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ABSTRACT In this paper, a novel approach was developed for Parkinson’s disease (PD) diagnosis based on
speech disorders. When the literature about the speech disorders-based PD diagnosis was reviewed, it was
seen that the most of approaches were concentrated on the feature selection as the datasets contained a huge
number of features. In contrast, in the proposed approach, instead of eliminating some of the features by
using any feature selection method, all features were initially used for forming a mapping procedure where
the input feature vectors were converted to the input images. Then, a deep Long Short Term Memory (LSTM)
network was employed for PD detection where the obtained images were used. The deep LSTM network
carried out both feature extraction and classification processes and its training was carried out in an end-to-
end fashion. The activations in the convolutional layer were converted to sequence data through the sequence-
folding and sequence-unfolding layers. The activations in the LSTM output with learning parameters were
conveyed to the Softmax layer for the classification process. A publically available PD dataset was used in
the experimental works and classification accuracy, sensitivity, specificity, precision, and F-score metrics
were used for performance evaluation. The obtained accuracy, sensitivity, specificity, precision and F-score
values were 94.27%, 0.960, 0.960, 0.910 and 0.930, respectively. The obtained results were also compared
with some of the published results and it had seen that most of the achievements of the proposed method are
better than the compared methods.

INDEX TERMS Convolutional structure, deep LSTM network, feature mapping, PD diagnosis, speech

disorders.

I. INTRODUCTION

Parkinson’s disease (PD) is defined as a neurodegenerative
disorder that affects some specific parts of the brain [1].
The PD symptoms, which include memory, depression, and
movement problems, reveal slowly over the years. Besides
the movement problems, including slowness, stiffness, and
tremor, balance problems including walking, are revealed at
the last stage of PD [2]-[6].
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In the last two decades, signal processing and machine
learning-based methods have been proposed for the diagnosis
of PD. These approaches are generally relied on measuring
the motor system disorders caused by the disease. Vocal
disturbances from continuous vocal phonations or flowing
speech decline are important indicators for most PD patients
in the early stage of the disease. To this end, Sakar et al. [7]
used tunable Q-factor wavelet transform and ensemble learn-
ing for voice-based PD detection. The authors constructed a
dataset where 756 PD voice signals were collected. Before
classification, the authors used the Minimum Redundancy
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Maximum Relevance (mRMR) feature selection method for
the detection of the most efficient features. The K-Nearest
Neighbors (KNN), Multilayer Perceptron (MLP), Random
Forest (RF), Linear Regression (LR), Naive Bayes (NB),
and Support Vector Machine (SVM) classifiers were con-
sidered in ensemble learning. The reported accuracy score
was 86.0%. Pereira et al. [8] reviewed the works which were
related to the PD in a systematic way. Authors concerned vari-
ous recent technologies that were important for PD treatment.
Some well-known datasets and the methodologies related to
the PD were analyzed and the future trends in the treatment of
PD were investigated. The authors concluded that in most of
the reviewed works, signal-based datasets were considered.
Moreover, it was observed that virtual reality and e-health
monitoring systems were increasingly used in recent works to
increase the life quality of PD patients. Mostafa et al. [9] used
a general pattern recognition framework for voice disorders-
based PD detection. The authors considered multiple feature
evaluation approach and classification based method to detect
the PD. To this end, a multi-agent system which was com-
posed of five machine-learning methods namely Decision
Tree (DT), NB, Neural Network (NN), RF, and SVM and
an achievement evaluation system was proposed. Authors
mentioned that with that proposed approach, the DT, NB,
NN, RF, and SVM classifiers achievements were improved by
10.51%, 15.22%, 9.19%, 12.75%, and 9.13%, respectively.
Lahmiri and Shmuel [10] proposed a voice pattern-based
approach for PD detection. The authors used eight different
feature selection approaches for assessing the impact of the
voice patterns for PD detection. In the classification stage
of the proposed method, a non-linear SVM technique, which
was tuned by a Bayesian optimization, was considered. The
receiver operating characteristic (ROC) and the Wilcoxon-
based ranking techniques provide the highest sensitivity and
specificity. Lahmini et al. [11] conducted a study where
various machine-learning techniques such as Linear Discrim-
inant Analysis (LDA), KNN, NB, Regression Trees (RT),
Radial Basis Function Neural Network (RBFNN), SVM, and
Mabhalanobis distance classifier (MDC) were examined in the
detection of the PD. 22 voice disorder features were consid-
ered in the presented work to discriminate the healthy and PD
cases. Accuracy, G-mean, and the area under the ROC metrics
were used for the performance evaluations of the considered
machine learning methods and it was reported that the SVM
classifier achieved the best performance. Giiriiler [12] devel-
oped a hybrid system for the diagnosis of PD. The authors
combined the k-means clustering and complex-valued NN
for PD detection. More specifically, the k-means algorithm
was used for constructing a feature weighting mechanism
before NN classification. A dataset that was obtained from
speech/sound signals was used in experiments and classifi-
cation accuracy was used for performance evaluation. The
reported accuracy score was 99.52%. Cai et al. [13] devel-
oped an early PD detection approach that was based on the
modified fuzzy k-nearest neighbor method. In the proposed
method, vocal measurements were used for PD recognition.

