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ABSTRACT Intent classification (IC) and Named Entity Recognition (NER) are arguably the two main
components needed to build a Natural Language Understanding (NLU) engine, which is a main component
of conversational agents. The IC and NER components are closely intertwined and the entities are often
connected to the underlying intent. Current research has primarily focused to model IC and NER as
two separate units, which results in error propagation, and thus, sub-optimal performance. In this paper,
we propose a simple yet effective novel framework for NLU where the parameters of the IC and the NER
models are jointly trained in a consolidated parameter space. Text semantic representations are obtained from
popular pre-trained contextual language models, which are fine-tuned for our task, and these parameters are
propagated to other deep neural layers in our framework leading to a faithful unified modelling of the IC
and NER parameters. The overall framework results in a faithful parameter sharing when the training is
underway, leading to a more coherent learning. Experiments on two public datasets, ATIS and SNIPS, show
that our model outperforms other methods by a noticeable margin. On the SNIPS dataset, we obtain a 1.42%
improvement in NER in terms of the F1 score, and 1% improvement in intent accuracy score. On ATIS,
we achieve 1.54% improvement in intent accuracy score. We also present qualitative results to showcase the
effectiveness of our model.

INDEX TERMS Intent classification, named entity recognition, multi-task learning, transfer learning.

I. INTRODUCTION
As conversational agents become more popular, it is vital to
make them more effective. The performance of such agents
predominantly relies on their ability to understand what the
user says, through the use of a Natural Language Understand-
ing (NLU) engine, so the agent can act in a meaningful way.
An NLU engine aims to form a semantic frame that captures
the meaning of user utterances or information needs [1].
To this end, each NLU engine performs two main tasks,
namely, Intent Classification (IC) and Named Entity Recog-
nition (NER) [2]. The former deals with the understanding of
the user’s intended desire and the latter identifies references
to the real-world objects in the user’s utterance. Table 1
presents an example where the user says they want to upgrade
their phone. The named entity ‘‘device’’ is annotated using

The associate editor coordinating the review of this manuscript and

approving it for publication was Seifedine Kadry .

the Beginning Inside and Outside (BIO) of a text segment
notation.

Developing a reliable NLU engine is not a trivial task.
There are manywell-documented challenges such as ambigu-
ity of the intents, short sentences, long range dependencies,
out-of-vocabulary words, lack of training data, and dealing
with new or adapting domains. Traditionally, IC and NER
have been independently researched and improved, and in the
conversational agents context, NER has usually been referred
to as slot filling and framed as a sequence labeling task.
Popular approaches to solving sequence labeling problems
include Maximum Entropy Markov Model [3] and Condi-
tional Random Field (CRF) [4]. Support Vector Machines
(SVM) [5] was used byMoschitti et al. [6] with syntactic fea-
tures and tree kernels for slot filling. Deep learning methods
have also been explored such as Recurrent Neural Networks
(RNN) [7], [8] and deep belief network [9] which have
shown reliable ability to capture dependencies compared to
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TABLE 1. An example of an utterance with intent and BIO Named Entity
annotation.

the traditional models such as CRF. Long Short-Term Mem-
ory (LSTM) and regression models were used to obtain label
dependency for slot filling in Yao et al. [10]. For IC, different
classifiers have been applied from the traditional machine
learning approaches such as SVM [11] and Adaboost [12]
to the deep learning models [13]–[15]. A RNN model was
proposed in Ji et al. [13] to model sentences and words for
intent detection. Convolutional Neural Networks (CNN) was
used in Hashemi [14] and an RNN in combination with word
hashing, to account for the out-of-vocabulary words, was
explored in Ravuri and Stolcke [15] to detect intents of the
users’ queries.

One of the main problems with the models above is that
they treat IC and NER, independently. This creates problems
as these tasks are not inherently independent. For example,
a query like ‘‘pickupmy order at orange‘‘ has ‘‘orange’’ as the
name of a store, while ‘‘buy orange at Tesco‘‘ has ‘‘orange‘‘ as
a fruit [16]. An NERmodel that is aware of the intent is better
capable of differentiating between these two entities. Hence,
by addressing the two tasks simultaneously, where each task
informs the other, one can boost the performance of an NLU
engine.

