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ABSTRACT Understanding the changes in choroidal thickness and vasculature is important to monitor the
development and progression of various ophthalmic diseases. Accurate segmentation of the choroid layer and
choroidal vessels is critical to better analyze and understand the choroidal changes. In this study, we develop
adense dilated U-Net model (ChoroidNET) for segmenting the choroid layer and choroidal vessels in optical
coherence tomography (OCT) images. The performance of ChoroidNET is evaluated using an OCT dataset
that contains images with various retinal pathologies. Overall Dice coefficient of 95.1 &+ 0.4 and 82.4 £+
2.4 were obtained for choroid layer and vessel segmentation, respectively. Comparisons show that among
state-of-the-art models, ChoroidNET, which produces results that are consistent with ground truths, is the
most robust segmentation framework.

INDEX TERMS Choroid layer, choroidal vessels, ChoroidNET, dense dilated U-Net, optical coherence

tomography (OCT).

I. INTRODUCTION

In optical coherence tomography (OCT) images, the choroid
is a dense vascular layer between the retina and the sclera.
It comprises choroidal vessels (luminal area) embedded in
elastic connective tissues (stromal area). Its main function is
to supply oxygen and nourishment to the outer retina. The
thickness and vascularity index of the choroid are choroidal
biomarkers [1] that facilitate the diagnosis, prognosis, and
treatment of various ophthalmic diseases or their patholog-
ical conditions such as age-related macular degeneration
(AMD) [2], choroid neovascularization (CNV) which is a
pathology that occurs in wet AMD [3], diabetic macular
edema (DME) [4], and retinitis pigmentosa [5], [6].
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OCT is a non-invasive imaging technique that captures a
cross-sectional view of the retina, including the choroid. With
rapid development in optical imaging technology, enhanced
depth imaging OCT (EDI-OCT) and swept-source OCT
(SS-OCT) enable better visualization of the choroid than
the conventional spectral-domain OCT (SD-OCT) [7], [8].
Figure 1 shows an OCT image of the components in the
choroid layer, i.e., the upper boundary of the choroid (blue
dashed line), the lower boundary of the choroid (green dashed
line), the choroidal vessels, and the stromal area.

The choroid has an inhomogeneous texture because it con-
tains vessels. The contrast between the choroid and the sclera
is usually low in an OCT image, and thus the lower bound-
ary of the choroid, called the choroid-sclera interface (CSI),
is fuzzy and difficult to distinguish from the choroid. The
choroid layer and choroidal vessels in OCT images must thus
be manually annotated, which is time-consuming, error-prone
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(due to indistinct vascular structures), and subject to inter-
observer variability. Although some automated segmentation
approaches are available, individual applications are required
for segmenting the choroid layer and choroidal vessels. To the
best of our knowledge, this study is the first to combine
the segmentation of the choroid layer and vessels, which is
clinically important. This is done using a deep learning model
trained on eyes with various pathologies.

Stromal Area

Choroidal Vessel

FIGURE 1. Choroid region in an OCT image (ILM - internal limiting
membrane, RPE - retinal pigment epithelium, BM - Bruch’s membrane,
and CSI - choroid-sclera interface).

In this work, we propose a dense dilated U-Net model
called ChoroidNET for segmenting the choroid layer and
choroidal vessels in OCT images. The automatic extraction
of these regions would greatly assist ophthalmologists in
diagnosis and treatment monitoring. ChoroidNET uses the
U-Net [9] as a backbone architecture and integrates dilated
convolutions with different dilation rates (factors) at the
bottleneck. The dense connection of dilated convolutions
exploits image contexts at multiple scales and improves seg-
mentation performance. The experimental results demon-
strate that ChoroidNET significantly outperforms existing
state-of-the-art methods. We perform ablation studies to con-
firm the performance of ChoroidNET. Our ultimate goal is to
automatically quantify clinical parameters that can be derived
from the choroid, such as the luminal-to-stromal ratio and
choroidal thickness.

The main contributions of this work are:

1) development of ChoroidNET for segmenting the
choroid layer and choroidal vessels;

2) highlighting of the use of dilated convolutions in both
layer and vessel segmentation;

3) robust segmentation of OCT images of eyes with vari-
ous retinal pathologies;

4) qualitative and quantitative evaluation using manually
annotated ground truths to determine the reproducibil-
ity of ChoroidNET.

