributions [54]. Actually, it turns out that this is also
true for slice-fiber selection. Please note that some properties
of the underlying data matrix determine which sampling
strategy should be used. For example, uniform sampling
works well for matrices with low coherence [54]. The best
existing random sampling algorithms [54] use leverage score
probabilities, for which the relative-error approximation is
achieved. However, they require the computation of top sin-
gular values, which is computationally expensive. It is known
that randomized algorithms facilitate the tensor decomposi-
tion procedure not only by reducing the computational com-
plexity of deterministic algorithms but also by reducing the
communication among different levels of memories, which is
the main bottleneck in modern computing environments and
architectures for handling large-scale data tensors.

The structure of this paper is organized as follows.
In Section II, we introduce basic definitions and concepts
used throughout the paper. In Section III, we discuss the
CTA algorithms and several generalizations of the CMA to
tensors. Section IV, describes the tubal CTA, which is defined
based on t-product. The number of parameters of the CTA
models and the space/time complexity of the CTA algorithms
are discussed in Section V. Section VI, compares the CTA
algorithms in the sense of the number of passes to compute
a low-rank tensor approximation. The main challenges and
future research directions are discussed in Section VIII. Sim-
ulations are provided in Section IX to validate and evaluate
the performance of the presented algorithms. Finally, a con-
clusion is drawn in Section X.

II. PRELIMINARIES
In this section, we present notations and concepts used
throughout the paper. Tensors, matrices, and vectors are
denoted by underlined bold upper case letters, e.g., X, bold
upper case letters, e.g., X, and bold lower case letters, e.g., x,
respectively. Fibers are first-order tensors produced by fix-
ing all modes except one, while slices are second-order
tensors generated by fixing all modes except two of them.
For a third-order tensor X, the slices X(:, :, k), X(:, j, :),

X(i, :, :) are called frontal, lateral and horizontal slices,
respectively. FibersX(i, :, j), X(:, j, k) andX(i, j, :) are called
rows, columns, and tubes, respectively [23], see Figure 3 for
graphical illustration of slice and fiber concepts for a 3rd
order tensor. The rows, columns, and tubes are also called
mode-1, mode-2, and mode-3 fibers. In general, for an N
order tensor, N types of fibers can be defined, i.e., n-mode
fibers for n = 1, 2, . . . ,N . The notations X+ and XT denote
theMoore-Penrose pseudoinverse (MP1) and the transpose of
matrix X, respectively. The Frobenius and Chebyshev (infin-
ity) norms of tensors/matrices are denoted by ‖.‖F and ‖.‖∞.
The first norm is the square root of the sum of the square of
tensor components, while the second is the maximum of the
absolute value of tensor components. We use |X| to indicate
a matrix whose components are the absolute value of the
components of the data matrix X, i.e., yi,j =

∣∣xi,j∣∣ where
Y = |X|. The notation [N] denotes the set of natural numbers
[1, 2, . . . ,N] and n(A) means the number of elements of the
set A. For the simplicity of the presentation, all notations used
in the paper are summarized in Table 1.
Definition 1: n-unfolding2 matrices: Given an N th-order

tensorX ∈ RI1×I2×···×IN , then the n-unfolding of the sketched
data tensor X is denoted by X(n) ∈ RIn×I1···In−1In+1···IN , whose
components are

X(n) (in, j) = X (i1, i2, . . . , iN) ,

where

j = 1+
N∑

k=1, k 6=n

(ik − 1) Jk , Jk =
k−1∏

m=1,m6=n

Im.

This is an element-wise representation of the n-unfolding
transformation.

The n-unfolding operator can be introduced in a more
understandable way by stacking the mode-n fibers of a tensor.
See Figure 4 for a graphical illustration for this concept for
a 3rd order tensor. The reverse of this procedure is called

1The MP concept is also defined for tensors based on the t-product.
(see Section IV.)

2It is also called matricization or flattening.

VOLUME 9, 2021 150811

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

TABLE 1. The notations and symbols used in the paper.

n-folding which transforms a matrix into a tensor. There
are MATLAB libraries to perform these operations, such as
tensorlab [65] and tensor toolbox [66].

For a given data tensor X ∈ RI1×I2×···×IN , an inter-
section subtensor is produced by considering only a part
of indices in the modes of the original data tensor X. For
example, if In ⊂ [In], n = 1, 2, . . . ,N , then the subtensor
X(I1, I2, . . . , IN) ∈ Rn(I1)×n(I2)×···×(IN) can be generated.
Tensors and matrices can be multiplied in modes that have

the same dimensions. This is called tensor mode-n product
and is a generalization of matrix-matrix multiplication. To be
precise, let X ∈ RI1×I2×···×IN and B ∈ RJ×In , then the
tensor-matrix multiplication along mode n is denoted by

X×n B ∈ RI1×···×In−1×J×In+1×···×IN ,

and defined as follows

(
X×n B

)
i1,...,in−1,j,in+1,...,iN

=

IN∑
in=1

xi1,i2,...,iN bj,in ,

for j = 1, 2, . . . , J . It can be shown that X ×m A ×n B =
X×n B×m A if m 6= n and when m = n we have

X×n A×n B = X×n (BA).

The tensor-matrix multiplication can be done in the unfold-
ing form. Given a tensor X ∈ RI1×I2×···×IN and a matrix
A ∈ RK×In , then we have

Y = X×n A⇐⇒ Y(n) = AX(n). (1)

Let X ∈ RI1×I2×···×IN be a given data tensor, then the
Tucker decomposition model is defined as follows: [3]–[5]

X ∼= S×1 A(1) ×2 A(2) · · · ×N A(N), (2)

where S ∈ RR1×R2×···×RN is called the core tensor, and the
matrices An ∈ RIn×Rn , Rn ≤ In, n = 1, 2, . . . ,N are

called factor matrices. A shorthand notation for the Tucker
decomposition is

X =
[[
S;A1,A2, . . . ,AN

]]
. (3)

The N -tuple (R1,R2, . . . ,RN) is called multilinear or
Tucker rank where Rn is the rank of the mode-n unfolding
matrix X(n), n = 1, 2, . . . ,N . For a matrix X as a second-
order tensor, the rank of X(1) and X(2) are the same because
X1 = XT

2 . For tensors of order higher than 2, the components
of themultilinear rank can be different [6]. Higher-order SVD
(HOSVD) [6] is a special Tucker decomposition in which
the factor matrices are orthogonal, and the core tensor S
satisfies two properties called all-orthogonality and pseudo-
diagonality [6]. It is not difficult to see that for the case
of matrices, the SVD of a matrix X can be regarded as a
special case of the HOSVD, UR6RVT

R = [[6R;UR,VR]] ≡
6R×1UR×2VR, whereUR andVR are thematrices containing
the top left and right singular vectors, respectively, and 6 is
a diagonal matrix containing the top singular values.

A. CROSS MATRIX APPROXIMATION (CMA) AND MATRIX
COLUMN SELECTION
Theory and algorithms for low-rank matrix approximation
based on a part of its individual columns and rows were first
developed in [67]. This framework for low-rank approxima-
tion of matrices is known as skeleton/cross matrix approxi-
mation. It is called cross approximation because the matrix
intersecting the columns and rows is used within the approx-
imation procedure. As we will discuss later, the procedure
of column or row selection highly affects the approximation
error. In the cross/skeleton approximation, the columns and
rows are selected in heuristic ways and using deterministic
algorithms. If the columns or rows are selected based on
random sampling techniques, this framework is often known
as randomized CUR decomposition.

Given a data matrix X ∈ RI×J , let us select R1 columns
and R2 rows from X with corresponding indices I and J ,

150812 VOLUME 9, 2021

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

FIGURE 3. Illustration of different types of slices/fibers for a 3rd order tensor [23].

FIGURE 4. Illustration of n-unfolding operator for a 3rd order tensor [23].

FIGURE 5. Illustration of CMA for low-rank matrix approximation
X ∼= CUR where U =W+ [23].

respectively. Assume that the selected columns and rows are
stored as C ∈ RI×R1 , R ∈ RJ×R2 respectively, then the
intersection submatrix is W = X(I,J) ∈ RR1×R2 , see
Figure 5. The low-rank CMA is computed as follows:

X ∼= CUR = U×1C×2R, (4)

where U ∈ RR1×R2 should be computed to yield the smallest
error. Two main motivations for using such an approximation
are
• Fast low-rank approximation
• Compression and interpretability issues in which the
factors C and R should have the same structure as the
original data matrix X.

Concerning the second motivation, note that the middle
matrix U does not necessarily preserve the structure of the
data matrix, and only C and R have this property. As a
result, for nonnegative matrices, one should distinguish this
with the nonnegative matrix factorization in which everything
should be nonnegative. However, sometimes it is desirable
that only C and R have the same structure as the origi-
nal data matrix and not the middle matrix U. For exam-
ple, for sparse data matrices, the factor matrices C and R
are sparse and a higher compression rate than SVD can be
achieved. The interpretability issue is another application of

VOLUME 9, 2021 150813

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

these techniques where the data matrix is represented as a
linear combination of individual columns, and it can be better
interpreted. The best middle matrix U in the least-squares
sense is [67]

U = C+XR+, (5)

for which the approximation is exact if rank (X) ≤

min {R1,R2}. However, this is of less practical interest
because we need to access the whole data matrix X. This
causes expensive communication costs, especially when the
data matrix is stored out-of-core and the cost of communica-
tion may exceed our main computations. An alternative and
more efficient method is to use the intersection submatrixW
and compute U = W+. The two mentioned techniques are
not necessarily equivalent, but for a data matrix with exact
rank (noiseless) in [68], the conditions under which they will
be the same are discussed. For the noisy data matrices, For-
mula (5) provides a better approximation. When the intersec-
tion submatrix is square and nonsingular, the approximation
is known as skeleton, but when it is singular, the algorithm
is called pseudo-skeleton approximation. Here, the CMA
X ∼= CW+R is used, which is computationally less expensive
than the approach using Formula (5). The first approximation
is called a two-passes algorithm, while the second is called a
single-pass algorithm. Computing the Moore-Penrose (MP)
pseudoinverse of matrices incurs instability issues, espe-
cially when they are ill-conditioned. Because of this, a well-
conditioned intersection submatrix should be selected. It is
known that the quality of the intersection submatrix quite
depends on the module of the determinant of the intersection
submatrix, which is called matrix volume.3 More precisely,
a set of columns and rows should be selected whose intersec-
tion submatrix has as much volume as possible. Clearly, this
is an NP-hard problem because we need to check the volume
of all possible intersection matrices produced by different
selections of columns on rows. However, heuristic algorithms
do exist for computing suboptimal solutions [69]–[72]. Three
known heuristic CMA algorithms are:

• Maxvol-based algorithm [48], [49]
• Cross2D algorithm [50], [51]
• Discrete Empirical Interpolatory Method (DEIM)
[52], [53].

As mentioned earlier, these selection techniques are deter-
ministic, and one should distinguish them from the random
sampling approaches [54], [73], [74] or the random projection
approaches [75], which basically are randomized algorithms.
The DEIM algorithm was first introduced in model order
reduction [76], and deals only with column selection in which
an estimation of the top right singular vectors are required,
while in the Cross2D and the maxvol-based low-rank approx-
imations, both columns, and rows are involved.

3The volume of a square matrix X is defined as |det(X)| where ‘‘det’’
denotes the matrix determinant. For the rectangular matrices, the volume is
defined as the absolute value of the product of singular values.

FIGURE 6. Illustration of the CTA based on Tucker-2 decomposition for a
3rd-order tensor ((R1, R2) denotes the Tucker-2 rank).

Remark 1: If a given matrix X is positive semi-definite,
then the CMA approach is called the Nyström method,
i.e., C = R, and has several applications in machine learning
and data science [77]–[80].

A special case of the CMA in which only columns are sam-
pled is called matrix column selection, interpolative matrix
decompositions, and in some contexts, it is also referred to
as CX decomposition. This problem is known as column
(feature) selection in the field of machine learning and data
analysis. Let X ∈ RI×J is a given data matrix and C ∈
RI×R is a matrix containing the R selected columns from the
matrix X. Then the matrix column selection is formulated as
follows

X ∼= CX̃, (6)

where C ∈ RI×R is a matrix containing the selected columns
and X̃ ∈ RR×J should be computed in such a way that the
approximate error should be as small as possible. The best
solution to the problem (6) in the least-squares (LS) sense is
X̃ = C+X, and if rank(X) = R, then this approximation is
exact, i.e., X = CC+X.

III. CROSS TENSOR APPROXIMATION (CTA)
Existing tensor decompositions such as HOSVD, CPD,
TT/TR decompositions without constraints do not preserve
the natural structure of the original data tensors, such as non-
negativity or sparsity. To solve this problem, we can impose
additional constraints or use cross-types tensor decompo-
sitions, which are based on a part of its fibers or slices
(or both of them). Here, the latter approach is taken. In the
next subsequent sections, we explain how the CMA can be
generalized to tensors.

A. CTA BASED ON FIBER SELECTION
A possible generalization of the CMA to tensors in the sense
of selecting only columns and rows can be performed based
on the Tucker-2 decomposition in which the compression is
performed only in the first and second modes. Given a 3rd
order data tensor X ∈ RI×J×K , here, the factor matrices
C ∈ RI×R1 and R ∈ RJ×R2 contain the selected columns
and rows and the middle core tensor U ∈ RR1×R2×K should
be computed to yield the smallest error (see Figure 6). The
Tucker-2 rank is accordingly defined as (R1,R2). The optimal
middle core tensor can be computed as follows

U = X×1 C+ ×2 R+.

150814 VOLUME 9, 2021

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

Natural and straightforward generalizations of the CMA
to tensors are proposed in [59], [81], and [61]. Quite similar
to the CMA in which parts of columns and rows of a given
matrix are sampled, here a set of fibers (along different
modes) are selected, and the goal is computing a Tucker
approximation based on these sampled fibers. For instance,
for 3rd-order tensors, we should sample columns, rows, and
tubes. The approach proposed in [81] is randomized, while
those proposed in [59], [61] are deterministic. These works
can be considered as the starting points of generalization of
the CMA to tensors, and in the sequel, we explain the idea
behind each of these Tucker approximations.

For noiseless data tensor, the existence of an exact Tucker
model whose factor matrices are taken from the fibers of the
original data tensor is straightforward. To be more precise,
let X be an N th-order tensor of size I1 × I2 × · · · × IN and
of Tucker rank (R1,R2, . . . ,RN). Now, if we generate any
full-rank factor matrices An ∈ RIn×Rn , n = 1, 2, . . . ,N ,
by sampling fibers in each mode and computing the core
tensor as

S = X×1 A+1 ×2 A+2 · · · ×N A+N ∈ RR1×R2×···×RN , (7)

then the obtained Tucker decomposition has the exact Tucker
rank (R1,R2, . . . ,RN). So an exact Tucker decomposition
of the tensor X whose factor matrices were taken from the
original data tensor is computed. For noisy tensors, similar
to the CMA, the accuracy of approximation depends on the
number of selected fibers and the list of sampled fibers. The
idea of sampling fibers and considering them as the factor
matrices, first was proposed in [81]. In the first step, the
factor matrices are generated, after which the core tensor is
computed through (7) as described above. This is summarized
in Algorithm 1. It is possible to sample fibers only in some
modes and not in all of them. Motivated by the matrix case
where it is possible to only select columns and not rows, in
[82] it is suggested to sample fibers only in some of themodes
and not all of them. This is considered as a generalization of
the CX matrix approximation to tensors.

B. LOW-RANK APPROXIMATIONS BASED ON
MULTILINEAR PROJECTIONS
If one needs the Tucker approximation of a data tensor for
several multilinear ranks, then formulation (7) needs passing
the original data tensor X multiple times. This burdens high
communication costs. To resolve this problem, consider the
following relation

W = X×1 81 ×2 82 · · · ×N 8N , (8)

where 8n ∈ RSn×In , n = 1, 2, . . . ,N are random matrices
preserving the structure of the data tensor X and the tensor
W ∈ RS1×S2×···×SN is the compressed or sketched tensor. For
example, for non-negative data tensors, we can use uniform
random matrices. The reduction dimension, Sn should be
selected carefully to capture the range of the unfolding matri-
ces. From the theoretical point of view, it is required to have
Sn > 2Rn, for a detailed discussion on this, see [83], [84].

