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ABSTRACT The performance of the salient object detection of strip surface defects has been promoted
largely by deep learning based models. However, due to the complexity of strip surface defects, the existing
models perform poorly in the challenging scenes such as noise disturbance, and low contrast between
defect regions and background. Meanwhile, the detection results of existing models often suffer from
coarse boundary details. Therefore, we propose a novel saliency model, namely an Edge-aware Multi-level
Interactive Network, to detect the defects from the strip steel surface. Concretely, our model adopts the
U-shape architecture where the two crucial points are the interactive feature integration and the edge-guided
saliency fusion. Firstly, except the skip connection that combines the same stage of encoder and decoder,
we deploy another connection, where the features from adjacent levels of encoder are transferred to the same
stage of decoder. By this way, we are able to provide an effective fusion of multi-level deep features, yielding
a well depiction for defects. Secondly, to give well-defined boundaries for prediction results, we add the edge
extraction branch after each decoder block, where the progressive feature aggregation endows the edge with
precise details and complete object cues. Meanwhile, together with the edge extraction branches, we deploy
the saliency prediction branch at each decoder stage. After that, coupled with the fine edge information,
we fuse all outputs of saliency prediction branches into the final saliency map, where the edge cue steers
the saliency result to pay more attention to the boundary details. Following this way, we can provide a
high-quality saliency map which can accurately locate and segment the defects. Extensive experiments are
performed on the public dataset, and the results prove the effectiveness and robustness of our model which
consistently outperforms the state-of-the-art models.

INDEX TERMS Salient object detection, surface defects, multi-level feature, fusion, edge.

I. INTRODUCTION
Surface defect detection is a very important research area in
the field of machine vision, which tries to locate the defect
regions in the collected surface images. Here, this paper
focuses on strip steel which is a kind of industrial material
and is widely used in ships, bridges, cars, military, and so on.
There are many types of surface defects on strip steel, such
as inclusions, patches, and scratches, which are caused by
the equipment, raw materials, technology, casting and other
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factors in the production process of strip steel [1]. The defects
exert a negative influence on the quality of strip steel, the deep
processing, and the aesthetics of products. Therefore, the strip
steel surface defect detection technology is deployed on the
production line to inspect the surface and locate the defects,
so as to realize the effective control of the strip steel quality.

Generally, the defect detection is often conducted by
the human vision based manual inspection, where the sur-
face defect details cannot be observed in time. Besides,
the manual inspection is easily affected by the working
environment, equipment stability, and subjective factors.
Thus, in recent years, manual inspection methods have been
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gradually replaced by the machine vision based detection
methods which are more efficient and more robust. Mean-
while, as we all known, saliency detection [2] tries to cap-
ture the most visually attractive regions of an image, and
coincidentally, the defect regions of the strip steel surface
can also be regarded as salient regions. Saliency detection
is often treated as a preprocessing operation for many vision
tasks such as tracking [3], [4], segmentation [5], [6], quality
assessment [7], [8], and defect detection [9]–[17]. Therefore,
this paper attempts to regard the strip steel surface defect
detection as the salient object detection, so as to effectively
highlight the defect regions.

Recently years, there are many efforts have been devoted
to the research of saliency detection. Concretely, the tradi-
tional saliency models can be categorized into two classes.
The first one is heuristic priors based models, such as the
contrast-based saliency model [18], [19], center-surround
differences based models [20], [21], and the background
prior based models [22], [23]. The second one is tradi-
tional machine learning algorithm based models such as
random forest [24], [25], support vector machine [26], con-
ditional random field [27], and so on. However, the tradi-
tional saliency models are mainly designed based on the
hand-crafted features which cannot give a well depiction
for strip steel surface defects, especially some complex sur-
face scenes such as low contrast between defects and back-
grounds, small defect regions, and noise disturbance. This
often results in the generated saliencymap cannot pop-out the
defects completely. To tackle this dilemma, the deep learning
technology has been applied to this field [28]–[37]. Although
the performance of saliency models has been elevated largely,
the inference results still suffer from two problems. The first
problem is the coarse boundaries, where the defects cannot be
accurately segmented when there are multiple defect regions
with different sizes and the defects with fine structure in the
image. The second one is the robustness of the model, where
the performance degrades largely when dealing with the noise
interference data.