II. LITERATURES

Many traditional image processing methods have been
proposed for segmenting the choroid layer fully or semi-
automatically for various retinal diseases. Graph search algo-
rithm [10], graph cuts and dynamic programming [11], [12],
min-cut max-flow graph theory [13], the Dijkstra shortest
path algorithm [14]-[16], active contour [17], and the level set
method [18] have been applied to detect the choroid bound-
aries in OCT images. Poor robustness is the main drawback of
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choroid segmentation techniques based on traditional image
processing since they are highly sensitive to severe patholog-
ical images.

Deep learning has gained increasing interest in medical
image processing research. Several deep learning models
were recently applied to choroid segmentation to improve
performance. To detect the choroid boundaries, Sui et al. [19]
presented a multi-scale convolutional neural network (CNN)
to learn the edge weights in a graph searching approach.
Masood et al. [20] performed automatic choroid segmenta-
tion using a patch-based CNN and morphological operations.
A variety of deep learning models such as CNN, residual net-
work, recurrent neural network, and squeeze and excitation
network were explored in the choroid segmentation works
of Kugelman er al. [21] and Alonso-Caneiro et al. [22].
They investigated the effects of patch size and the net-
work architectures, and image pre-processing techniques
on their patch-based and semantic segmentation networks.
Chen et al. [23] used two SegNet models [24] to generate
edge probability maps for BM and the CSI. Then, seam
carving was applied to obtain a full choroid layer by find-
ing a path of connected pixels between BM and the CSI.
Devalla et al. [25] presented the dilated-residual U-Net
model (DRUNET) for segmenting optic nerve head tissues,
which contain the choroid, in OCT images of glaucomatous
and healthy eyes. Zhang et al. [26] infused a biomarker prior
into a global-to-local network (BIONET) for choroid seg-
mentation. BIONET is composed of 1) a biomarker infused
prediction network that learns the biomarker features, 2) a
global multi-layered segmentation module that initially seg-
ments all layers (retinal layers and the choroid layer) in OCT
images, and 3) a local choroid segmentation module that
segments the choroid using the result from the global module
and the learned biomarker features. Hsia et al. [27] segmented
the choroid layer using a mask region-based CNN model,
composed of deep residual network and feature pyramid
networks. The choroid segmentation performance of deep
learning models is very competitive and generally better than
those of traditional image processing techniques.

Algorithms based on traditional image processing tech-
niques have been developed for choroidal vessel segmenta-
tion. Srinath et al. [28] initially defined the RPE by finding
the brightest region and the CSI by calculating the structural
similarity index between the choroid and the sclera. Then,
choroidal vessels were segmented in the region between the
RPE and the CSI using the level set method.

Recently, Liu et al. [29] presented a deep-learning-
based choroidal vessel segmentation model adapted from
RefineNet [30]. There have been attempts to obtain the
choroidal thickness and vasculature from SS-OCT images.
Zheng et al. [31] detected the choroid’s upper and lower
boundaries in OCT images using the Residual U-Net
model [32] and then performed binarization to detect the
choroidal vessels using Niblack’s algorithm. Zhou et al. [33]
applied an attenuation correction approach to compensate for
the attenuated light in SS-OCT images as a pre-processing
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step in choroid segmentation. Then, choroidal vessel maps,
which enable the choroidal vasculature to be visualized with-
out OCT angiography, were generated using a projection of
OCT structural information.

A summary of performances, datasets, advantages, and
drawbacks/limitations of some existing choroid layer and
vessel segmentation methods, are discussed in Table 1.

ill. METHODS

This section describes the network architecture and compo-
nents of ChoroidNET. ChoroidNET is a patch-based model
that adopts the structure of U-Net [9]. To denoise and enhance
the contrast of OCT images, we preprocess each extracted
patch using normalized gamma-corrected contrast-limited
adaptive histogram equalization [34]. Training is then per-
formed using the preprocessed patches. During training,
we also perform data augmentation, which includes affine
transformation, horizontal flipping, random distortion, and
zooming.

