
Received October 1, 2021, accepted October 31, 2021, date of publication November 2, 2021, date of current version November 8, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3125008

Repot: Transferable Reinforcement Learning for
Quality-Centric Networked Monitoring in
Various Environments
YOUNGSEOK LEE 1, WOO KYUNG KIM 2, SUNG HYUN CHOI 2, IKJUN YEOM 2,
AND HONGUK WOO 2, (Member, IEEE)
1Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, South Korea
2Department of Computer Science and Engineering, Sungkyunkwan University, Suwon 16419, South Korea

Corresponding author: Honguk Woo (hwoo@skku.edu)

This work was supported in part by the Institute for Information and Communications Technology Planning and Evaluation (IITP) under
Grant 2021-0-00900 and Grant 2021-0-00875, and in part by the ICT Creative Consilience program supervised by the IITP under Grant
IITP-2020-0-01821.

ABSTRACT Collecting and monitoring data in low-latency from numerous sensing devices is one of the key
foundations in networked cyber-physical applications such as industrial process control, intelligent traffic
control, and networked robots. As the delay in data updates can degrade the quality of networked monitoring,
it is desirable to continuously maintain the optimal setting on sensing devices in terms of transmission rates
and bandwidth allocation, taking into account application requirements as well as time-varying conditions
of underlying network environments. In this paper, we adapt deep reinforcement learning (RL) to achieve a
bandwidth allocation policy in networked monitoring. We present a transferable RL model Repot in which
a policy trained in an easy-to-learn network environment can be readily adjusted in various target network
environments. Specifically, we employ flow embedding and action shaping schemes in Repot that enable the
systematic adaptation of a bandwidth allocation policy to the conditions of a target environment. Through
experiments with the NS-3 network simulator, we show that Repot achieves stable and high monitoring
performance across different network conditions, e.g., outperforming other heuristics and learning-based
solutions by 14.5∼20.8% in quality-of-experience (QoE) for a target network environment. We also demon-
strate the sample-efficient adaptation in Repot by exploiting only 6.25% of the sample amount required
for model training from scratch. We present a case study with the SUMO mobility simulator and verify the
benefits ofRepot in practical scenarios, showing performance gains over the others, e.g., 6.5% in urban-scale
and 12.6% in suburb-scale.

INDEX TERMS Networked monitoring systems, bandwidth allocation, transferable reinforcement learning,
domain adaptation, policy transfer, flow embedding, action shaping.

I. INTRODUCTION
In cyber-physical applications, sensing devices operate as
data sources of a distributed database in that each continu-
ously sends its status information to a centralized node that
evaluates application-specific queries on aggregated infor-
mation. Such a sensor-based, networked monitoring system
requires the status updates to be as timely as possible to main-
tain the high-quality in query evaluation [1]–[3]. However,
due to the nature of existing network infrastructures with

The associate editor coordinating the review of this manuscript and

approving it for publication was Eyuphan Bulut .

inherent restrictions on low-latency data communications,
it can be a challenging problem to ensure the timeliness of
status updates and information aggregation at all times from
numerous sensing devices [4].

In general, the problem has been investigated in several
fields of network systems and applications such as the age
of information (AoI) [4], [5], decision fusion [6]–[8] sensor
networks [9], [10], and Internet of Things (IoT) [11]. Exist-
ing studies have normally focused on heuristic strategies on
status updates according to given optimization objectives and
resource constraints. For example, Jiang et al. [5] addressed
AoI problems in wireless networks with dynamic channel

147280 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-5678-9344
https://orcid.org/0000-0001-6214-4171
https://orcid.org/0000-0003-2513-1982
https://orcid.org/0000-0001-7883-2905
https://orcid.org/0000-0001-6948-3440
https://orcid.org/0000-0003-4744-9211

Y. Lee et al.: Repot: Transferable RL for Quality-Centric Networked Monitoring in Various Environments

errors by exploiting the closed-formWhittle’s index [12] that
estimates status tracking accuracy and establishing a heuris-
tic strategy to configure the transmission rates of sensing
devices. At the physical network level, Ciuonzo et al. [8] pre-
sented efficient decision fusion rules over massive multiple-
input multiple-output (MIMO) in wireless sensor networks
to reduce complexity and improve energy-efficiency by
employing a widely-linear statistic [13], [14] and linear
filters.

In this paper, we take a learning-based approach for
scheduling and optimizing the data transmission and state
updates under restrictive network conditions. Deep reinforce-
ment learning (RL) has been recently considered a feasi-
ble solution to tackle complex optimization problems in the
area of various networked systems, e.g., energy optimization
in data centers [15], [16], cluster resource management in
cloud computing [17]–[19], video streaming in wireless net-
works [20], network slicing [21], [22], and others. In the same
vein as those RL-based approaches, we address the optimiza-
tion problem of status updates in networked monitoring by
formulating it as successive decisions on bandwidth alloca-
tion for multiple sensing devices, which can be modeled in a
Markov decision process (MDP) to be learned through RL.

In doing so, we propose a transferable RL model of which
the structure is tailored to the characteristics of networked
monitoring. Our proposed model is called Repot (REin-
forcement learning POlicy with Transferability). In Repot,
we train a bandwidth allocation policy in a learnable
network environment using conventional RL algorithms
(e.g., SAC [23]) and then adapt the policy according to the
conditions of a specific target network environment using
flow embedding and action shaping schemes.
The flow embedding scheme is intended to represent each

sensor data stream and its relation to the other streams on
a common vector space, rendering Repot scalable upon a
wide variety of observed network states. The action shaping
scheme is intended to decompose the action inference on
bandwidth allocation into a two-staged procedure with sev-
eral modules, by which a latent action is generated upon flow
embeddings and then its representation can be transformed
according to different conditions (e.g., underlying network
limitations or spatial characteristics of monitored objects).

These two schemes in Repot enable the rapid adaptation of
a policy optimized in an easy-to-learn source environment to
a target environment, and alleviate the difficulty in achieving
an optimal policy across a variety of network scales and envi-
ronment conditions. For example, collecting 1.6M training
samples in a network simulator requires tens or hundreds of
days (e.g., in Table 4). That required amount of samples is
estimated as a minimum to have a (non-pretrained) model
converged in a target environment based on our simulation.
In Repot, the adaptation schemes can establish a competitive
policy sample-efficiently. The learned policy enables high-
quality monitoring, showing 14.5∼20.8% higher in quality-
of-experience (QoE) than other heuristic and learning-based
methods in comparison for a given target environment

(in Figure 5). This performance benefit is achieved by the
sample efficient adaptation schemes, in which about 100K
samples are used to transfer a policy learned in a source
environment; that is only 6.25% of what can be originally
demanded for model training from scratch (e.g., 1.6M).

As such, Repot allows us not only to exploit conventional
RL algorithms to robustly establish a policy optimized in a
source environment, but also to efficiently adapt the policy to
target environments. Repot shows robust adaptation perfor-
mance, comparable to that optimized in a source environment
(i.e., within 1% margin in Figure 5).

Furthermore, we present a case study with the SUMO
(Simulation of Urban MObility) mobility simulator [24] and
demonstrate the applicability of Repot in practical network
monitoring scenarios. Repot achieves performance gains
over the other methods, e.g., 6.5% in urban-scale and 12.6%
in suburb-scale scenarios (in Figure 10).

In Repot, we focus on the modular model structure and
policy transferability in RL, which is the first attempt in the
context of networked monitoring. The main contributions of
this paper are summarized as follows.

• We present a transferable RL model Repot by which
a bandwidth allocation policy in networked monitoring
can be adapted for different network conditions.

• We develop adaptation schemes in Repot such as
flow embedding and action shaping that provide scal-
able state embedding and efficient policy adjustment,
respectively.

• We show that Repot performs competitively in both
source and target environments, compared to other
algorithms including a state-of-the-art learning model,
through various experiments with NS-3 [25] and a case
study of traffic datasets generated by SUMO [24].

The rest of the paper is organized as follows. Section II
describes the problem of networked monitoring in differ-
ent network environments and our RL-based approach to it.
Section III presents the modular structure and algorithm of
our proposed model with flow embedding and bandwidth
allocation modules, and describes the adaptation scheme
based on action shaping. Sections IV, V, and VI provide
the experiment results, the related research works, and the
conclusion, respectively. In addition, Table 1 provides a list

TABLE 1. A list of acronyms.

VOLUME 9, 2021 147281

Y. Lee et al.: Repot: Transferable RL for Quality-Centric Networked Monitoring in Various Environments

TABLE 2. A list of notations.

of acronyms used in this paper, and Table 2 summarizes
notations frequently used in three aspects (system, algorithm,
and implementation).

II. OVERALL SYSTEM
In this section, we explain the problem formulation regard-
ing the QoE assurance on networked monitoring in various
environments, and describe our approach to the problem.