VOLUME 9, 2021

The parameters of the modified fuzzy KNN were tuned by
using an optimization technique namely, the evolutionary
learning approach. In the evolutionary learning approach,
the chaotic bacterial foraging optimization with Gauss muta-
tion was considered. The authors reported that the pro-
posed method outperformed the other compared approaches.
Gupta et al. [14] presented an approach, which was based
on feature selection, for PD diagnosis. The feature selection
was accomplished via an enhanced cuttlefish algorithm. After
the feature selection operation, the selected features were
classified into Parkinson’s and normal classes by using DT
and KNN classifiers. The experimental dataset was obtained
via sound signals and the handwriting samples. According to
the classification accuracy, the proposed method obtained an
approximately 94% score for PD diagnosis. Sakar et al. [6]
carried out a comprehensive work where various speech-
based features were extracted to construct a dataset for PD.
The features in the dataset were obtained from the vowels,
words, and sentences. The authors intended to determine
which quantity such as the vowels and words or sentences
were the most effective in determining the PD. The authors
also investigated the central tendency and dispersion metrics
for evaluation of the extracted features., traditional machine
learning approaches were used in the classification stage.
The experimental works indicated that vowel-based features
had more effect in PD diagnosis. Orozco-Arroyave et al. [15]
proposed a study for PD diagnosis which was based on the
analysis of continuous speech signals. Four different lan-
guages were considered in the proposed work. The speech
signals were segmented into voiced and unvoiced frames and
twelve Mel-frequency cepstral coefficients and twenty-five
bands Bark scales were considered for feature extraction. The
reported accuracy scores were in the range of 85% and 99%.
Rusz et al. [16] used varied speech data which were collected
from fourth six Czech native speakers. Twenty-three subjects
of the dataset were labeled as PD and the rest were labeled as
healthy subjects. Nineteen features were selected, and Wald
sequential method was applied to validate the efficiency of
each selected feature. Experimental works showed that the
fundamental frequency variation was one of the efficient
features for early diagnosis of the PD. Moreover, the reported
accuracy was 78% for PD versus healthy discrimination.
Little et al. [17] introduced an approach which was called
as “hoarseness” diagram. The proposed approach was basi-
cally depended on the recurrence and fractal scaling. The
proposed method overcame the range limitations of existing
speech based PD diagnosis methods by addressing directly
the recurrence and fractal scaling together. A bootstrapped
classifier was employed and average accuracy score of 91.8%
was reported. Tsanas et al. [18] proposed an approach based
on speech signal processing for discrimination of the PD
and healthy cases. Authors extracted 132 dysphonia fea-
tures from the vowels. Then, four parsimonious subsets of
these dysphonia features were selected by using four fea-
ture selection methods. The selected features were classified
into PD and the healthy classes by using the RF and SVM
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FIGURE 1. Proposed method framework.

classifiers, respectively. By considering ten dysphonia fea-
tures, the reported accuracy score was 99%.