A. NETWORK ARCHITECTURE

Figure 2 shows the network architecture of ChoroidNET. The
model comprises a layer segmentation module (LSM) and a
vessel segmentation module (VSM). Each module consists of
an encoder path, a decoder path, and a dilation block, which
uses dense dilated convolutions, instead of standard convolu-
tions. The blocks used in the network are defined as follows.
A standard (purple) block corresponds to the resulting activa-
tion map from two consecutive 3 x 3 standard convolutions.
All layers in a standard block are regularized by DropBlock
(DB) [35], batch-normalized (BN) [36], and activated by a
rectified linear unit (ReLU) [37]. A gray block represents
the activation map forwarded from the encoder path that is
concatenated with the corresponding up-sampled map in the
decoder path. The red and yellow blocks, at the bottleneck
of LSM and VSM, respectively, are dilation blocks that com-
prise six dilated convolutions with different dilation factors.
These dilation blocks help ChoroidNET to overcome the loss
of detailed spatial information and difficulty in extracting
contextual semantic features. ChoroidNET thus has a good
segmentation accuracy, resulting in smooth boundaries of the
choroid layer. The intersection area of the input patch and the
choroid layer prediction from LSM is fed into VSM to obtain
a more consistent segmentation of choroidal vessels.

1) ENCODER PATH

At each level of the encoder path, the number of feature
vectors is doubled. Thus, the bottommost level of the encoder
path generates high-level semantic features. The purpose of
the encoder path is to capture the contextual information of
the input patches. This information is then fed to the decoder
path through skip connections [38].

2) DECODER PATH
After each level of the decoder path, a 2 x 2 up-sampling
operation is applied to restore the image to its original size.
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The purpose of the decoder path is to perform semantic
segmentation by concatenating up-sampled outputs and the
contextual information transferred from the encoder path via
skip connections. The features generated by the dilation block
are added to achieve multi-scale context aggregation. Finally,
a1 x 1 convolution and a sigmoid activation are applied to
obtain the pixel-wise binary segmentation for each pixel.

3) DILATED CONVOLUTIONS

A dilated convolution refers to a convolution conducted with
a dilated filter. Yu and Koltun [39] and Chen et al. [40]
reported that dilated convolutions can be used instead of
down-sampling operations to expand the receptive field with-
out degrading the resolution of intermediate feature maps by
inserting zeros between the pixels of the kernel. Consider
convolutional kernel K; with a kernel size of k x k in dilated
layer I. The receptive field Fk, of kernel K; can be calculated
as:

Fx,=k+(k—-1)x Dk, —1) 1)

where Dk, denotes the dilation rate of kernel K;. Figure 3
shows how the dilated convolutions adaptively enlarge the
field of views by increasing the dilation rates.

For the dilation block of LSM, we increase the dilation
factors in increments of 2. We experimentally found that
this increasing order of dilation factors yields better perfor-
mance in the choroid layer segmentation. However, aggres-
sively increasing dilation factors is less effective for small
objects such as choroidal vessels. Dilated convolutions with
increasing dilation factors lead to weak spatial inconsis-
tency between neighboring pixels; thus, it fails to aggregate
local features. To address this, Hamaguchi et al. [41] used
a local feature extractor after large contexts are aggregated
by increasing the dilation factors. The local feature extrac-
tor helps to extract local features by decreasing the dilation
factors. Inspired by this concept, for the dilation block of
VSM, we first increase the dilation factors gradually and then
decrease them to recover consistency between neighboring
pixels.

4) DropBlock

Dropout [42] is a widely used regularization technique for
fully connected networks. It prevents the overfitting caused
by coadaptation on the training dataset by reducing the com-
plexity of the network architecture and randomly dropping
out independent features. However, this technique is less
effective for convolutional networks where the features are
spatially correlated because semantic information can still
leak through in the networks. Thus, Ghiasi et al. [43] pro-
posed DropBlock [35], which is a form of structured dropout,
for effectively regularizing convolutional networks. We apply
DropBlock to prevent our network from overfitting and to
effectively remove semantic information. Figure 4 shows
how DropBlock discards some contiguous regions that con-
tain certain semantic information from a feature map of the
choroid layer.
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IV. EXPERIMENTS

This section describes the datasets used in the experiment,
existing state-of-the-art models used for comparison, and the
experiment and its implementation details.

A. DATASETS

Kermany et al. [44] published a large OCT dataset that
contains approximately 80,000 images. These images were
acquired via spectral-domain OCT (SD-OCT; Spectralis,
Heidelberg Engineering) and collected from the Shiley
Eye Institute of the University of California San Diego,
the California Retinal Research Foundation, Medical
Center Ophthalmology Associates, Shanghai First People’s
Hospital, and the Beijing Tongren Eye Center. This dataset
was constructed to evaluate methods for classifying OCT
images into four categories, namely CNV, DME, Drusen,
and Normal. Abnormalities, such as the neovascular mem-
brane and associated subretinal fluid in CNV images, retinal-
thickening-associated intraretinal fluid in DME images, and
multiple drusen, are present in their dataset. CNV and the
appearance of drusen indicate clinical signs of AMD.