A. QUALITY-CENTRIC NETWORKED MONITORING
In resource-constrained network environments, we consider a
monitoring system in which geographically distributed sens-
ing devices communicate with a server running data-driven
applications on aggregated information. The QoE achieved
by data-driven applications such as industrial process control,
intelligent traffic control, and networked robots is usually
dependent on the timeliness of status updates and aggrega-
tion. For example, a high-quality map can be created based
on real-time data streams from geographically distributed
sensing devices [26], [27].

Figure 1 briefly illustrates such a networked monitoring
system where a server employs a bandwidth allocation strat-
egy among networked sensor devices to continually ensure
high QoE in query evaluation on timely updates from devices.
Algorithm 1 represents the overall procedure in a networked
monitoring system.

Specifically, each device Di collects surrounding informa-
tion about tracked objects and sends it to a server in packets
(e.g., multi-access edge computing (MEC) systems [28]).
Timely aggregated information from all Di enables real-time

FIGURE 1. Concept of a networked monitoring system: A bandwidth
allocation strategy is employed on a server for sensor devices in a
networked monitoring system to ensure high QoE of query evaluation
over aggregated information. The strategy procedure consists of three
steps; (1) status update, (2) data-driven query evaluation, (3) bandwidth
allocation.

Algorithm 1 BW Allocation Procedure
1: while Application is working do

2: /* Step 1. Status update */

3: Sensor devices collect surrounding information

4: Each device sends the collected information (status) to the server

5: /* Step 2. Data-driven query evaluation */

6: The server evaluates a data-driven query over the aggregated informa-

tion and achieves QoE

7: /* Step 3. Bandwidth allocation */

8: A strategy on the server calculates bandwidth limit values of the sensor

devices for maximizing QoE

9: The bandwidth limit value is transmitted to each device

10: end while

monitoring for i ∈ {1, . . . ,ND}. We represent the latest
updated information at time-step t by Di as I ti and the aggre-
gated information of all Di as

I t =
(
I t1, . . . , I

t
ND

)
. (1)

In addition, we represent the real-time monitoring qual-
ity as a function QUAL that is evaluated on I t in an
application-specific way (e.g., Eq. (21)). Due to resource
limitations of underlying network systems, it is non-trivial to
alwaysmaintain I t up-to-date and achieve the optimal quality.
We assume that bandwidth is a major limited resource affect-
ing the transmission rate of sensor devices. We represent the
link capacity as LE for a network environment E and the
bandwidth allocated for Di as ai. Then, we have a resource
constraint,

∑ND
i=1 ai = A ≤ LE , and formulate an optimization

problem such as

maximize
at1,...,a

t
ND

QoE =
T−1∑
t=0

QUAL(I t ; at1, . . . , a
t
ND),

147282 VOLUME 9, 2021

Y. Lee et al.: Repot: Transferable RL for Quality-Centric Networked Monitoring in Various Environments

subject to
ND∑
i=1

ati = A ≤ LE (2)

where T denotes an entire time-step period, t denotes a
discrete time-step, and ND denotes the number of sensing
devices.

Given the formulation, we aim at achieving an RL-based
(resource) orchestrator that allocates the bandwidth limit ai of
sensing device Di to maximize the monitoring quality (QoE)
under the limited overall capacity (LE). That is, an RL-based
orchestrator takes online network status as an input state and
determines {ati }

ND
i=1 at a time-step t , receiving rewards based

on achieved QoE.
In this regard, we address the challenging problems of such

RL-based orchestrator under a variety of network conditions
in terms of scales, configurations, and observation dynam-
ics, which usually affect the performance of the orchestrator
deployed in a target environment.

B. RL-BASED ORCHESTRATION
For the optimization problem in Eq. (2), we formulate an
RL-based orchestrator in anMDPwith a tuple (S,A, p, r, γ).
AnMDP consists of a state space S, an action spaceA, a state
transition probability p : S × A × S → [0, 1], a reward
r : S × A → [0, 1], and a discount factor γ ∈ [0, 1].
We assume that S and A are continuous and p is unknown.

1) STATE
A state S is represented as

S =
{
S1, . . . ,SND

}
(3)

where Si =
[
s0i = [s01, . . . , s

0
d]

ᵀ, . . . , s−ui
]
∈ Rd×(u+1)

denotes the flow states of individual Di for d distinct features
with a history window in (u + 1) time-steps. Note that s0i
denotes the current state of device Di, and s−1i denotes its
one-step previous state.

In our implementation, we set d = 3 in that the fea-
tures include status update information, whether or not the
information varies from the last one, and timestamp, and
furthermore, we set the history size u = 3.

2) ACTION
An RL-based orchestrator determines an action a using a
φ-parameterized policy πφ upon a state S,

a =
[
a1, . . . , aND

]ᵀ (4)

where ai sets the bandwidth limit of each device Di.

3) REWARD
A reward r is calculated based on the quality function
QUAL(·). For time-step t , we have

r = QUAL(I t). (5)

C. POLICY TRANSFERABLE RL
In Repot, the flow embedding scheme is intended to rep-

resent the relation of multiple flow states in low dimensional
vectors, extracting the historical features from status updates
of sensing devices. Given the flow embedding vectors up-to-
date as input, actions on bandwidth allocation are calculated
through the action shaping scheme.

To achieve the Repot model, we employ the two-phase
model training; a base model is trained in an easy-to-learn
source environment and then its learned policy is adapted to
a target environment. Figure 2 illustrates the modular model
structure in Repot, with the flow embedding and bandwidth
allocation modules in the middle and top, respectively. It also
represents the two-phase model training, where the left part
corresponds to model training in a source environment and
the right part corresponds to fine-tuning for adaptation in a
target environment. (Phase-1) In a source environment, the
flow embedding module and the allocation function in the
bandwidth allocation module are trained to establish a gen-
eral policy on bandwidth allocation upon flow embeddings.
(Phase-2) Then, the bandwidth allocation policy optimized in
the source environment is fine-tuned to adapt to the network

FIGURE 2. Model training and adaptation in source and target
environments: The functions in the flow embedding and bandwidth
allocation modules are represented in different box patterns to clarify the
difference of (Phase-1) model training for a general bandwidth allocation
strategy in a source environment and (Phase-2) fine-tuning for
adaptation in a target environment. The dotted line boxes in blue
represent two functions trained in Phase 1, and the dotted line box in
orange represents a function fine-tuned in Phase 2.

VOLUME 9, 2021 147283

Y. Lee et al.: Repot: Transferable RL for Quality-Centric Networked Monitoring in Various Environments

Algorithm 2 (Phase-1) Model Training
1: /* Phase-1: Model training in a source environment */

2: while The training loss is not converged do

3: The flow embedding module computes flow embeddings by taking

flow states from devices

4: The allocation function determines a latent action

5: The shaping function transforms the latent action into an action

6: The training loss is calculated from objective functions

7: The parameters of the flow embeddingmodule and allocation function

are updated based on the loss to establish a general policy

8: end while

Algorithm 3 (Phase-2) Fine-Tuning
1: /* Phase-2: Fine-tuning in a target environment */

2: The parameters of flow embedding module and allocation function are

loaded

3: while The training loss is not converged do

4: The flow embedding module computes flow embeddings by taking

flow states from devices

5: The allocation function determines a latent action

6: The adjustment function determines control values

7: The shaping function shapes an action to adapt to the network condi-

tions based on the latent action and control values

8: The training loss is calculated from objective functions

9: The parameter of the adjustment function is updated based on the loss

to fine-tune the policy for a target environment

10: end while

conditions in a given target environment. This two-phase
procedure is detailed in Algorithm 2 and 3.

In Repot, the fine-tuning structure is tailored in that it
requires to update only the adjustment function while the
other trainable functions are frozen, as shown in the right part
in Figure 2. In doing so, we employ the action shaping scheme
by which a latent action is first calculated from flow embed-
dings and then the action is transformed into bandwidth limit
values according to specific network conditions.

III. POLICY TRANSFERABLE RL STRUCTURE
In this section, we describe the model structure and algo-
rithms in Repot. The flow embedding module encodes state
S t in Eq. (3) into embeddings, and the bandwidth allocation
module calculates action at in Eq. (4) from the embeddings.
In the following, we explain those modules in detail.

A. FLOW EMBEDDING
The flow embedding module EMBψ (·) with trainable model
parameters ψ consists of vectorization and self-attention
functions, and it represents each flow information from a
device in a common vector space.