To address the above challenges, we propose a novel
saliency model, namely Edge-aware Multi-level Interactive
Network shown in Fig. 1, to detect the strip steel surface
defects. The entire network is an U-shaped architecture [38],
and the two crucial components of our model are the inter-
active feature integration and edge-guided saliency fusion.
To be specific, the proposed model first extracts multi-level
deep features by using the encoder part. Then, we deploy
the decoder to aggregate the multi-level deep features. Par-
ticularly, the existing U-shape based saliency models [17],
[28], [39] try to combine the deep features derived from the
same stage encoder and decoder by using the skip connection.
Following this way, each level deep feature can only give
a scale-specific representation for defects, and it is lack of
information exchange between different layers, where the
shallow layer features may be impaired by the continuous
combination of the features from deep layers. Thus, for
each level feature, we attempt to integrate the features from

adjacent levels of encoder which will provide more relevant
and effective cues for the current level feature. By this way,
we can realize the interaction of adjacent level features, and
facilitate the flow of information from different levels. After
that, to further promote the boundary quality of inference
results, there are many models [17], [28], [39] attempt to
introduce edge cues. Inspired by this, we also introduce edge
information into our network. We deploy the edge extraction
branch after each decoder block, and meanwhile, we add a
saliency prediction branch at each decoder block, where the
edge information not only conveys precise boundary details
but also is endowed with complete object cues. Subsequently,
we fuse the saliency inference results and the fine edge
information into the final high-quality saliency map which
can accurately locate and segment the defects.

Overall, the contribution of this paper can be summarized
as follows:

1) We propose a novel saliency model, i.e. Edge-aware
Multi-level Interactive Network, to detect strip steel
surface defects, where the two key points are the inter-
active feature integration and the edge-guided saliency
fusion.

2) To give an effective interaction of different level fea-
tures, we integrate each level feature with its adjacent
level features. Besides, to present high-quality bound-
ary details of defect regions, we introduce the edge
information to refine the saliency fusion.

II. RELATED WORKS
There are numerous efforts have been devoted to the saliency
detection of which the performance has been push forward
significantly. Here, wemainly give a brief introduction for the
two kinds of saliency models, namely the traditional models
(the heuristic prior based models and the traditional machine
learning based models) and the deep learning based model.

A. TRADITIONAL SALIENCY MODELS
The pioneer work of saliency detection is conducted
by Itti et al. [2], where the saliency is defined as the
center-surround difference computed by color, intensity,
and motion features. Following this mechanism, the
Achanta et al. [40] defined the saliency by using frequency-
tuned method. Besides, Cheng et al. [18] treated the saliency
as a region contrast which is with respect to its nearby regions.
In [19], a saliency prediction is designed from two contrast
measures by the uniqueness and spatial distribution. There
are also some other heuristic priors to build saliency measure-
ment. For example, in [20], the discriminant center-surround
hypothesis is proposed to estimate the saliency values of
each image. In [21], the saliency of each pixel is defined
as how much it discriminate from surroundings, which is
computed by employing an anisotropic center-surround oper-
ator. In addition, the background prior is also adopted in
many saliency efforts. For example, in [22], the boundary
and connectivity priors about backgrounds are employed by
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geodesic saliency. In [23], the spatial layout of image regions
with respect to image boundaries is employ to define the
boundary connectivity which can be viewed as a saliency
measurement.

In recent years, with the development of machine learning
algorithms, the performance of saliency models has also been
promoted to some degree. For example, in [24] and [25], the
random forest is used to map the features to saliency values.
In [26], Tong et al. employ the support vector machine based
multiple kernel boosting method to estimate the saliency
values. The conditional random field is also used to aggregate
various unary saliency cues with pairwise information to
highlight salient objects [27]. Besides, regularized random
walk ranking [41] is employed to introduce prior saliency
prediction to each pixel by simultaneously considering the
region and pixel image features, thus generating high-quality
saliency maps. In [42], Peng et al. employed the low-rank
matrix theory to perform matrix decomposition, where the
background and salient regions are represented by low-rank
matrix and sparse matrix respectively. In [43], Huang et al.
used the multiple instance learning to estimate each pro-
posal’s saliency value.

Generally, the aforementioned traditional models usually
adopt hand-crafted features to compute the contrast, measure
the background prior, train the machine learning algorithms,
and so on. They cannot capture the rich semantic informa-
tion of salient objects, i.e. defects. Therefore, when dealing
with the challenging scenes, the existing traditional models
are incapable of detecting the defect regions accurately and
completely.

B. DEEP LEARNING BASED SALIENCY MODELS
In recent years, the deep learning technologies have achieved
a huge progress, and this is also benefit for the detecting of
salient objects, where the performance of saliency models
has been pushed forward significantly. For example, in [44],
Luo et al. proposed a convolutional network that fuses the
local and global cues via a multi-resolution 4× 5 grid struc-
ture. In [45], Hou et al. inserted short connections to the
skip-layer structures within holistically-nested edge detector.
In [30], the recurrent residual refinement network is deployed
to progressively refine the saliency maps by building a set
of residual refinement blocks, where the low-level features
and high-level features are alternatively utilized. In [46], the
bi-directional message passing model is proposed to fuse
multi-level features into the final saliency map, where the
messages are flowed among multi-level features. In [47],
pixel-wise contextual attention network is designed to selec-
tively acquire an attention map, in which each attention map
corresponds to the contextual relevance at each pixel. In [48],
Zhao andWu proposed the pyramid feature attention network
consisting of context-aware pyramid feature extraction mod-
ule and channel-wise attention module, which is employed to
strength the high-level and low-level deep features. In [39],
Liu et al. designed two pooling-based modules including the
global guidance module and the feature aggregation module