Algorithm 1: The Sampling Tucker (STucker) Algo-
rithm [81]

Input : A data tensor X ∈ RI1×I2×···×IN , positive
integer numbers Rn, n = 1, 2, . . . ,N

Output: Tucker approximation
X ∼=

[[
S;A1,A2, . . . ,AN

]]
1 for n = 1, 2, . . . ,N do
2 Sample Rn Mode-n Fibers and Generate

Approximate Factor Matrix An ∈ RIn×Rn

3 end
4 Compute the Core Tensor S ∈ RR1×R2×···×RN as in (7)

Algorithm 2: The Sampling Single-Pass
Tucker (SPSTucker) Algorithm [84]

Input : A data tensor X ∈ RI1×I2×···×IN , positive
integer numbers Rn, n = 1, 2, . . . ,N

Output: Tucker approximation
X ∼=

[[
S;A1,A2, . . . ,AN

]]
1 for n = 1, 2, . . . ,N do
2 Sample Rn Mode-n Fibers in n-Th Mode and

Generate Approximate Factor Matrix An ∈ RIn×Rn

3 end
4 Compute the Core Tensor S ∈ RR1×R2×···×RN as in (10)

The size of the tensor W is smaller than the original data
tensor X and is easier to be handled. By substituting (2)
in (8) we have

W ∼= S×1 (81A1)×2 (82A2) · · · ×N (8NAN), (9)

From (9), the core tensor of the Tucker decomposition can
be computed by [83], [84]

S ∼=W×1 (81A1)
+
×2 (82A2)

+
· · · ×N (8NAN)

+, (10)

which is independent of the original data tensor X, i.e., it is
a single-pass algorithm. This procedure is summarized in
Algorithm 2. The most expensive part of Algorithm 2 is com-
puting the sketching tensorW in (9), which can be accelerated
by exploiting the structured random matrices such as sparse
random matrices [85], [86], subsampled random Fourier
transform (or SRFT) [87], [88] subsampled Hadamard trans-
forms, and sequence of Givens rotations [89].

Algorithm 2 combines sampling and multilinear random
projection techniques for tensor decomposition since in the
first step, fibers are selected based on some probability dis-
tribution (sampling step) while the compression step (8) is
performed via multilinear projection technique (random pro-
jection step). It is also possible to perform the first step by
using randomized QR decomposition [90], [91].

Another approach is based on multilinear projections,
either random or deterministic, was proposed in [92], which
generalizes the idea of Compressed Sensing (CS) [93], [94]
for data tensors. This approach, is called Multi-Linear Pro-
jection (MLProj) method, and allows one to recover some

VOLUME 9, 2021 150815

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

potentially big data tensor from a few multilinear projection
measurements when the original data tensor has a lowTucker-
rank (R1,R2, . . . ,RN) structure. More specifically, in this
method, it is assumed that the following multilinear projec-
tion measurement are available:

Z(n)
= X×1 81 · · · ×n−1 8n−1 ×n+1 8n+1 · · · ×N 8N

(11)

for n = 1, 2, . . . ,N , where 8n ∈ RRn×In . Then, an approx-
imation of the original tensor X can be obtained by the
following formula:

X ∼=W×1 Z1W+(1) · · · ×N ZNW+(N), (12)

where Zn = (Z(n))(n) and W was defined in (8). This low
Tucker-rank reconstruction is proved to be numerically stable
and robust [92]. Matrices 8n can be random (e.g., Gaussian
distributed) or deterministic. For example, by choosing 8n
as a subset of columns in the identity matrix, the obtained
projections in eq. (11) are actual fibers in mode-n of the
original data tensor. Another option is to construct matrices
8n composed by subsets of columns in the Fourier transform
matrix. In this case, the obtained measurements are fibers in
the multidimensional Fourier domain. Section IX, illustrates
how to apply the MLProj method to reconstruct cardiac fMRI
images by sub-sampling the Fourier domain, which allows a
significant speedup in signal acquisition with negligible loss
of information.

The first question regarding the sampling approaches is:
what will be the approximation error by fiber sampling
algorithms? On one side, the method based on multilinear
projections [92] is equipped with error bounds for the 2D
and 3D cases. On the other side, using the existing theory
of randomized sampling techniques on unfolding matrices,
an additive-error bound on the accuracy of the solution is
proven in [81]. It is known that the relative error accuracy
is also achievable if the leverage score probabilities are
used [54]. This idea is used in [91]. The computation of lever-
age scores is expensive because of the requirement of compu-
tation of the SVD, but fast algorithms for their computations
are proposed in [95]. The procedure of column selection can
be performed using the leverage scores sampling or the DEIM
algorithm. These techniques were studied in [91].

C. THE CROSS3D ALGORITHM
In [59], the Tucker decomposition is tackled by applying the
Cross2D algorithms to unfolding matrices, and also efficient
variants with linear complexity are developed. They use the
theory of cross-approximation of matrices to tensors, and in
particular, it is proven that if a data tensor X ∈ RI1×I2×I3

admits the following Tucker model

X = S×1 A1 ×2 A2 ×3 A3 + E,
∥∥E∥∥F = ε,

with low-rank (R1,R2,R3) where S ∈ RR1×R2×R3 , and An ∈

RIn×Rn , n = 1, 2, 3. Then it is possible to find a new Tucker
approximation whose factor matrices Ân, n = 1, 2, 3 are

taken from some fibers of the original data tensor X and
satisfying

X = Ŝ×1 Â1 ×2 Â2 ×3 Â3 + Ê,

where ∥∥Ê∥∥
∞
≤ (R1R2R3 + 2R1R2 + 2R1 + 1) ε. (13)

The above result can be easily generalized to higher-order
tensors. Later on, tighter error bounds compared to (13) were
presented in [96]. Depending on the factor matrices Ai, i =
1, 2, 3 and the core tensor S used for the approximation,
the error term

∥∥E∥∥F (expressed as the Frobenious norm),
is different. For example, in the case ofmatrices for which the
HOSVD is reduced to the SVD, it is known that the truncated
SVD,X ∼= UR6RVT

R , provides the best rankRmatrix approx-
imation, where UR and VR are the top left and right singular
vectors and 6R is a diagonal matrix containing the R largest
singular values σr , r = 1, 2, . . . ,R. To be more precise, let
X ∈ RI×J be a given data matrix with rank R < min(I , J),

then we have ‖E‖F =
(∑min(I ,J)

i=R+1 σ 2
i

)1/2
where σi, i =

R+1,R+2, . . . ,min(I , J) are the last (smallest) min(I , J)−R
nonzero singular values of the matrix X. It is clear that the
error term achieved by the truncated SVD provides a lower
bound for the CMA (4) obtained by sampling columns and
rows. However, in the case of tensors, the truncated HOSVD
does not provide the best multilinear rank approximation in
the least-squares sense while a quasi-best approximation can
be achieved [6] as follows∥∥E∥∥F ≤ √N ∥∥X− XBest

∥∥
F ,

where Xbest is the best multilinear rank approximation of the
tensor X. The error term ‖E‖F can be represented in terms of
the singular values of the unfolding matrices; see [6], [97] for
details.

The proposed algorithm in [59] for computing the Tucker
approximation with error accuracy (13) is constructive and
the idea is applying the Cross2D algorithm to unfolding
matrices sequentially (to be discussed later) and this algo-
rithm is called Cross3D. The main superiority of the Cross3D
algorithm over fiber sampling technique [81] is that it can
find a set of good fibers in a heuristic and efficient way.
This is crucial, especially when the data tensor does not
have exact Tucker rank, i.e., the data tensor is corrupted by
noise and the selection of columns affects the approximation
error. The cross approximation is able to handle this issue
by heuristically looking for good columns and rows. In the
sequel, we describe the Cross3D algorithm. For the first
unfolding matrixX(1), the following cross approximation can
be computed by applying the Cross2D algorithm to the first
unfolding matrix as

X(1) = CUR+ E1, (14)

where C ∈ RI1×R, U ∈ RR×R, R ∈ RR×I2I3 and the error
term E1 ∈ RI1×I2I3 . It is not difficult to see that each row
of the matrix R is a vectorization of a horizontal slice of the

150816 VOLUME 9, 2021

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

Algorithm 3: The Cross3D Algorithm [59]

Input : A data tensor X ∈ RI1×I2×···×IN , a Tucker rank
(R1,R2, . . . ,RN)

Output: Tucker approximation
X ∼=

[[
U;A1,A2, . . . ,AN

]]
1 Set R = X
2 z1 = [R1, I2, . . . , IN]
3 for n = 1, 2, . . . ,N do
4 [Cn,Un,Rn] = Cross2D

(
R(n),Rn

)
;

5 R = fold_n(Rn, zn)
6 R = R×n (CnUn)

7 if n < N then
8 zn+1 = [R1, . . . ,Rn, In+1, . . . , IN]
9 end
10 end
11 Set U = R
12 Set An = Cn, n = 1, 2, . . . ,N

original tensor X. Applying the n-folding operator on both
sides of (14) and using the identity (1), we have

X = R×1 (CU)+ E1,

where R = fold_1(R, [R, I2, I3]) ∈ RR×I2×I3 and E1 =

fold_1(E1, [I1, I2, I3]) ∈ RI1×I2×I3 . In the next step, a cross
approximation of the unfolding matrix R(2) ∈ RI2×RI3 is
computed as

R(2) = ĈÛR̂+ E2,

where Ĉ ∈ RI2×R, Û ∈ RR×R, R̂ ∈ RR×RI3 and the error
term E2 ∈ RI2×RI3 or equivalently

R = R̂×2
(
ĈÛ

)
+ E2, (15)

where R̂ = fold_2(R̂, [R,R, I3]) ∈ RR×R×I3 and E2 =

fold_2(E2, [R, I2, I3]) ∈ RR×I2×I3 . Finally, for the last
unfolding matrix R̂(3) ∈ RI3×R2 , we have

R̂(3) = C̃ŨR̃+ E3,

where C̃ ∈ RI3×R, Ũ ∈ RR×R, R̃ ∈ RR×R2 and the error
term E3 ∈ RR×RI3 or equivalently

R̂ = R̃×3
(
C̃Ũ

)
+ E3, (16)

where R̃ = fold_3(R̃, [R,R,R]) ∈ RR×R×R, and E3 =

fold_3(E3, [R,R, I3]) ∈ RR×R×I3 . Ignoring the error terms
in (14)-(16), and combing all terms, we have

X ∼=
(
R̃×1 U×2 Û×3 Ũ

)
×1 C×2 Ĉ×3 C̃.

Next, the core tensor can be computed as

S = R̂×1 U×2 Û×3 Ũ. (17)

This procedure is summarized in Algorithm 3.
In Algorithm 3, at each iteration, the size of unfold-

ing matrices to which the Cross2D algorithm is applied is
reduced. This is the same as the Sequentially Truncated

HOSVD (ST-HOSVD) algorithm [98] except that instead of
the SVD, the cross approximation is used. Please note that
unlike (7) where we need to access the whole data tensor,
the core tensor in the Cross3D is computed automatically in
the final step via (17). The computational complexity of the
Cross3D algorithm is O(I2R2) for I1 = I2 = I3 = I because
the size of rows in the unfolding matrices are very large.
However, each row represents a horizontal slice of the origi-
nal tensor and it can be approximated by the cross approx-
imation again. An efficient algorithm based on this with
computational complexityO(IR4) (for Tucker rank (R,R,R))
is developed in [59], where each long row is treated as a
matrix and cross approximation of it is computed. A mul-
tilevel version of Algorithm 3 is developed in [99]. The
CMA approaches can also be combined with other types of
tensor decompositions. For example, the so-called TT-cross
approximation developed in [60] is for computation of the
TT decomposition, while the algorithms developed in [100],
[101] are for the HT decomposition, which includes TT
decomposition as a special case. The TR-ALS algorithm [13]
and the CP-ALS algorithm [25] are known algorithms for
computation of the TR [13] and the CP decompositions [2],
respectively, where each iteration solves an over-determined
least-squares problem. The idea of solving the underlying
over-determined least-squares problem by sampling a part
of rows of the coefficient matrix and solving the smaller
least-squares problems, was proposed in [102] and [103],
respectively.

D. FAST SAMPLING TUCKER DECOMPOSITION (FSTD)
ALGORITHM
Now we introduce the third kind of CTA methods. For the
simplicity of presentation, we first study the 3rd-order ten-
sors and then outline generalization to higher-order tensors.
Unlike the matrices where each column and row always
intersect, columns, rows, and tubes for a 3-th order tensormay
not intersect each other. As a result, an analogous intersection
subtensor like what we have in the matrix case may not arise.
The idea in [61] is to first produce an intersection subtensor
W by sampling some indices in different modes and then
selecting some fibers. LetX ∈ RI1×I2×I3 be a given 3rd-order
tensor and I1 ⊆ I1, I2 ⊆ I2, I3 ⊆ I3, be subsets of indices
I1, I2, I3 where |I| = P1, |I2| = P2, |I3| = P3 and the
core intersection subtensor is denoted byW ∈ RP1×P2×P3 .

The question is, how to compute an approximate Tucker
decomposition for the tensor X based on the intersection
subtensorW? Motivated by the fact that

U =W×1 W+(1) ×2 W+(2) =W+WW+ =W+, (18)

which is used as the middle matrix in the CMA, it is sug-
gested [61] to compute the approximate core tensor in the
Tucker decomposition as

U = W×1 W+(1) ×2 W+(2) ×3 W+(3)

≡

[[
W;W+(1),W

+

(2),W
+

(3)

]]
. (19)

VOLUME 9, 2021 150817

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

FIGURE 7. Illustration of the FSTD algorithm for a 3rd-order low-rank
tensor. For simplicity of presentation, we assume that all fibers build up
to block sub-tensors, [23].

Algorithm 4: Fast Sampling Tucker Decomposi-
tion (FSTD) Algorithm for 3rd-Order Tensors [61]

Input : A data tensor X ∈ RI1×I2×I3 , indices
In ⊆ [In], n = 1, 2, 3

Output: Tucker approximation of the tensor X
1 Generate the Intersection SubtensorW = U (I1, I2, I3)
2 Generate the Subsampled Matrices

A1 = X(1)(:, I2, I3), A2 = X(2)(I1, :, I3) and
A3 = X(3)(I1, I2, :)

3 X ∼=
[[
W,A1W+(1),A2W+(2),A3W+(3)

]]

This is a direct generalization of (18) to 3rd-order tensors.
In view of (19), the core tensor U of the Tucker approx-
imation is of size P2P3 × P1P3 × P1P2, and as a result,
we need to sample P2P3 columns, P1P3 rows, and P1P2
tubes, see Figure 7. They should be selected in an appro-
priate way. It is shown in [61] that the corresponding factor
matrices A1 ∈ RI1×P2P3 , A2 ∈ RI2×P1P3 ,A3 ∈ RI3×P1P2

are the subsampled matrices from the unfolding matrices
X(1)(:, I2, I3), X(2)(I1, :, I3) andX(3)(I1, I2, :) respectively
and CTA can be found as

X ∼=
[[
U;A1,A2,A3

]]
≡


W;A1W+(1)︸ ︷︷ ︸

C̃1

,A2W+(2)︸ ︷︷ ︸
C̃2

,A3W+(3)︸ ︷︷ ︸
C̃3


 . (20)

The procedure of this approach is summarized as follows
• Consider indices In ∈ [In], n = 1, 2, 3 and produce
the intersection subtensorW and corresponding sampled
columns, rows, and tubes A1, A2 and A3.

• Compute the Tucker approximation (20).
We refer to this algorithm as Fast Sampling Tucker Decom-
position (FSTD) and summarize it in Algorithm 4 [61]. It is
interesting to note that the FSTD is obtained as a particu-
lar case of the MLProj method, eq. (12), when projection
matrices8n are built upon subsets of columns of the identity
matrix. A similar approach is developed in [104] in the sense
of the number of selected fibers in each mode.

