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ABSTRACT Fingerprint recognition systems have been applied widely to adopt accurate and reliable
biometric identification between individuals. Deep learning, especially Convolutional Neural Network
(CNN) has made a tremendous success in the field of computer vision for pattern recognition. Several
approaches have been applied to reconstruct fingerprint images. However, these algorithms encountered
problems with various overlapping patterns and poor quality on the images. In this work, a convolutional
neural network autoencoder has been used to reconstruct fingerprint images. An autoencoder is a technique,
which is able to replicate data in the images. The advantage of convolutional neural networks makes it
suitable for feature extraction. Four datasets of fingerprint images have been used to prove the robustness of
the proposed architecture. The dataset of fingerprint images has been collected from various real resources.
These datasets include a fingerprint verification competition (FVC2004) database, which has been distorted.
The proposed approach has been assessed by calculating the cumulative match characteristics (CMC)
between the reconstructed and the original features. We obtained promising results of identification rate
from four datasets of fingerprints images (Dataset I, Dataset II, Dataset III, Dataset IV) with 98.1%, 97%,
95.9%, and 95.02% respectively by CNN autoencoder. The proposed architecture was tested and compared
to the other state-of-the-art methods. The achieved experimental results show that the proposed solution is
suitable for recreating a complex context of fingerprinting images.

INDEX TERMS Fingerprint images, convolution neural networks, autoencoder, feature extraction, system
identification.

I. INTRODUCTION
Nowadays, biometric technology has been widely used in
various authentication occasions in industrial and everyday
life applications, including mobile payment [1], security ver-
ification [2], smart home [3] and so on. The system that
can recognize humans is designed using the physical char-
acteristics (e.g., fingerprint [4] and retina [5]) or behavioral
characteristics like voice [6] and gait [7]. Among them,
fingerprints are the most widely used biometric, with the
property of uniqueness, invariability, and high security.More-
over, the acquisition of fingerprints is convenient, which
makes fingerprint identification technology widely used in
embedded applications.

The associate editor coordinating the review of this manuscript and
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With the continuous upgrading of chip manufacturing and
other processes, the collection area of the fingerprint collector
has become smaller, so that the area of the collected finger-
print image is correspondingly reduced, and the fingerprint
image is easily destroyed. Due to the influence of finger-
prints themselves (dry, wet, dirty, cocoon, scars, etc.) and
various collection equipment (dirty collection head, low-
resolution, signal transmission noise, etc.), there are a lot of
low-quality fingerprint images in actual fingerprint recogni-
tion. In general, we are faced with challenges in terms of poor
image quality, unclear texture, nonlinear distortion, matching
methods, and public potential fingerprint databases [8]. High
computational efficiency [9], [10] is also a key require-
ment for the application of fingerprint-related techniques for
mobile devices. Furthermore, complicated overlapping pat-
terns will also lead to low quality fingerprint images, which
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seriously affects the accuracy of the automatic fingerprint
identification system [11].

Specifically, low quality fingerprint images can lead to the
following problems:
• A large number of pseudo feature points cause serious
interference to the recognition system.

• The loss of true feature points leads to mis-training of
the recognition model.

• Due to the complex changes in the perspective and
posture of the object between different images, it may
lead to inaccurate estimation of position and movement
direction of the feature points in low-quality images,
resulting in a large deviation from the real result.

Since many fingerprint recognition algorithms [12]–[14]
rely on minutiae features, the minutiae of small-area finger-
print images cannot support the algorithm for differential
matching. Therefore, the restoration of low-quality finger-
print images is an urgent problem to be solved during the
process of fingerprint recognition and matching.

In recent years, many researchers have conducted
in-depth research on fingerprint enhancement or recov-
ery technology. Fingerprint image recovery can be divided
into two categories: spatial domain enhancement and
frequency domain enhancement. Spatial domain enhance-
ment methods include the directional filtering [15], Gabor
filtering [16], and partial differential equation filtering [17].
The frequency domain enhancement methods consist mainly
of Fourier domain enhancement [18], short-time Fourier
transform enhancement [19], wavelet transform enhance-
ment [20], discrete cosine transform enhancement [21]
and so on.