1) VECTORIZATION
For each time-step t , an intermediate embedding vector
e′i based on a historical flow state Sti is obtained through

MLPψ (·), i.e.,

e′i = MLPψ
(
Sti
)
. (6)

2) RELATION EXTRACTION

Given intermediate embeddings E′ =
[
e′1, . . . , e

′
ND

]
, the

respective flow embeddings are obtained by

Et = ATTψ
(
E′
)
=
[
et1, . . . , e

t
ND

]
. (7)

In ATTψ (·), query, key, and value vectors (i.e., qi, ki, and
vi) are calculated through respective MLPs (i.e., MLPψq (·),
MLPψk (·), andMLPψv (·)). Given each vector inE

′, its respec-
tive elements are first obtained by

xi = MLPψx
(
e′i
)

(8)

for x ∈ {q, k, v}. Then, attentive weight vector wi repre-
senting the relationship between flow state Sti and the oth-
ers is obtained using the scaled dot-production of qi and[
k1, . . . ,kND

]
,

wi = Softmax
([

qᵀi · k1
√
d
, . . . ,

qᵀi · kND
√
d

])
=
[
Pr(w′1), . . . ,Pr(w

′
ND)
]ᵀ
=
[
w1, . . . ,wND

]ᵀ (9)

where Pr(w′i) =
exp(w′i)∑ND
j=1 exp(w

′
j)
. Finally, flow embedding vector

eti is obtained by (w1v1 + . . .+ wNDvND).
As described, flow embeddings encapsulate both historical

and relational features of individual flows, and represent
those on a common vector space, supporting a scalable model
structure in which a policy can be optimized in different
network scales. For further explanation, we notate the flow
embedding in a simple form combining Eq. (6) and (7).

Et = EMBψ (S t)

= ATTψ
([
MLPψ

(
St1
)
, . . . ,MLPψ

(
StND

)])
(10)

B. BANDWIDTH ALLOCATION
The bandwidth allocation module is structured based on our
design principles explained below to provide the adaptation
of a learned policy to a target environment. To mitigate
a large action space problem [29], [30] and establish fast
convergence in model training, we employ the latent action
representation. A latent action generated by a trainable func-
tion (ALLOC) upon flow embeddings is transformed accord-
ing to observed network conditions. As the latent action
space is much smaller than what is required for individual
actions for all sensor devices in terms of dimensions, it can
be effective to build the ALLOC function by model training
and to use its output for adaptation.

Furthermore, to support the adaptation in a target environ-
ment, we restructure the action transformation (that processes
the latent action output of ALLOC) into two functions such as
a non-trainable, controllable function (SHAPE) that conducts
action shaping and a trainable function (ADJUST) that sets
the control parameter values of SHAPE. That is, the ADJUST

147284 VOLUME 9, 2021

Y. Lee et al.: Repot: Transferable RL for Quality-Centric Networked Monitoring in Various Environments

function is intended to learn to calculate the optimal control
values through a small number of training samples, rendering
the latent action outputs of ALLOC well-fitted to a target
environment.

1) ALLOCATION
A latent action ãt = [ãt1, . . . , ã

t
Np]

ᵀ is obtained by

ãt = ALLOCφ1 (E
t) (11)

where each ãt corresponds to weighted values on a fixed-size
set of geographical points [p1, . . . , pNp] for Np � ND. Note
that each point is randomly placed on a 2D-grid where sens-
ing devices are located. ALLOCφ1 (·) is a φ1-parameterized
function trained by RL to induce policy πφ1 .

2) ADJUSTMENT
As described in our design principle above, each latent action
is transformed into a target-specific action. Specifically, con-
trol (parameter) values 1t

= [ãtδ, k
t
δ, v

t
δ] are first calculated

by another policy πφ2 with trainable parameters φ2, i.e.,

1t
= ADJUSTφ2 (E

t). (12)

Those control values are used in Eq. (13) below to complete
action shaping. Tominimize a search space in RL and support
the rapid adaptation, we deliberately confine the range of ãδ
within small z% of that of ã, and have z = 30% by default.

3) SHAPING
Given control values [ãtδ, k

t
δ, v

t
δ] in Eq. (12), a latent action ã

t

in Eq. (11) is transformed as

at = SHAPE(ãt + ãtδ)|k+k tδ,v+vtδ (13)

where k and v are constants, having k = 1, v = 0 by
default, and SHAPE is a non-trainable function of which
implementation is explained in Eq. (14)-(16) below.

First, intermediate values
[
a′1, . . . , a

′
ND

]
for bandwidth

limits of devices are calculated using the latent action in
Eq. (11), the control values in Eq. (12), and the inverse
distance from device Di (for i ∈ {1, . . .ND}) to a set of
geographical points [p1, . . . , pNp], i.e.,

ã′i =
NP∑
j=1

ãtj + ã
t
δ,j + ε

‖Di − pj‖k+k
t
δ + ε

, (14)

a′i =

{
ã′i, if ã′i ≥ 0.1Np,
c, otherwise.

(15)

Note that ||Di− pj|| is the distance from device Di to point
pj, and 0.1Np is a clipping threshold, ε � 1 is a small positive
constant, and c = −2 is a clipping value.
Then, action at is obtained by transforming the intermedi-

ate values calculated above, i.e.,

at = (1− v− vtδ)A · Softmax
([
a′1, . . . , a

′
ND

])
= (1− v− vtδ)A ·

[
Pr(a′1), . . . ,Pr(a

′
ND)
]ᵀ

= [at1, . . . , a
t
ND]

ᵀ (16)

where A is the overall bandwidth limit in Eq. (2). Finally,
upon receiving action ati about bandwidth allocation at time-
step t , sensing device Di modifies its configuration on the
status update rate according to ati .
In Algorithm 4, we combine all the steps involving flow

embedding and bandwidth allocation, and represent them in
a code snippet with the corresponding equations. The time
complexity is O(d · N 2

D) for the embedding dimension d and
the number of devicesND, according to the relation extraction
function in the flow embedding module at line 4.

Algorithm 4 Bandwidth Allocation
1: // 1. Observation for each historical flow state

2: Observe a flow state Sti =
[
sti , . . . , s

t−u
i

]
in Eq. (3)

3: // 2. Flow embedding using the modified self-attention function

4: Compute flow embeddings Et = EMBψ (S t) in Eq. (10)

5: // 3. Establishing a latent action

6: Determine a latent action ãt = ALLOCφ1 (E
t) in Eq. (11)

7: // 4. Adaptation for a target network environment

8: Determine control values [ãtδ, k
t
δ, v

t
δ] = ADJUSTφ2 (E

t) in Eq. (12)

9: // 5. Action shaping based on ãt and 1t
= [ãtδ, k

t
δ, v

t
δ]

10: Compute an action at = SHAPE(ãt + ãtδ)|k+k tδ ,v+vtδ in Eq. (13)

11: // 6. Bandwidth allocation for each device’s flow

12: Send a packet including the bandwidth limit value ati to device Di

C. IMPLEMENTATION
To implement the Repot model, we use the soft actor-critic
(SAC) RL algorithm [23], an off-policy RL method that
is known to effectively retain the benefits of entropy max-
imization and stability. Specifically, we employ two SAC
structures, denoted as SACm for m ∈ {1, 2}. SAC1 is used to
establish a bandwidth allocation policy in a source environ-
ment through end-to-end model training, and SAC2 is used
to adapt a learned policy by SAC1 to a given specific target
environment through sample-efficient partial model training
(fine-tuning). Accordingly, the dotted line modules in blue in
Figure 2 are all trained by SAC1, and the dotted line module
in orange is trained by SAC2.
In our implementation on SAC1, the actor includes the

model parameters ψAct and φ1, and the critic includes the
model parametersψCrit and θ1. SAC1 drives all those parame-
ters to be updated in an end-to-end training fashion. Note that
θ1 consists of two soft Q-functions which we represent in θ1,n
for n ∈ {1, 2}. The training rollout on SAC1 is described in
Algorithm 5, which corresponds to the detail implementation
of Algorithm 2 for (Phase-1) model training.