This approach can be straightforwardly generalized
to higher-order tensors. The main difference between

formulas (7) and (20) is that components of factor matrices
A(n) in (7) are taken from the original data tensor X, while
this is the case for the core tensor W in (20). A draw-
back of this approach is that the number of sampling fibers
i.e., An, n = 1, 2, 3 required in each mode is relatively high,
and the matrix-matrix multiplications in (20) may be expen-
sive. As a matter of fact, the CTA forN -th order tensors needs
PN−1 fibers in each mode which still increases exponentially
with the tensor order. To resolve this issue, an adaptive algo-
rithm was suggested in [61], which is a generalization of
the Cross2D algorithm [50], [51] to tensors in the sense of
just selecting maximum absolute values of fibers while in the
Cross3D algorithm both fibers and slices are involved. This
procedure for a 3rd order tensor is described in Algorithm 5.

Note that Algorithm 5 is not a randomized algorithm
because, except Line 1, all computations are performed deter-
ministically. In contrary to other algorithms, the indices are
not given to the algorithm in advance, and they are selected
adaptively. To be more precise, let X ∈ RI×J×K be a
given data tensor and Ip =

[
i1, i2, . . . , ip

]
∈ [I], Jq =[

j1, j2, . . . , jq
]
∈ [J],Kr = [k1, k2, . . . , kr] ∈ [K] be

the indices which have been already selected. Based on the
already selected indices (Ip,Jq,Kr), let us choose a new
index to be added, for example, to the set Ip. To this end,
first the (p, q, r)-approximation is computed using the FSTD
as follows

X̂(p,q,r) =
[[
U(p,q,r);C(q,r)1 ,C(p,r)2 ,C(p,q)3

]]
,

where the core tensor U(p,q,r) is computed from the inter-
section subtensor W(p,q,r)

= X(Ip,Jq,Kr) using (19) and
C(q,r)1 = X(1)(:,Jq,Kr), C

(p,r)
2 = X(2)(Ip, :,Kr), C(p,q)3 =

X(3)(Ip,Jq, :). Then the residual is defined as

E(p,q,r) = X− X̂(p,q,r), (21)

and the index of the residual fiber E(p,q,r)(:, jq, kr), with
maximum absolute value, e.g. ip+1, is selected and added
to the index set, i.e., Ip+1 = Ip ∪ [ip+1]. Similarly new
indices can be added to the index sets Jq,Kr for which the

residual fibersE(p,q,r)(ip, :, kr) andE(p,q,r)(ip, jq, :) should be
considered, respectively. Note that the whole residual E(p,q,r)

is not necessary to be computed and only a fiber to which a
maximum component is required is calculated; see [61] for
details.

Algorithm 5 is fast for tensors of very low Tucker ranks
and its complexity increased exponentially if the Tucker rank
is large, see Table 2. It is shown in [61] that the linear
complexity is achievable and the Tucker approximation of
an N th-order tensor of size X ∈ RI1×I2×···×IN with an exact
Tucker rank (R,R, . . . ,R) can be computed just by taking R
mode-nfibers in eachmode for n = 1, 2, . . . ,N . This result is
based on a modification of the (20). In this modified version,
the indices In ⊂ [In], n = 1, 2, . . . ,N under which the inter-
section core tensorW is constructed are selected in a special
way and not randomly. More precisely, in the first step, from
each of the n-unfolding matrices (n = 1, 2, . . . ,N), R fibers

150818 VOLUME 9, 2021

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

Algorithm 5: Adaptive Fiber Selection (AFS) Algo-
rithm [61]
Input : Initial column fiber selection (j1, k1) and the

number of fibers to be selected P
Output: Indices of selected P rows/columns/tubes IP,

JP and KP
1 I0 = [] , J1 = [j1] , K1 = [k1]
2 Choose i1 as the index of Max absolute value in the

column fiber
3 I1 = I0 ∪ [i1]
4 p = 2
5 while p < P do
6 if p = 2 then
7 Choose jp as the index of Max absolute value in

Y
(
ip−1, :, kp−1

)
;

8 else
9 Choose jp as the index of Max absolute value in

E(p−1,p−1,p−1)
(
ip−1, :, kp−1

)
;

10 end
11 Jp = Jp−1 ∪

[
jp
]

12 Choose kp as the index of Max absolute value in
E(p−1,p,p−1)

(
ip−1, jp, :

)
13 Kp = Kp−1 ∪

[
jp
]

14 Choose ip as the index of Max absolute value in
E(p−1,p,p)

(
:, jp, kp

)
15 Ip = Ip−1 ∪

[
ip
]

16 p = p+ 1
17 end

in mode n (mode-n fibers) are selected and they are stored as
matricesCn ∈ RIn×R.AsR ≤ In, and in the next step, a subset
of indices In, n = 1, 2, . . . ,N , (In ⊂ [In]), is selected
for which the intersection submatrix Wn = Cn(In, :) ∈
RR×R, is nonsigular. Then it is shown that the following exact
approximation can be obtained

X =
[[
U;C1,C2, . . . ,CN

]]
,

where

U =
[[
W;W−11 ,W−12 , . . . ,W−1N

]]
, (22)

and W = X(I1, I2, . . . , IN) ∈ RR×R×R is the intersection
subtensor. Note that formulation (22) differs from the for-
mulation (19) because in the former, the unfolding matrices
W(n), n = 1, 2, 3 are used, while in the latter, the subma-
trices Wn = Cn(In, :), n = 1, 2, . . . ,N . The fibers can
be sampled using the pivoted QR decomposition applied to
the unfolding matrices X(n). More precisely, inspired by the
matrix case [90],Higher-Order Interpolatory Decomposition
(HOID) is proposed in [91], and this will be discussed in
detail in the next Section.

E. RANDOMIZED HIGHER-ORDER INTERPOLATORY
DECOMPOSITION (HOID)
The fibers can be sampled using the pivoted QR decomposi-
tion applied to the unfoldingmatricesX(n). TheHigher-Order
Interpolatory Decomposition (HOID) is developed in [91]
and is a generalization of the DEIM algorithm [90]. Given
an N th-order tensor X ∈ RI1×I2×···×IN , the pivoted QR
factorization is applied to the unfolding matrixX(n) ∈ RIn×J ,

(J =
∏
i6=n

Ii) as

X(n)5 = QR, (23)

where 5 ∈ RJ×J is a permutation matrix, and Q ∈ RIn×In is
an orthogonal matrix. The pivoted QR decomposition can be
computed using the strong rank-revealing QR (RRQR) algo-
rithm [105]. The permutationmatrix5 and the corresponding
orthogonal matrix Q are partitioned as follows

5 = [51 52] , Q = [Q1 Q2] , (24)

where 51 ∈ RJ×K , 52 ∈ RJ×(J−K), Q1 ∈

RIn×K , Q2 ∈ RIn×(In−K). Here Equation (23) can be rewrit-
ten as

X(n) [51 52] = [Q1 Q2]
[
R11 R12
0 R22

]
, (25)

where R11 ∈ RK×K , R12 ∈ RK×(In−K), R22 ∈

R(In−K)×(J−K) and 0 ∈ R(In−K)×K is a null matrix.
From (25), by straightforward computations, we have

Q(n)
≡ X(n)51 = Q1R11,

X(n)52 = Q1R12 +Q2R22 ∼= Q1R12,

if ‖R22‖2 is small enough. It can be seen that

X(n) ∼= [Q1R11, Q1R12]5T , (26)

and substituting Q1 = Q(n)R−111 in (26), we have

X(n) ∼= Q(n)FT , FT =
[
I R−111 R12

]
5T ,

which is a low-rank approximation for the matrix X(n). The
matrix Q(n) is of full-rank because it is a multiplication of
nonsingular and orthogonal matrices and can be used as an
approximation for the basis of the range of X(n). Let denote
the indices of the columns of the matrix X(n) which are
selected based on the permutation matrix4 51 as p. Then,
we have Q(n)

= X(n)(:,p) and as a result, it may not be
necessarily orthonormal. The HOID algorithm applies the
earlier procedure to all unfolding matricesX(n) and computes
the basis matrices Q(n). Afterward, the core tensor S can be
computed as follows

S = X×1Q(1)+
×2 Q(2)+

· · · ×N Q(N)+.

Algorithm 6 summarizes a deterministic algorithm that
computes the QR decomposition of unfolding matrices. A

4In MATLAB, the command [Q,R,p] = qr(X,′ vector ′) provides the
permutation of the indices of the columns of the matrix X.

VOLUME 9, 2021 150819

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

Algorithm 6: HOID Algorithm [91]

Input : A data tensor X ∈ RI1×I2×···×IN , and a
multilinear rank (R1,R2, . . . ,RN)

Output: Tucker approximation
X ∼=

[[
S;Q(1),Q(2), . . . ,Q(N)

]]
1 for n = 1, 2, . . . ,N do
2 Compute an Interpolatory Decomposition of

Unfolding Matrix X(n) ∼= Q(n)FTn {where
Q(n)
∈ RIn×Rn are columns of X(n)

}
3 end
4 Compute Core Tensor S ∈ RR1×R2×···×RN as

S ≡ X×1 Q(1)+
×2 Q(2)+

· · · ×N Q(N)+

randomized variant of this algorithm replaces randomizedQR
decomposition instead of the QR decomposition. To this end,
we should first make a reduction in the first mode of the
unfolding matrices using random projection as Y = �X(n)
where � ∈ RR+P×In (P is the oversampling parameter) is a
random matrix after which the procedure described above is
applied to the matrix Y for column the selection. It is shown
in [106] that the selected column indices of the matrix Y
can be used for the original data matrix X. More precisely,
if Y ∼= Y(:,p)FT then the indices p of the selected columns
can be used for the matrix X(n), i.e., X(n) ∼= X(n)(:,p)FT .
In Algorithm 6, firstly, the interpolatory decompositions of

all unfolding matrices X(n) are computed, and then the core
tensor is constructed. It is possible to accelerate this algorithm
using the idea of a Sequentially truncated HOSVD algo-
rithm [98] where at each iteration, the size of the unfolding
matrices is reduced. The accelerated version of Algorithm 6
based on the mentioned idea is developed in [91].

F. CTA BASED ON SLICE-FIBER SELECTION
Motivated by some applications in hyperspectral medical
image analysis and consumer recommender system analysis
where one of the modes is qualitatively different from oth-
ers, an alternative CTA is proposed in [58]. Some examples
of such datasets which have a ‘‘qualitatively different’’ or
‘‘distinguished’’ mode, are time-evolving internet graph or
a set of hyperspectrally-resolved biopsy images or user
product- product preference data for consumers [58]. The
distinguished modes in the mentioned data sets are temporal
evolution of the graph, the frequency or spectral variation in
the images, and the users, respectively.

Here, the procedure is based on slice-tube selection, see
Figure 8 for an illustrative explanation. We first briefly
describe this idea for 3rd-order tensors. Let X ∈ RI1×I2×I3 be
a given data tensor, and without loss of generality, we assume
that the last mode is qualitatively different from the others.

Given prior probability distributions for sampling frontal
slices as {pi}

I3
i=1 and tubes as {qj}

I1I2
j=1, in the first step, some

frontal slices, say L1, are sampled, and they are stored in
C ∈ RI1×I2×L1 . In the second step, we sample some tubes,

FIGURE 8. Procedure of frontal slices and tubes selections.

say L2 = R1R2 and store them in R ∈ RR1×R2×I3 , or a matrix
R ∈ RL2×I3 , (see Figure 9 (a)). The CTA is then defined as
(see Figure 9 (b))

X ∼= C×3 (UR)T , (27)

where the tensor C ∈ RI1×I2×L1 and the matrix R ∈ RL2×I3

contain the sampled frontal slices and tubes respectively. The
matrix U ∈ RL1×L2 is defined as

U = D1(D2MD1)
+D2 ∈ RL1×L2 ,

M = reshape(M, [L2,L1]),

where D1 ∈ RL1×L1 and D2 ∈ RL2×L2 are scaling diagonal
matrices corresponding to the slice and fiber sampling respec-
tively and defined as follows

(D1)tt =
1√
L1pit

, t = 1, 2, . . . ,L1,

(D2)tt =
1√
L2qit

, t = 1, 2, . . . ,L2,

where {pi}
I3
i=1 are {qj}

I1I2
j=1 are probability distributions under

which the frontal slices and fibers are sampled. This pro-
cedure is summarized in Algorithm 7. The length-squared
probability distributions defined as follows

pi =

∥∥X(:, :, i3)∥∥2F∥∥X∥∥2F , i3 = 1, 2, . . . , I3,

qj =
X(j1, j2, :)∥∥X∥∥2F , j1, j2 ∈ J1, J2 (28)

where J1 and J2 are subsets of the indices I1 and I2, are used
in [58] for selecting the slices/tubes.
Remark 2: As discussed in [63], the model (27) can be

considered as a special case of (20) when W = C and
Ai =W(i), i = 1, 2. Here,W is the intersection subtensor in
model (20), and C is a tensor containing the selected frontal
slices.

150820 VOLUME 9, 2021

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

FIGURE 9. (a) Matricization of the selected tubes, (b) Illustration of the CTA based on frontal slice and tube selection.

A generalized version of Algorithm 7 to higher-order
tensors is proposed in [58]. Here, the notion of the slab
is used which means that all modes of a given tensor are
free except one and this definition for 3rd-order tensors
reduces to the slices. Let X ∈ RI1×I2×···×IN be a given data
tensor whose n-th mode is the corresponding qualitatively
different mode. We first sample L1 slabs in the mode n
from the original data tensor X denoted by the tensor C ∈
RI1×···×In−1×L1×In+1×···×IN . In the next step, we sample L2
fibers in mode n from the original data tensor X and also L2
fibers from the sampled tensor C denoted by R ∈ RL2×In and
9 ∈ RL2×L1 respectively. Similar to the 3rd-order tensors,
the diagonal scaling matrices D1 ∈ RL1×L1 and D2 ∈ RL2×L2

are defined as follows

(D1)tt =
1√
L1pit

, t = 1, 2, . . . ,L1,

(D2)tt =
1√
L2qit

, t = 1, 2, . . . ,L2,

where {pi}
In
i=1 are {qj}

∏
k 6=n

Ik

j=1 are probability distributions under
which the slabs and fibers are sampled. Then the CTA is
defined as follows

X ∼= C×n (UR)T ,

where

U = 8(D29)
T
∈ RL1×L2 ,

and8 ∈ RL1×L1 is the best rank-L1 approximation of the MP
of the matrix H(n)HT

(n) where

H = C×n D1.

For detailed theoretical theorems and results, we refer
to [58].

IV. CTA BASED ON TUBAL PRODUCT (T-producT)
The CMA and matrix column selection can be generalized to
tensors based on the concept of t-product. We first introduce
preliminary concepts and operations related to the t-product
and then explain how to define the cross approximation using
the t-product.

Algorithm 7: CTA Based on Fiber-Slice Selection
(CTA-FS) for 3rd-Order Tensors [58]

Input : A data tensor X ∈ RI1×I2×I3 , a probability
distribution {pi}

I3
i=1, a probability distribution{

qj
}I1I2
j=1 and positive integers L1 and L2

Output: A tensor C of size I1 × I2 × L1, a matrix U of
size L1 × L2 and a matrix R of size L2 × I3

1 Select L1 Frontal Slices of Tensor X i.i.d. Trials
According to {pi}

I3
i=1 and Produce Tensor

C ∈ RI1×I2×L1 ;
2 Generate Diagonal Scaling Matrix D1 of Size L1 × L1

Where (D1)tt =
1√
L1pit

for t = 1, 2, . . . ,L1

3 Select L2 Tubes of Tensor X in L2 i.i.d. Trials According
to
{
qj
}I1I2
j=1 and Produce Unfolding Matrix R ∈ RL2×I3

4 Generate Diagonal Scaling Matrix of Size L2 × L2
Where (D2)tt =

1√
l2qjt

for t = 1, 2, . . . ,L2

5 Compute the 3rd-Order Tensor Intersecting the Sampled
Tubes and Frontal Slices as
W ∈ RR1×R2×L2 , R1R2 = L1

6 Generate MatrixW = reshape(W,L2,L1)
7 Define Matrix U = D1(D2WD1)

+D2

A. TUBAL SVD DECOMPOSITION
Tubal SVD (t-SVD) is a special kind of tensor decomposition
representing a 3rd-order tensor as a product of three 3rd-order
tensors where the middle tensor has nonzero tubes located
only in the main diagonal [15]–[17], [64], see Figure 10.
The t-SVD has found many applications in deep learn-
ing [107], [108], tensor completion [109], [110], numeri-
cal analysis [111]–[114], image reconstruction [115]. The
generalization of the t-SVD to higher-order tensors is given
in [116]. Throughout this paper for t-SVD, we only focus on
3rd-order tensors.