Another serious shortcoming of the approaches mentioned
above is error propagation, and amplification from one
stage to another. As a result, there has been some effort
to model different components as a unified machinery to
mitigate this problem. A unified model not only reduces
error propagation but the model parameters are shared in
a consolidated parameter space, leading to more coher-
ent parameter estimation. Ease of use is another advan-
tage where one has to only train a single model unlike the
pipeline approach. The literature shows that a variety of RNN
models have been employed to detect intents and entities
together [17]–[19]. CNN models have also been employed
in Xu and Sarikaya [20], where the features were extracted
by the CNN layers and shared between the two tasks.
An ensemble of both Bidirectional Long Short-TermMemory
(BiLSTM) and Bidirectional Gated Recurrent Unit (BiGRU)
was used in Firdaus et al. [21] to separate multi-layer per-
ceptrons whose outputs are fused and then projected and a
softmax applied to predict intents and slots. The transformer
architecture [22], which is a non-recurrent model efficient
for capturing global dependencies through multi-head self-
attention, has been used in different studies [23], [24] and
produced superior results. These unified machine learning
models can be categorized as either intent2slot or slot2intent
framework [1]. Intent2slot models [25], [26] use intent infor-
mation to predict the slots and slot2intent models [27] do the
opposite, which is using the slot information to predict the

intent. We argue that both tasks can inform one another when
they are being trained in a unified consolidated parameter
space, hence, we benefit from both intent2slot and slot2intent
simultaneously.

In this paper, we develop a novel multi-task model for IC
and NER. Our main model is a joint computational method
where IC and NER parameters are jointly shared. Specif-
ically, we derive text representations from an underlying
pre-trained but fine-tuned contextual language model which
could be BERT or others. These embeddings are then passed
to the IC and the NER model at the same time. The IC model
shares its parameter information with the NER model and
vice-versa. Our multi-task model makes use of this shared
information while solving two problems simultaneously. The
other motivation for applying multi-task model is that essen-
tial elements of a NLU engine, i.e. intent and entities, can be
predicted at once.

Our main technical contribution lies in developing a simple
yet effective unified model for IC and NER where features
are derived from a pre-trained language model. We have
performed extensive experiments and show that our model
outperforms current state-of-the-art on both SNIPS [28] and
ATIS [29] benchmark datasets. The qualitative results also
indicate the effectiveness of our model. In particular, we show
that our unified model is able to assign correct intents to
the user’s utterances where the single-task model lacks this
capability, especially in the case of ambiguous intents.

II. RELATED WORK
In this section, we present an overview of the literature and
group the works into the following categories; Traditional,
where the two tasks are tackled separately, and Unified mod-
els, in which the tasks are handled together.

A. TRADITIONAL MODELS
Research in NLU emerged from the Airline Travel Infor-
mation Systems (ATIS) project and some call classification
systems in the early 1990s [30]. For IC, features such as
n-grams with generic entities, e.g. dates and locations, were
typically used. Due to the very large dimension of the input
space, classifiers such as Adaboost [31] and SVM [11] were
found effective. For NER, most of the works have been based
on CRF due to the effectiveness of this model on sequence
labeling [4]. The problem with such approaches is that they
rely on the domain expert knowledge for feature engineer-
ing. To compensate for this, deep learning models were
introduced.

Among deep learning models, CNN was used to extract
features and LSTM models were applied to take account of
sequence (sentence) representation. Costello et al. [32] con-
structed a CNNwith character-level embedding and a bidirec-
tional CNNwith an attention mechanism. They also explored
LSTM and GRUwith and without character-level embedding
and an attention mechanism for intent detection. Lin and
Xu [33] proposed a two-stage method to detect unseen intent
labels using a Bi-LSTM to extract features of a sentence. For
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FIGURE 1. The Joint models for intent detection and Named Entity Recognition. NER+IC: Two tasks only share the transformer layer. NERIC: Two tasks
share parameters through Hadamard product. µNERIC : Two tasks share information through Matrix Multiplication.

their loss function, they used LargeMargin Cosine Loss argu-
ing that it maximizes the decision margin. With this model,
they were trying to solve the problem of unseen intents. The
problemwith RNN-based models either in the form of LSTM
or GRU is that the gradients are vanishing through the process
of encoding the input. They become smaller and smaller,
so the parameter updates become insignificant which means
no real learning is done.