to promote the performance for saliency detection. In [29],
Wu et al. designed the cascaded partial decoder framework
to obtain a precise saliency map, where the low-level features
are discarded and the high-level features are retained. In [28],
the boundary-aware saliency detection network employed
the hybrid loss to guarantee the accuracy of saliency maps.
In [17], Song et al. proposed an encoder-decoder residual
network to precisely segment the defect regions from the
strip steel surface. Besides, in [31], a depth-quality-aware
subnet is inserted into the classical bistream RGBD saliency
network, which promotes the fusion of the RGB and depth
information. In [32], Chen et al. proposed a lightweight
temporal network to acquire the temporal information which
can effectively interact with the corresponding spatial cues,
which gives a well saliency inference on videos. In [49], the
salient object detection is regarded as an object-level seman-
tic re-ranking problem, where a lightweight deep network
and a post-processing refinement are deployed successively.
In [50], a stereoscopic attention mechanism is deployed to
adaptively integrate various scale features.

Although the deep learning based saliency models have
promoted the research of saliency detection, they are still
weakness when approaching the complex defect scenes, espe-
cially the cluttered backgrounds and noise disturbance. In our
model, we focus on the interaction of features from different
layers and the effect of edge information, which gives an
effective boost for the performance of salient object detection.

III. THE PROPOSED METHOD
This section first gives an introduction for the proposed
saliency model in Section III-A. Then, the interactive feature
integration is detailed in Section III-B. After that, we detail
the edge-guided saliency fusion in Section III-C. Lastly, the
loss function will be elaborated in Section III-D.

A. OVERALL ARCHITECTURE
The proposed saliency model shown in Fig.1 is built on
the U-shape architecture consisting of encoder and decoder
with pre-trained model ResNet-34 [51] as backbone, and the
two key components of the network are interactive feature
integration and edge-guided saliency fusion. Firstly, we dis-
card the last average pooling layer and softmax function
of ResNet-34. Then, the encoder contains six convolutional
blocks. Concretely, the first convolutional block ‘‘Conv-
E1’’ contains a 3 × 3 convolutional layer (channel = 64,
stride = 1) and the residual learning block ‘‘conv2_x’’ from
ResNet-34. The following convolutional blocks ‘‘Conv-Ei’’
(i = 2, 3,4) adopt the residual learning blocks of ResNet-34
(i.e., ‘‘conv3_x’’, ‘‘conv4_x’’, and ‘‘conv5_x’’). After that,
to enlarge the receptive field of the entire network, a max
pooling layer of stride 2 and another two convolutional blocks
‘‘Conv-E5’’ and ‘‘Conv-E6’’ are added after ‘‘Conv-E4’’,
where each block is equipped with three basic residual blocks
(channel = 512).
The overall process shown in Fig.1 can be summarized

as follows: the input is the strip steel image I, and the
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FIGURE 1. The overall architecture of the proposed saliency model: the encoder (i.e. Conv-Ei (i = 1, · · · , 6)) first extracts multi-level deep features
{FE

i }
6
i=1. Then, a deep feature FE

D is generated by using the bridge module(Conv-B). After that, the decoder (i.e. Conv-Di (i = 1, · · · , 6)) progressively
aggregate the multi-level deep features by integrating the adjacent level features, yielding the multi-level features {FD

i }
6
i=1. Besides, we deploy the

edge extraction branch ‘‘conve’’ and the saliency prediction branch ‘‘convs’’ after each decoder block. In addition, we employ the deep supervision
to the network, namely {lei }

6
i=1 and {lsi }

7
i=0 presented by the blue and green arrows. Finally, the high-quality saliency map S is the aggregation of

saliency prediction results {Ai }
6
i=1 and the fine edge cue E1. Here, ‘‘up’’ means upsampling operation.

output of our model is the high-quality saliency map S which
accurately highlights the defects. Firstly, the encoder extracts
the multi-level deep feature {FEi }

6
i=1. Then, through a bridge

module ‘‘Conv-B’’ which consists of three dilated convolu-
tional layers (channel = 512, dilation rate = 2) [52], we can
obtain a global semantic information FED. After that, each
decoder block integrates the feature from the corresponding
encoder block, the features from adjacent encoder blocks,
and the output from its previous decoder block. By this
way, we can obtain six level deep features {FDi }

6
i=1. Besides,

to guarantee the accuracy of saliency prediction, we also
deploy edge estimation branch after each side-path of decoder
blocks. Correspondingly, the deep supervision is introduced
to the entire network for the optimization of saliency predic-
tion and edge extraction. Finally, by combing the saliency
prediction {Ai}

6
i=1 of all decoder blocks and the edge infor-

mationE1 generated by the first decoder block, we can obtain
the final saliency map S.