In this study, a new model was constituted for the detection
of PD based on speech disorders. A hand-crafted feature
set, which consisted of TQWT features, baseline features,
TF features, MFCCs features, WT features, and vocal fold
(VF) features, was initially normalized to 0 and 255 ranges
to change the values of each feature vector in the dataset to
a common scale, without distorting differences in the ranges
of values. The normalized feature values were then used to
form a feature map image by stacking these features in the
columns of a matrix. Thus, the input numerical dataset was
converted to the feature map images with the scaled colors
technique [19]. Later, the feature map images were resized
to 180 x 180 for sake of convenience with the input of the
deep LSTM architecture. The proposed model, which was
trained in an end-to-end fashion with the constructed feature
map images, was constituted with a sequence data creating
structure and an LSTM network respectively. The sequence
data creating structure consisted of a convolutional layer,
batch normalization layer, and ReLLU layer. The activations
in the convolutional layer were converted to sequence data
through the sequence-folding and sequence-unfolding layers.
These triple layers were considered for feature extraction.
The LSTM layer was used for learning dependencies in
the sequence data. A fully connected layer, ReLU layer,
dropout layer, and another fully connected layer were fol-
lowed the LSTM layer, respectively. The activations in the
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LSTM output with learning parameters were conveyed to
the Softmax layer for the classification process. The main
contributions of this study are as follows;

« In contrast to the related studies, in this study, instead of
eliminating some of the features by using any feature
selection method, all input features were used for the
construction of input images.

o Deep LSTM model with sequence data creation could
directly operate image data instead of time-series sig-
nals that are used as input data in conventional LSTM
models.

o The proposed deep LSTM network was not a combina-
tion of CNN and LSTM structures. In studies constituted
with CNN and LSTM combination, a pre-trained CNN
was used for feature extraction and the LSTM was uti-
lized for the classification task. However, in this study,
the proposed deep network was trained in an end-to-end
fashion.

The remainder of this paper is as follows. The next section
introduces the dataset that is used in this study. The tech-
niques and the methodology of the proposed study are intro-
duced in Section 3 and Section 3’s subsections, respectively.
The experimental works and results are given in Section 4.
The paper is concluded in Section 5.

Il. METHODOLOGY

A. DATASET

The used dataset was composed of voice records collected
from 188 PD sufferers and 64 healthy subjects in a cer-
tain group. Voice records of all subjects were recorded
3 times, and the sample number of the dataset was boosted
to 756. To detect speech disorders in the PD sufferers,
the speech-based 753 hand-crafted features were extracted
from 756 samples in the dataset. 21 baseline features were
extracted from techniques such as fundamental frequency
parameters and harmonicity parameters [7]. The rest features
were constituted by using speech signal techniques contain-
ing wavelet transform (WT) based features, time-frequency
(TF) features, tunable Q-factor wavelet transform (TQWT)
features, Mel frequency Cepstral coefficients (MFCCs), and
vocal fold (VF) features extracted from the voice records of
PD sufferers. The features based on softening, monotonous,
brittle and rapid expression of the voice were extracted from
these records.

B. PROPOSED METHOD

A novel and robust approach was proposed to categorize
speech disorders of PD sufferers from their voice signals.
The illustration of the proposed method was shown in
Fig. 1. In this study, we used a dataset that was released
by Sakar et al. [7]. The dataset was composed of 89 features
where there were TQWT features, baseline features, TF fea-
tures, MFCCs features, WT features, and vocal fold (VF)
features, respectively. In some previous works, the authors
used various classifications and feature selection approaches
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FIGURE 2. The preprocessing steps. (a) Data normalization,
(b) Construction of 25 x 30 matrix, (c) Conversion of the matrix into a
420 x 560 x 3 color image, (d) Resized to 180 x 180 x 3 color image.