In the experiment, we evaluated the performance of
ChoroidNET using 80 OCT images (20 images from each
category) randomly selected from this OCT dataset. Figure 5
shows examples of OCT images used in our experiment.
The ground truths of the choroid layer and choroidal vessels
were annotated by an expert observer using the ibisPaint
application [45].

B. EXPERIMENT AND IMPLEMENTATION DETAILS

Ten images from each category were used to create a training
set and the remaining images were used to create a test
set. We enlarged the training set by using patches cropped
from the original images (minimum dimensions: 230 x 495).
Previous studies have shown that increasing the size of an
image patch in a deep learning network provides a more
precise segmentation performance since the network can cap-
ture more contextual information to make the prediction [46].
However, using a larger image patch requires larger memory.
Under consideration of limited GPU memory, we chose a
patch that is large enough to cover the choroid region and to
be able to apply down-sampling operations in our network
region, yet small enough to make the problem handleable.
We randomly extracted 300 patches (dimensions: 224 x 224)
from each image in a trainset set, for a total of 12,000 patches.
Note that the areas of some patches overlapped. 90% of each
training set was used for training and the remaining 10% was
used for validation.

ChoroidNET was trained on each training set end-to-end
using a computer with an Intel Core 17 CPU and an NVIDIA
GeForce GTX 1070 Ti GPU. The training was performed
for 50 epochs with a batch size of 4 and an initial learning rate
of 0.0001. The RMSprop optimizer was used to adaptively
reduce the learning rate. The loss function (L) was based
on the sum of binary cross entropy loss (Lpcg) and Dice

150956

TABLE 2. Formulas of evaluation metrics used in model comparison.

Metric Formula
Accuracy ((TP+TN)/(TP+FP+TN+FN)) x 100
Dice coefficient (2TP/(2TP+FP+FN)) x 100
Precision (TP/(TP+FP)) x 100
Recall (TP/(TP+FN)) x 100
Specificity (TN/(TN+FP)) x 100

loss (Lp), as shown in Egs. (2)-(4).

L(y.p) = Lece(. p) + Lp(y. p) 2)
Lece(.p) = —(ylog(p) + (1 —y)log1 —p)  (3)
i
Lp(y.p) = 1— =L )
y+p

where y € [0, 1] and p € [0, 1] respectively denote the set of
pixels in the ground truth and the set of pixels predicted by
the trained network.

The segmentation performance for the choroid layer and
choroidal vessels was quantitatively evaluated in terms of
five evaluation metrics, namely accuracy, the Dice coeffi-
cient, precision, recall, and specificity. The formulas for these
metrics are shown in Table 2. The metrics were calculated
based on four possibilities, namely true positive (TP), true
negative (TN), false positive (FP), and false negative (FN).
The numerical results are expressed as means =+ standard
deviation (SD).

C. EXISTING METHODS

The performance of ChoroidNET is compared with that of
U-Net++ L3 [47], DRUNET [25], and Residual U-Net [31].
U-Net+4+ is an improved U-Net architecture based on nested
and dense skip connections. U-Net++ was used to segment
polyp, liver, and cell nuclei datasets. DRUNET and Resid-
ual U-Net adopt the structure of U-NET. DRUNET inte-
grates residual blocks that comprise two dilated convolutions,
instead of standard convolution blocks (except at the top
level). DRUNET was designed for segmenting optic nerve
head (ONH) tissues (including the choroid) in ONH-centered
SD-OCT images. Residual U-Net inserts a residual connec-
tion between each pair of convolution blocks in its U-Net
backbone. Residual U-Net was used for detecting the upper
and lower boundaries of the choroid in foveal-centered
SS-OCT images.

For a fair comparison, we trained and validated U-Net++,
DRUNET, and Residual U-Net using the same training and
test sets used for ChoroidNET, and performed the same data
augmentation, pre-processing, and DropBlock regularization
as that in our experiment.

V. RESULTS
A. COMPARISON WITH EXISTING METHODS

This section presents the experimental results of the choroid
layer and choroidal vessel segmentation.
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FIGURE 3. Representation of increasingly dilated convolutions with 3 x 3
kernel and their receptive fields for (a) rate = 1 (equivalent to standard
convolution), (b) rate = 3, and (c) rate = 5.

The segmented images produced by U-NET++, DRUNET,
Residual U-NET, and ChoroidNET were qualitatively com-
pared with their corresponding ground truths and quanti-
tatively evaluated. Figures 6 and 7 show examples of the
choroid layer and choroidal vessel segmentation results.
Table 3 compares the performance of the choroid layer and
choroidal vessel segmentation for the tested networks.