B. INTERACTIVE FEATURE INTEGRATION
Through the encoder of our network, we can obtain
multi-level deep features which present different cues of the
object. Particularly, the features from shallow layers focus

on the spatial details, the middle-level deep features convey
the spatial and semantic cues simultaneously, and the fea-
tures from deep layers provide rich semantic information of
salient objects. To aggregate the multi-level features, there
are many efforts have been designed. Concretely, the exist-
ing models [44], [53] often try to transfer the current level
features to the corresponding level decoder block, where the
current level decoder block can only present the scale-specific
cues. Further, some other existing models [45], [54] attempt
to fuse the multi-level features in a dense way, where the
integration process requires huge computation resource. For-
tunately, inspired by the mutual learning [55], [56], we con-
duct the interactive feature integration for the aggregation of
multi-level deep features, as presented in Fig.1.

Formally, firstly, to capture the global semantic infor-
mation, we introduce a bridge stage (Conv-B) between the
encoder and the decoder, yielding the deep feature FED. The
corresponding process can be defined as:

FED = fB
(
FE6
)
, (1)

where fB denote the bridge Conv-B, which contains
three dilated convolutional layers (channel = 512, dilation
rate = 2) [52]. Meanwhile, each of the dilated convolution
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FIGURE 2. Visualization results of the edge extraction branch and the saliency prediction branches. (a): Input image, (b): GT of salient objects, (c): GT of
salient edge, (d): E1, (e): A1, (f): A2, (g): A3, (h): A4, (i): A5, (j): A6. Here, the feature maps (d-j) are the results of the features {E1, A1∼A6} after sigmoid
activation function. Besides, for simplicity, we resize all maps to the same size as the input of our model.

layers is followed by a batch normalization (BN) layer and a
ReLU layer, respectively.

Then, for each decoder block Conv-Di, its input FSDi not
only contains the output of previous decoder block FDi+1,
but also includes the features {FEi ,F

E
i−1,F

E
i+1} from the

current-level encoder block Conv-Ei and its adjacent level
encoder blocks (i.e.Conv-E(i−1) and Conv-E(i+1)). By this
way, we can obtain the input of the ith decoder block Conv-Di,

FSDi =


[
FED,F

E
i , d×0.5

(
FEi−1

)]
(i = 6)[

FDi+1,F
E
i , d×0.5

(
FEi−1

)
, u×2

(
FEi+1

)]
(i = 2, 3, 4, 5)[

FDi+1,F
E
i , u×2

(
FEi+1

)]
(i = 1),

(2)

where u×2(·) and d×0.5(·) denote the upsampling and
downsampling operations (sampling rate = 2, 0.5). Here,
we should note that the upsampling and downsampling oper-
ations don’t change the channel number of the features from
adjacent levels.

Finally, with the generated initial fused deep features
{FSDi }

6
i=1, we pass them to the corresponding decoder blocks,

respectively. This can be defined as

FDi = f Di
(
FSDi

)
, (3)

where the f Di denotes the ith decoder block Conv-Di, and FDi
is the output of Conv-Di. Here, Conv-Di (i = 2, · · · , 6)
contains three 3×3 convolutional layers and a 2× upsampling
layer, where each convolutional layer is followed by batch
normalization layer (BN) and a ReLU activation function.
Conv-D1 only contains three 3× 3 convolutional layers, and
it isn’t equipped with the upsampling layer. By this interac-
tive feature integration process, we can obtain six-level deep
features {FDi }

6
i=1 which give a well representation for salient

objects.

C. EDGE-GUIDED SALIENCY FUSION
To obtain a high-quality saliency map with fine boundary
details, many efforts have been paid their attention to the
extraction and utilization of edge information [17], [28], [39].
Inspired by this, we also introduce edge information in our
model. Differently, we deploy the edge extraction branch
after each decoder block, namely ‘‘conve’’ shown in Fig.1.
Meanwhile, we also add saliency prediction branch after each
decoder block, namely ‘‘convs’’. Formally, the two operations

are performed on the deep features {FDi }
6
i=1, namely{

Ai = fs
(
FDi
)

Ei = fe
(
FDi
)
,

(4)

where Ai can be regarded as the attention map from the ith

decoder block by conducting saliency prediction fs, fe is the
function of edge extraction branch, and Ei is the output of the
ith edge extraction branch, i.e. the edge information. Here,
both of the saliency prediction branch ‘‘convs’’ and edge
extraction branch ‘‘conve’’ are set as a 3 × 3 convolutional
layer. Besides, to give deep supervision of the saliency pre-
diction branches and the edge extraction branches, we deploy
the upsampling operation and the sigmoid activation function
after the branches, namely the green and blue double-headed
arrows shown in Fig. 1.