on the dataset. Different from the previous works, we opted
to convert the dataset into images. Then, the obtained images
were resized to 180 x 180. Thus, the input to the deep-LSTM
network was constructed. In the second step of the proposed
approach, the deep-LSTM network was trained from obtained
images. The convolutional model in the sequence data creat-
ing structure was internally used for the pre-feature extrac-
tion. Also, the activations in the convolutional layer were
converted to sequence data through the sequence-folding and
sequence-unfolding layers. The LSTM network was used for
learning dependencies in the sequence data. The activations
in the LSTM network output with learning parameters were
conveyed to the Softmax layer for the classification process.
In the next subsections, the details of the each block are given.

C. PRE-PROCESSING
In the pre-processing, each of the hand-crafted feature vectors
was initially normalized into 0 to 255 ranges by using the
Equation 1;

(xi — min (x;))

x(zormalized = 255 % (1)
! max(x;) — min(x;)

here x; showed the i feature vector in the given dataset.
The normalized feature vectors were then converted to the
8 bits unsigned integers. As the PD dataset contained a total
of 750 features for each sample, a matrix of size 25 x 30
was constructed and the converted 8 bits unsigned integer
values were stacked into the columns of constructed 25 x 30
matrix. Thus, a sequence of 750 features was represented by
a 25 x 30 matrix. The scaled colors technique was used to
convert the matrix into a 420 x 560 x 3 color image. The
obtained images were then resized to 180 x 180 x 3 color
images. Fig. 2 shows all steps in the pre-processing stage of
the proposed.

D. DEEP STRUCTURE

The sequence-folding layer turns the sequence image into
an image set and convolutional processes are implemented
to these images with certain periods. After convolutional
activations, the sequence-unfolding layer turns output data of
the convolutional layer into sequence data for application to
the LSTM network. Convolution operation denoted as “*”
is the core function of the convolutional layer. The input
data and learnable filter are used in the convolution operation
process [20]-[22]. The learnable filter can be in different
sizes such as 3 x 3 and 5 x 5, and the padding process
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can be also used as an option in the convolutional layer for
tuning the convolutional area. The main target of convolution
operation is to constitute features by finding similar regional
parts of samples in the dataset and assign them into a feature
mapping matrix [23]. The convolution function for 2D data
at the discrete-time is as follows:

IxF)@j)=Y > FmmXi-mj—n (2

Here, I and F symbolizes the inputs and learnable filters,
respectively.

In the deep learning models, the batch normalization (BN)
layer is utilized to decrease training time and enhance net-
work initialization performance [24]. Besides, the vanishing
gradient problem is reduced with operations in the BN layer.
By using the mean of mini-batch b,, and variance mini-batch
b, of the input data, the BN layer output y; can be calculated
as follows:

—b

Xi= X = Om. (3)
Vb +e

yi = bxi+a 4)

Here X; is the normalized activation, and Constant € is
used to balance the numerical result if b, is very small.
Scale variable a and balance variable b, which are learnable
parameters are updated for the best y; during optimization.

An activation function such as sigmoid and tangent is
frequently applied to the ANN models for obtaining a nonlin-
earity characteristic in the network. However, a sigmoid and
tangent function can cause gradient vanishing and explosion
problems in big scaled networks such as deep learning mod-
els [25], [26]. Thus, Rectified Linear Unit (ReLU) layer is
frequently used as an activation function. In the ReLU layer,
the calculation is as follows:

f (x) = max(0, x) )

According to Equation 4, the input data equals zero if it is
negative, otherwise, the input is equalized to the output.

In the flatten layer, 2D data conveyed from the previous
layer is turned into 1D data for transmitting to the FC layer.

LSTM containing the units which have a controlled struc-
ture consisting of three gates (input, output and forget), is a
recurrent neural network (RNN) model [27]. The LSTM
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unit, which is given in Fig. 3, keeps data determined in a
prior period through these gates, and these gates control the
data transmission in the units [28]. Besides, the LSTM layer
significantly reduces the gradient vanishing and explosion
problems.