In general, the choroid layer segmentation results for
ChoroidNET are qualitatively comparable to the ground
truths. ChoroidNET shows the best segmentation perfor-
mance (accuracy: 98.5 + 0.2, Dice coefficient: 95.1 £
0.4, precision: 94.1 £ 1.6, recall: 96.1 £ 0.9, specificity:
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Dilation Block of Vessel Segmentation Module
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FIGURE 4. lllustration of how DropBlock drops features. (a) Input patch,
(b) activation units (green area) of semantic information in (a) for the
choroid layer, (c) DropBlock mask (yellow area) and sampled zero entries
(red x’s), and (d) zero entries on mask expanded to zero blocks (black x’s
around red x's).

99.0 £ 0.3). U-Net++ segmented the choroid layer as
smooth as the ground truths, and also had the high Dice coef-
ficient (94.0 £ 1.1) and recall (96.0 + 0.8). However, it was
slightly inferior to ChoroidNET in terms of all evaluation
metrics and oversegmented areas outside the choroid layer
for DME images. The DRUNET produced irregular choroid
boundaries. Residual U-Net results are similar to the ground
truths; however, the segmented boundaries of the choroid are
not smooth.

ChoroidNET outperformed the other models in terms of
choroidal vessel segmentation performance. It had the high-
est accuracy (97.7 £ 0.4), Dice coefficient (82.4 £ 2.4),
and recall (87.2 £ 2.8). In particular, it had a significant
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FIGURE 5. Examples of OCT images used in our experiment.

improvement on recall by 6.2%, 4.0% and 4.7% com-
pared to U-Net++, DRUNET, and Residual U-Net, respec-
tively. U-Net++ had the highest precision (80.5 + 5.7)
and specificity (98.7 £ 0.3). Residual U-Net yielded the
second-best performance in terms of the Dice coefficient
(81.0 £ 2.3). For DME images, U-Net++ and Residual
U-Net segmented irrelevant areas (intraretinal fluid) outside
the choroid. DRUNET exhibited oversegmentation around
the choroid upper layer in CNV and Drusen images.

UV
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—_
o
~

UV
LA
LA

B. ABLATION STUDIES

To provide insight into each design element of ChoroidNET,
we conducted four ablation studies. The ablation models
were trained and validated using the same training and test
sets. Figure 8 shows the architectures of the ablation models.
Figures 9 and 10 show the segmentation results of the choroid
layer and the choroidal vessels, respectively, for the ablation
models and ChoroidNET. Table 4 compares the performance
of ChoroidNET and its ablation models.

—_
Q.
—

FIGURE 6. Choroid layer segmentation results. (a) Input, (b) ground truth, and results for (c) U-Net++, (d) DRUNET, (e) Residual U-Net, and

(f) ChoroidNET. Yellow arrow indicates oversegmentation.

TABLE 3. Performance comparison of choroid layer and choroidal vessel segmentation (highest scores in bold).

Metric

Residual

(mean + SD) U-Net++ DRUNET U-Net ChoroidNET

Accuracy 98.2+0.2 97.8+0.1 98.1+0.1 98.5+0.2

Dice coefticient 94.0+1.1 92.5+1.3 93.6+1.0 95.1+0.4

Layer  Precision 922+24 91.1+£2.7 929+1.9 94.1 £1.6
Recall 96.0 +0.8 94.0+1.3 943 +0.8 96.1 £0.9
Specificity 98.6+0.3 98.4+0.3 98.8+0.2 99.0 £0.3
Accuracy 97.6+0.3 97.4+0.4 97.6+0.4 97.7+0.4

Dice coefticient 80.8+£2.0 80.0£2.6 81.0+£23 82.4+2.4

Vessels  Precision 80.5+5.7 77.0+53 79.5+4.9 782+5.6
Recall 81.0+2.2 832+1.1 825+1.5 87.2+2.8
Specificity 98.7 £ 0.3 97.6+1.6 98.6 £ 0.3 984+04
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FIGURE 7. Choroidal vessel segmentation results. (a) Input, (b) ground truth, and results for (c) U-Net++, (d) DRUNET, (e) Residual U-Net, and

(f) ChoroidNET. Yellow arrow indicates oversegmentation.