Unlike SAC1, SAC2 is tailored for fine-tuning and adap-
tation in a target environment. Accordingly, in SAC2, while
the actor includes the model parameters ψAct and φ2 and
the critic includes the model parameters ψCrit and θ2, SAC2
drives only the parameters φ2 and θ2 to be updated during its
training; the other model parameters are fixed. Same as the
two soft Q-functions of θ1, we have θ2,n for n ∈ {1, 2}. The
training rollout on SAC2 is described in Algorithm 6, which

VOLUME 9, 2021 147285

Y. Lee et al.: Repot: Transferable RL for Quality-Centric Networked Monitoring in Various Environments

Algorithm 5 Training Rollout in Phase-1
1: /* Establishing policy πφ1 by SAC1 in a source environment */

2: // Training parameter initialization

3: Initialize ψAct, ψCrit, φ1, α, θ1,n for n ∈ {1, 2}

4: θ̄1,n ← θ1,n for n ∈ {1, 2},D← ∅
5: //Model training with total time-step T and learning rate λ

6: for t ← 1 to T do

7: // Training sample store

8: for each environment step do

9: Sample ãt ∼ πφ1 (ã
t
|EMBψAct (S

t)),

Sample S t+1 ∼ ρπφ1 (S
t+1
|S t , ãt)

10: StoreD← D ∪ {(S t , ãt , r t , S t+1)}
11: end for

12: // Parameter update

13: for each gradient step do

14: // Soft Q-function and critic’s embedding module update

15: Update θ1,n ← θ1,n − λ∇̂θ1,nJ
(1,n)
Crit for n ∈ {1, 2},

ψCrit ← ψCrit − λ∇̂ψCrit

(
J (1,1)Crit + J

(1,2)
Crit

)
16: // Policy and actor’s embedding module update

17: Update φ1 ← φ1 − λ∇̂φ1J
(1)
Act, ψAct ← ψAct − λ∇̂ψActJ

(1)
Act

18: // Temperature parameter update

19: Update α← α − λ∇̂αJ
(1)
α

20: // Target soft Q-function update

21: Update θ̄1,n ← χθ1,n + (1− χ)θ̄1,n for n ∈ {1, 2}

22: end for

23: end for

corresponds to the detail implementation of Algorithm 3 for
(Phase-2) fine-tuning.

In the following, we describe several objective functions
used to train SACm, where we use the index notation m, n ∈
{1, 2} to represent each of the two SAC structures (SACm)
and the two Q-functions (Qθm,n (·)) for each SAC struc-
ture explained above, respectively. We also represent a φm-
parameterized policy as πφm , and replace ãt with 1t for
SAC2.

1) CRITIC
We optimize the soft Q-functions Qθm,n(·) and the flow
embedding module EMBψCrit(·) in Eq. (10) with the param-
eters ψCrit for policy πφm by minimizing the soft Bellman
residual,

J (m,n)Crit = E
(S t ,ãt)∼D

[
1
2

(
Qθm,n (EMBψCrit(S

t), ãt)

−

(
r t+γES t+1∼ρπφm [Vθ̄m,n (E

t+1
Crit)]

))2]
(17)

where

Vθ̄m,n(E
t+1
Crit) = E

ãt+1∼πφm

[
Qθ̄m,n(EMBψCrit (S

t+1), ãt+1)

− α logπφm (ã
t+1
|EMBψAct (S

t+1))
]
. (18)

Here,D is the replay pool, γ is the discount factor, ρπφm is
themarginals of trajectory distribution induced by policyπφm ,

Algorithm 6 Training Rollout in Phase-2
1: /* Establishing policy πφ2 by SAC2 in a target environment */

2: // Training parameter load and initialization

3: Load ψCrit, ψAct, φ1, Initialize φ2, α, θ2,n for n ∈ {1, 2}

4: θ̄2,n ← θ2,n for n ∈ {1, 2},D← ∅
5: // Fine-tuning with total time-step T ′ and learning rate λ′

6: for t ← 1 to T ′ do

7: // Training sample store

8: for each environment step do

9: Sample 1t
∼ πφ2 (1

t
|EMBψAct (S

t))|πφ1
10: Sample S t+1 ∼ ρπφ2 (S

t+1
|S t ,1t)|πφ1

11: StoreD← D ∪ {(S t ,1t , r t , S t+1)}

12: end for

13: // Parameter update

14: for each gradient step do

15: // Soft Q-function update

16: Update θ2,n ← θ2,n − λ
′
∇̂θ2,nJ

(2,n)
Crit |πφ1

for n ∈ {1, 2}

17: // Adaptation policy update

18: Update φ2 ← φ2 − λ
′
∇̂φ2J

(2)
Act|πφ1

19: // Temperature parameter update

20: Update α← α − λ′∇̂αJ
(2)
α |πφ1

21: // Target soft Q-function update

22: Update θ̄2,n ← χθ2,n + (1− χ)θ̄2,n for n ∈ {1, 2}

23: end for

24: end for

and α is the adjustable temperature parameter that controls
the stochasticity of the optimal policy [23]. θ̄m,n denotes
the parameter of a target soft Q-function, obtained as an
exponentially moving average of the soft Q-function weights.

2) ACTOR
We optimize policy πφm and the flow embedding module
EMBψAct (·) in Eq. (10) with the parametersψAct by minimiz-
ing the below objective function,

J (m)Act = E
S t∼D
εt∼N

[α logπφm (fφm (ε
t
;EMBψAct (S

t))|EMBψAct (S
t))

−QMin
θm

(EMBψCrit (S
t), fφm (ε

t
;EMBψAct(S

t)))] (19)

where fφm (ε
t
;EMBψAct (S

t)) = ãt is the neural net-
work transformation to re-parameterize the policy, εt is
a noise vector sampled from a Gaussian, and QMin

θm
(·) is

used as the minimum of the soft Q-functions for policy
gradient.

3) TEMPERATURE PARAMETER
To improve the performance and stability of the SAC algo-
rithm, we use the following objective to calculate gradients
for temperature parameter α,

J (m)α = E
ãt∼πφm

[−α logπφm (ã
t
|EMBψAct (S

t))− αH̄] (20)

where H̄ denotes the desired minimum entropy [23].

147286 VOLUME 9, 2021

Y. Lee et al.: Repot: Transferable RL for Quality-Centric Networked Monitoring in Various Environments

IV. EVALUATION
In this section, we describe the implementation of Repot,
and evaluate its performance compared to other algorithms
including a learning model based on a state-of-the-art AoI
algorithm [3] under various network conditions. We also
provide our case study with a microscopic multi-modal urban
mobility simulator.

A. LEARNING ENVIRONMENTS
In evaluation, we consider a networked monitoring system
where status updates of sensing devices are aggregated for
continual query processing. We built a simulation environ-
ment for such networked monitoring based on NS-3 [25]
v3.29, a widely used packet-level discrete-event network
simulator, and we use the ZeroMQ messaging library [31]
for asynchronous communication between the NS-3 based
simulation environment and the modules in Repot.
In networked monitoring, we focus on data-driven real-

time queries whose quality is dependent on the timeliness
of status updates. For example, a real-time traffic map is
constructed using low-latency image streams generated from
geographically distributed camera devices, where traffic con-
gestion can be estimated for autonomous vehicle naviga-
tion [32]. This networked monitoring capability is required
in a variety of data-driven applications, e.g., urban air quality
inference [33], target tracking [34].

To evaluate the quality of query processing through
QUAL(·) in Eq. (2), we use structural similarity index mea-
sure (SSIM) [35] that estimates the similarity between the
aggregated status information I τ (at the server) and the
ground truth I τTruth (at the sensing devices) at time τ within
a time-step interval.

QUAL(I t) ≈
∑
τ

SSIM(x, y) (21)

where SSIM(x, y)

=
2µxµy + ε1
µ2
xµ

2
y + ε1

+
2σxσy + ε2
σ 2
x σ

2
y + ε2

+
σxy + ε3

σ 2
x σ

2
y + ε3

.

(22)

Note that µ and σ are the mean and standard deviation of
x = I τ and y = I τTruth, and εj � 1 are small positive constants
for j ∈ {1, 2, 3}. QUAL(I t) is evaluated several times with
a uniform-random interval of [6.7, 8.3] within the time-step
interval of 33.3ms.

In our simulation tests, we construct two different wireless
network environments. Table 3 illustrates the environment
settings where the source B denotes a learning environment
and the target T denotes an adaptation and testing envi-
ronment. With these source and target environments, our
experiment aims at verifying the policy transferability in
Repot across different network conditions.
The source B is set to have easy-to-learn network condi-

tions characterized as ideal time-slotted communications [36]
with no channel access collision, no propagation loss, and no
other errors in transmission; yet given a resource constraint

TABLE 3. Experiment network conditions for source environment B and
target environment T : The default settings for T are in parentheses.

on link capacity, channel access delay and propagation
delay are modeled. The target T is set to have complex
network conditions similar to real-world deployment con-
ditions, and it is implemented using several modules in
NS-3, e.g., WiFi, network, internet, mobility modules includ-
ing NistErrorRateModel, ConstantSpeedDelayModel, and
LogDistanceLossModel.

TABLE 4. Training sample generation time (days) in source and target
environments: This was measured on a system of an Intel(R) Core(TM)
i9-10900x processor and an NVIDIA RTX 3090 GPU.

Table 4 illustrates the time in days required to generate
training samples, i.e., RL states during 1.6M time-steps,
which are used to achieve a converged model in our source
environment. In the NS-3 based target environment, model
training would take at least 36 days even for a system of
49 sensing devices, but in the source environment, it takes
less than 5 hours. This difference in training times indicates
the benefits of policy transferability across different environ-
ments. It is desirable to have a policy learned in an easy-to-
learn source environment within a reasonable training time
and to adapt the policy rapidly to target environments.