Transformer-based models were introduced to address
the problem of vanishing gradients in RNN-based models.
Transformers [22] are not sequential so they do not suffer
from the problem of vanishing gradients. They also benefit
from self-attention and positional embeddings, which help
to capture long-range dependencies. A recent work by Ren
and Xue [36] proposed using transformer-based models for
encoding the input. Specifically, they train triple samples,
namely, an anchor sample, a positive sample from the class,
and a negative sample from a different class. Then they
combined convolutional and BERT encoding of each sample
andmapped them to the Euclidean space with Siamese shared
weights. They tried to minimize an intermediate loss of
anchor-positive distance minus the anchor negative distance.

Capturing sequential information is one of the key com-
ponents for NER too; hence various RNN, Bi-LSTM, CNN
and Bi-GRU have been employed in different studies due
to their ability to encode such information. Mesnil et al. [8]
compared different types of RNN, including Elman-type and
Jordan-type networks. Both types were constructed with a
3-word context window. Yao et al. [37] used LSTM cells,
containing a gate to forget unnecessary information, along
with regression to model dependencies. Their regression
model took a non-normalized score before applying softmax

to avoid label bias. Even though they showed improvement
over CRF models, they were not able to beat previous deep
learning based models.

All the models above, which tackle IC and NER inde-
pendently, suffer from a major issue. They do not consider
the inter-dependencies between the intent of a sentence and
its containing entities. For example, when a customer says,
‘‘I would like to downgrade to essential’’, if a NER model
knows that the intent is ‘‘downgrade’’, there is a higher
chance for it to be able to recognize ‘‘essential’’ as a plan
name. Unified models were proposed as an alternative to
address the problem [18], [35], [38], [39].

B. UNIFIED MODELS
The earliest work on unified models used a triangular-chain
CRF, which outperformed other models tackling the two
sub-tasks in a pipeline [38]. Other early studies also used
statistical models such as maximum entropy model for IC
and CRF for NER [40], and a multi-layer Hidden Markov
Model [41]. These models, like any other models based
on traditional machine learning, suffer from the laborious
task of feature engineering and over-relying on domain
experts knowledge. This problem was obviated by applying
deep learning models, where the model itself extracts the
features.

Deep learning models have been employed to address the
two tasks simultaneously. Recursive Neural Networks (Rec-
NNs) (different from recurrent neural networks (RNN)) was
used in Guo et al. [39] where the RecNNs worked over the
constituency parse tree of the utterance. In this case the leaves
corresponded to the words, which were in turn represented
by word vectors. A RecNN was applied to each node in the
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TABLE 2. Performance comparison on ATIS and SNIPS datasets. Model
names written in bold refer to ours.

TABLE 3. Performance comparison on ATIS and SNIPS datasets using
different embeddings.

tree recursively from bottom to top, computing the node’s
state. Individual slot label classifiers were applied to each leaf
by combining: (i) each node’s word vectors; (ii) the node’s
neighbours; (iii), and the state vectors from the leaf to the
root. Finally, the state at the root was passed to the IC, and a
combined loss over the slots and intents was back-propagated.
Their model was among the first models to tackle the two
task simultaneously. However, they did not improve upon
the previous models, as their model was not able to encode
the sequential information and the dependencies between the
slots.

In order to take the dependencies between the slots into
account, later works focused on exploring the power of RNNs
in capturing sequential information. For instance, a multi-
domain joint semantic frame parsing using bi-directional
RNN-LSTM was used by Hakkani-Tür et al. [17]. In their
model, features representing the tokens were passed in tem-
poral sequences to RNN units with a hidden state. Inter-
mediate hidden states and the final hidden state were used
for slot labeling and intent prediction. Despite the RNNs
models’ success in encoding the sequences, these models
were criticized for sharing the information between the tasks
implicitly and only through back propagation of joint loss [1].
They also suffer from information loss in longer sequences
due to their sequential nature. This paved the way for models
based on attention mechanism which are not sequential and
process the whole sequence at once.