The number of nonzero tubes is called tubal rank. The trun-
cated t-SVD gives the best approximation in the least-squares
sense for any unitary invariant tensor norm, unlike other ten-
sor decompositions. In order to introduce the t-SVD, we first
need to present some basic definitions, such as the t-product
operation and f-diagonal tensors.

VOLUME 9, 2021 150821

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

FIGURE 10. Illustration of (a) Tubal SVD (t-SVD) and (b) truncated t-SVD
for a 3rd-order tensor.

Definition 2 (t-Product): Let X ∈ RI1×I2×I3 and Y ∈
RI2×I4×I3 , the t-product X ∗ Y ∈ RI1×I4×I3 is defined as
follows

C = X ∗ Y = fold
(
circ

(
X
)
unfold

(
Y
))
, (29)

where

circ
(
X
)
=


X(:, :, 1) X(:, :, I3) · · · X(:, :, 2)
X(:, :, 2) X(:, :, 1) · · · X(:, :, 3)

...
...

. . .
...

X(:, :, I3) X(:, :, I3 − 1) · · · X(:, :, 1)

 ,
and

unfold(Y) =


Y(:, :, 1)
Y(:, :, 2)

...

Y(:, :, I3)

 , Y = fold
(
unfold

(
Y
))
.

In view of (29), it is seen that the t-product operation is
the circular convolution operator, and because of this, it can
be easily computed through Fast Fourier Transform (FFT)
transform. More precisely, we first transform all tubes of two
tensors X, Y, into the frequency domain, and construct two
new tensors X̂ and Ŷ which are called spectral tensors. Then,

the frontal slice of the spectral tensors X̂ and Ŷ are multiplied.
Finally, we apply the Inverse FFT (IFFT) transform to all
tubes of the last tensor. This procedure is summarized in
Algorithm 8. Note that other types of tensor decompositions
in the t-product format can be computed in a similar manner.
For example, to compute the tubal QR computation of a
tensor X ∈ RI1×I2×I3 , i.e., X = Q ∗ R, we first compute
the FFT of the tensor X as

X̂ = fft(X, [], 3), (30)

and then the QR decomposition of all frontal slices of the
tensor X̂ is computed as follows

X̂(:, :, i) = Q̂(:, :, i) R̂(:, :, i).

In [117], the unitary transform matrices are used instead of
discrete Fourier transform, and it is shown that it can provide

Algorithm 8: t-Product in the Fourier Domain [15]

Input : Two data tensors Z ∈ RI1×I2×I3 , X ∈ RI2×I4×I3

Output: t-product C = Z ∗ X ∈ RI1×I4×I3

1 Ẑ = fft
(
Z, [], 3

)
2 X̂ = fft

(
X, [], 3

)
3 for i = 1, 2, . . . , I3 do
4 Ĉ (:, :, i) = Ẑ (:, :, i) X̂ (:, :, i)
5 end
6 C = ifft

(
Ĉ, [], 3

)
Algorithm 9: Truncated t-SVD [16]

Input : A data tensor X ∈ RI1×I2×I3 and target tubal
rank R

Output: UR ∈ RI1×R×I3 , SR ∈ RR×R×I3 , VR ∈

RI2×R×I3

1 X̂ = fft
(
X, [], 3

)
2 for i = 1, 2, . . . , I3 do
3 [U,S,V] = truncated_svd

(
X̂(:, :, i),R

)
4 Û (:, :, i) = U
5 Ŝ (:, :, i) = S
6 V̂ (:, :, i) = V
7 end
8 U = ifft

(
Û, [], 3

)
, S = ifft

(̂
S, [], 3

)
, V = ifft

(
V̂, [], 3

)
decomposition with a lower tubal rank. Note that (30) is
equivalent to computing the FFT of all tubes of the tensor X.
Finally, the IFFT operator is applied to the tensors Q̂ and R̂,
to compute the tensors Q and R.
Definition 3 (Transpose): Let X ∈ RI1×I2×I3 be a given

data tensor. Then the conjugate transpose of tensor X is
denoted byXT

∈ RI2×I1×I3 ,which is constructed by applying
transpose to all its frontal slices and reversing the order of
second till last transposed frontal slices.
Definition 4 (Identity Tensor): Identity tensor I ∈

RI1×I1×I3 is a tensor whose first frontal slice is an identity
matrix of size I1 × I1 and all other frontal slices are zero.
Definition 5 (Orthogonal Tensor): A tensorX ∈ RI1×I1×I3

is orthogonal (under t-product operator) if XT
∗ X =

X ∗ XT
= I.

Definition 6 (f-Diagonal Tensor): If all frontal slices of a
tensor are diagonal then the tensor is called f-diagonal.
Assume X ∈ RI1×I2×I3 , then it can be decomposed as

X = U ∗ S ∗ VT ,

where U ∈ RI1×I1×I3 , V ∈ RI2×I2×I3 are orthogonal tensors
and tensor S ∈ RI1×I2×I3 is f-diagonal.

The procedure of computation of the t-SVD for tensors in
the Fourier domain is outlined in Algorithm 9. In the next
section, we briefly introduce the matrix column selection and
CMA approaches. They are used in our subsequent cross
tensor analysis.

The MP of tensors can be defined based on the t-product
as follows, which will be used in tubal CTA.

150822 VOLUME 9, 2021

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

Algorithm 10:Computation ofMoore-Penrose Pseudoin-
verse of Tensors
Input : A data tensor X ∈ RI1×I2×I3

Output: The Moore-Penrose pseudoinverse of tensor X
1 Y = fft

(
X, [] , 3

)
2 for i = 1, 2, . . . , I3 do
3 Z(:, :, i) = Y(:, :, i)+

4 end
5 X+ = ifft

(
Z, [] , 3

)
Definition 7: Assume X ∈ RI1×I2×I3 , then the MP of the

tensor X is denoted by X+ ∈ RI2×I1×I3 and defined as a
unique tensor satisfying the next four relations

X ∗ X+ ∗ X = X, X+ ∗ X ∗ X+ = X+,(
X ∗ X+

)T
= X ∗ X+,

(
X+ ∗ X

)T
= X+ ∗ X.

Similar to other operations, the MP pseudoinverse of ten-
sors can be computed through FFT and this is described in
Algorithm 10.

B. TENSOR LATERAL SLICE SELECTION AND CTA BASED
ON TUBAL PRODUCT (T-producT)
In the framework of tubal SVD, a 3rd order data tensor in
RI1×I2×I3 is viewed as a ‘‘matrix of tubes’’ also known as
components of the ring RI3 with the addition and multiplica-
tion defined as the vector addition and circular convolution.
From this perspective, the lateral and horizontal slices are
considered two-dimensional columns and rows of a 3rd-order
tensor [62]. The ‘‘matrix of tubes’’ viewpoint leads to the
tubal SVD and corresponding tubal rank concept. Here, the
tensor variants of the CMA and matrix column selection are
called the tubal CTA and lateral slice selection, respectively.
To be precise, let X be a given 3rd-order tensor. The tubal
CTA is formulated based on t-product as follows

X ∼= C ∗ U ∗ R, (31)

where C ∈ RI1×L1×I3 and R ∈ RL2×I2×I3 are some sampled
lateral and horizontal slices of the original tensor X respec-
tively and the middle tensor U ∈ RL1×L2×I3 is computed in
such a way that the approximation (31) should be as small
as possible, see Figures 11 and 12, for graphical illustration
concerning lateral and horizontal slice selections and also
tubal CTA, respectively.

Note that similar to other CTA algorithms discussed so far,
the procedure of both lateral and horizontal slices sampling
can be performed based on prior probability distributions.5

The probability distributions used in [62] are uniform and
nonuniform (length-squared and leverage scores) distribu-
tions. Let us first consider the tubal CTA. Similar to the CMA,
the best solution for the middle tensor U in the least-squares
sense is

U = C+ ∗ X ∗ R+, (32)

5Here, various probability distributions (with/without replacement) can be
used but we will not go through the theoretical details.

FIGURE 11. Illustration of lateral and horizontal slice selections for the
tubal CTA.

FIGURE 12. Illustration of the tubal CTA for a 3rd-order tensor.

which is a straightforward generalization of the CMA [67] to
tensors. Formula (32) can be computed in the Fourier domain
and these computations are summarized in Algorithm 11.
However, it is clear that (32) needs to pass the data tensor
X once again, and this is of less practical interest for very
large-scale data tensors, especially when the data tensors do
not fit into the memory and communication between memory
and disk is expensive [75]. To solve this problem, the MP
pseudoinverse of the intersection subtensor W ∈ RL2×L1×I3 ,
which is obtained based on intersecting the sampled horizon-
tal and lateral slices, should be approximated as

U = C ∗W+ ∗ R.

It is not difficult to see that the tensor W consists of some
tubes of the original data tensor X. A similar algorithm for
computation of the tensor W, is proposed in [62] which is a
tensor generalization of that proposed for matrices in [26] but
as mentioned before the algorithms are rather sophisticated.
Algorithm 12 describes this procedure.
Remark 3: For data tensors with missing entries, an algo-

rithm is proposed in [118] for the computation of the tubal
CTA. It is a generalization of the algorithm developed in [119]
to compute the CMA of data matrices with missing entries.
Remark 4: In Algorithm 9, in Line 3, the truncated SVD

can be replaced by cross algorithms such as Cross2D,Maxvol
and sampling techniques and the resulting algorithms can
be considered as new generalizations of CTA. The idea of
sampling applied on lateral slices was used in [118].

VOLUME 9, 2021 150823

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

Algorithm 11: Two-Passes Tubal CTA (TP-TCTA)
Algorithm

Input : A data tensor X ∈ RI1×I2×I3 , positive numbers
L1, L2, probability distributions
pi, i = 1, 2, . . . , I2 and p′i, i = 1, 2, . . . , I1

Output: Tubal CTA X ∼= Z = C ∗ U ∗ R
1 Select L1 lateral slices of the tensor X based on

probability distributions pi, i = 1, 2, . . . , I2 and set
tensor C

2 Select L2 horizontal slices of the tensor X based on
probability distributions p′i, i = 1, 2, . . . , I2 and set
tensor R

3 X̂ = fft
(
X, [], 3

)
Ĉ = fft

(
C, [], 3

)
, R̂ = fft

(
R, [], 3

)
4 for i = 1, 2, . . . , I3 do
5 Û (:, :, i) = Ĉ (:, :, i)+ X̂ (:, :, i) R̂ (:, :, i)+

6 end
7 for i = 1, 2, . . . , I3 do
8 Ẑ (:, :, i) = Ĉ (:, :, i) Û (:, :, i) R̂ (:, :, i)
9 end
10 Z = ifft

(
Ẑ, [], 3

)
, U = ifft

(
Û, [], 3

)
Also, the tensor lateral slice selection based on the

t-product is formulated as follows

X ∼= C ∗ X̃, (33)

where C ∈ RI1×L×I3 is a part of lateral slices of the tensor X
and the tensor X̃ ∈ RL×I2×I3 is computed in such a way that
the reconstruction error (33) is as small as possible [62], (see
Figure 13). The best option for the tensor X̃ is

X̃ = C+ ∗ X,

which provides the best approximation in a least-squares
sense, that is∥∥X− C ∗

(
C+ ∗ X

)∥∥
F
= min

Y∈RL×I2×I3

∥∥X− C ∗ Y
∥∥
F

through a projection approximation as X ∼= C ∗ C+ ∗ X.
This procedure is summarized in Algorithm 13. Please note

that this algorithm needs to pass the original whole data tensor
X but a single-pass variant can be found in [120], which is
a direct generalization of the matrix case developed in [83].
The span of the lateral slices can be captured via random
projection [121], i.e., multiplication with random tensors,
which is equal to the linear combination of the lateral slices.
The span of the lateral slices can also be captured via the
count-sketch idea [122]. To the best of our knowledge, this
idea has not been investigated yet. Besides, all results and
algorithms discussed so far for the tubal CTA are for 3rd
order tensors and generalization of these results to N th order
tensors is possible using the theory presented in [116].

V. NUMBER OF PARAMETERS AND COMPUTATIONAL
COMPLEXITY
In this section, we compare the number of parameters of the
CTA algorithms and the associated computational complexity

FIGURE 13. Illustration of the CX approximation based on the t-product
for a 3rd-order tensor.

Algorithm 12: Fast Tubal CTA (F-TCTA) Algorithm

Input : A data tensor X ∈ RI1×I2×I3 , positive numbers
R1, R2, probability distributions
pi, i = 1, 2, . . . , I2 and p′i, i = 1, 2, . . . , I1

Output: Tubal CTA: X ∼= Z = C ∗ U ∗ R
1 Select R1 lateral slices of the tensor X based on

probability distributions pi, i = 1, 2, . . . , I2 and set
tensor C

2 Select R2 horizontal slices of the tensor X based on
probability distributions p′i, i = 1, 2, . . . , I1 and set
tensor R

3 Compute the intersection subtensorW
4 Ĉ = fft

(
C, [], 3

)
, R̂ = fft

(
R, [], 3

)
, Ŵ =

fft
(
W, [], 3

)
5 for i = 1, 2, . . . , I3 do
6 Û (:, :, i) = Ŵ (:, :, i)+

7 end
8 for i = 1, 2, . . . , I3 do
9 Ẑ (:, :, i) = Ĉ (:, :, i) Û (:, :, i) R̂ (:, :, i)
10 end
11 Z = ifft

(
Ẑ, [], 3

)
, U = ifft

(
Û, [], 3

)
required for computing them. We evaluate the performance
of the algorithms in Section IX, experimentally. For the
simplicity of presentation, we consider a 3rd order tensor
X ∈ RI×I×I and depending on the CTA model of interest,
the following ranks and parameters are considered
• (Tucker based model): R1 = R2 = R3,
• (Tubal CTA model): L1 = L2 = R,
• (Model (27)): L1 = L2 = R.
In the Tucker based model, we assume that R rows, R

columns and R tubes are selected. In the tubal CTA model,
R lateral and R horizontal slices are selected, and for the
case of lateral slice selection (model (33)) which only deals
with the lateral slice selection, R lateral slices are sampled.
In model (27), where both frontal slices and tubes should
be selected, the number of sampled slices and tubes are
the same and equal R. For the SP-STucker algorithm, the
sketching size S = (S1, S2, . . . , SN) is used where Sn >

2Rn and Rn is the nth component of the multilinear rank.6

6In our experimental results, we have used Sn = 2Kn+1 where Kn > Rn.

150824 VOLUME 9, 2021

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

TABLE 2. The number of parameters and computational complexity of different CTA methods for low multilinear rank approximation (R, R, R)
approximation, tubal rank R of a 3rd order tensor of size I × I × I . For the CTA-FS Algorithm, R frontal slices and R tubes are selected.

Algorithm 13: Lateral Slice Selection (LSS) Algorithm

Input : A data tensor X ∈ RI1×I2×I3 , a positive numbers
L, probability distribution pi, i = 1, 2, . . . , I2

Output: Low tubal-rank approximation
X ∼= Z = C ∗ C+ ∗ X

1 Select L lateral slices of the tensor X based on
probability distributions pi, i = 1, 2, . . . , I2 and set
tensor C

2 Ĉ = fft
(
C, [], 3

)
, X̂ = fft

(
X, [], 3

)
,

3 for i = 1, 2, . . . , I3 do
4 Ẑ (:, :, i) = Ĉ (:, :, i) Ĉ (:, :, i)+ X̂ (:, :, i)
5 end
6 Z = ifft

(
Ẑ, [], 3

)
The number of parameters and also computational complex-
ity of the CTA algorithms are outlined in Table 2. Note that
in order to achieve the same level of accuracy for different
CTA algorithms, the number of fibers, slices, and tubes of
the algorithms may not be the same, so the comparison made
in Table 2 is true only for the above-mentioned special case.
The complexity of SP-STucker algorithm can be higher than
the STucker algorithm but as discussed in the paper, the
former is pass-efficient while the latter needs to pass the
original data tensor for every multilinear rank. Here the cost
of communication may exceed our main computations.