After that, we attempt to combine all side-outputs of
saliency prediction branches, namely the attention maps
{Ai}

6
i=1. Meanwhile, we choose the first edge cue E1 to take

part in the saliency fusion process, where the E1 is with the
biggest resolution than other edge cues. Besides, we should
note that in the saliency fusion, the two kinds of features
including attention maps and edge cue are not processed
by sigmoid activation function. In addition, according to
Fig. 1, to concatenate the attention maps and edge infor-
mation, we should first resize the attention maps A3 ∼ A6
to 256 × 256 by upsampling operation. Finally, under the
guidance of edge information E1, the saliency fusion can be
defined as

S = f ([E1,A1,A2, up×2(A3), up×4(A4),

up×8(A5), up×16(A6)]), (5)

where S is the final saliency map, [·] means the concate-
nation operation, f denotes the convolution operation and a
sigmoid activation function, and up denotes upsampling oper-
ation. Furthermore, we present the features E1 and {Ai}

6
i=1

in Fig. 2, where the features give a well depiction for
defects. Notably, to present a well visualization, we exhibit
the results of the features E1 and {Ai}

6
i=1 after the sigmoid

activation function, as shown in Fig. 2(d-j). Following this
way, we can get the high-quality saliency map with well
defined boundary details, which can effectively highlight
the defect regions on the strip steel surface as presented
in Fig.1.
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D. LOSS FUNCTION
To remit the over fitting, some models [28], [45] employ the
deep supervision for the side-outputs. Here, we introduce the
deep supervision to our network.

Formally, we deploy the supervision to the saliency predic-
tion branches and edge extraction branches, namely {lsi}6i=1
and {lei}6i=1. Besides, we also introduce the supervision to
the bridge module and the final output of the entire network,
which are defined as ls0 and ls7, respectively. Thus, the total
loss L of the entire network can be defined as

L =
7∑
i=0

lsi +
6∑
i=1

lei. (6)

Besides, similar as [17], [28], we also adopt the hybrid loss
to define the saliency prediction loss {lsi}7i=0, namely

lsi = lsBi + ls
I
i + ls

S
i , (7)

where lsBi , ls
I
i and ls

S
i denote BCE loss [57], IoU loss [58]

and SSIM loss [59], respectively. For the edge extraction loss
{lei}6i=1, each of them adopts the BCE loss [57].
Here, the aforementioned three losses including BCE,

IoU, and SSIM are detailed below. BCE [57] (Binary Cross
Entropy) loss is usually employed by the binary classification
task, and it can be written as

lB = −
∑
(x,y)

[GT(x, y)log(S(x, y))

+(1−GT(x, y))log(1− S(x, y))], (8)

where lB, GT and S denote the BCE loss, the ground truth
and the predicted saliency map, respectively.

IoU [58] (Intersection over Union) loss is often deployed
to evaluate the similarity of GT and S, which can be written
as

lI = 1−

∑
(x,y)

S(x, y)GT(x, y)∑
(x,y)

[S(x, y)+GT(x, y)− S(x, y)GT(x, y)]
. (9)

where lI is the IoU loss.
SSIM [59] (Structural Similarity) loss is initially designed

in image quality assessment task, which can be used
to acquire the structural information. Specifically, PS ={
PjS : j = 1, . . . ,N 2

}
and PGT =

{
PjGT : j = 1, . . . ,N 2

}
denote two patches (size = N × N ) which are cropped from
the saliencymap S and the ground truthGT, respectively. The
SSIM lS of patch PS and patch PGT can be defined as:

lS = 1−
(2µPSµPGT + Cu)(2σPSPGT + Cσ )

(µ2
PS + µ

2
PGT + Cu)(σ

2
PS + σ

2
PGT + Cσ )

(10)

whereµPS ,µPGT and σPS , σPGT refer to themean and standard
deviations of PS and PGT respectively, σPSPGT denotes the
covariance of two patches, and Cu and Cσ are usually set to
0.012 and 0.032, respectively.

IV. EXPERIMENTAL RESULTS
This section first provides the experimental setup in
Section IV-A. Then, in Section IV-B, we compare the pro-
posed model with the state-of-the-art saliency models in
quantitative and qualitative ways. Lastly, the ablation analysis
is presented in Section IV-C.