Ablation-1 and Ablation-2 did not use a dilation block
in LSM. For choroid layer segmentation, the boundaries
obtained by Ablation-1 and Ablation-2 are not as smooth
as the ground truths. The choroid layer segmentation per-
formance of Ablation-3 and Ablation-4 are the same as that
of ChoroidNET. ChoroidNET outperforms Ablation-1 and
Ablation-2 for the choroid layer segmentation and shows an
absolute improvement of 1.2% in terms of the Dice coef-
ficient. The use of the dilation block in LSM improved
the vessel segmentation results of Ablation-3 (81.5 &£ 2.5),
Ablation-4 (81.8 & 2.5), and ChoroidNET (82.4 £ 2.4). This
demonstrates the importance of the dilation block in LSM.

For choroid vessel segmentation, Ablation-1 had the high-
estrecall (92.3 4= 2.2), but it oversegmented the region outside
the choroid layer and thus had the lowest precision (68.6 +
5.6). Ablation-2 slightly outperforms Ablation-1 by 0.6% in
terms of the absolute Dice coefficient. This highlights the
efficiency of the dilation block in VSM. The performance

TABLE 4. Performance comparison of ablation models and ChoroidNET.

improvements (in terms of the Dice coefficient) of Choroid-
NET over the four ablation models are 3.7%, 3.1%, 0.9%, and
0.6%, respectively. The improvement of ChoroidNET over
Ablation-4 demonstrates the effectiveness of the connection
between LSM and VSM.

C. INTRA-OBSERVER VARIABILITY

For the assessment of intra-observer variability, our observer
repeated annotating process for the choroid layer and
choroidal vessels. Table 5 shows the variability between two
sets of ground truths (GT1 and GT2) and ChoroidNET’s
segmentation. Intraclass correlation coefficient (ICC) was
used to measure the variabilities. The ICC value of 1 indicates
the highest agreement between the two observations. The
intra-observer reproducibility of choroid layer and vessel
segmentation between GT1 and GT2 were excellent (Dice
coefficient: 96.1 & 1.1 and 84.1 £+ 2.6) and (ICC: 0.983,
0.971). ChoroidNET also produced a high agreement with

Metric

Ablation-1 Ablation-2 Ablation-3 Ablation-4 ChoroidNET
(mean + SD)

Accuracy 98.2+0.3 982+0.3 98.5+0.2 98.5+0.2 98.5+0.2

Dice coefficient 939+1.2 93.9+1.2 95.1+0.4 95.1+0.4 95.1 £ 0.4

Layer  Precision 92.6+£2.2 92.6+£2.2 94.1+1.6 94.1+1.6 94.1+1.6
Recall 95.1+1.0 95.1+1.0 96.1+0.9 96.1+0.9 96.1 £0.9
Specificity 98.8+0.3 98.8+0.3 99.0+0.3 99.0+0.3 99.0+0.3
Accuracy 969+ 0.4 97.1+04 97.5+04 97.5+04 97.7+£0.4

Dice coefficient 78.7+3.2 793+22 81.5+2.5 81.8+2.5 82.4+24

Vessels Precision 68.6 £5.6 72.6 £4.4 76.2+5.3 76.5+54 78.2 +£5.6
Recall 92.3+2.2 87.5+2.1 87.5+2.1 87.7+19 872+2.8
Specificity 972+0.4 97.8+0.2 982+0.3 982 +0.4 98.4+0.4
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FIGURE 9. Choroid layer segmentation results. (a) Input, (b) ground truth,
and results for (c) Ablation-1 and Ablation-2 and (d) Ablation-3,
Ablation-4, and ChoroidNET.

GT1 and GT2, (Dice coefficient: 95.1 + 0.4, 95.1 + 2.8)
for choroid layer segmentation and (Dice coefficient: 82.4 +
2.4, 82.1 £ 2.8) for choroidal vessel segmentation. Figure 11
shows ChoroidNET’s segmentation results and their corre-
sponding ground truths.
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D. CONSISTENCY OF THE PROPOSED NETWORK