VI. PASS-EFFICIENT ALGORITHMS
In the randomized framework for low-rank tensor/matrix
approximation, the whole dataset should be passed as few
times as possible and according to this, the randomized algo-
rithms are categorized to the single-pass and the multi-pass
randomized algorithms. The pass-efficient algorithms refer
to algorithms that need to access the data only a few times.
The elements of the data tensors are used in the sketching
procedure where a summary of the original large dataset is
produced to be used in the subsequent computations. More
precisely, the elements of the dataset are used to capture the
range of unfolding matrices [55], computing the probability
distribution under which the slices/fibers are selected [54],
[58]. The question is that is it possible to compute a low-rank

tensor approximation without even passing the data tensor
one time? Clearly based on the algorithms we discussed so
far, the answer is yes, and actually, in Table 3, we have
categorized the algorithms in the sense of the number of
passes they need to compute a low-rank approximation. Note
that some CTA algorithms require at least one time to access
the whole dataset, but some only need a part of the data.
The latter category is of more interest, especially when the
whole data tensor is extremely large and cannot be handled
in a single machine. It is worth mentioning that if the uniform
sampling is used for slice/tube selection within the CTA-FS
algorithm, it does not need to pass the whole data tensor,
while if the length squared probability distribution in (28) is
used, then it becomes a single-pass algorithm.

In Table 3, we have not explicitly mentioned the number
of slices and tubes to be selected in the CTA-FS algorithm
because there is not a specific definition of rank for this
decomposition.

VII. APPLICATIONS OF CTA MODELS
CTA can be potentially utilized in several applications in
which the low-rank tensor approximation is required. Such
applications include but not limited to
• Tensor completion
• Tensor Robust PCA
• Denoising
• Compressed Sensing (CS)

The idea of replacing the deterministic low-rank tensor
decomposition with the CMA counterparts reduces the com-
putational complexity of the algorithms and leads to faster
algorithms. In this section, we discuss the possibility of using
CTA methods for the three above-mentioned problems.

A. TENSOR COMPLETION
Tensor completion is the problem of recovering an incom-
plete data tensor from partially observed components and has
found several applications in recommendation systems [123],
traffic data prediction [124], [125], image processing [126],
etc. The most useful and widely used technique for matrix
completion is through the nuclear norm minimization [127],
[128], which is the tightest convex surrogate of the matrix

VOLUME 9, 2021 150825

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

TABLE 3. The number of passes required in different CTA methods for low multilinear rank approximation (R, R, R) approximation, tubal rank R of a 3rd
order tensor of size I × I × I .

rank. As mentioned before, the notion of rank is not unique
for tensors. In fact, in tensor completion problems, we use
different types of tensor decomposition and the correspond-
ing tensor ranks [129]. However, in almost all of these for-
mulations, the key operation is the computation of the SVD
of some matrices which are computationally prohibitive.
In [130]–[133], the SVD computation is replaced by the
randomized SVD, while in [119], the CMA decomposition
is used. For the tensor case, the same idea can be exploited.
For example, tubal CTA is used in [62] and [118] for tensor
completion in two different ways. In [118], the CMA was
used for low-rank approximation of the underlying matrices,
while in [62] some lateral and horizontal slices are selected.
The idea of incorporating the CMA within the framework of
different tensor completion models such as Tucker, TT/TR,
and CP decompositions is a potential topic that needs to be
further investigated.

B. ROBUST PCA
As there exist different kinds of tensor decompositions, sev-
eral different tensor RPCA (TRPCA) problems can be for-
mulated naturally. The formulation of TRPCA based on the
Tucker and the tubal tensor decomposition are introduced
in [62] and [134], [135] respectively. The main computation-
ally expensive operation involved in these formulations is
either computing the SVD or tensor decomposition of some
underlying matrices or tensors. Motivated by this bottleneck,
for the matrix RPCA, in [136], [137], the randomized SVD
for low-rank approximation is used while in [31] the CMA is
utilized where the computation of the SVD is replaced by the
CMA.

In [62], the CMA is used to find a low tubal rank approxi-
mation of the underlying data tensors.

The idea of exploiting the CMA approaches for
low-rank approximation can be analogously used in robust
TT/TR decompositions [138], and faster algorithms can be
developed.

C. DENOISING
The truncated tensor decomposition algorithms can be nat-
urally used for denoising the data tensors in a similar way

as the SVD is used for denoising the data matrices. The
deterministic algorithms for tensor decompositions can be
replaced by the randomized tensor decomposition variants,
e.g., CTA algorithms. For example, in [139], the randomized
CPD decomposition is used, while in [62], the tubal CTA
algorithm is exploited. The application of the CTA algorithms
for tensor denoising is an interesting research topic that needs
to be further investigated.

D. COMPRESSED SENSING (CS)
In recent years, Compressed Sensing (CS) technology has
accelerated signal acquisition by restricting the number of
measurements in, for example, the Fourier domain [93], [94],
[140]. This is the case ofMagnetic Resonance Imaging (MRI)
systems for medical applications where the measurements
are taken explicitly in the Fourier domain, also known as the
k-space. Here, the goal of CS is to reconstruct an image from
incomplete measurements taken in the Fourier domain. It is
interesting to note that in the MLProj reconstruction formula
(eq. (12)), when the projection matrices 8n are constructed
as collections of selected columns in the Fourier transform
matrix, then takingmeasurementsZ(n) correspond to subsam-
pling fibers in the Fourier domain. In Section IX, we illustrate
how to apply theMLProj method to recover cardiac cineMRI
data from incomplete measurements in the Fourier domain.

VIII. DISCUSSION AND FUTURE CHALLENGES
Recentlymany approaches and results, i,g., perturbation anal-
ysis, have been investigated in [68], [141], for CMA and
it is of intense interest to generalize these results to ten-
sors. For example, some of these results are generalized to
tensors in [63], [142]. The current tubal CTA algorithms
are randomized where the lateral and horizontal slices are
selected randomly. The generalization of themax-volume and
adaptive cross concepts to this type of decomposition is a
challenging topic. The CMA is used in [29] for compress-
ing fully connected layers of deep neural networks (DNNs).
Closely related works can be found in [143], where instead
of the CMA, the randomization technique is used. As the
intrinsic structure of the layers in the DNNs are in the tensor
forms, many tensor decomposition models have been used

150826 VOLUME 9, 2021

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

in which the tensor decomposition methods are utilized to
compress either fully connected or convolutional layers, for
example, see [107], [144]–[146]. Exploiting the randomized
algorithms, particularly the CTA algorithms, for compressing
layers in DNNs seems to be a perspective research direction.

In the next section, we discuss the challenges and methods
for tensor rank selection which plays a key role in the tensor
analysis.

A. TENSOR RANK SELECTION METHODS
The concept of rank in the context of tensor decomposition is
different to the one used for matrices and can take different
forms depending on the type of the used tensor decompo-
sition. For example, when using the CPD, the tensor rank
is defined as the minimum number of rank-1 tensor terms
needed to exactly represent a given data tensor. Tensor rank
selection is challenging for CPD; in fact, it is known that its
determination is NP-hard [147]. Moreover, in contrast to the
matrix case, given a CPD approximation of a data tensor,
it is not guaranteed that a reduction of the approximation
error can be achieved by increasing the number of rank-1
tensors in the CPD. However, some pragmatic procedures
have been proposed in the past, such as the core consis-
tency diagnostic (CORCONDIA) algorithm [21] and other
alternatives [148]–[150]. Fortunately, the previous difficul-
ties are not present when working with a Tucker approxima-
tion. In this case, the Tucker-rank or multilinear rank is the
tuple (R1,R2, . . . ,RN) that determines the size of the core
tensor. It is essential to highlight that the Tucker-rank can
be, in theory, computed by finding the matrix-rank of each
unfolding matrix X(n) obtained from the data tensor X. More
importantly, in this case, it is guaranteed that, given a data
tensor for which we don’t know in advance its multilinear-
rank, we can select some initial Tucker-rank and reduce the
approximation error by successively increasing the multilin-
ear rank [151]. Although themultilinear rank of a given tensor
can be computed exactly or approximated, it would require
accessing the full data tensor and involve high computational
cost. In practice, our methods use a greedy approach; in other
words, they usually start at some initial multilinear rank and
successively increase it until the approximation error is less
than some threshold ε. The tubal SVD is another decom-
position defined based on the concept of tubal tensor-tensor
multiplication. Here, the tubal rank is defined. Similar to the
Tuckermodel, computing the tubal rank is possible. The inter-
esting property of the truncated t-SVD is that it provides the
best rank approximation under any unitary invariant tensor
norm. In this paper, we studied the CTA algorithms mostly
based on the Tucker model and the tubal SVD decomposition.

IX. SIMULATIONS
In this section, we experimentally evaluate the valid-
ity and performance of the CTA algorithms discussed in
the papers. The MATLAB implementations of the algo-
rithms are accessible at https://github.com/SalmanAhmadi-
Asl/Cross_Tensor_Approximation.

FIGURE 14. Some random sample images from the COIL-100 dataset
(Object number 5, 23, 30, 48, 68, 83 under the 250 degree rotation).

All numerical simulations were performed on a cluster
computer 120Gb RAM and 48 CPUs 1.2GHz. The efficiency
and performance of algorithms were compared in terms of
compression ratio, sampling rate, relative error and running
time on real datasets.
The compression ratio is defined as

Compression ratio =
C1

C2
,

whereC1 andC2 are, respectively, the number of components
of the original data tensor and the number of the parameters
to represent a data tensor in the decomposition format. The
sampling ratio is defined as

Sampling ratio =
C3

C1
,

where C3 is the number of observed (sampled) entries in the
original data tensor. The sampling ratio is used to compare
the CTA algorithms which do not need to pass the whole data
tensor, e.g., FSTD Algorithm.

The relative error is defined as

Relative error =

∥∥X̃− X
∥∥
F∥∥X∥∥F ,

where X̃ and X are approximate and exact data tensors,
respectively. Note that in all our sampling algorithms, we use
sampling without replacement.

The PSNRs is used to assess the quality of the images
reconstructed by the algorithms, defined as

PSNR = 10 log10
(
2552/MSE

)
,

where MSE =
∥∥X− X̂

∥∥2
F /num

(
X
)
, and ‘‘num’’ denotes

the number of parameters of a given data tensor.
Example 4.1 (Real Data Compression): In this experi-

ment, we applied the CTA algorithms to compress COIL-100
dataset [152]. This data tensor consists of 7200 color images
(100 objects and 72 rotations per object, see Figure 14 for
some samples of this data tensor). The size of each image
is 128 × 128 × 3, and the whole data is represented as a
fifth-order tensor of size 128 × 128 × 3 × 100 × 72. Since
some of the CTA algorithms are applicable only for 3rd order
tensors, we first reshaped the tensor to a 3rd order tensor of
size 768 × 768 × 600, then applied the CTA algorithms to
compress it. Finally, the approximate tensors were reshaped
to the original size of the dataset. We first considered the
algorithms which only need to access a part of the data tensor,
i.e., the FSTD algorithm, the Cross3D algorithm, the AFS

VOLUME 9, 2021 150827

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

FIGURE 15. (a) Relative error comparison versus sampling ratio for the sampling CTA algorithms, (b) Running time comparison versus
sampling ratio for the sampling CTA algorithms, (c) Relative error comparison versus sampling ratio for the CTA-FS algorithm. (Type I. The
number of slices is twice the number of frontal fibers. Type II. The number of slices is five times larger than the tubes.)

algorithm, the CTA-FS algorithm, and the F-TCTA algo-
rithm. The results achieved by the naive Cross3D algorithm7

and the AFS algorithm were almost the same, and because of
this we only report the AFS algorithm.

For the FSTD algorithm, we assumed that the number of
indices that are selected in each mode are the same, and were
chosen in the range, 40, 80, 120, . . . , 360. For the AFS algo-
rithm, we assumed that the number of fibers to be selected in
each mode are the same and they were selected in the range,
50, 100, 150, . . . , 550. For the CTA-FS algorithm, we con-
sidered the uniform sampling without replacement and the
number of slices to be selected were 50, 100, 150, . . . , 500
and also, we assumed that the number of tubes is twice the
number of slices, i.e., 100, 200, 300, . . . , 1000.We found that
samplingwithout replacement ismore efficient than sampling
with replacement for the slice selection case while we did not

7Applying the Cross2D directly on the unfolding without taking into
account the second cross approximation of the reshaped form of the long
rows.

see any significant difference for the various fiber selection
scenarios.

For the F-TCTA, we found that the algorithm is sensi-
tive to the number of selected lateral/horizontal slices. Our
experiments show that when the number of lateral/horizontal
are the same or close to each other, the approximation
is relatively poor. However, as they are different (far
from each other), the results are considerably improved.
In our experiments, we used (3, 8), (5, 10), (5, 15), (10, 30),
(60, 20), (40, 90), (160, 100), (260, 200), (290, 360) where
the first/second component denotes the number of selected
lateral/horizontal slices. For each of the above assumptions,
we computed the sampling ratio, running time, and relative
errors. The relative error and running time comparisons
against sampling ratio are reported in Figures 15 (a)-(b),
respectively. From the results, we found that the AFS
/Cross3D algorithms are the most promising and accurate
CTA algorithms for computing low tensor approximation but
only when the multilinear rank is relatively small. Nonethe-
less, when the multilinear rank is large, their computational

150828 VOLUME 9, 2021

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

FIGURE 16. The quality of images reconstructed by the sampling CTA algorithms (a) CTA-FS algorithm (Uniform sampling)
(sampling ratio 0.6701 with relative error 0.1683), (b) FSTD algorithm (sampling ratio 0.7106 with relative error 0.2283),
(c) F-TCTA (sampling ratio 0.6120 with relative error 0.1168), (d) AFS algorithm (sampling ratio 0.4734 with relative error 0.0868).

complexity is exponentially increased. Note that in the case
of the CTA-FS algorithm, there is no any criterion guiding
how many slices and fibers should be selected and how their
relationship should be to achieve the optimal compression.
In our experiments, we first considered the case that the num-
ber of fibers is twice the number of slices, which might not
always be an optimal criterion. Due to this fact, we performed
a new experiment where the number of tubes to be selected
was five times larger than the number of slices. The results of
this experiment are reported in Figure 15 (c), where Type I/II
refers to the case that the number of tubes is two/five times
larger than the frontal slices. From Figure 15, it is seen that
the CTA-FS algorithm using Type II parameters achieves a
lower approximation error than Type I.

To compare the reconstruction properties and perfor-
mances of the algorithms, we first consider the CTA-FS
algorithm and select 400 frontal slices and 2000 tubes.
The sampling ratio, in this case, is 0.6701, with the corre-
sponding relative error 0.1683. We found that the CTA-FS
algorithm has a different feature than other CTA algorithms.

More precisely, it reconstructs some images of the data set
perfectly8 while the other images might be good or bad
approximated. In our experiment, a total of 4800 images
were recovered by inf PSNR. The PSNRs of the rest
2400 images reconstructed by CTA-FS algorithm can be seen
in Figure 16 (a).
For the FSTD algorithm, we assumed that the same number

of indices in each mode (equal to 320) is selected. For this
case, the sampling ratio is 0.7106 with the corresponding
relative error 0.2283. The quality of images reconstructed by
this algorithm is displayed in Figure 16 (b).
For the F-TCTA algorithm, we assumed that 270 horizontal

slices and 200 lateral slices were selected. Here, we have a
sampling ratio 0.6120 and a relative error 0.1168. The quality
of reconstructed images by this algorithm are displayed in
Figure 16 (c).
For the AFS algorithm, we assumed that 550 fibers are

selected in each mode. Here, we have a sampling ratio 0.4734

8With inf PSNR.