B. COMPARISON METHODS
For model training, we use SAC modules in the Stable-
baselines3 [37] and PyTorch [38] v1.5.1. In addition to our
Repot, we test several heuristic- and learning-based methods
includingARN-RL that exploits a state-of-the-art AoI-centric
algorithm [3]. Each method below determines the bandwidth
limit (or the transmission rate) ati of device Di at time-step t .

VOLUME 9, 2021 147287

Y. Lee et al.: Repot: Transferable RL for Quality-Centric Networked Monitoring in Various Environments

• Uniform. All devices have an equally distributed band-
width limit at . This method is used to set the reference
performance for comparison.

• Random. Each device is assigned a randomly dis-
tributed at at every time-step.

• Top-Opt. K in Top-K is set to be optimal for a given
environment. In Top-K , the top K% ranked devices
share a common bandwidth margin, e.g., Top-20 allows
the top 20% ranked devices to have A

20 where A is the
overall bandwidth limit. The ranking score of device
Di is calculated based on the total number of objects
captured by those devices close toDi within range r , i.e.,

SCORE(Di) =
ND∑
j=1

OB(I tj) s.t. ||Di − Dj|| ≤ r (23)

whereOB(·) yields the number of objects observed byDj
in I tj , and ||Di − Dj|| denotes the distance of Di and Dj.

• Naïve-RL. An RL model is trained by the actor-critic
policy gradient method to set individual ati . The actor
and critic are implemented with each five-layer MLP.

• ARN-RL. A model with the attention-integrated rele-
vance network (ARN) [3] is implemented to make use
of a state-of-the-art AoI-centric scheme in networked
monitoring. ARN is intended to extract important fea-
tures from the observed states and previous executed
action. In our implementation, each module of three
feed-forward layers for actor’s policy function and
critic’s Q-functions takes those features as input to deter-
mine the next action.

The hyperparameter settings for the RL-based methods
aforementioned such as Naïve-RL and ARN-RL, as well as
our Repot model are summarized in Table 5.

TABLE 5. Hyperparameter settings for RL-based methods.

C. QoE PERFORMANCE
Using the SSIM-based quality in Eq. (21), we evaluateRepot,
compared to the other methods. We measure the ratio of
achieved SSIM to an ideal reference. That is, for amethodM,

the relative QoE is calculated as

Relative QoE (%) =
QoEM

QoEUniform
× 100 (24)

where QoEUniform denotes the ideal reference QoE and
QoEM denotes the achieved QoE by the method M. QoE
is estimated by the average quality QUAL in Eq. (2).
QoEUniform is calculated based on the QoE achieved by the
Uniform method in the reference network environment that
is intentionally built to measure the ideal reference perfor-
mance; unlike the source B and target T , this reference
network is set to have neither channel access delay nor prop-
agation delay.

FIGURE 3. QoE in the source B with respect to network scales: The x-axis
denotes the number of sensing devices in a networked monitoring system
and the y-axis denotes the achieved performance by compared methods
in relative QoE in Eq. (24).

Figure 3 represents the performance ofRepot and the other
methods which are trained and tested in B with respect to
various network scales. As shown, Repot outperforms the
other methods for all the cases, maintaining high relative
QoE of 91∼94%while the other methods show lower relative
QoE less than 90%. Repot and the heuristic-based methods
(Random and Top-Opt) maintain stable performance in rel-
ative QoE regardless of scales, while Naïve-RL and ARN-
RL are affected in a large scale. For example, ARN-RL shows
better performance than the others except for Repot at the
sizes of 49, 64, and 100, but it shows performance degradation
at the sizes of 256 and 400. Naïve-RL also has a similar
pattern, showing 7.1% degradation from 49 to 400. This
policy deterioration has been discussed in the RL context of
the curse of dimensionality [39] and large action space [29].

In contrast, Repot maintains high relative QoE at the sizes
of 256 and 400. In Repot, a policy is learned in a low latent
space and then a latent action is mapped to a target-dependent
large action space through the action shaping scheme. This
latent action structure renders RL models scalable to a large
action space which is common in networked, sensor-based
monitoring systems, along with the flow embedding that
abstracts complex network states in a common vector space
of a fixed size.

147288 VOLUME 9, 2021

Y. Lee et al.: Repot: Transferable RL for Quality-Centric Networked Monitoring in Various Environments

FIGURE 4. Bandwidth allocation patterns by different methods: The first
column describes object maps in a 2-dimensional geographical space,
where a darker cell denotes more objects within it. The other columns
describe bandwidth allocation patterns by methods where a darker cell
denotes higher bandwidth limits (action values) assigned to the devices
close to the cell. The two cases in (a) and (b) represent the object maps
with different numbers of object clusters. Each grid cell (a small square in
the figure) is associated with x- and y-coordinates that represent its
spatial feature in the geographical space.

In Figure 4, we illustrate the bandwidth allocation patterns
by different methods. The x- and y-coordinates indicate the
location of sensor devices on a geographical space where
each device in a grid cell (a square in this figure) sends the
real-time information about its observation within the cell to
a server. Interestingly, Naïve-RL shows such a tendency to
cover the entire area with a slight concentration on object
locations. On the contrary, both ARN-RL and Repot have
more focus on object locations, showing the effect of atten-
tion mechanism. However, while both use attention, unlike
ARN-RL which extracts action directly from a learned policy,
Repot employs the latent action and action shaping which
lead to fine-grained action representation that can be appro-
priately formed to observed state changes over time. For
example, Repot shows more relevant patterns than the others
for the number of clusters in the object maps. Interestingly,
the patterns of Top-Opt and Repot have in common that they
make concentration on dense areas or clusters. However, Top-
Opt considers only current dense areas but Repot tends to
consider their trajectory.

D. ADAPTATION PERFORMANCE
As it is expensive to establish training samples sufficiently
about networked monitoring systems in various environ-
ment conditions, we discuss the policy transferability of
Repot across different conditions. We explore policy trans-
ferability by evaluating how well methods adapt to a target
environment in a small number of training samples, e.g.,
within 100K time-steps and 6.25% of 1.6M in Table 4.

For adaptation in a target environment T , we train the
models of Naïve-RL, ARN-RL, and Repot in the source envi-
ronment B with the dynamic link capacity of

[
1
2LB,LB

]
,

where LB is the link capacity of B. Then, we fine-tune each
learned model (policy) M in T through top-layer updates

in conventional transfer learning [40], [41] for Naïve-RL and
ARN-RL. For Repot, we employ fine-tuning with the action
shaping, in which only ADJUSTφ2 (·) in Eq. (12) is updated.
In addition, we update the K value of Top-K to be optimized
in T for Top-Opt.

FIGURE 5. Adaptation performance in a target environment: For each
method in the x-axis, MBase(B) denotes the performance in the source
environment B, MBase(T) denotes the performance in the target
environment T before fine-tuning, and MFT(T) denotes the
performance in T after fine-tuning.

Figure 5 shows the adaptation performance of meth-
ods. For each method, applying its policy optimized in
B incurs significant degradation in T , e.g., 21% degradation
by Naïve-RL (from MBase(B) to MBase(T)). After fine-
tuning, some of the methods show stable recovery to some
extent. Most importantly, Repot shows superior resilience
upon the change from B to T , achieving the recovery
of 22.7%, and outperforming the others with 14.5∼20.8%
higher relative QoE in T . Specifically, in terms of relative
QoE, Repot achieves 14.5% higher performance compared
to Naïve-RL and 20.8% higher compared to ARN-RL in the
target environment T .

This performance achieved in T by Repot is not only
better than that of the other methods but also comparable to
that in B by itself (i.e., 91.0% in MBase(B) and 90.7% in
MFT(T); their difference is no more than 1%). This result
clarifies the policy transferability of the modular structure in
Repot tailored for bandwidth allocation strategies in different
network environments. Notice that ARN-RL in T shows a
different pattern, having no performance recovery after fine-
tuning. We speculate that conventional fine-tuning methods
with layer-wise parameter updates are hardly effective to
adapt a model optimized in a specific environment to another
target, unless a learned policy in a source environment can
overfit less and fine-tuning in a target environment can have
sufficient samples to overwrite the model parameters.

Figure 6 compares the adaptation efficiency of RL-based
methods, where the learning graphs over time-steps corre-
spond to what we have for fine-tuning in Figure 5. Notice that
the learning efficiency of RepotFT is attributed to the action
shaping in which a learned policy is adjusted through control
value updates that require fewer learning steps. We observe
the low performance for ARN-RLFT and RepotFT during
the first period of learning steps due to our learning with

VOLUME 9, 2021 147289

Y. Lee et al.: Repot: Transferable RL for Quality-Centric Networked Monitoring in Various Environments

FIGURE 6. Learning graph in adaptation: Naïve-RLFT denotes the learning
graph of adaptation for Naïve-RL in Figure 5. The others denote the
respective learning graphs.