The forget gate structure resembles a single-layer neural
network (SLNN). According to Equation 6, the forget gate
activates if the output is equal to 1.

Ji=0W [xi, hi—1, C—1] + by) (6)

where, x; represents the input of the existing LSTM unit,
h;—1 represents output vector of a prior LSTM unit, C;_
represents the memory of prior LSTM unit, by represents the
biased values, o represents the sigmoid activation function
and W represents the weighted vector. The input gate consists
of a structure where the existing recollection is composed
with an SLNN and the prior recollection unit data. These
computations are expressed in Equations 7 and 8.

ir = o(W [x;, hy—1, Ci—1] + by) 7

Ci = fi.Ci—1 + i tanh([x;, hi—1, G—1D + b (8)

The output gate collects data and information transmitting

from the existing LSTM unit. The computations in the output
gate are given in Equations 9 and 10.

or = oW xi, hy—1, Cr—11+ bo) ©)

ht Oy .tanh(C,) (10)

The structure of the FC layer is similar to a multilayer
perceptron (MLP). The neurons in the FC layer provide clues
about how well a value fits any class [29]. The dropout layer
randomly sets input units to 0 with a frequency of rate at each
step during training time, which aids obstruct overfitting [30].
The softmax layer with the class possibility values classifies
data in the last FC layer. The softmax function is used in
the classification stage for CNNs. The softmax function is
expressed as follows:

k
ex

Yy e
The output vector S¥ is calculated for each input value (x¥),
and the sums of all output values are equal to 1 [25].

sk = a1

E. PERFORMANCE EVALUATION METRICS

The true positive (TP), false positive (FP) true negative (TN),
false negative (FN) numbers in the confusion matrix were
utilized to evaluate the proposed approach. The evaluation
metrics were constituted by using the accuracy (ACC), sensi-
tivity (Sn), specificity (Sp), precision (Pr), and F-score value.
The evaluation metrics were calculated as follows:

TP + TN
ACC = (12)
TP +TN + FP + FN
TP
Sn= —" (13)
TP + FN
sp= 1 (14)
P = IN + FP

149460

Normal

Parkinson

FIGURE 4. Some example images from the dataset. The first row shows
the normal cases and the second row shows the PD cases.

TABLE 1. The layer properties of the proposed deep LSTM network.

Layer output

Order Layer Layer info size
1 Sequence S§quen§e input with 180x180x%3 180%180%3
Input dimensions
Sequence
2 Folding 180x180%3
Convolutions with 20 filters, 5x5x3
3 Convolution filtersize, 176x176x20
stride [1 1] and padding [0 0 0 0]
Batch . .
4 . Batch normalization with 20 channels 176x176x20
Normalization
5 ReLU Fisrt ReLU (ReLUI) 176x176x20
Sequence
6 Unfolding Cell data {176x176x20}
7 Flatten Cell data {619520x1}
8 LSTM LSTM with 100 hidden units 100
Fully .
9 Connected First fully connected layer (fc1) 350
10 ReLU Second ReLU (ReLU2) 350
11 Dropout 40% dropout 350
Fully
12 Connected Last fully connected layer (fc2) 2
13 Softmax 2
Classification  crossentropyex with classes 'normal'
14 N \ 1
Output and "parkinson
TP
Pr=—— (15)
TP + FP
2xTP
F — score = (16)

2xTP+FP+FN

Ill. EXPERIMENTAL STUDIES
All experimental studies were carried out on MATLAB. The
image processing toolbox was used for the conversion of the
numerical data to image data. The deep learning toolbox was
used for the construction of the proposed deep LSTM model.
As the dataset contains 756 samples, 756 images were used
in the training/testing of the proposed deep LSTM model.
Randomly selected 70% and 80% datasets were used in train-
ing and the rest 30% and 20% were used for performance
testing of the proposed approach. The proposed deep LSTM
structure was trained in an end-to-end fashion. Fig. 4 shows
some sample images from both PD and normal cases.