We included 80 more images (20 images each from CNYV,
DME, Drusen, and Normal) for validating the consistency of
our proposed network. The proposed model was trained and
validated on new training and test sets (40 images each). The
training and validation processes were performed as same as
the previous training. We then compared the performances
of two distinct trained models using two distinct test sets.
Table 6 presents the quantitative performance of the proposed
network for four sets. Set-1 corresponds to the results of
the trained model-1 and the test set-1, set-2 corresponds to
the results of the trained model-1 and the test set-2, set-3
corresponds to the results of the trained model-2 and the
test set-1, and set-4 corresponds to the results of the trained
model-2 and of test set-2, respectively. Figure 12 shows
examples of the choroid layer and choroidal vessel segmen-
tation results of test set-2. The mean Dice coefficients of
four sets were 95.1 & 0.4, 95.7 £ 0.5, 935 £ 1.3, 964 +
0.5 for choroid layer segmentation, and 82.4 &+ 2.4, 84.3 £+
0.3, 82.2 £+ 2.1, 85.1 £ 0.2 for choroidal vessel segmenta-
tion. Thus, ChoroidNET showed consistent and good per-
formance on newly tested CNV, DME, Drusen, and Normal
images.
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FIGURE 10. Choroidal vessel segmentation results. (a) Input, (b) ground truth, and results for (c) Ablation-1, (d) Ablation-2, (e) Ablation-3, (f) Ablation-4,
and (g) ChoroidNET. Yellow and green arrows indicate over- and undersegmentation, respectively.

VI. DISCUSSION

We now present a qualitative and quantitative segmentation
analysis of the choroid layer and choroidal vessels. The exper-
imental results in Table 3 confirm that ChoroidNET is the
best state-of-the-art model for the segmentation of the choroid
layer and choroidal vessels.

In an eye with DME, an accumulation of fluid with cystic
properties usually occurs in the retinal layers. In an OCT
image, those accumulated fluid regions are similar to the char-
acteristics of choroidal vessels. For DME images, U-Net++
and Residual U-Net had inconsistent vessel segmentation
performance compared to that of DRUNET and ChoroidNET,
as shown with the yellow arrows in Figure 7 (c and e). The
objective of the standard convolutions in U-Net++ and
Residual U-Net is to extract the spatial information in the
image. A deeper network can learn more semantic informa-
tion. However, spatial information is lost at deeper layers,
and thus the network predicts incorrect regions outside
the choroid layer. Dilated convolutions reduce the loss of

TABLE 5. Performance difference of intra-observer variability.

spatial information by expanding the receptive field of the
network. Thus, the dilated convolutions in DRUNET and
ChoroidNET facilitate the creation of large-scale feature
maps with rich spatial information. The segmentation perfor-
mance of DRUNET and ChoroidNET is thus more consistent
for DME images.

In the U-Net architecture, the number of filters is doubled
after down-sampling in the encoder path and halved after
up-sampling in the decoder path. However, in the DRUNET
architecture, only 16 filters are used in both standard blocks
and residual blocks. DRUNET thus had poor vessel segmen-
tation performance for CNV and Drusen images. The filter
of a convolutional layer captures the patterns in image data.
A higher number of filters allows the network to learn more
complex patterns (abstractions) contained in image data and
extract useful features. As a result, DRUNET was unable to
separate the choroid pattern from the neovascular membrane
in CNV images and mistakenly segment small drusen (which
occurs in the complex between RPE and the choroid) as the

Metric GTI vs GT2 GTI vs ChoroidNET ~ GT2 vs ChoroidNET
(mean = SD)

Accuracy 98.8 £0.3 98.5+0.2 98.5+0.8
Dice coefficient 96.1 +1.1 95.1+04 95.1+2.8
Layer Precision 973+1.5 94.1+£1.6 95.0+4.8
Recall 95.0+2.6 96.1 £0.9 953+3.2
Specificity 99.5+0.4 99.0+0.3 99.1 £0.8

ICC 0.983 0.955 0.964
Accuracy 98.0 0.8 97.7+0.4 97.6 0.9
Dice coefficient 84.1+2.6 824 +24 82.1+2.8
Vessels Precision 84.4+45 782 +5.6 88.2+3.1
Recall 83.8+3.0 87.2+2.8 76.7+5.1
Specificity 98.9+0.5 98.4+04 98.2+0.8

ICC 0.971 0.840 0.861
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TABLE 6. Quantitative performance of the proposed network for four sets.