FIGURE 7. Adaptation performance of Repot in various target
environments: The target environments T1∼T4 are configured differently
by VHT MCS settings that determine the wireless data rates. T1, T2, and
others correspond to VHT MCS 8, 7 and so on. We compare Repot models
with different fine-tuning approaches in terms of adaptation
performance.

domain randomization. Furthermore, the limited perfor-
mance improvement of Naïve-RLFT and ARN-RLFT specifies
the restriction of conventional fine-tuning with partial param-
eter updates, particularly when environment conditions can
vary significantly.

In Figure 7, we evaluate the adaptation of Repot across
different network environments. We deliberately set the
VHT MCS setting of 802.11ac to simulate different target
environments T1∼T4 with various theoretical link capaci-
ties, where the smaller the VHT MCS, the lower the capac-
ity and QoE performance. In this experiment, we employ
different fine-tuning approaches in Repot to evaluate the
policy transferability by action shaping in the same model
structure. In RepotBase, we use the base model optimized
in B without fine-tuning. In RepotAS, we use our proposed
action shaping, while we use other fine-tuning schemes in
RepotTop and RepotFull. Specifically, RepotTop updates the
last layer parameters in the ALLOC function, similar to
conventional transfer learning, and RepotFull updates its full
layer parameters for fine-tuning, considering significant dif-
ferences between source and target environments.

Overall, RepotAS achieves robust performance across all
T1∼T4, showing highly comparable adaptation performance
in T1∼T4 to the respective one in B. The other fine-tuned

FIGURE 8. Learning graph of different fine-tuning schemes: The learning
graphs correspond to the fine-tuning process for the target environment
T3 by different Repot models (with different fine-tuning approaches) in
Figure 7.

FIGURE 9. Bandwidth allocation actions differently shaped by the
fine-tuning approaches in Repot: The meanings of grid cells, grid cell
colors and grid cell space are the same as those in Figure 4.

models RepotTop and RepotFull show limited adaptability,
which is consistent with the learning graphs in Figure 8.
Furthermore, in Figure 9, we visualize the action patterns
of Repot differently shaped by the fine-tuning approaches,
where the action value represents how much bandwidth is
allocated. The action values by RepotAS are much different
from those of RepotBase than the others, and they often tend
to spread.We speculate thatRepotAS is able to properly adapt
its policy to target environments that involve uncertaintymore
than our source environment due to realistic network settings.

E. CASE STUDY
In the following, we show our case study for a networked
monitoring system with urban- and suburb-scale car traffic
datasets that are generated by the SUMO simulator [24] on
the maps of Midtown Manhattan in New York and a suburb
of Orlando, Florida. We make the datasets publicly avail-
able on Github [42]. Table 6 describes the configuration to
generate the datasets, where the urban-scale datasets have
about 10 times heavier traffic than the suburb-scale datasets.

TABLE 6. Dataset characteristics.

147290 VOLUME 9, 2021

Y. Lee et al.: Repot: Transferable RL for Quality-Centric Networked Monitoring in Various Environments

TABLE 7. Summary of related studies.

FIGURE 10. Performance comparison in real traffic scenarios: The case
study is conducted with two car traffic datasets. The figure on the left
shows the performance in (a) urban-scale dataset generated on the map
of Midtown Manhattan in New York, and the figure on the right
corresponds to the performance in (b) suburb-scale dataset generated on
the map of a suburb of Orlando in Florida.

In this case study, we set the underlying network conditions
of source and target environments the same as in the previous
tests in Table 3.

Figure 10 shows the performance of several methods in
the case study, urban-scale in (a) and suburb-scale in (b).
We conduct fine-tuning the Repot model achieved in the
source B for the target T using 6.25% of the training sample
amount used in B. The Repot model yields the best per-
formance (i.e., 96.1% in (a) and 99.6% in (b)) in B. More
importantly, the fine-tuned Repot model yields the best per-
formance (i.e., 94.9% in (a) and 93.9% in (b)) in T . Whereas
the Repot model before fine-tuning in T yields relatively
lower performance (i.e., 84.0% in (a) and 67.7% in (b)), its
performance recovery after fine-tuning is significant (i.e.,
10.9% in (a) and 26.1% in (b)). Repot shows higher qual-
ity than Top-Opt (i.e, 6.5% in (a) and 12.6% in (b)). This
demonstrates the capability of Repot to learn a near-optimal
policy for a given environment through model training and
fine-tuning.

There is a larger difference before and after fine-tuning
in (b) than in (a). The datasets of the suburb-scale scenario
are more cluster-centric as they have less traffic, while the
datasets of the urban-scale scenario are less cluster-centric
as they have much heavier traffic on the entire region. Such
dataset difference provides more margin for Repot to be
optimized on the dataset of the suburb-scale scenario.

V. RELATED WORK
In network monitoring systems, information quality has been
discussed in the context of AoI [4], and several heuristic
solutions to AoI problem settings have been introduced; they
considered specific network conditions such as unreliable
broadcast channels [50], throughput constraints [51], channel
interference constraints [52], and dynamic channel status [5].

Recently, RL has been leveraged to address optimiza-
tion problems upon time-varying network conditions in
different problem settings such as network traffic control
[53]–[55], wireless channel management [43], [56], and
bandwidth allocation for video streaming [20], [57], [58].
Several research works have demonstrated the applicability
of RL for AoI problems in networkedmonitoring systems [3],
[44], [45]. Elgabli et al. [44] presented an RL-based resource
scheduling algorithm to orchestrate sensors and optimize the
expected AoI, satisfying the requirement of ultra-reliable low
latency communication (URLLC). Abd-Elmagid et al. [45]
explored the RL-based scheduling on information transmis-
sion in unmanned aerial vehicle (UAV)-assisted networks,
showing the capability of RL to improve QoE when fea-
tures are well-defined to learn the flight trajectory of UAVs
and the energy consumption pattern of sensors. Similarly,
Traub et al. [3] addressed the transmission scheduling prob-
lem by exploiting application-specific features and attention
mechanism.

Those prior works exploited RL and focused on QoE or
AoI enhancement, but they rarely addressed the issue of
RL model training and fine-tuning adaptability for different

VOLUME 9, 2021 147291

Y. Lee et al.: Repot: Transferable RL for Quality-Centric Networked Monitoring in Various Environments

network conditions. Our work also employs RL to improve
QoE in networked monitoring systems. However, unlike the
prior works, our work concentrates on the policy transferabil-
ity in RL, which enables the adaptation of a learned policy to
different target network environments.

In the field of robotics, model adaptation schemes have
been investigated, aiming at bridging the data mismatch
gap between simulation environments and real-world robot
deployed environments. Tobin et al. [46] exploited domain
randomization with manifold data for RL-based object detec-
tors. Peng et al. [47] developed an RL-based robot arm con-
troller operating in dynamic environments.

To mitigate the problem of sample-inefficiency and large
learning time in domain randomization with manifold data,
several studies were recently introduced such as building
realistic training data [59]–[61] and robot action embed-
ding [48], [49]. Particularly, Losey et al. [48], [49] explored
the concept of action embedding [29], [30] to improve the
control performance of remote assistive robots, which is sim-
ilar to our action shaping scheme. Whereas the robot action
embedding in [48], [49] requires target-specific training data
during model training, in our work, a policy is established
independently from targets, and an action by a learned policy
can be shaped for any target later with a small amount of
target-specific training samples.

To the best of our knowledge, ourwork is the first to discuss
RL model adaptation in the context of networked monitoring
applications and investigate amodular structure of RLmodels
to provide fast adaptation in different network conditions.
Table 7 provides a summary of the related studies.

VI. CONCLUSION
In this paper, we proposed Repot, the transferable RL model
that enables the QoE enhancement in networked monitoring
systems and the efficient adaptation to various target network
conditions. In doing so, we employ flow embedding and
action shaping by which a bandwidth allocation policy for
QoE-driven networked monitoring is trained in an easy-to-
learn source environment, and an action by a learned policy
can be shaped to target conditions. Through simulation and
experiments, we demonstrate that Repot achieves competi-
tive QoE performance, outperforming other methods in many
cases for both source and target environments. For example,
Repot achieves high quality in networked monitoring of
14.5∼20.8% gains over the compared methods in a target
environment, by fine-tuning with only 6.25% of the samples
that are originally required for model training from scratch.

Our direction to future works is to adapt meta RL and
multi-task learning for adaptation against different net-
work conditions as well as a variety of application-specific,
network-related tasks such as traffic engineering, caching,
routing, or intrusion detection. We are also interested in the
real-world deployment and testing of transferable RL for
AI-based surveillance applications that are required to pro-
vide low-latency and high-accuracy model inference, despite
harsh network environments.