A. EXPERIMENTAL SETUP
Here, we perform extensive experiments on the public strip
steel dataset SD-saliency-900 [60] to verify the effectiveness
of our model. SD-saliency-900 has 900 images, and it con-
sists of three types of strip steel surface defects including
inclusion, patches and scratches, and each type of defects has
300 images with 200× 200 resolution.

1) PARAMETER SETTINGS AND IMPLEMENTATION DETAILS
Following [17], we generate the training set containing
1620 images. Concretely, we first choose 180 images from
each type of defects, yielding the initial training set contain-
ing 540 images. Then, we further select 90 images from the
each type of defects in the initial training set, and add salt &
pepper noise (ρ = 20%), generating the noise interference
training set that consists of 270 images. Thus, we combine
the initial training set and the noise disturbance training
set, yielding the final training set which totally contains
810 images. After that, we perform horizontal flipping to
augment the training set, yielding 1620 images. In addition,
during the training phase, we resize each image I to 256 ×
256, and then we perform normalization ((I − µ)/σ , µ =
0.4669, and σ = 0.2437).
We implement our network with Pytorch 1.4.0, and the

code is performed on a PC with an NVIDIA Titan XP GPU
(with 12GB memory). Furthermore, to train the network,
we initialize the encoder by using the ResNet-34 model [51],
and the remaining convolutional layers are initialized by
Glorot and Bengio [61]. Meanwhile, we adopt the Adam
optimizer [62] to optimize our network, where the initial
learning rate, betas, eps, and weight decay are set to 10−3,
(0.9, 0.999), 10−8, and 0, respectively. The entire training
process will continue until the loss converges. Besides, the
training batch size is set to 10, and our training process runs
about 15 hours. During test phase, we resize each image
to 256 × 256, and the final saliency map is further resize
to the same resolution as the input image by using bilinear
interpolation. Generally, the average running speed of our
model is about 48fps when dealing with 256× 256 images.

2) EVALUATION METRICS
In the experiment, we take the following metrics to evaluate
the performance of our model, of which the metrics contain
the precision-recall (PR) curve, the F-measure curve, mean
absolute error (MAE), the weighted F-measure (WF) score,
overlapping ratio (OR), structure-measure (SM), and Pratta̧ŕs
figure of merit (PFOM).
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FIGURE 3. Quantitative comparison results. The salt & pepper noise levels from (a) to (c) are set to 0, ρ = 10% and ρ = 20%, respectively. The curves from
top to down are PR curve and F-measure curve, respectively.

TABLE 1. Quantitative evaluation of different saliency models in terms of WF, SM, OR, PFOM, and MAE on the SD-saliency-900 datasets, where the salt &
pepper noise levels are set toρ = 0, 10%, 20%, respectively. Notice that, ‘‘↑’’ (‘‘↓’’) denotes that the larger (smaller) the better, and the top three results in
each column are marked in red, green and blue, respectively. Here, for saving space, we abbreviate MAE, WF, OR, SM, and PFOM as M, F, O, S, and P,
respectively.

Formally, firstly, F-measure [40] is defined as the weighted
harmonic mean of precision and recall, namely

Fβ =

(
1+ β2

)
Precision× Recall

β2Precision+ Recall
, (11)

where we set β2 to 1 as adopted in [24]. Correspondingly, the
weighted F-measure [64] is a weighted version of F-measure,
namely

WF =

(
1+ β2

)
Precisionw × Recallw

β2Precisionw + Recallw
. (12)

Secondly, MAE [19] can be computed as

MAE =
1

W ∗ H

W∗H∑
i=1

|S(i)−GTs(i)| , (13)

where W and H are the width and height of the saliency
map S, respectively. GTs denotes the ground truth of salient
objects.

Thirdly, OR describes the overlapping ratio between the
segmentation result of saliency map (denoted by S′) and the
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TABLE 2. Comparison of the model size (MB) and the average running time (seconds per image) on the SD-saliency-900 dataset. Notably, ‘‘M’’, ‘‘C’’, ‘‘T’’,
and ‘‘P’’ refer to Matlab, Caffe, TensorFlow, and PyTorch, respectively.

ground truth GTs, namely

OR =
|S′ ∩GTs|
|S′ ∪GTs|

, (14)

where S′ can be generated by binarizing the saliency map S
(the adaptive threshold can be set to twice the average value
of S).

Fourthly, SM [65] simultaneously considers the region-
aware (Sr ) and the object-aware (So) values to evaluate the
structural similarity between saliency map S and ground truth
GTs, which can be defined as

S = α ∗ So + (1− α) ∗ Sr , (15)

where α is the balance parameter, and it is set to 0.5.
Lastly, as a Pratta̧ŕs figure of merit, PFOM [66] intuitively

presents the boundary quality of the segmentation results, and
it is often employed by the edge detection area, which can be
defined as

PFOM =
1

max(NG,NS )
∑NS

k=1 1/(1+ αd
2
k )
, (16)

where NG and NS are the number of ideal and actual edge
points extracted from ground truth map and binary saliency
result, respectively. Besides, α denotes a scaling constant
which is set to 0.1 or 1/9. In addition, dk denotes the
Euclidean distance between the k th true edge point and the
detected edge point.