VOLUME 9, 2021 150829

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

FIGURE 17. Reconstructed images by the CTA algorithms for some randomly selected images, a) CTA-FS
algorithm (Length-Squared sampling) (compression ratio 1.4874 and relative error 0.1651), b) CTA-FS
algorithm (Uniform sampling) (sampling ratio 0.6701 with relative error 0.1683), c) F-TCTA algorithm
(sampling ratio 0.6120 with relative error 0.1168), d) FSTD algorithm (sampling ratio 0.7106 with relative
error 0.2283), e) AFS algorithm (sampling ratio 0.4734 with relative error 0.0868), f) STucker algorithm
(compression ratio 1.6287 and relative error 0.0740), g) LSS algorithm (compression ratio 1.6134 and relative
error 0.0740), h) TP-TCTA algorithm (compression ratio 1.6526 and relative error 0.0799).

and a relative error 0.0868. The PSNRs of the reconstructed
images using this algorithm are displayed in Figure 16 (d).

The recovered images of some samples correspond-
ing to the above-mentioned cases are visualized in
Figure 17.

In the next step, we compared the efficiency of the CTA
algorithms, which need at least one pass to all parts of the
data tensor to compute a low tensor approximation, i.e., the
STucker algorithm, the SP-STucker algorithm, the HOID
algorithm, the TP-TCTA algorithm, and the LSS algorithm.
For the STucker and HOID algorithms, we assumed that the
number of fibers to be selected in eachmodewas the same and
in the range, R = 50, 150, . . . , 600. For the LSS algorithm,
we assumed that the number of lateral slices are uniformly

sampled and are in the range, R = 10, 40, 70, . . . , 240, and
for the TP-TCTA algorithm, we assumed that the number of
lateral/horizontal slices to be selected are the same and in the
range, R = 10, 40, 70, . . . , 240. We also used the CTA-FS
algorithmwith length-squared probability distribution in (28)
as a single-pass algorithm in our experiments. We assumed
that the number of slices to be selected were in the range,
R = 50, 100, 150, . . . , 500, and the number of selected
tubes were five times larger than the number of frontal slices.
Figures 18 (a) and (b), respectively, show the probability
distribution under which the frontal slices and tubes were
selected. Note that since all the mentioned algorithms pass
the whole data tensor at least once, we compared the algo-
rithms in terms of running time and compression ratio, not

150830 VOLUME 9, 2021

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

FIGURE 18. (a) The probability distribution for frontal slice selection, (b) The probability distribution for tube selection.

FIGURE 19. (a) Relative error comparison versus sampling ratio for the pass-efficient algorithms, (b) Running time
comparison versus sampling ratio for the pass-efficient algorithms.

sampling ratio. The results are reported in Figures 19 (a)-(b).
For this dataset, the LSS algorithms achieved the best results
in terms of relative error and compression ratio, while its
computational complexity was higher.We remark that for this
dataset, the FCD-FS algorithm with length-squared probabil-
ity distribution provides almost the same performance as the
FCD-FS algorithm with the uniform sampling because from
Figures 18 (a)-(b), it is seen that the probability distribution of
slice/tube selection is approximately uniform. The potentials
of uniform sampling for image compression/approximation
was also confirmed in [153] although we confirmed that uni-
form sampling without replacement works better than the one
with replacement. In general, uniform sampling works quite
well for data with low coherence [54]. Our computer exper-
iments also confirm this. Nonetheless, the length-squared
requires a high pass cost over the data and has higher com-
putational complexity for computing the length-probability
distributions in (28).

Here, we compare the quality of the reconstructed images
by the pass-efficient algorithms. For the STucker algorithm,
we assumed that the number of fibers to be selected is the
same and equal to 600. The compression ratio was 1.6287
with the corresponding relative error 0.0740. In Figure 20 (a),
the reconstructed images (object and rotations) are displayed.
For the LSS algorithm, we sample 238 lateral slices for
which the compression ratio 1.6134 and the relative error
0.0443 were achieved. The quality of the images recon-
structed by this algorithm are displayed in Figure 20 (b). Also
for the TP-TCTA algorithm, we sampled 205 lateral slices
and 205 horizontal slices for which the compression ratio
1.6526 and relative error 0.0799 were archived. The recon-
structed images obtained by this algorithm are displayed
in Figure 20(c). For the CTA-FS algorithm, we selected
400 slices and 2000 tubes using length-squared probability
distribution (without replacement) for which the compres-
sion ratio 1.4874 and relative error 0.1651 were achieved.

VOLUME 9, 2021 150831

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

FIGURE 20. The quality of images reconstructed by the pass-efficient CTA algorithms, (a) STucker algorithm (compression ratio
1.6287 and relative error 0.0740), (b) LSS algorithm (compression ratio 1.6134 and relative error 0.0443) (c) TP-TCTA algorithm
(compression ratio 1.6526 and relative error 0.0799). (d) CTA-FS algorithm (Length Squared) (compression ratio 1.4874 and
relative error 0.1651).

FIGURE 21. (a) Relative error comparison versus the number of sampled fibers for the SP-STucker and the STucker algorithms,
(b) Running time comparison versus the number of sampled fibers for the SP-STucker and the STucker algorithms.

The reconstructed images of this experiment are displayed
in Figure 20 (d). The recovered images of some samples

corresponding to the above-mentioned cases are visualized
in Figure 17.

150832 VOLUME 9, 2021

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

FIGURE 22. Reconstruction of cine cardiac MRI from subsampling the Fourier domain throug the MultiLinar Projection (MLProj) method.

Algorithm 2 (SP-STucker) is applicable only for relatively
small multilinear rank because as we mentioned earlier, for
theoretical reasons, the sketching parameters are required
to satisfy Sn > 2Rn which means that the Tucker rank
(R1,R2, . . . ,Rn) should be small enough. We assumed that
the number of sampled fibers in each mode were the same
and in the range, R = 50, 100, . . . , 250, and the sketching
parameters were S1 = S2 = S3 = 550. We compared the
relative error of the SP-STucker and the STucker algorithms
for different numbers of sampled fibers in Figure 21 (a).
From this figure, it is visible that as soon as the number of
sampled fibers is increased, the quality of obtained results is
significantly decreased. For completeness of our simulations,
we compare the running time of SP-STucker and STucker
algorithms. To this end, note that the algorithm SP-STucker
is more efficient than the STucker algorithm in the following
two main scenarios

• The data tensor is extremely large which burdens high
communication costs.

• The low multilinear rank approximation of a tensor for
several multilinear rank is required.

Since we were able to store the data in a single machine,
we only considered the second above-mentioned scenario
and made a comparison between the SP-STucker algorithm 2
and the STucker algorithm. To this end, we considered again
the sketching parameters S1 = S2 = S3 = 500 and the
uniform multilinear rank (R,R,R) was used where R =
40, 60, 80, . . . , 260. We utilized Gaussian random matrices
with zero mean and variance 1 for computing the sketching
tensor W while they are not optimized for this computation.
This operation was themost expensive part of the SP-STucker
algorithm and took approximately 29 seconds. However,
we do not compute it again through all of our computations
for different multilinear ranks. The running time comparison

VOLUME 9, 2021 150833

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

of these algorithms are reported in Figure 21 (b). Also the
running times which are required to compute the multilinear
rank approximation of the data tensor for 13 experiments
with R = 20, 40, 60, . . . , 260, based on the STucker and
the SP-STucker algorithms were 79.34 and 62.61 seconds,
respectively. The results clearly indicate that when multiple
low multilinear rank approximation of a data is required, the
SP-STucker algorithm 2 can be considerably faster than the
STucker algorithm.
Example 4.2 Reconstruction of Cardiac MRI Images by

Sub-Sampling in the Fourier Domain): Cardiac cine Mag-
netic Resonance Imaging (MRI) allows to obtain a tem-
poral sequence of images within a single heart slice. At a
given time, an MRI equipment provides measurements in
the 2D-Fourier domain (k-space) of that single heart slice so
the images are reconstructed by applying the inverse Fourier
transform for each time. Thus, time resolution is constrained
by the scanning of the full k-space. To improve time res-
olution, it is necessary to reduce the number of measure-
ments and develop advanced processing techniques that could
allow reconstructing images from incomplete measurements
in the Fourier domain, which is the main motivation of the
theory of Compressed Sensing (CS) developed in recent
years [93], [94], [140]. CS techniques specialized in cine car-
diac imaging were then developed by designing subsampling
schemes using random Cartesian or radial trajectories in the
(kx , ky)-space [154], [155].

Here, we show how to reconstruct cine cardiacMRI images
by applying fixed masks to frontal slices in the data tensor as
shown in Figure 22(a)-left. As a baselinemethod, we consider
theMinimumEnergy reconstruction, which consists in filling
all unavailable measurements with zeros in the (kx , ky)-space
and apply the inverse Fourier transform to each frontal slice.
We can also apply the MLProj in eq. (12) by choosing projec-
tion matrices 81 and 82 as composed of the columns corre-
sponding to low-frequencies in the Fourier transform matrix;
and 83 as composed by a subset of columns in the identity
matrix, e.g. equally spaced. By doing so, it is easy to see that
the multilinear projection tensors Z(n), n = 1, 2, 3 and W
of eqs. (11) and (8), respectively, can be computed from the
available measurements as described in Fig. 22(b). Once the
projection measurements are obtained, we can approximate
the cine cardiac MRI by applying the reconstruction formula
of eq. (12) as illustrated in Fig. 22(c). Since, the obtained
reconstructed tensor has Tucker-rank (R,R,R3), we also use
a reference the best low Tucker-rank approximation which
is obtained by applying the classical High Order Orthogonal
Iteration (HOOI) algorithm [25] to the original tensor data.

In our experiments, we used a cardiac MRI data tensor
(256× 256× 25) as provided within the kt-FOCUSS demo.9

In order to have a larger tensor, we have concatenated four
replicates of this dataset along its 3rd mode thus, produc-
ing a (256 × 256 × 100) data tensor. We computed the
relative error with sampling rates in the range, [5%, 45%],

9http://bispl.weebly.com/k-t-focuss.html

FIGURE 23. Simulation results on a real cine cardiac MRI data set.

for the Min. Energy and the MLProj reconstructions using
deterministic and random masks. Deterministic masks were
generated as shown in Fig. 22(a)-left, i.e., having a cross-type
pattern every D = 4 frontal slices and a simple square
covering center frequencies for the rest of the slices. We also
randomly sampled indices around center frequencies using
a double-side exponential law in order to evaluate random
masks. The Tucker-rank of the obtained reconstruction is
(R,R,R3), where R3 = 25 and R was computed according to
the desired sampling rate. In Fig. 23(a) the obtained relative
errors versus the sampling rate are shown for all the methods
and the relative error of a Tucker approximation computed
through the HOOI algorithm on the full original data tensor is
also shown as a lower bound. It is remarkable that theMLProj
method provides very excellent results which are close to
the optimal low Tucker-rank decomposition. In Fig. 23(b),
a visual comparison of the results obtained for a sampling
rate equal to 15%, is shown. The best result was obtained
with the MLPRoj (random) reconstruction method (relative

150834 VOLUME 9, 2021

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

error = 1.3%), which provides images almost visually iden-
tical to the original ones. A remarkable characteristic of this
method is that it is very fast as it is obtained by a simple closed
formula (see Fig. 22(c))), which took only 0.3s to compute.
We also applied a state-of-the-art CS method, namely the
FOCUSS algorithm [155], using random Cartesian masks
at a sampling rate also equal to 15% but using a different
random mask for each slice in each data tensor. The obtained
reconstruction was slightly better than MLProj (relative error
= 0.6%) but visually almost indistinguishable. Such a good
result is because in FOCUSS it is assumed that we are pro-
videdwith random samples of every frontal slice of the tensor,
which could be technologically more sophisticated. More-
over, as an iterative algorithm, FOCUSS has a considerably
increased computational cost. It took about 124s to compute
the reconstruction, which is about 3 orders of magnitude
slower than the MLProj method.

X. CONCLUSION
In this paper, various deterministic and randomized algo-
rithms for computation of Cross Tensor Approxima-
tions (CTAs) were reviewed and extended. Three possible
generalizations of the matrix cross decomposition to tensors
including: CTA based on fiber selection, slice-tube selection,
and lateral-horizontal slices selection were discussed and
reviewed. Interesting graphical illustrations are exploited to
make the presentation much easier. Extensive simulations
on image compression datasets were conducted to support
and verify the validity and performance of some selected
algorithms.

ACKNOWLEDGMENT
The authors thank three anonymous reviewers for their care-
ful reading and constructive comments, which have signifi-
cantly improved the quality of the paper.

REFERENCES
[1] F. L. Hitchcock, ‘‘Multiple invariants and generalized rank of a P-way

matrix or tensor,’’ J. Math. Phys., vol. 7, nos. 1–4, pp. 39–79, Apr. 1928.
[2] F. L. Hitchcock, ‘‘The expression of a tensor or a polyadic as a sum of

products,’’ Stud. Appl. Math., vol. 6, nos. 1–4, pp. 164–189, 1927.
[3] L. R. Tucker, ‘‘Implications of factor analysis of three-way matrices

for measurement of change,’’ Problems Measuring Change, vol. 15,
pp. 122–137, Jan. 1963.

[4] L. R. Tucker, ‘‘The extension of factor analysis to three-dimensional
matrices,’’ in Contributions to Mathematical Psychology, H. Gulliksen
and N. Frederiksen, Eds. New York, NY, USA: Holt, Rinehardt, &
Winston, 1964, pp. 110–127.

[5] L. R. Tucker, ‘‘Some mathematical notes on three-mode factor analysis,’’
Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[6] L. De Lathauwer, B. De Moor, and J. Vandewalle, ‘‘A multilinear sin-
gular value decomposition,’’ SIAM J. Matrix Anal. Appl., vol. 21, no. 4,
pp. 1253–1278, 2000.

[7] L. De Lathauwer, ‘‘Decompositions of a higher-order tensor in block
terms—Part II: Definitions and uniqueness,’’ SIAM J. Matrix Anal. Appl.,
vol. 30, no. 3, pp. 1033–1066, Jan. 2008.

[8] L. De Lathauwer and D. Nion, ‘‘Decompositions of a higher-order tensor
in block terms—Part III: Alternating least squares algorithms,’’ SIAM J.
Matrix Anal. Appl., vol. 30, no. 3, pp. 1067–1083, Jan. 2008.

[9] L. De Lathauwer, ‘‘Decompositions of a higher-order tensor in block
terms—Part I: Lemmas for partitioned matrices,’’ SIAM J. Matrix Anal.
Appl., vol. 30, no. 3, pp. 1022–1032, Jan. 2008.

[10] W. Hackbusch and S. Kühn, ‘‘A new scheme for the tensor representa-
tion,’’ J. Fourier Anal. Appl., vol. 15, no. 5, pp. 706–722, Oct. 2009.

[11] L. Grasedyck, ‘‘Hierarchical singular value decomposition of tensors,’’
SIAM J. Matrix Anal. Appl., vol. 31, no. 4, pp. 2029–2054, 2010.

[12] I. V. Oseledets, ‘‘Tensor-train decomposition,’’ SIAM J. Sci. Comput.,
vol. 33, no. 5, pp. 2295–2317, Jan. 2011.

[13] Q. Zhao, G. Zhou, S. Xie, L. Zhang, and A. Cichocki, ‘‘Tensor ring
decomposition,’’ 2016, arXiv:1606.05535.

[14] M. Espig, K. K. Naraparaju, and J. Schneider, ‘‘A note on tensor chain
approximation,’’Comput. Vis. Sci., vol. 15, no. 6, pp. 331–344, Dec. 2012.

[15] M. E. Kilmer and C. D. Martin, ‘‘Factorization strategies for third-order
tensors,’’ Linear Algebra Appl., vol. 435, no. 3, pp. 641–658, 2011.

[16] M. E. Kilmer, K. Braman, N. Hao, and R. C. Hoover, ‘‘Third-order tensors
as operators onmatrices: A theoretical and computational frameworkwith
applications in imaging,’’ SIAM J. Matrix Anal. Appl., vol. 34, no. 1,
pp. 148–172, 2013.

[17] K. Braman, ‘‘Third-order tensors as linear operators on a space of matri-
ces,’’ Linear Algebra Appl., vol. 433, no. 7, pp. 1241–1253, 2010.