Since there are enough samples in each class, supervised
learning, not one-shot learning, was used in the proposed
method. The ground truth labels were embedded to the
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training options since the proposed deep-LSTM contained an
end-to-end learning strategy. In the proposed approach during
training and test, the prediction results obtained at the classifi-
cation output were logically (“‘and” operator) compared with
the ground truth results using the cross entropy loss function
in the classification layer.

The first row of Fig. 4 shows the samples of the normal
cases and the second row indicates the sample PD images.
The layer properties of the proposed deep LSTM network
were given in Table 1. As seen in Table 1, the sequence fold-
ing process was applied to the input images initially, and then
obtained structures were conveyed to the network through the
set of layers containing Convolution, BN, and ReLU layers.
Sequence unfolding, flatten, LSTM, fcl, ReLU2, dropout,
fc2, softmax, and classification layers came after the ReLU1
for the construction of the whole network. The stochastic
gradient descent with momentum (SGDM) algorithm was
used as optimization solver. At the training options, the mini-
batch size was selected as maximum 32 due to the hardware
capacity. Also, the initial learning rate and the epoch number
was tuned as 0.001 and 200, respectively.

From Table 1, it is seen that the convolution layer has
20 filters of size 5 x 5 x 3. After the convolution layer, the
input size became 176 x 176 x 20 for each input image. Batch
normalization and ReLu layers did not change the dimensions
of the input. After the flatten layer, the 3-dimensional input
data was converted to the 1-dimensional data, where the
dimension was 61950 x 1. The LSTM layer has 100 hidden
units and the first FC layer contained 350 units. After ReL.U,
dropout, and last FC layer, the softmax, and classification out-
put layers were located in the proposed deep LSTM network
model. Besides accuracy, sensitivity, specificity, precision,
and F-score measures, the receiver operating characteristic
(ROC) curve was also used in the performance evaluation
of the proposed method. Fig. 5 shows the training and the
loss curves of the proposed deep LSTM model. As seen in
Fig. 5(a), the training accuracy was started around the 30%
accuracy level and gradually increased above to 90% accu-
racy around the 75th iteration. Around the 175th iteration,
the training accuracy was reached to almost 100% training
accuracy. The loss of the proposed deep LSTM network was
around 0.7 when the training operation has just started.

And, it gradually came under 0.1 around the 175" iteration.
Around the 275th iteration, the loss curve settled to around
0.05 value. Fig. 5(b) shows the training accuracy and loss
plots when 80% of the dataset was used for training. The
training accuracy was started around the 40% accuracy level
and gradually increased above 90% accuracy around the 50th
iteration. Around the 100" iteration, the training accuracy
was reached to almost 100% training accuracy. The loss
curve was around 0.7 when the training operation has just
started. And, it gradually came under 0.1 around the 100"
iteration. Around the 200th iteration, the loss curve settled to
around 0.01 value. When Figs. 5(a) and 5(b) were compared,
it was seen that the 80%-20% training-test set achieved better
training than the 70%-30% training-test set.
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FIGURE 5. The training-test and the loss curves of the proposed deep
LSTM architecture. (a) Accuracy curve, (b) Loss curve.

Normal sample

Normal

PD sample

Activations of feature map image and  Activations of feature map image  Activations of feature map image
convolutional layer and LSTM laver and last fc laver

FIGURE 6. Optimized activations of deep-LSTM structure.
Accuracy: 94.70%

Accuracy: 94.27% Accuracy: 94.31%

i 5 i 0
SZ 2 &7
9} %} O
o 2 o
2 = =
= § = § = §
g 13 156 - g 43 521
= = =1
5 s &
& & &
Normal Parkinson Normal Parkinson Normal Parkinson
Predicted Class Predicted Class Predicted Class

(b) 80%-20% training-test (c) 10-fold cross-validation

(a) 70%-30% training-test

FIGURE 7. Confusion matrix test results.