Liu and Lane [18] used attention for slot and intent pre-
dictions. As they argue, in bidirectional RNN for sequence
labeling, the hidden state at each time step carries information
of the whole sequence, but information may gradually lose
along the forward and backward propagation. Thus, when
making slot label prediction, instead of only utilizing the
aligned hidden state hi at each step, they use an additional
context vector ci for additional supporting information, espe-
cially in the case of longer-range dependencies that is not
usually being fully captured by the hidden state.

Later, Goo et al. [26] presented a method benefiting from
more explicit attention. It did so by taking the word vectors in
sequence and using a different learned weighted sum of the
intermediate states of the BiLSTM for each slot prediction
and the final state for intent detection. They managed to
improve upon the results achieved by Liu and Lane [18].

Attention-based models proved successful in handling
the long-range dependencies, however, they were not able
to solve the long-lasting problem in the field, which is
small-scale human-labeled training data. This results in
poor generalization capability, especially for rare words.
Transformer-based language models, e.g. BERT, facilitate
pre-training deep bidirectional representations on large-scale
unlabeled corpora, and has created state-of-the-art models for
a wide variety of natural language processing tasks after sim-
ple fine-tuning [42]. Since the advent of BERT [43], several
researchers have applied it in their unified models. For exam-
ple, an intent2slot architecture was used in Qin et al. [35]
with BERT encoding and stack propagation to jointly learn
the intents and entities. In their model, the information about
the intent detection was used to inform the entity recognition.

The transformer architecture [22], which captures global
dependencies through multi-head attention, was also utilized
in some papers (see for instance [23], [24], and references
therein). In Do and Gaspers [23], the transformer architecture
was used to create the contextual embedding of the word
tokens and then the attention was applied between them to
inform the intent detection sub-task. Their model achieved
better results than earlier work in the literature.

Zhang and Wang [24], passed word embeddings to
a three-level transformer layer, and then an output was
extracted to inform IC and a token level output was passed to
a CRF for NER. Unified models can generally be divided into
intent2slot and slot2intent models. The inten2slot models use
intent information as part of slot prediction and slot2intent
models do the opposite. An intent2slot model with BERT
encoding was used in Qin et al. [35] and Wang et al. [44] to
learn intent and slots jointly. Haihong et al. [34] proposed an
intent2slot and slot2inent model within a BiLSTM encoder.
In this, a weighted sum of intermediate states for each step
(the slot contexts) feeds a slot sub-net and the weighted final
hidden state (the intent context) feeds an intent sub-net.

In our work, we propose a novel unified intent2slot and
slot2intent approach. We perform IC and NER simultane-
ously using a task-specific layer on top of a transformer-based
language model. We employ three different architectures to

VOLUME 9, 2021 147309



A. Benayas et al.: Unified Transformer Multi-Task Learning for Intent Classification With Entity Recognition

share the information between the two sub-tasks and show
that our model outperforms the state-of-the-art results on
both SNIPS and ATIS datasets. Qualitative results verify the
superiority of our unified model over the single-task model
in handling the ambiguous intents.

III. METHODOLOGY
In this section, we formally define IC and NER. We also
present our multi-task framework and each respective model.

A. IC AND NER
Let V be a vocabulary and w ∈ V a word. We repre-
sent each sentence in our collection as a sequence of words
s = (w1,w2, · · · ,wn). In NER, the goal is to formulate
the problem as a sequence labeling task that maps an input
word sequence s to their corresponding label sequence y =
(y1, y2, . . . , yn). Similarly, intent detection can be treated as a
classification problem to decide the intent label of the whole
sequence s as a single y′.

B. PROPOSED APPROACH
Here, we propose three multi-task transformer-based mod-
els capable of performing IC and NER simultaneously (see
Figure 1). Each of our models has a different architecture
through which the two tasks share the underlying represen-
tations. Each sentence’s representation is produced using a
transformer-based language model, which includes contex-
tual information. This part is common among all of our
models, however, there are differences in the way they share
information at the higher layers. Both IC and NER are
optimized simultaneously via a joint learning scheme. The
following sections explain NER+IC, NERIC and µNERIC
respectively.