[18] A. Cichocki, D. Mandic, H. A. Phan, C. Caiafa, G. Zhou, Q. Zhao,
and L. De Lathauwer, ‘‘Tensor decompositions for signal processing
applications: From two-way to multiway component analysis,’’ IEEE
Signal Process. Mag., vol. 32, no. 2, pp. 145–163, Mar. 2015.

[19] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis,
and C. Faloutsos, ‘‘Tensor decomposition for signal processing and
machine learning,’’ IEEE Trans. Signal Process., vol. 65, no. 13,
pp. 3551–3582, Jan. 2017.

[20] P. Comon and C. Jutten, Handbook of Blind Source Separation: Inde-
pendent Component Analysis and Applications. New York, NY, USA:
Academic, 2010.

[21] R. Leardi, ‘‘Multi-way analysis with applications in the chemical sci-
ences, age Smilde, Rasmus bro and Paul Geladi, Wiley, Chichester,
2004, ISBN 0-471-98691-7, 381 pp,’’ J. Chemometrics, vol. 19, no. 2,
pp. 119–120, 2005.

[22] A. H. Phan and A. Cichocki, ‘‘Tensor decompositions for feature extrac-
tion and classification of high dimensional datasets,’’ IEICE Nonlinear
Theory Appl., vol. 1, no. 1, pp. 37–68, 2010.

[23] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, and
D. P. Mandic, ‘‘Tensor networks for dimensionality reduction and large-
scale optimization: Part 1 low-rank tensor decompositions,’’ Found.
Trends Mach. Learn., vol. 9, nos. 4–5, pp. 249–429, 2016.

[24] A. Cichocki, A.-H. Phan, Q. Zhao, N. Lee, I. Oseledets,M. Sugiyama, and
D. P. Mandic, ‘‘Tensor networks for dimensionality reduction and large-
scale optimization: Part 2 applications and future perspectives,’’ Found.
Trends Mach. Learn., vol. 9, no. 6, pp. 431–673, 2017.

[25] T. G. Kolda and B. W. Bader, ‘‘Tensor decompositions and applications,’’
SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009.

[26] P. Drineas, M. W. Mahoney, and S. Muthukrishnan, ‘‘Relative-error CUR
matrix decompositions,’’ SIAM J. Matrix Anal. Appl., vol. 30, no. 2,
pp. 844–881, 2008.

[27] F. G. Kuruvilla, P. J. Park, and S. L. Schreiber, ‘‘Vector algebra in the
analysis of genome-wide expression data,’’ Genome Biol., vol. 3, no. 3,
pp. 1–11, 2002.

[28] T. Yokota and A. Cichocki, ‘‘Multilinear tensor rank estimation via
sparse tucker decomposition,’’ in Proc. Joint 7th Int. Conf. Soft Comput.
Intell. Syst. (SCIS) 15th Int. Symp. Adv. Intell. Syst. (ISIS), Dec. 2014,
pp. 478–483.

[29] A. Mai, L. Tran, L. Tran, and N. Trinh, ‘‘VGG deep neural network
compression via SVD and CUR decomposition techniques,’’ in Proc. 7th
NAFOSTED Conf. Inf. Comput. Sci. (NICS), Nov. 2020, pp. 118–123.

[30] E. P. Hendryx, B. M. Rivière, D. C. Sorensen, and C. G. Rusin, ‘‘Find-
ing representative electrocardiogram beat morphologies with CUR,’’
J. Biomed. Informat., vol. 77, pp. 97–110, Jan. 2018.

[31] H. Cai, K. Hamm, L. Huang, J. Li, and T. Wang, ‘‘Rapid robust principal
component analysis: CUR accelerated inexact low rank estimation,’’
IEEE Signal Process. Lett., vol. 28, pp. 116–120, Dec. 2021.

[32] P. Drineas, R. Kannan, and M. W. Mahoney, ‘‘Fast Monte Carlo algo-
rithms for matrices I: Approximating matrix multiplication,’’ SIAM J.
Comput., vol. 36, no. 1, pp. 132–157, Jan. 2006.

[33] P. Drineas, R. Kannan, and M. W. Mahoney, ‘‘Fast Monte Carlo algo-
rithms for matrices II: Computing a low-rank approximation to a matrix,’’
SIAM J. Comput., vol. 36, no. 1, pp. 158–183, 2006.

[34] P. Drineas, R. Kannan, and M. W. Mahoney, ‘‘Fast Monte Carlo algo-
rithms for matrices III: Computing a compressed approximate matrix
decomposition,’’ SIAM J. Comput., vol. 36, no. 1, pp. 184–206, Jan. 2006.

VOLUME 9, 2021 150835

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

[35] M. W. Mahoney and P. Drineas, ‘‘CUR matrix decompositions for
improved data analysis,’’ Proc. Nat. Acad. Sci. USA, vol. 106, no. 3,
pp. 697–702, 2009.

[36] C. Li, X. Wang, W. Dong, J. Yan, Q. Liu, and H. Zha, ‘‘Joint active learn-
ing with feature selection via CUR matrix decomposition,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 41, no. 6, pp. 1382–1396, Jun. 2019.

[37] A. Aldroubi, K. Hamm, A. B. Koku, and A. Sekmen, ‘‘CUR decomposi-
tions, similaritymatrices, and subspace clustering,’’Frontiers Appl. Math.
Statist., vol. 4, p. 65, Jan. 2019.

[38] A. Frieze, R. Kannan, and S. Vempala, ‘‘Fast Monte-Carlo algorithms for
finding low-rank approximations,’’ J. ACM, vol. 51, no. 6, pp. 1025–1041,
Nov. 2004.

[39] C. Boutsidis, M. W. Mahoney, and P. Drineas, ‘‘An improved approxima-
tion algorithm for the column subset selection problem,’’ in Proc. 20th
Annu. ACM-SIAM Symp. Discrete Algorithms, Jan. 2009, pp. 968–977.

[40] C. Boutsidis, P. Drineas, and M. Magdon-Ismail, ‘‘Near-optimal column-
based matrix reconstruction,’’ SIAM J. Comput., vol. 43, no. 2,
pp. 687–717, 2014.

[41] A. Deshpande and S. Vempala, ‘‘Adaptive sampling and fast low-rank
matrix approximation,’’ in Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques. Berlin, Germany:
Springer, 2006, pp. 292–303.

[42] A. Deshpande, L. Rademacher, S. Vempala, and G. Wang, ‘‘Matrix
approximation and projective clustering via volume sampling,’’ Theory
Comput., vol. 2, no. 1, pp. 225–247, 2006.

[43] A. Deshpande and L. Rademacher, ‘‘Efficient volume sampling for
row/column subset selection,’’ in Proc. IEEE 51st Annu. Symp. Found.
Comput. Sci., Oct. 2010, pp. 329–338.

[44] V. Guruswami and A. K. Sinop, ‘‘Optimal column-based low-rank matrix
reconstruction,’’ in Proc. 23rd Annu. ACM-SIAM Symp. Discrete Algo-
rithms, Jan. 2012, pp. 1207–1214.

[45] M. Bebendorf, ‘‘Approximation of boundary element matrices,’’
Numerische Math., vol. 86, no. 4, pp. 565–589, 2000.

[46] B. Hashemi and L. N. Trefethen, ‘‘Chebfun in three dimensions,’’ SIAM
J. Sci. Comput., vol. 39, no. 5, pp. C341–C363, Jan. 2017.

[47] S. Dolgov, D. Kressner, and C. Strössner, ‘‘Functional tucker approxima-
tion using Chebyshev interpolation,’’ SIAM J. Sci. Comput., vol. 43, no. 3,
pp. A2190–A2210, Jan. 2021.

[48] S. A. Goreinov, I. V. Oseledets, D. V. Savostyanov, E. E. Tyrtyshnikov,
and N. L. Zamarashkin, ‘‘How to find a good submatrix,’’ in Matrix
Methods: Theory, Algorithms and Applications: Dedicated to theMemory
of Gene Golub. Singapore: World Scientific, 2010, pp. 247–256.

[49] S. A. Goreinov and E. E. Tyrtyshnikov, ‘‘The maximal-volume concept
in approximation by low-rank matrices,’’ Contemp. Math., vol. 280,
pp. 47–52, 2001.

[50] D. Savostyanov, ‘‘Polilinear approximation of matrices and integral equa-
tions,’’ (in Russian), Ph.D. dissertation, Dept. Math., INMRAS,Moscow,
Russia, 2006.

[51] E. Tyrtyshnikov, ‘‘Incomplete cross approximation in themosaic-skeleton
method,’’ Computing, vol. 64, no. 4, pp. 367–380, Jun. 2000.

[52] S. Chaturantabut and D. C. Sorensen, ‘‘Discrete empirical interpola-
tion for nonlinear model reduction,’’ in Proc. 48h IEEE Conf. Decis.
Control (CDC) Held Jointly With 28th Chin. Control Conf., Dec. 2009,
pp. 4316–4321.

[53] D. C. Sorensen and M. Embree, ‘‘A DEIM induced CUR factorization,’’
SIAM J. Sci. Comput., vol. 38, no. 3, pp. A1454–A1482, Jan. 2016.

[54] M.W.Mahoney, ‘‘Randomized algorithms for matrices and data,’’ Found.
Trends Mach. Learn., vol. 3, no. 2, pp. 123–224, 2011.

[55] S. Ahmadi-Asl, S. Abukhovich, M. G. Asante-Mensah, A. Cichocki,
A. H. Phan, T. Tanaka, and I. Oseledets, ‘‘Randomized algorithms for
computation of tucker decomposition and higher order SVD (HOSVD),’’
IEEE Access, vol. 9, pp. 28684–28706, 2021.

[56] S. Ahmadi-Asl, A. Cichocki, A. H. Phan, M. G. Asante-Mensah,
M. M. Ghazani, T. Tanaka, and I. Oseledets, ‘‘Randomized algorithms
for fast computation of low rank tensor ring model,’’ Mach. Learn., Sci.
Technol., vol. 2, no. 1, Dec. 2020, Art. no. 011001.

[57] L. Ma and E. Solomonik, ‘‘Fast and accurate randomized algorithms for
low-rank tensor decompositions,’’ 2021, arXiv:2104.01101.

[58] M. W. Mahoney, M. Maggioni, and P. Drineas, ‘‘Tensor-CUR decompo-
sitions for tensor-based data,’’ SIAM J. Matrix Anal. Appl., vol. 30, no. 3,
pp. 957–987, 2008.

[59] I. V. Oseledets, D. V. Savostianov, and E. E. Tyrtyshnikov, ‘‘Tucker
dimensionality reduction of three-dimensional arrays in linear time,’’
SIAM J. Matrix Anal. Appl., vol. 30, no. 3, pp. 939–956, 2008.

[60] I. Oseledets and E. Tyrtyshnikov, ‘‘TT-cross approximation for multi-
dimensional arrays,’’ Linear Algebra Appl., vol. 432, no. 1, pp. 70–88,
2010.

[61] C. F. Caiafa and A. Cichocki, ‘‘Generalizing the column–row matrix
decomposition to multi-way arrays,’’ Linear Algebra Appl., vol. 433,
no. 3, pp. 557–573, 2010.

[62] D. A. Tarzanagh and G. Michailidis, ‘‘Fast randomized algorithms for
t-product based tensor operations and decompositions with applications
to imaging data,’’ SIAM J. Imag. Sci., vol. 11, no. 4, pp. 2629–2664,
Jan. 2018.

[63] H. Cai, K. Hamm, L. Huang, and D. Needell, ‘‘Mode-wise tensor decom-
positions: Multi-dimensional generalizations of CUR decompositions,’’
2021, arXiv:2103.11037.

[64] D. F. Gleich, C. Greif, and J. M. Varah, ‘‘The power and Arnoldi methods
in an algebra of circulants,’’ Numer. Linear Algebra Appl., vol. 20, no. 5,
pp. 809–831, 2013.

[65] N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De Lathauwer.
(2016). Tensorlab User Guide. [Online]. Available: www.tensorlab.net

[66] T. G. Kolda and B. W. Bader.MATLAB Tensor Toolbox. Accessed: 2012.
[Online]. Available: http://www.tensortoolbox.org/

[67] S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin, ‘‘A the-
ory of pseudoskeleton approximations,’’ Linear Algebra Appl., vol. 261,
nos. 1–3, pp. 1–21, Aug. 1997.

[68] K. Hamm and L. Huang, ‘‘Perspectives on CUR decompositions,’’ Appl.
Comput. Harmon. Anal., vol. 48, no. 3, pp. 1088–1099, May 2020.

[69] D. Anderson, S. Du, M. Mahoney, C. Melgaard, K. Wu, and M. Gu,
‘‘Spectral gap error bounds for improving CUR matrix decomposition
and the Nyström method,’’ in Proc. Mach. Learn. Res. (PMLR), Artif.
Intell. Statist., San Diego, CA, USA, vol. 38, 2015, pp. 19–27. [Online].
Available: https://proceedings.mlr.press/v38/

[70] A. Y. Mikhalev and I. V. Oseledets, ‘‘Iterative representing set selection
for nested cross approximation,’’ Numer. Linear Algebra With Appl.,
vol. 23, no. 2, pp. 230–248, Mar. 2016.

[71] M.V. Rakhuba and I. V. Oseledets, ‘‘Fast multidimensional convolution in
low-rank tensor formats via cross approximation,’’ SIAM J. Sci. Comput.,
vol. 37, no. 2, pp. A565–A582, Jan. 2015.

[72] S. Wang and Z. Zhang, ‘‘Improving CUR matrix decomposition and the
Nyström approximation via adaptive sampling,’’ J. Mach. Learn. Res.,
vol. 14, pp. 2729–2769, Sep. 2013.

[73] R. Kannan and S. Vempala, ‘‘Randomized algorithms in numerical linear
algebra,’’ Acta Numerica, vol. 26, pp. 95–135, May 2017.

[74] D. P.Woodruff, ‘‘Sketching as a tool for numerical linear algebra,’’Found.
Trend Theor. Comput. Sci., vol. 10, no. 2, pp. 1–157, 2014.

[75] N. Halko, P. G. Martinsson, and J. A. Tropp, ‘‘Finding structure with ran-
domness: Probabilistic algorithms for constructing approximate matrix
decompositions,’’ SIAM Rev., vol. 53, no. 2, pp. 217–288, 2011.

[76] S. Chaturantabut and D. C. Sorensen, ‘‘Nonlinear model reduction via
discrete empirical interpolation,’’ SIAM J. Sci. Comput., vol. 32, no. 5,
pp. 2737–2764, 2010.

[77] S. Kumar, M. Mohri, and A. Talwalkar, ‘‘Sampling techniques for
the Nyström method method,’’ in Proc. Artif. Intell. Statist., 2009,
pp. 304–311.

[78] S. Kumar, M. Mohri, and A. Talwalkar, ‘‘Sampling methods for the Nys-
tröm method,’’ J. Mach. Learn. Res., vol. 13, pp. 981–1006, Apr. 2012.

[79] V. D. Silva and J. B. Tenenbaum, ‘‘Global versus local methods in
nonlinear dimensionality reduction,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2003, pp. 721–728.

[80] C. K. Williams and M. Seeger, ‘‘Using the Nyström method to speed
up kernel machines,’’ in Proc. Adv. Neural Inf. Process. Syst., 2001,
pp. 682–688.

[81] P. Drineas and M. W. Mahoney, ‘‘A randomized algorithm for a
tensor-based generalization of the singular value decomposition,’’ Linear
Algebra Appl., vol. 420, nos. 2–3, pp. 553–571, Jan. 2007.

[82] E. Begovic, ‘‘Hybrid CUR-type decomposition of tensors in the tucker
format,’’ 2020, arXiv:2002.01992.

[83] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, ‘‘Practical sketching
algorithms for low-rank matrix approximation,’’ SIAM J. Matrix Anal.
Appl., vol. 38, no. 4, pp. 1454–1485, Jan. 2017.

[84] Y. Sun, Y. Guo, C. Luo, J. Tropp, andM.Udell, ‘‘Low-rank tucker approx-
imation of a tensor from streaming data,’’ 2019, arXiv:1904.10951.