REFERENCES
[1] M. A. Abd-Elmagid, N. Pappas, and H. S. Dhillon, ‘‘On the role of age

of information in the Internet of Things,’’ IEEE Commun. Mag., vol. 57,
no. 12, pp. 72–77, 2019.

[2] Z. Jiang, S. Fu, S. Zhou, Z. Niu, S. Zhang, and S. Xu, ‘‘AI-assisted
low information latency wireless networking,’’ IEEE Wireless Commun.,
vol. 27, no. 1, pp. 108–115, Feb. 2020.

[3] B. Yin, S. Zhang, and Y. Cheng, ‘‘Application-oriented scheduling for opti-
mizing the age of correlated information: A deep-reinforcement-learning-
based approach,’’ IEEE Internet Things J., vol. 7, no. 9, pp. 8748–8759,
Sep. 2020.

[4] S. Kaul, R. Yates, and M. Gruteser, ‘‘Real-time status: How often should
one update?’’ in Proc. IEEE INFOCOM, Orlando, FL, USA, Mar. 2012,
pp. 2731–2735.

[5] Z. Jiang, S. Zhou, Z. Niu, and C. Yu, ‘‘A unified sampling and scheduling
approach for status update in multiaccess wireless networks,’’ in Proc.
IEEE Conf. Comput. Commun., Paris, France, Apr. 2019, pp. 208–216.

[6] M. K. Banavar, A. D. Smith, C. Tepedelenlioglu, and A. Spanias, ‘‘On
the effectiveness of multiple antennas in distributed detection over fading
MACs,’’ IEEE Trans. Wireless Commun., vol. 11, no. 5, pp. 1744–1752,
May 2012.

[7] D. Ciuonzo, G. Romano, and P. S. Rossi, ‘‘Channel-aware decision
fusion in distributed MIMO wireless sensor networks: Decode-and-fuse
vs. Decode-then-fuse,’’ IEEE Trans. Wireless Commun., vol. 11, no. 8,
pp. 2976–2985, Aug. 2012.

[8] D. Ciuonzo, P. S. Rossi, and S. Dey, ‘‘Massive MIMO channel-aware
decision fusion,’’ IEEE Trans. Signal Process., vol. 63, no. 3, pp. 604–619,
Feb. 2015.

[9] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, and
W. Hong, ‘‘Model-driven data acquisition in sensor networks,’’ in Proc.
30th Int. Conf. Very Large Data Bases, Toronto, ON, Canada, Aug. 2004,
pp. 588–599.

[10] J. Traub, S. Breß, T. Rabl, A. Katsifodimos, and V. Markl, ‘‘Optimized
on-demand data streaming from sensor nodes,’’ in Proc. 2017 ACM Symp.
Cloud Comput., Santa Clara, CA, USA, Sep. 2017, pp. 586–597.

[11] L. Hu, Z. Chen, Y. Dong, Y. Jia, L. Liang, and M. Wang, ‘‘Status update
in IoT networks: Age-of-information violation probability and optimal
update rate,’’ IEEE Internet Things J., vol. 8, no. 14, pp. 11329–11344,
Jul. 2021.

[12] P. Whittle, ‘‘Restless bandits: Activity allocation in a changing world,’’
J. Appl. Probab., vol. 25, pp. 287–298, Jan. 1988.

[13] S. K. Sengupta and S. M. Kay, ‘‘Fundamentals of statistical signal process-
ing: Estimation theory,’’ Technometrics, vol. 37, no. 4, p. 465, Nov. 1995.

[14] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection The-
ory. Upper Saddle River, NJ, USA: Prentice-Hall, 1998.

[15] A. Beloglazov and R. Buyya, ‘‘Energy efficient resource management in
virtualized cloud data centers,’’ in Proc. 10th IEEE/ACM Int. Conf. Cluster,
Cloud, Grid Comput., Melbourne, VIC, Australia,May 2010, pp. 826–831.

[16] X. Li, Z. Qian, S. Lu, and J. Wu, ‘‘Energy efficient virtual machine
placement algorithm with balanced and improved resource utilization in a
data center,’’Math. Comput. Model., vol. 58, no. 5, pp. 1222–1235, 2013.

[17] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, ‘‘Resource manage-
ment with deep reinforcement learning,’’ in Proc. 15th ACMWorkshop Hot
Topics Netw., Atlanta, GA, USA, Nov. 2016, pp. 50–56.

[18] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh, ‘‘Learning scheduling algorithms for data processing clus-
ters,’’ in Proc. ACM Special Interest Group Data Commun. (SIGCOMM),
Beijing, China, Aug. 2019, pp. 270–288.

[19] M. Cheong, H. Lee, I. Yeom, and H. Woo, ‘‘SCARL: Attentive rein-
forcement learning-based scheduling in a multi-resource heterogeneous
cluster,’’ IEEE Access, vol. 7, pp. 153432–153444, 2019.

[20] R. Bhattacharyya, A. Bura, D. Rengarajan, M. Rumuly, S. Shakkottai,
D. Kalathil, R. K. P. Mok, and A. Dhamdhere, ‘‘QFlow: A reinforcement
learning approach to highQoE video streaming over wireless networks,’’ in
Proc. 20th ACM Int. Symp. Mobile Ad Hoc Netw. Comput., Catania, Italy,
Jul. 2019, pp. 251–260.

[21] R. Li, Z. Zhao, Q. Sun, C. I, C. Yang, X. Chen, M. Zhao, and H. Zhang,
‘‘Deep reinforcement learning for resource management in network slic-
ing,’’ IEEE Access, vol. 6, pp. 74429–74441, 2018.

[22] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
‘‘DeepCog: Cognitive network management in sliced 5G networks with
deep learning,’’ in Proc. IEEE Conf. Comput. Commun., Paris, France,
Apr. 2019, pp. 280–288.

147292 VOLUME 9, 2021

Y. Lee et al.: Repot: Transferable RL for Quality-Centric Networked Monitoring in Various Environments

[23] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar,
H. Zhu, A. Gupta, P. Abbeel, and S. Levine, ‘‘Soft actor-critic algorithms
and applications,’’ 2018, arXiv:1812.05905.

[24] D. Krajzewicz, G. Hertkorn, P. PeterWagner, and C. Rössel, ‘‘SUMO (sim-
ulation of urban mobility): An open-source traffic simulation,’’ in Proc.
4th Middle East Symp. Simulation Modeling, Berlin, Germany, Sep. 2002,
pp. 183–187.

[25] NS-3. Accessed: Aug. 6, 2021. [Online]. Available: https://github.com/
nsnam/ns-3-dev-git.git

[26] M. Kranz, P. Holleis, and A. Schmidt, ‘‘Embedded Interaction: Interacting
with the Internet of Things,’’ IEEE Internet Comput., vol. 14, no. 2,
pp. 46–53, Mar. 2010.

[27] T. Qiu, N. Chen, K. Li, M. Atiquzzaman, and W. Zhao, ‘‘How can
heterogeneous Internet of Things build our future: A survey,’’ IEEE
Commun. Surveys Tuts., vol. 20, no. 3, pp. 2011–2027, 3rd Quart.,
2018.

[28] K. Mori, ‘‘Automotive edge computing consortium—A global effort to
develop a connected car platform,’’ NTT Tech. Rev., vol. 16, no. 6, pp. 1–4,
2018.

[29] G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap,
J. Hunt, T.Mann, T.Weber, T. Degris, andB. Coppin, ‘‘Deep reinforcement
learning in large discrete action spaces,’’ 2015, arXiv:1512.07679.

[30] Y. Chandak, G. Theocharous, J. Kostas, S. Jordan, and P. Thomas, ‘‘Learn-
ing action representations for reinforcement learning,’’ in Proc. 36th Int.
Conf. Mach. Learn. (ICML), Long Beach, NY, Jun. 2019, pp. 941–950.

[31] CCPZMQ. Accessed: Aug. 6, 2021. [Online]. Available:
https://github.com/zeromq/cppzmq.git

[32] Automotive Edge Computing Consortium General Principle and Vision
White Paper. Accessed: Aug. 6, 2021. [Online]. Available: https://aecc.org/
wp-content/uploads/2019/04/AECC_White_Paper_v2.1_003.pdf

[33] Y. Zheng, F. Liu, and H.-P. Hsieh, ‘‘U-air:When urban air quality inference
meets big data,’’ in Proc. 19th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, New York, NY, USA, Aug. 2013, pp. 1436–1444.

[34] A. Sharma, ‘‘Intelligent querying in camera networks for efficient target
tracking,’’ in Proc. 28th Int. Joint Conf. Artif. Intell., Berkeley, CA, USA,
Aug. 2019, pp. 6458–6459.

[35] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality
assessment: From error visibility to structural similarity,’’ IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[36] X. Zhang and B. Li, ‘‘Optimized multipath network coding in lossy wire-
less networks,’’ IEEE J. Sel. Areas Commun., vol. 27, no. 5, pp. 622–634,
Jun. 2009.