C. MODELS
We propose a simple yet effective encoder-classifier archi-
tecture based on transformer-based language models. Specif-
ically, we use a transformer-based language model, (e.g.
RoBERTa [45], BERT), as our encoder and then add classifi-
cation layers on top. Any transformer-based language model
could be used, however, we recommend RoBERTa, as it
produces better results in most cases (see Table 3). RoBERTa
builds on BERT’s language masking strategy and modifies
key hyper-parameters in BERT, including removing BERT’s
next-sentence prediction objective, and training with much
larger mini-batches and learning rates. RoBERTa was also
trained on much more data than BERT, for a longer amount
of time. This allows RoBERTa representations to generalize
even better to downstream tasks compared to BERT. For each
model, we add task-specific layers to share the parameters
between the models in three different ways.

As for NER+IC, for the IC channel, first, we pass the
sentences through an encoder, which is a transformer-based
languagemodel, to get the representations (hcls) via the pooler
layer. Then we apply a feed-forward layer with 256 nodes;
this layer helps the model select important features. More

layers could be added at this stage, but we do not advise
that, as it could lead to over-fitting, especially, given the
small size of the dataset. We add a softmax layer on top to
get the probability distribution for the classes (n_intents in
Figure 1 refers to the number of classes/intents). We fine-
tune the entire model, including the pre-train model, using the
training set. For NER in NER+IC, we do not use the pooler
layer as we need token-level representations (hj). We just add
a task-specific softmax layer on the top of RoBERTa. In this
model, the only shared part between the two sub-tasks, i.e.
IC and NER, is just the encoder. In other words, we denote
the input sequence as x = (x<cls>, x1, . . . , xl), where l is the
utterance length. Eachword xj will be embedded into a vector,
and the output can be formulated as h = (h<cls>, h1, . . . , hl).
The cls token is the first token of the sequence when h is built
with special tokens. This cls is used in the classification of a
whole sequence, instead of per-token classification. Specifi-
cally, the IC and NER results are predicted using:

y′ = softmax(Wihcls + bi) (1)

yj = softmax(Wshj + bs), (2)

where y′ and yj denote intent label of the utterance and NER
label for each token j, respectively.W and b are corresponding
trainable parameters. Wi and bi are the parameters of the IC
part andWs and bs are the parameters of the NER part of the
model.

For the NERIC, the IC is done by applying a softmax
layer on top of the Hadamard product of the feed-forward
layer from the IC and the mean-pooling from the NER chan-
nel. We use mean-pooling since according to the authors of
RoBERTa, it yields the best results. The NER model also
uses a softmax layer on the top of the Hadamard product of
the feed-forward layer coming from the IC channel and the
feed-forward layer of the NER channel itself. In other words,
the IC and NER results for NERIC are calculated as follows,
respectively:

y′ = softmax((Wihcls + bi) ◦ hs_mean) (3)

yj = softmax((Wihcls + bi) ◦ (Wshj + bs)), (4)

where hs_mean is the mean-pooling layer coming from the
NER channel. This gives us a matrix with the same dimen-
sions as the feed-forward layer in the IC channel allowing us
to calculate the Hadamard product. This is the simplest way
for the two sub-tasks to communicate and share information.

For the µNERIC , first, a matrix multiplication is carried
out on the feed-forward layer of the IC and the mean-pooling
coming from the NER model. Then a feed-forward layer is
applied on the result followed by another mean-pooling layer.
Finally, a softmax layer predicts the intent labels.

The NER part of µNERIC , first conducts a matrix multi-
plication on the feed-forward layer of the model itself and the
one coming from the IC. Then a softmax layer is applied on
top to predict NER labels. In other words, the IC and NER
results for µNERIC are calculated as follows,

y′ = softmax(Wi2((Wihcls + bi)× (Wshj + bs))+ bi2) (5)
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TABLE 4. Examples of sentences.

yj = softmax((Wihcls + bi)× (Wshj + bs)), (6)

where Wi and bi are the parameters of the first feed-forward
layer, and Wi2 and bi2 are the parameters of the second
feed-forward layer in the IC part.

D. JOINT LEARNING
To obtain both IC and NER jointly, we formulate the final
joint objective as

Ljoint = WiLi + (1−Wi)Ls, (7)

where Wi is a trainable parameter. Li and Ls are Loss func-
tions for IC and NER, respectively, which are calculated
using,

Li,Ls = −y.log(ŷ), (8)

where y is the ground truth vector and ŷ is the estimate.
Then we calculate the joint loss as described in Equation 7,

which is the weighted sum of loss of IC andNER. Theweight,
i.e. Wi is learned while training the model.