(mé\i’fi‘%m Set-1 Set-2 Set-3 Set-4
Accuracy 98.5+0.2 99.0+0.1 98.0+0.4 99.1+0.2
Dice coefficient 95.1+04 95.7+0.5 935+1.3 96.4+0.5
Layer  Precision 94.1+1.6 97.3+0.3 89.8+2.9 97.1+0.8
Recall 96.1 £0.9 94.1+0.9 97.6 £0.8 95.7+0.8
Specificity 99.0£0.3 99.6 +0.1 98.1£0.5 99.6 + 0.1
Accuracy 97.7+0.4 98.3+0.2 97.7+0.4 98.4+0.2
Dice coefficient 824+24 843+0.3 822 +2.1 85.1+0.2
Vessels  Precision 782 +5.6 81.1+1.9 792 +£5.7 83.8+1.2
Recall 87.2+2.38 87.8+1.9 85.4+3.7 86.5+1.7
Specificity 98.4+0.4 98.9 +0.1 98.5+0.4 99.1 +0.1
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FIGURE 12. Choroid layer and vessel segmentation results of ChoroidNET using test set-2 (a) Input, (b) ground truth, (c) model-1, and
(d) model-2. (15t and 2™ rows - choroid layer and 34 and 4th rows — choroidal vessels).
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choroidal vessels, as illustrated with the yellow arrows in
Figure 7 (d). U-Net++, Residual U-Net and ChoroidNET use
a high number of filters (the same as that in U-Net), which
considerably improves the recognition and segmentation of
the choroid layer and vessels.

Overall, the segmentation performance of ChoroidNET
is similar and consistent with the ground truths. U-Net++-,
DRUNET, and Residual U-Net are sensitive to the patholo-
gies (subretinal and intraretinal fluid) present in CNV, DME,
and Drusen images. In contrast, there is no visual difference
in the segmentation performance of ChoroidNET for CNV,
DME, Drusen, and Normal images.

The number of parameters used by a network depends
on the number of filters. ChoroidNET and Residual U-Net
each use approximately 4.5 million parameters (compared to
2.2 million for U-Net++ and only 40,000 for DRUNET) and
thus have a much higher computational cost and use much
more memory. This is a major drawback of ChoroidNET.

We also evaluated the segmentation performance of
ChoroidNET based on the prediction scores of the receiver
operator characteristics area under the curve (ROC-AUC)
and the precision-recall area under the curve (PR-AUC).
ROC-AUC indicates the tradeoff between the true positive
rate (TPR) and false positive rate (FPR). PR-AUC represents
the tradeoff between precision and recall. The range of scores
is [0, 1]. A higher score indicates a better model perfor-
mance. ChoroidNET obtained (ROC-AUC: 0.997 + 0.001,
PR-AUC: 0.989 =+ 0.002) for choroid layer segmentation and
(ROC-AUC: 0.992 £ 0.001, PR-AUC: 0.906 + 0.018) for
choroidal vessel segmentation, respectively.

Further, we performed ablation studies to demystify the
architecture of the proposed network. We also measured the
intra-observer variability for choroid layer and vessel seg-
mentation. To access the consistency and robustness of the
proposed model, we tested ChoroidNET’s performance using
an additional dataset that contains 80 images of CNV, DME,
Drusen, and Normal.

In summary, ChoroidNET significantly outperforms
U-Net++, DRUNET and Residual U-Net and is robust for
images with various retinal pathologies. In addition, it pro-
vides good tradeoffs between TPR and FPR, and between
precision and recall for both choroid layer and choroidal
vessel segmentation. ChoroidNET is thus the most robust
model.

VIi. CONCLUSION

In this study, we proposed ChoroidNET, a robust seg-
mentation model for segmenting both the choroid layer
and choroidal vessels in OCT images. ChoroidNET uses
U-NET as a backbone and adds dense dilated convolutions
at the bottleneck of LSM and VSM. The performance of
ChoroidNET was tested on CNV, DME, Drusen, and Normal
OCT images. The numerical results indicate that Choroid-
NET outperforms U-Net++, DRUNET, and Residual U-Net,
and is robust to cases of pathological abnormality (i.e., neo-
vascular membrane and associated subretinal fluid in CNV,
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retinal-thickening-associated intraretinal fluid in DME, and
multiple drusen).

Clinical research has shown that choroidal structures,
in terms of changes in the luminal and stromal areas,
and visual functions are highly correlated in diseased
eyes [48]-[50]. Based on the segmentation results of
ChoroidNET, our work could be extended to offer accu-
rate quantification of clinical parameters derived from the
choroid. These parameters can be used to find clinical correla-
tions between choroidal changes and other clinical measures.
It would be helpful for ophthalmologists to monitor changes
in the choroid layer over time for various eye diseases.

In this work, we considered the segmentation of the
choroid layer and choroidal vessels in OCT images. We will
consider the segmentation of the retinal layers, the RPE, and
the sclera in future studies because the pathologies of other
tissues in the retina are important for diagnosing diseases
such as Alzheimer’s disease [51], AMD, diabetic retinopathy,
and scleritis.
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