[37] Stable-Baseline3 in PyTorch. Accessed: Aug. 6, 2020. [Online]. Available:
https://github.com/DLR-RM/stable-baselines3.git

[38] PyTorch. Accessed: Aug. 6, 2020. [Online]. Available:
https://github.com/pytorch/pytorch.git

[39] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[40] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethink-
ing the inception architecture for computer vision,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Las Vegas, NV, USA, Jun. 2016,
pp. 2818–2826.

[41] J. Yoon, S. Arik, and T. Pfister, ‘‘Data valuation using reinforcement
learning,’’ in Proc. 37th Int. Conf. Mach. Learn. (ICML), Virtual Only, IL,
USA, Jul. 2020, pp. 10842–10851.

[42] Casestudy Dataset. Accessed: Aug. 6, 2021. [Online]. Available:
https://github.com/mkris0714/Repot-Casestudy-DataSet.git

[43] P. M. de Santana, V. A. de Sousa, F. M. Abinader, and J. M. de C. Neto,
‘‘DM-CSAT: A LTE-U/Wi-Fi coexistence solution based on rein-
forcement learning,’’ Telecommun. Syst., vol. 71, no. 4, pp. 615–626,
Aug. 2019.

[44] A. Elgabli, H. Khan, M. Krouka, and M. Bennis, ‘‘Reinforcement learning
based scheduling algorithm for optimizing age of information in ultra
reliable low latency networks,’’ in Proc. IEEE Symp. Comput. Commun.
(ISCC), Barcelona, Spain, Jun. 2019, pp. 1–6.

[45] M. A. Abd-Elmagid, A. Ferdowsi, H. S. Dhillon, and W. Saad, ‘‘Deep
reinforcement learning for minimizing age-of-information in UAV-assisted
networks,’’ in Proc. IEEE Globecom, Honolulu, HI, USA, Dec. 2019,
pp. 1–6.

[46] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
‘‘Domain randomization for transferring deep neural networks from simu-
lation to the real world,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Vancouver, BC, Canada, Sep. 2017, pp. 23–30.

[47] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, ‘‘Sim-to-real
transfer of robotic control with dynamics randomization,’’ in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), Brisbane, QLD, Australia, May 2018,
pp. 3803–3810.

[48] D. P. Losey, K. Srinivasan, A. Mandlekar, A. Garg, and D. Sadigh,
‘‘Controlling assistive robots with learned latent actions,’’ in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), Virtual Only, IL, USA, May 2020,
pp. 378–384.

[49] D. P. Losey, H. Jun. Jeon, M. Li, K. Srinivasan, A. Mandlekar, A. Garg,
J. Bohg, and D. Sadigh, ‘‘Learning latent actions to control assistive
robots,’’ 2021, arXiv:2107.02907.

[50] I. Kadota, A. Sinha, E. Uysal-Biyikoglu, R. Singh, and E. Modiano,
‘‘Scheduling policies for minimizing age of information in broadcast wire-
less networks,’’ IEEE/ACM Trans. Netw., vol. 26, no. 6, pp. 2637–2650,
Dec. 2018.

[51] I. Kadota, A. Sinha, and E. Modiano, ‘‘Scheduling algorithms for optimiz-
ing age of information in wireless networks with throughput constraints,’’
IEEE/ACM Trans. Netw., vol. 27, no. 4, pp. 1359–1372, Aug. 2019.

[52] R. Talak, S. KaRaman, and E. Modiano, ‘‘Optimizing information
freshness in wireless networks under general interference constraints,’’
IEEE/ACM Trans. Netw., vol. 28, no. 1, pp. 15–28, Feb. 2019.

[53] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
‘‘Experience-driven networking: A deep reinforcement learning based
approach,’’ in Proc. 37th IEEE Conf. Comput. Commun., Honolulu, HI,
USA, Apr. 2018, pp. 1871–1879.

[54] W. Li, F. Zhou, K. R. Chowdhury, and W. Meleis, ‘‘QTCP: Adaptive
congestion control with reinforcement learning,’’ IEEE Trans. Netw. Sci.
Eng., vol. 6, no. 3, pp. 445–458, Jul./Sep. 2019.

[55] K. Xiao, S. Mao, and J. K. Tugnait, ‘‘TCP-Drinc: Smart congestion
control based on deep reinforcement learning,’’ IEEE Access, vol. 7,
pp. 11892–11904, 2019.

[56] R. Ali, N. Shahin, Y. B. Zikria, B.-S. Kim, and S. W. Kim, ‘‘Deep
reinforcement learning paradigm for performance optimization of channel
observation-basedMACProtocols in denseWLANs,’’ IEEE Access, vol. 7,
pp. 3500–3511, 2019.

[57] Y. Guo, F. R. Yu, J. An, K. Yang, Y. He, and V. C.M. Leung, ‘‘Buffer-aware
streaming in small-scale wireless networks: A deep reinforcement learning
approach,’’ IEEE Trans. Veh. Technol., vol. 68, no. 7, pp. 6891–6902,
Jul. 2019.

[58] C. Wang, S. Zhang, Y. Chen, Z. Qian, J. Wu, and M. Xiao, ‘‘Joint configu-
ration adaptation and bandwidth allocation for edge-based real-time video
analytics,’’ in Proc. 39th IEEE Conf. Comput. Commun., Virtual Only, IL,
USA, Jul. 2020, pp. 257–266.

[59] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrishnan,
and S. Levine, ‘‘Using simulation and domain adaptation to improve effi-
ciency of deep robotic grasping,’’ in Proc. IEEE Int. Conf. Robot. Autom.,
Brisbane, QLD, Australia, May 2018, pp. 4243–4250.

[60] Y. Jiang, T. Zhang, D. Ho, Y. Bai, C. K. Liu, S. Levine, and J. Tan, ‘‘Sim-
GAN: Hybrid simulator identification for domain adaptation via adver-
sarial reinforcement learning,’’ in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), Xi’an, China, May 2021, pp. 1–7.

[61] J. Truong, S. Chernova, and D. Batra, ‘‘Bi-directional domain adapta-
tion for Sim2Real transfer of embodied navigation agents,’’ IEEE Robot.
Autom. Lett., vol. 6, no. 2, pp. 2634–2641, Apr. 2021.

YOUNGSEOK LEE received the B.S. degree
in electric and electronic engineering from
Sungkyunkwan University, Suwon, South Korea,
in 2013, where he is currently pursuing the inte-
grated Ph.D. degree with the Department of Elec-
trical and Computer Engineering. His research
interests include intelligent application, software
engineering, network traffic analysis, and wire-
less networks. He was a recipient of the Global
Ph.D. Fellowship of Korea National Research

Foundation, from 2013 to 2018.

VOLUME 9, 2021 147293

Y. Lee et al.: Repot: Transferable RL for Quality-Centric Networked Monitoring in Various Environments

WOO KYUNG KIM received the B.S. degree from
the Department of Software, Sungkyunkwan Uni-
versity, in 2021. He is currently pursuing the M.S.
degree in computer science and engineering. His
research interests include reinforcement learning,
deep learning, and network system optimization.

SUNG HYUN CHOI received the B.S. degree
from the Department of Software, Sungkyunkwan
University, Suwon, South Korea, in 2019, where
he is currently pursuing the integrated M.S. degree
with the Department of Computer Science and
Engineering. His research interests include intel-
ligent application, network system optimization,
and computer vision.

IKJUN YEOM received the B.S. degree in elec-
tronic engineering from Yonsei University, Seoul,
South Korea, in February 1995, and the M.S.
and Ph.D. degrees in computer engineering from
Texas A&M University, in August 1998 and May
2001, respectively. He worked at DACOM Com-
pany, from 1995 to 1996, and Nortel Networks,
in 2000. He was an Associate Professor with
the Department of Computer Science, KAIST,
from 2002 to 2008. Currently, he is a Full Professor

with the Computer Science and Engineering Department, Sungkyunkwan
University, Suwon, South Korea. His research interests include AQM, con-
gestion control, TCP, wireless networks, and future internet architecture.

HONGUK WOO (Member, IEEE) received the
B.S. degree in computer science from Korea Uni-
versity, Seoul, in 1995, and the M.S. and Ph.D.
degrees in computer science from the University
of Texas at Austin, Austin, TX, USA, in 2002 and
2008, respectively. From 2008 to 2018, he worked
at Samsung Research of Samsung Electronics as a
Principal Engineer and the Vice President. Since
2018, he has been an Assistant Professor with the
Department of Computer Science and Engineer-

ing, Sungkyunkwan University, Suwon, South Korea. His research interests
include intelligent application, reinforcement learning, and networked cyber-
physical systems.

147294 VOLUME 9, 2021