IV. EXPERIMENTS AND RESULTS
In this section, we compare our proposed model against
different state-of-the-art methods on benchmark datasets. The
setup we use for these datasets is rather popular (see for
instance [17], [18], [26], [34], [35], and references therein).

A. DATASETS
The ATIS dataset [29] is the most widely used dataset in NLU
research, containing audio recordings of people making flight
reservations. Our setup is composed of 4,455 utterances for
training, 878 for validation and 497 for testing from ATIS-2.
There are in total 127 distinct slot labels and 18 different
intent types.

The SNIPS NLU dataset [46] contains 13,084 utterances in
training, 700 in development and 700 in test sets. In training
there are 72 slot labels and a vocabulary size of 11,241 words.
Unlike ATIS, SNIPS covers different domains - weather,
restaurants and entertainment in 7 balanced intent classes.

B. BASELINE MODELS
We compare our models against the state-of-the-art methods
and a variant of our proposed methods in which only the
task of intent classification is attempted (single-task model).
We summarise all methods compared against below.
• Joint Seq [17]. This bi-directional RNN-LSTM model
was proposed for joint modeling of slot filling, intent
determination, and domain classification.

• Attention-based [18]. This bi-directional RNN model
was introduced to compensate for the inadequacy of
regular RNN models in taking long-range dependen-
cies into account. In bi-directional RNN for sequence
labeling, the hidden state at each time step carries infor-
mation of the whole sequence. However, information
may gradually erode along the forward and backward
propagation. Thus, this Attention-based model uses a
context vector along with the hidden state to capture
more contextual information, especially in the case of
longer range dependencies.

• Slot-Gated [26]. This model introduces an additional
gate that leverages intent context vector for modeling
slot-intent relationships, in order to improve slot filling
performance.

• SF-ID (w/CRF) [34]. This is a slot2intent and intent2slot
model using bi-directional interrelated model for joint
intent detection and slot filling was proposed.

• Stack-Propagation [35]. This joint model with stack-
propagation was developed to directly use the intent
information as input for slot filling.

• Single-task IC. In this we used only the IC part of
NER+IC to predict the intents.

C. EXPERIMENTAL SETTINGS
We use roberta-base model to create representations, which
gives us a 768-dimensional vector. For our feed-forward
layer we choose 256 nodes and 0.4 for dropout rate. We set
the batch size to 64 and learning rate to 0.0001. We con-
duct our experiments on ATIS and SNIPS, reporting our
results and those obtained by key texts in the literature (see
Hakkani-Tür et al. [17], Liu and Lane [18], Goo et al. [26],
Haihong et al. [34], and Qin et al. [35]).

We use Adam [47] to optimize the parameters in our model
and adopted its suggested hyper-parameters for optimization.
For each experiment, we select the model which works the
best on the development set, and then evaluate it on the test
set.

D. QUANTITATIVE RESULTS AND DISCUSSION
Following Hakkani-Tür et al. [17], Liu and Lane [18],
Goo et al. [26], Haihong et al. [34], and Qin et al. [35],
we evaluate the performance of our NLU engine for IC using
accuracy, and for NER using F1 score. It is worth mentioning
that for benchmarking the models performance on NER,
we use CoNLL1 scheme, which is one of the most famous
benchmarks for NER; it uses an strict definition for recall
and precision to define the F1 score. Table 2 summarizes the
models’ performance on ATIS and SNIPS datasets.