B. COMPARISON WITH THE STATE-OF-THE-ARTS
To quantitative and qualitative evaluate the performance of
our model, we compare our model with totally 15 state-of-
the-art models including RCRR [41], 2LSG [63], BC [23],
SMD [42], MIL [43], PFANet [48], NLDF [44], DSS [45],
R3Net [30], BMPM [46], PoolNet [39], PiCANet [47], CPD
[29], BASNet [28] and EDRNet [17]. Notably, the saliency
maps of all models are computed by executing the source
codes or provided by the authors, where the deep learning
based models are retrained by using the same training set as
our model. Next, we successively present the quantitative and
qualitative comparison results.

The quantitative comparison between our model and the
state-of-the-art models are presented in Fig. 3 and Table 1.
To be specific, Fig. 3 supplies the results of PR curves
(top row) and F-measure curves (bottom row). Obviously,
we can find that our model achieves the best performance
when compared with other models in terms of PR curves and

TABLE 3. Quantitative comparison results of ablation studies. Notice
that, the best result in each column is marked in bold face.

F-measure curves. Particularly, under the disturbance of salt
& pepper noise (ρ = 10% and ρ = 20%), our model still
performs best, as presented in Fig. 3(b,c). In addition, when
compared with the recently published work EDRNet [17],
the improvement elevated by our model is still significantly.
Furthermore, Table 1 provides the results in terms of MAE,
WF, OR, SM and PFOM. We can find that our model still
consistently outperforms other models with a large margin,
especially on the noise disturbed data. Particularly, Com-
pared with the performance of EDRNet [17] on the test set
without noise disturbance (ρ = 0%), the performance of
EDRNet on the test set with noise disturbance (ρ = 20%)
degrades 12.3%, 1.8%, 2.5%, 1.4% and 1.8% in terms of
MAE, WF, OR, SM and PFOM, respectively. In contrast, the
performance degradation of our model is smaller, where the
MAE, WF, OR, SM and PFOM only degrade 5.0%, 0.5%,
0.7%, 0.4% and 0.5%, respectively. Therefore, through the
above quantitative comparisons, we can firmly demonstrate
the superiority and effectiveness of our model.

In addition, to evaluate the running efficiency of differ-
ent models, we make a comparison of different models in
terms of the model size (MB) and the average running time
(seconds per image), as presented in Table 2. Concretely, the
average running time is computed by executingmodels on the
SD-Saliency-900 dataset. It can be seen that our model runs
fastest when compared with other models, where our model
takes about 0.021s when handling a 200×200 image. For the
model size, we can find that our model size is 378MB, which
is slightly large when compared with the top-performance
models. Thus, in our future work, wewill attempt to compress
the model, and reduce the model size.
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FIGURE 4. Visual comparison of saliency maps: (a) Input image, (b) Ground truth, (c) Ours, (d) EDRNet [17], (e) BASNet [28], (f) CPD [29], (g) PiCANet [47],
(h) PoolNet [39], (i) BMPMBMPM [46], (j) R3Net [30], (k) DSS [45], (l) NLDF [44], (m) PFANet [48], (n) MIL [43], (o) SMD [42], (p) BC [23], (q) 2LSG [63],
(r) RCRR [41].

The qualitative comparison results are shown in Figure 4,
where the examples of the top three rows, the middle three
rows, and the bottom three rows are selected from three types
of defects (i.e. inclusion, patches, and scratches), respectively.
It can be found that the results of our model are the closest
one to the ground truth when compared with other models’
results. Specifically, firstly, the examples of the top three rows
present low contrast and scattered attributions. We can find
that only our model provides complete and accurate results
which are capable of highlighting the defects. By contrast,
other models either falsely highlight the backgrounds or
cannot detect complete defect regions. For example, in the
third row, other models mistakenly recognize the background
regions as the defects, while our model can distinguish the
defects accurately. Secondly, for the middle three rows, the
defect regions are large and the backgrounds are cluttered in
the three examples. Fortunately, our model still give a perfect
prediction for the defect regions. In contrast, the traditional
models often highlight the backgrounds as shown in Fig-
ure 4(n-r), and the deep learning based models either incor-
rectly pop-out backgrounds or incompletely detect defects as
shown in Figure 4(d-m). Lastly, from the 7th row to the 9th

rows, the examples are with fine structures. It can be seen
that our model still performs best, where the results shown in
Figure 4(c) are with clear details. By contrast, most models
fail to detect the salient objects, where they often loss parts
of defect regions and even falsely highlight backgrounds.
Therefore, the qualitative comparison results demonstrate the
effectiveness and superiority of our model again.