Fig. 6 shows the optimized activation outputs of the pro-
posed deep LSTM structure. While the first column of Fig. 6
shows the activations of the feature map image and the con-
volution layers, respectively, the second and third columns of
Fig. 6 show the activations of the feature map image and the
LSTM layer and the activations of the feature map image and
the last fully connected layer (fc2), respectively.

Fig. 7 shows the obtained confusion matrix and accuracy
score of the proposed method for 70%-30% training-test,
80%-20% training-test, and 10-fold cross-validation, respec-
tively. As seen the overall classification accuracy scores were

149461



IEEE Access

F. Demir et al.: Feature Mapping and Deep LSTM Network-Based Efficient Approach for PD Diagnosis

Receiver operating characteristic Receiver operating characteristic

- ROC curve (area = 0.98) - ROC curve (area = 0.99)

06 08 10

00 02 04 0 08 10 00 02 4
False Positive Rate

(a) 70%-30% training-test (b) 80%-20% training-test

Receiver operating characteristic

(c) 10-fold cross-validation

FIGURE 8. ROC curve representations of the proposed method.

94.27%, 94.70%, and 94.31% for 70%-30% training-test and
80%-20% training-test, and 10-fold cross-validation, respec-
tively. From the confusion matrix of 70%-30% training-
test set, it was seen that all normal cases were correctly
classified and 13 PD cases were classified as PD. For the
confusion matrix of 80%-20% training-test set, while all
normal cases were correctly classified, 8 PD cases were clas-
sified as PD. For 10-fold cross-validation, while all normal
cases were correctly classified, 43 PD cases were classified
as PD. Table 2 shows the sensitivity, specificity, precision,
and F-score values for each class for both training and test
sets. For the normal class when a 70%-30% training-test set
was used, the obtained sensitivity, specificity, precision, and
F-score values were 1.000, 0.923, 0.817, and 0.9, respec-
tively. Similarly, the obtained sensitivity, specificity, preci-
sion, and F-score values for the PD class were 0.923, 1.000,
1.000, and 0.96, respectively. When 80%-20% training-test
set was considered, for normal cases, while 1.000, 0.929,
0.826, and 0.904 values were obtained for the sensitivity,
specificity, precision, and F-score, for PD cases, 0.929, 1.000,
1.000, and 0.963 scores were obtained for the sensitiv-
ity, specificity, precision, and F-score, respectively. When
10-fold cross-validation was considered, for normal cases,
while 1.000, 0.817, 0.817, and 0.899 values were obtained
for the sensitivity, specificity, precision, and F-score, for
PD cases, 0.817, 1.000, 1.000, and 0.960 scores were
obtained for the sensitivity, specificity, precision, and
F-score, respectively.

The ROC curve representations of the proposed method
were also given in Fig. 8. The x-axis of the ROC curve shows
the false positive rate and the y-axis shows the true positive
rate. In Fig. 8(a), it was seen that the true positive rate was
about 0.92 when the false positive rate was 0. Besides, the
true positive rate was 1 when the false positive rate was
1 when the 70%-30% training-test set was used. The area
under the ROC curve (AUC) was 0.98. The ROC curve for
the 80%-20% training-test set was given in Fig. 8(b). The
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TABLE 2. Other evaluation metrics.

Training-test rate (%) Class Sn Sp Pr  F-score
Normal 1.000 0.923 0.817  0.900
70-30
Parkinson  0.923 1.000 1.000 0.960
Normal 1.000 0.929 0.826  0.904
80-20

Parkinson 0.929 1.000 1.000 0.963

Normal 1.000 0.817 0.817 0.899
10-fold cross-validation
Parkinson 0.817 1.000 1.000 0.960

TABLE 3. Performance comparison of the proposed method with other
methods.