Table 2 shows our models significantly outperform all
the baselines by a noticeable margin, achieving state-of-
the-art performance for IC and NER on SNIPS, and for
IC on ATIS. On SNIPS, compared to the best prior joint
model, stack-propagation, we achieve 1.42% improvement

1Conference on Computational Natural Language Learning.
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TABLE 5. Examples of single-task and joint model predictions.

in NER (F1), and 1% improvement in intent (accuracy).
On ATIS, we achieve 1.54% improvement in intent accuracy
compared to the best performing baseline, SF-ID (w/CRF).
This indicates the effectiveness of our simple architecture.
We can attribute these results to the fact that our framework
is good at capturing the correlation between the intents and
named entities. Our qualitative results also verify our assump-
tions that NER information can be used for guiding intent
detection (see Section IV-E).
We also experiment with other versions of transformer-

based language models. Table 3 summarizes there results,
showing bert-large (cased/uncased) performs better than any
other models except for the IC on SNIPS where bert-base-
cased performs slightly better (0.24%). These results ratify
the fact that larger models are able to encode more informa-
tion. In particular, bert-large-cased outperforms all models
for NER task improving state-of-the-art for NER by 0.02%on
ATIS and 1.76% on SNIPS. This is also in line with what was
reported in BERT original paper in which bert-large-cased
outperformed bert-base-cased in NER. As for IC, the NERIC
built on bert-large-uncased and the µNERIC built on bert-
base-uncased improve state-of-the-art by 2.18% on ATIS and
1.4% on SNIPS respectively.

We have seen all these significant improvements on two
publicly available datasets. However, we would like to know
the reason for the improvement. To this end, we compare
the results achieved by the joint model to those achieved by
the single-task model, which only addresses the IC task. The
quantitative results in Table 2 show the superiority of our joint
models to the single-task model. The joint models achieve
higher accuracy scores, with µNERIC being the best per-
forming model, with 1.03% and 0.5% higher scores on ATIS
and SNIPS, respectively compared to the single-task model.
Moreover, examples from datasets demonstrate that how the
IC in our joint model is able to predict the correct intent where
the single-task model fails to do so. The following section
discusses this in more detail.

E. QUALITATIVE RESULTS AND DISCUSSION
Here, we present some examples from the datasets where the
joint model predicts the intent correctly, while the single-task
model is incapable of doing so. Table 4 shows the list of the
sentences and Table 5 demonstrates the predictions of the IC
model both in the single-task and joint models.

For example, the intent for sentence 1, ‘‘what are the times
for The Gingerbread Man’’, is predicted as ‘‘GetWeather’’
by the single-task model while the correct intent is ‘‘Search-
ScreeningEvent’’. The IC in joint-model is able to predict

this intent correctly, as it is correctly informed by the NER
part of the model that ‘‘The Gingerbread Man’’ is the name
of a movie.

As for the sentence 2, ‘‘how many passengers can fly on a
757’’, the single-task model is not able to predict the correct
intent, which is ‘‘atis_capacity’’; the models is probably
misled by the mention of a number, i.e. 757. On the other
hand, the unified model successfully predicts the intent. This
could be due to the fact that the NER part of the model has
identified 757 as an aircraft_code.
In sentence 3, ‘‘what is the seating capacity of the type

of aircraft m80’’, the user is asking about the capacity of
the aircraft, i.e. ‘‘atis_capacity’’. This has correctly been
identified by the joint model, as it has access to another piece
of information, provided by the NER part of the model. The
NER model has recognised a mention of ‘‘aircraft_code ’’
in the sentence. The single-task model’s failure can be linked
to the model’s lack of access to such information and relying
only on keywords like aircraft.

Finally in sentence 4, ‘‘show me the airports serviced by
tower air’’, the joint model is able to predict the correct intent,
which is ‘‘atis_airport’’; however, the single-taskmodel falls
short by classifying the intent as ‘‘atis_city’’. This might be
linked to the information that the IC part of themodel receives
from the NER part of it. In this example, towerwas identified
as ‘‘airline_name’’ by the NER model, which has led to the
IC to choose ‘‘atis_airport’’ intent over ‘‘atis_city’’.

V. CONCLUSION
In this paper, we propose a simple yet effective unified model
for IC and NER. Our transformer-based model enhances the
interrelated connections between the intent and entities. The
intent2slot and slot2intent interrelated model helps the two
tasks enhance each other mutually. Our model outperforms
the baselines on two public datasets by a noticeable margin.
These positive results are further reinforced by our qualitative
analysis, which shows the effectiveness of our unified model
as it is able to assign correct labels to ambiguous sentences
whereas the single-task model fails to do so. In our uni-
fied model, the two tasks share information through simple
Hadamard andmatrix multiplication. In future, we would like
to explore other ways of sharing parameters between the IC
and NER channels.
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