C. ABLATION STUDIES
To illustrate the effectiveness of our model and demon-
strate the rationality of the design of our model, we give
a comprehensive ablation studies shown in Table 3, where
the quantitative comparison results are conducted in terms
of five metrics including MAE, WF, OR, SM, and PFOM.
Firstly, we design several variations of our model. Con-
cretely, as depicted in Table 3, the ‘‘Baseline (B)’’ denotes
the basic encoder-decoder network without any other com-
ponents, which only contains Conv-E1∼E6, Conv-B, and
Conv-D6∼D1. The final saliency map can be generated
by deploying a 3 × 3 convolutional layer and a sigmoid
activation function to the output of Conv-D1. ‘‘IFI’’ means
interactive feature integration. ‘‘E’’ means the introduction
of edge information. ‘‘Sup’’ denotes the deep supervision
adopted by our network. Here, our model is denoted by
‘‘B+IFI+E+Sup’’, ‘‘B+IFI+Sup’’ means our model with-
out edge extraction branches, ‘‘B+E+Sup’’ denotes our
model without interactive feature integration, and ‘‘B+Sup’’
is the basic network with deep supervision. Correspondingly,
‘‘B+IFI+E’’ denotes our model without deep supervision,
‘‘B+IFI’’ means our model without edge extraction branches
and deep supervision, ‘‘B+E’’ refers to our model without
interactive feature integration and deep supervision.
From Table 3, we can find that our model achieves the best

performs when compared with other variations in terms of
MAE, WF, OR, SM, and PFOM. Particularly, compared with
the baseline network (B), the WF, OR, SM, and PFOM of
our model are improved by 1.2%, 2.2%, 1.0%, and 1.0%,
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FIGURE 5. Qualitative comparisons between our model and the variant
‘‘B+IFI+Sup’’. (a): Input images, (b): GT, (c): Ours, (d): B+IFI+Sup.

FIGURE 6. Qualitative comparisons our model and the variant
‘‘B+E+Sup’’. (a): Input images, (b): GT, (c): Ours, (d): B + E + Sup.

FIGURE 7. Qualitative comparisons our model and the variant ‘‘B+E+IFI’’.
(a): Input images, (b): GT, (c): Ours, (d): B + E + IFI.

and the MAE is decreased by 16.2%. This can demonstrate
the effectiveness of all components of our model, and further
validate the rationality of the proposed network.

Besides, we also provide the qualitative compari-
son between our model and the variations including
‘‘B+IFI+Sup’’, ‘‘B+E+Sup’’, and ‘‘B+IFI+E’’, namely
our model without edge, our model without interactive fea-
ture integration, and our model without deep supervision,
as presented in Fig. 5, Fig. 6, and Fig. 7. To be specifi-
cally, firstly, comparing with the ‘‘B+IFI+Sup’’ shown in
Fig. 5(d), we can find that the results of our model are
more complete. Secondly, comparing with the ‘‘B+E+Sup’’
presented in Fig. 6(d), we can find that our model suppress
the backgrounds effectively. Thirdly, comparing with the
‘‘B+IFI+E’’ depicted in Fig. 7(d), it is obviously that our
model performs better. This presents the efforts of edge
information, the interaction of different level features, and

the deep supervision, where the edge indicates an accurate
location cue of defect regions, the feature interaction gives
a well depiction for defects, and deep supervision gives an
effective constraint for feature learning. Thus, from Fig. 5,
Fig. 6, and Fig. 7, we can prove the effectiveness of the crucial
components of our model, and demonstrate the rationality of
the design of our model.

V. CONCLUSION
This paper proposes a novel saliency model, i.e. Edge-aware
Multi-level Interactive Network, to pop-out defects on the
strip steel surface. Specifically, the proposed network adopts
an U-shape architecture where the two points are the interac-
tive feature integration and the edge-guided saliency fusion.
Firstly, for each level of the network, we fuse the features
from the current level of encoder, the adjacent levels of
encoder, and previous decoder stage. Particularly, the features
of adjacent layers promote the flow of object cues, which is
benefiting for the depiction of defects. Secondly, to acquire
a saliency result with precise boundaries, we extract edge
information together with saliency prediction at each decoder
block. After that, the fusion of edge cues and saliency results
provides a complete and accurate saliency map which can
effectively highlight the defect regions from the strip steel
surface. Comprehensive experiments are conducted on the
public dataset, and the quantitative and qualitative results
demonstrate the effectiveness of our model which consis-
tently outperforms the state-of-the-art models in all evalua-
tion metrics.
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