Methods ACC (%) Sn Sp Pr F-score

Baseline method [7] 86.00 - - - 0.840

Other method [31] 93.80 0.840 0.970 0915 -

Proposed Method 94.27 0.960 0.960 0910  0.930

obtained ROC curve for the 80%-20% training-test set was
quite similar to the ROC curve of the 70%-30% training-
test set. The calculated AUC for the 80%-20% training-test
set was 0.99. The ROC curve for 10-fold cross-validation
was given in Fig. 8(c). The obtained ROC curve for 10-fold
cross-validation was quite close to the ROC curve of the
70%-30% training-test set. The calculated AUC for 10-fold
cross-validation was 0.98.

The comparison of the obtained results with some of the
previously published results was given in Table 3. The dataset
of other existing methods for the training and testing process
is split in 70% and 30%, respectively. Therefore, the same
training test rates of the proposed approach were used in
Table 3. The first row of Table 3 shows the baseline results
that were reported by Sakar et al. [7]. In [7], the authors
only calculated the accuracy and F-score metrics. The cal-
culated accuracy and F-score metrics were 86.0% and 0.84,
respectively.

In [31], the authors proposed a two-level feature selection
approach for PD detection. The reported achievement scores
were given in the second row of Table 3. As can be seen in
Table 3, the reported accuracy sensitivity, specificity, and pre-
cision values were 93.8%, 0.84,0.97, and 0.915, respectively.
The performance evaluation scores for the proposed method
were also given in the third row of the Table 3. The obtained
accuracy sensitivity, specificity, precision and F-score values
were 94.27%, 0.960, 0.960, 0.910 and 0.930, respectively.
So, when accuracy, sensitivity, precision and F-score met-
rics were considered, it was seen that the proposed method
outperformed other methods. Only the specificity score of
the reference [31] was higher than the proposed method’s
specificity score. However, since the training-test samples are
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randomly selected, it cannot be said that the approaches that
produce similar results are completely superior to each other.

IV. CONCLUSION

In this paper, a novel approach was developed for PD diag-
nosis based on speech disorders. The proposed approach
is based on feature mapping and deep LSTM structure,
respectively. The input dataset, which contains 750 features
and 756 samples, is used to obtain 756 images of size
180 x 180 x 3. 70% of these images are used in training
of the proposed deep LSTM structure and the rest images
are used in testing. The obtained accuracy, sensitivity, speci-
ficity, precision and F-score values are 94.27%, 0.960, 0.960,
0.910 and 0.930, respectively. When the 80%-20% training-
test set was used, the obtained accuracy, sensitivity, speci-
ficity, precision, and F-score values were 94.70%, 0.9645,
0.9645,0.9130, and 0.9335, respectively. Besides, for 10-fold
cross-validation, the obtained accuracy, sensitivity, speci-
ficity, precision and F-score values are 94.31%, 0.908, 0.908,
0.908 and 0.929, respectively. The obtained scores are com-
pared with some of the existing results and it is seen that the
proposed method produces promising scores. This is because
the proposed approach used a specific deep learning architec-
ture that trains the convolutional model and the LSTM model
together. Hand-crafted features are used in both of the com-
pared models. Deep learning architectures are often better at
extracting features than traditional methods. In addition, the
LSTM strategy in the proposed method increased the classi-
fication performance by keeping the more important ones in
memory among the extracted features. However, the robust
hardware for the proposed approach is needed to operate with
high-resolution image data and a bigger network.

APPENDIX
The pseudocode of the proposed approach

Input: 1D-data with 750 size (hand-crafted features) N =
The number of sample (756)

1: Normalize feature vector between 1 and 255

2: Convert 1D data to 2D data for each samples (25 x 30)

3: Create feature mapping based-RGB images (420 x 560 x

3) from 2D data with the Colormap technique

4: Resize RGB images to the input layer size of deep LSTM
(180 x 180 x 3)

5: Split dataset randomly at 70% training 30% test ratio
(training:N x 0.7 and test: N x 0.3)

6: Train the proposed approach from scratch

7: Test the proposed approach with the trained model and
test dataset
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