[85] D. Achlioptas, ‘‘Database-friendly random projections: Johnson-
Lindenstrauss with binary coins,’’ J. Comput. Syst. Sci., vol. 66, no. 4,
pp. 671–687, 2003.

150836 VOLUME 9, 2021

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

[86] P. Li, T. J. Hastie, and K. W. Church, ‘‘Very sparse random projections,’’
in Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
(KDD), 2006, pp. 287–296.

[87] F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert, ‘‘A fast randomized
algorithm for the approximation of matrices,’’ Appl. Comput. Harmon.
Anal., vol. 25, no. 3, pp. 335–366, 2008.

[88] E. Liberty, ‘‘Accelerated dense random projections,’’ Ph.D. dissertation,
Dept. Comput. Sci., Yale Univ., New Haven, CT, USA, 2009.

[89] N. Ailon and E. Liberty, ‘‘Fast dimension reduction using Rademacher
series on dual BCH codes,’’ Discrete Comput. Geometry, vol. 42, no. 4,
p. 615, Sep. 2008.

[90] G. W. Stewart, ‘‘Four algorithms for the the efficient computation of
truncated pivoted QR approximations to a sparse matrix,’’ Numerische
Math., vol. 83, no. 2, pp. 313–323, Aug. 1999.

[91] A. K. Saibaba, ‘‘HOID: Higher order interpolatory decomposition for
tensors based on tucker representation,’’ SIAM J. Matrix Anal. Appl.,
vol. 37, no. 3, pp. 1223–1249, Jan. 2016.

[92] C. F. Caiafa and A. Cichocki, ‘‘Stable, robust, and super fast recon-
struction of tensors using multi-way projections,’’ IEEE Trans. Signal
Process., vol. 63, no. 3, pp. 780–793, Feb. 2015.

[93] E. J. Candes, J. Romberg, and T. Tao, ‘‘Robust uncertainty princi-
ples: Exact signal reconstruction from highly incomplete frequency
information,’’ IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509,
Feb. 2006.

[94] D. L. Donoho, ‘‘Compressed sensing,’’ IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[95] P. Drineas, M. Magdon-Ismail, M. W. Mahoney, and D. P. Woodruff,
‘‘Fast approximation of matrix coherence and statistical leverage,’’
J. Mach. Learn. Res., vol. 13, pp. 3475–3506, Dec. 2012.

[96] S. Goreinov, ‘‘On cross approximation of multi-index arrays,’’ inDoklady
Mathematics, vol. 77. Moscow, Russia: Springer, 2008, pp. 404–406.

[97] W. Hackbusch, D. Kressner, and A. Uschmajew, ‘‘Perturbation of
higher-order singular values,’’ SIAM J. Appl. Algebra Geometry, vol. 1,
no. 1, pp. 374–387, Jan. 2017.

[98] N. Vannieuwenhoven, R. Vandebril, and K. Meerbergen, ‘‘A new trunca-
tion strategy for the higher-order singular value decomposition,’’ SIAM J.
Sci. Comput., vol. 34, no. 2, pp. A1027–A1052, Jan. 2012.

[99] H.-J. Flad, B. N. Khoromskij, D. V. Savostyanov, and E. E. Tyrtyshnikov,
‘‘Verification of the cross 3D algorithm on quantum chemistry data,’’
Russian J. Numer. Anal. Math. Model., vol. 23, no. 4, pp. 329–344,
Jan. 2008.

[100] M. Espig, L. Grasedyck, and W. Hackbusch, ‘‘Black box low tensor-rank
approximation using fiber-crosses,’’Constructive Approximation, vol. 30,
no. 3, p. 557, 2009.

[101] J. Ballani, L. Grasedyck, and M. Kluge, ‘‘Black box approximation of
tensors in hierarchical Tucker format,’’ Linear Algebra Appl., vol. 438,
no. 2, pp. 639–657, Jan. 2013.

[102] D. J. Biagioni, D. Beylkin, and G. Beylkin, ‘‘Randomized interpolative
decomposition of separated representations,’’ J. Comput. Phys., vol. 281,
pp. 116–134, Jan. 2015.

[103] O. A.Malik and S. Becker, ‘‘Fast randomizedmatrix and tensor interpola-
tive decomposition using CountSketch,’’ Adv. Comput. Math., vol. 46,
no. 6, pp. 1–28, Dec. 2020.

[104] S. Friedland, V. Mehrmann, A. Miedlar, and M. Nkengla, ‘‘Fast low rank
approximations of matrices and tensors,’’ Electron. J. Linear Algebra,
vol. 22, pp. 1031–1048, Jan. 2011.

[105] M. Gu and S. C. Eisenstat, ‘‘Efficient algorithms for computing a strong
rank-revealing QR factorization,’’ SIAM J. Sci. Comput., vol. 17, no. 4,
pp. 848–869, 1996.

[106] S. Voronin and P.-G. Martinsson, ‘‘Efficient algorithms for cur and inter-
polative matrix decompositions,’’ Adv. Comput. Math., vol. 43, no. 3,
pp. 495–516, 2017.

[107] E. Newman, L. Horesh, H. Avron, and M. Kilmer, ‘‘Stable tensor neural
networks for rapid deep learning,’’ 2018, arXiv:1811.06569.

[108] E. Newman, ‘‘A step in the right dimension: Tensor algebra and appli-
cations,’’ Ph.D. dissertation, Dept. Comput. Sci., Tufts Univ., Medford,
MA, USA, 2019.

[109] Z. Zhang and S. Aeron, ‘‘Exact tensor completion using t-SVD,’’ IEEE
Trans. Signal Process., vol. 65, no. 6, pp. 1511–1526, Mar. 2015.

[110] Z. Zhang, G. Ely, S. Aeron, N. Hao, and M. Kilmer, ‘‘Novel meth-
ods for multilinear data completion and de-noising based on tensor-
SVD,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014,
pp. 3842–3849.

[111] K. Lund, ‘‘A new block Krylov subspace framework with applications
to functions of matrices acting on multiple vectors,’’ Ph.D. dissertation,
Dept. Math., Universität Wuppertal, Fakultät Für Mathematik und Natur-
wissenschaften, Wuppertal, Germany, 2018.

[112] K. Lund, ‘‘The tensor t-function: A definition for functions of third-order
tensors,’’ Numer. Linear Algebra with Appl., vol. 27, no. 3, May 2020,
Art. no. e2288.

[113] Y. Miao, L. Qi, and Y. Wei, ‘‘Generalized tensor function via the tensor
singular value decomposition based on the T-product,’’ Linear Algebra
Appl., vol. 590, pp. 258–303, Apr. 2020.

[114] Y. Miao, L. Qi, and Y. Wei, ‘‘T-Jordan canonical form and t-Drazin
inverse based on the t-product,’’ Commun. Appl. Math. Comput., vol. 3,
pp. 201–220, Jan. 2020.

[115] S. Soltani, M. E. Kilmer, and P. C. Hansen, ‘‘A tensor-based dictionary
learning approach to tomographic image reconstruction,’’ BIT Numer.
Math., vol. 56, no. 4, pp. 1425–1454, 2016.

[116] C. D. Martin, R. Shafer, and B. LaRue, ‘‘An order-p tensor factorization
with applications in imaging,’’ SIAM J. Sci. Comput., vol. 35, no. 1,
pp. A474–A490, Jan. 2013.

[117] G. Song, M. K. Ng, and X. Zhang, ‘‘Robust tensor completion using
transformed tensor singular value decomposition,’’ Numer. Linear Alge-
bra with Appl., vol. 27, no. 3, May 2020, Art. no. e2299.

[118] L. Wang, K. Xie, T. Semong, and H. Zhou, ‘‘Missing data recovery
based on tensor-CUR decomposition,’’ IEEE Access, vol. 6, pp. 532–544,
2018.

[119] M. Xu, R. Jin, and Z.-H. Zhou, ‘‘CUR algorithm for partially observed
matrices,’’ in Proc. Int. Conf. Mach. Learn., 2015, pp. 1412–1421.

[120] L. Qi and G. Yu, ‘‘T-singular values and T-sketching for third order
tensors,’’ 2021, arXiv:2103.00976.

[121] J. Zhang, A. K. Saibaba, M. E. Kilmer, and S. Aeron, ‘‘A randomized
tensor singular value decomposition based on the t-product,’’ Numer.
Linear Algebra With Appl., vol. 25, no. 5, Oct. 2018, Art. no. e2179.

[122] O. A. Malik and S. Becker, ‘‘Low-rank Tucker decomposition of large
tensors using tensorsketch,’’ inProc. Adv. Neural Inf. Process. Syst., 2018,
pp. 10117–10127.

[123] E. Frolov and I. Oseledets, ‘‘Tensor methods and recommender systems,’’
Wiley Interdiscipl. Rev., Data Mining Knowl. Discovery, vol. 7, no. 3,
May 2017, Art. no. e1201.

[124] K. Xie, L. Wang, X. Wang, G. Xie, J. Wen, G. Zhang, J. Cao, and
D. Zhang, ‘‘Accurate recovery of internet traffic data: A sequential
tensor completion approach,’’ IEEE/ACM Trans. Netw., vol. 26, no. 2,
pp. 793–806, Apr. 2018.

[125] Y. Li, K. Yu, and X. Wu, ‘‘Efficient tensor completion for Internet traffic
data recovery,’’ in Proc. 2nd Int. Conf. Telecommun. Commun. Eng.
(ICTCE), 2018, pp. 251–257.

[126] Z. Long, Y. Liu, L. Chen, and C. Zhu, ‘‘Low rank tensor comple-
tion for multiway visual data,’’ Signal Process., vol. 155, pp. 301–316,
Feb. 2019.

[127] M. Fazel, ‘‘Matrix rank minimization with applications,’’ Ph.D. disserta-
tion, Dept. Elect. Eng., Stanford Univ., Stanford, CA, USA, 2002.

[128] B. Recht, M. Fazel, and P. A. Parrilo, ‘‘Guaranteed minimum-rank solu-
tions of linear matrix equations via nuclear norm minimization,’’ SIAM
Rev., vol. 52, no. 3, pp. 471–501, 2010.

[129] Q. Song, H. Ge, J. Caverlee, and X. Hu, ‘‘Tensor completion algorithms
in big data analytics,’’ ACM Trans. Knowl. Discovery From Data, vol. 13,
no. 1, pp. 1–48, Jan. 2019.

[130] T.-H. Oh, Y. Matsushita, Y.-W. Tai, and I. S. Kweon, ‘‘Fast random-
ized singular value thresholding for nuclear norm minimization,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 4484–4493.

[131] T.-H. Oh, Y. Matsushita, Y.-W. Tai, and I. S. Kweon, ‘‘Fast randomized
singular value thresholding for low-rank optimization,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 40, no. 2, pp. 376–391, Feb. 2018.

[132] Y. Feng, G. Zhou, Y. Qiu, and W. Sun, ‘‘Orthogonal random projection
based tensor completion for image recovery,’’ in Proc. Asia–Pacific Sig-
nal Inf. Process. Assoc. Annu. Summit Conf. (APSIPA ASC), Nov. 2018,
pp. 1350–1354.

[133] Y. Feng and G. Zhou, ‘‘Orthogonal random projection for tensor comple-
tion,’’ IET Comput. Vis., vol. 14, no. 5, pp. 233–240, Aug. 2020.

[134] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan, ‘‘Tensor
robust principal component analysis with a new tensor nuclear norm,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 4, pp. 925–938,
Jan. 2020.

VOLUME 9, 2021 150837

S. Ahmadi-Asl et al.: Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

[135] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan, ‘‘Tensor robust
principal component analysis: Exact recovery of corrupted low-rank ten-
sors via convex optimization,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2016, pp. 5249–5257.

[136] S. Liu and C. Zhang, ‘‘Randomized method for robust principal compo-
nent analysis,’’ in Proc. 2nd Int. Conf. Comput. Sci. Appl. Eng. (CSAE),
2018, p. 19.

[137] Y. Li and W. Yu, ‘‘A fast implementation of singular value threshold-
ing algorithm using recycling rank revealing randomized singular value
decomposition,’’ 2017, arXiv:1704.05528.

[138] H. Huang, Y. Liu, Z. Long, and C. Zhu, ‘‘Robust low-rank tensor
ring completion,’’ IEEE Trans. Comput. Imag., vol. 6, pp. 1117–1126,
Jul. 2020.

[139] W. Gao andM. D. Sacchi, ‘‘Random noise attenuation via the randomized
canonical polyadic decomposition,’’Geophys. Prospecting, vol. 68, no. 3,
pp. 872–891, Mar. 2020.

[140] C. F. Caiafa and A. Cichocki, ‘‘Multidimensional compressed sensing
and their applications,’’ Wiley Interdiscipl. Rev., Data Mining Knowl.
Discovery, vol. 3, no. 6, pp. 355–380, Nov. 2013.

[141] H. Cai, K. Hamm, L. Huang, and D. Needell, ‘‘Robust CUR decomposi-
tion: Theory and imaging applications,’’ 2021, arXiv:2101.05231.

[142] H. Cai, Z. Chao, L. Huang, and D. Needell, ‘‘Fast robust tensor principal
component analysis via fiber cur decomposition,’’ inProc. IEEE/CVF Int.
Conf. Comput. Vis., Oct. 2021, pp. 189–197.

[143] J. Wen, L. Yang, and C. Shen, ‘‘Fast and robust compression of deep
convolutional neural networks,’’ in Proc. Int. Conf. Artif. Neural Netw.
Cham, Switzerland: Springer, 2020, pp. 52–63.

[144] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempit-
sky, ‘‘Speeding-up convolutional neural networks using fine-tuned CP-
decomposition,’’ 2014, arXiv:1412.6553.

[145] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, ‘‘Compression
of deep convolutional neural networks for fast and low power mobile
applications,’’ 2015, arXiv:1511.06530.

[146] A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov, ‘‘Tensorizing
neural networks,’’ 2015, arXiv:1509.06569.

[147] J. Håstad, ‘‘Tensor rank is NP-complete,’’ J. Algorithms, vol. 11, no. 4,
pp. 644–654, 1990.

[148] M. E. Timmerman and H. A. Kiers, ‘‘Three-mode principal compo-
nents analysis: Choosing the numbers of components and sensitivity to
local optima,’’ Brit. J. Math. Stat. Psychol., vol. 53, no. 1, pp. 1–16,
2000.

[149] E. Ceulemans and H. A. L. Kiers, ‘‘Selecting among three-mode principal
component models of different types and complexities: A numerical
convex hull based method,’’ Brit. J. Math. Stat. Psychol., vol. 59, no. 1,
pp. 133–150, May 2006.

[150] M. Mørup and L. K. Hansen, ‘‘Automatic relevance determination for
multi-way models,’’ J. Chemometrics, vol. 23, nos. 7–8, pp. 352–363,
2009.

[151] L. De Lathauwer, ‘‘A link between the canonical decomposition in multi-
linear algebra and simultaneous matrix diagonalization,’’ SIAM J. Matrix
Anal. A., vol. 28, no. 3, pp. 642–666, 2006.

[152] S. A. Nene, S. K. Nayar, and H. Murase, ‘‘Columbia object image library
(coil-100),’’ Dept. Comput. Sci., Columbia Univ., New York, NY, USA,
Tech. Rep. CUCS-006-96, 1996.

[153] E. Drinea, P. Drineas, and P. Huggins, ‘‘A randomized singular value
decomposition algorithm for image processing applications,’’ in Proc.
8th Panhellenic Conf. Informat. Princeton, NJ, USA: Citeseer, 2001,
pp. 278–288.

[154] H. Jung, J. Park, J. Yoo, and J. C. Ye, ‘‘Radial k-t FOCUSS for
high-resolution cardiac cine MRI,’’ Magn. Reson. Med., vol. 63, no. 1,
pp. 68–78, Jan. 2010.

[155] H. Jung, K. Sung, K. S. Nayak, E. Y. Kim, and J. C. Ye,
‘‘K-t FOCUSS: A general compressed sensing framework for high res-
olution dynamic MRI,’’Magn. Reson. Med., vol. 61, no. 1, pp. 103–116,
Jan. 2009.

150838 VOLUME 9, 2021