Fingerprint images present unique texture features, which
are essentially two-dimensional non-stationary signals. The
commonly usedmedian filters or low-pass filters in the image
processing can reduce the noise and distortion in the image,
but their effect is not ideal because they uniformly process all
the pixels indiscriminately. The key to Gabor filtering is how
to get the ridge period accurately and quickly, otherwise the
filtered fingerprint image will appear empty [22]. Therefore,
a good fingerprint reconstruction algorithm can adaptively
use the local frequency information and the ridge direction
information to enhance the ridge and valley structure, to better
distinguish the ridge and valley.

At present, deep learning [23] has been widely used in
image processing and other fields. Thanks to the efficient
fitting capability of massive parameters, it can usually well
capture the data distribution structure and the characteristics
of the data itself. However, it is difficult to apply typical deep
learning models directly to image reconstruction, especially
for fingerprint images with high requirements for detail cap-
ture. This means that traditional deep learning models are
difficult to generalize well under various conditions. On the
other hand, the reasoning speed of a typical deep learning
model may be difficult to meet the real-time requirements
of practical applications. In this situation, it is critical to

develop a lightweight neural network model that can capture
fingerprint features.

The main contribution and motivation of this work are:
• Analysis using two different autoencoders (sparse, and
convolutional neural network models) on fingerprint
classification to examine their robustness for extracting
complex context features, which can improve fingerprint
recognition.

• Large number of experiments performed, using large
scale of fingerprint dataset, aiming to obtain further
insights into the performance of CNN autoencoder on
different datasets with varied fingerprint features.

• Utilization of light-weight neural network architectures
to perform competitive classification accuracy with few
parameters for the fingerprint recognition on the images,
while having less computation costs than the existing
pre-trained neural network architectures.

In this paper, a convolutional neural network (CNN)
Autoencoder is used to reconstruct fingerprint images.
We will explore the effectiveness on light-weight CNN archi-
tecture on replication the complex fingerprint features from
the images in comparison to the other deep learning models,
and the state of art methods. In this research, we will explain
how the CNN autoencoder will be built, and the objectiveness
of learning fingerprint features representation of input data
from the images into the output data.

Hereafter, the paper is organized as follows: Section I
and Section II deal with an introduction and related work.
Section III presents deep learning for image reconstruc-
tion. Section IV explores the methodology and discusses the
global architecture. Section V shows the results and discus-
sion. Conclusions and other experimental targets are drawn
in Section VI.

II. RELATED WORK
In this section, we present the related work of fingerprint
image recovery and identification from the following two
respects: the traditional scheme based on filtering, and the
deep learning scheme based on feature description.

A. FILTERING BASED TRADITIONAL SCHEMES
Chakraborty and Rao [24] proposed the fingerprint image
enhancement method based on adaptive filtering in frequency
domain. The histogram equalization process is performed on
the fingerprint image after Gabor filtering, and the enhance-
ment effect of the original fingerprint image can be obtained.
In view of the high computational complexity of Gabor fil-
ter, Chen et al. [16] proposed to decompose the unrotated
two-dimensional Gabor filter into one-dimensional band-pass
Gabor filter and 1D low-pass Gabor filter. Chen et al. [17]
improved the second-order oriented partial differential equa-
tions (PDE) model for fingerprint image restoration, which
can connect broken fingerprint ridges, fill in the holes of
the fingerprint image, smooth irregular ridges, and eliminate
some annoying small flaws. Chikkerur et al. [18] proposed to
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use curve area transformation in the Fourier domain, find the
curve area and map it to a two-dimensional array, and design
a filter to restore the fingerprint image based on the frequency
image of the curve areas. Ghafoor et al. [19] proposed a
frequency distortion elimination and enhancement method
based on short-time Fourier transform analysis (STFT) and
local adaptive context filtering and verified the superiority
of the algorithm through a large number of experiments.
In fact, the spatial and temporal resolution of STFT cannot
be considered at the same time, which can be solved well
by wavelet transform or wavelet packet transform. Moreover,
the performance improvement of hyper-parametric optimiza-
tion of STFT can also be further discussed, such as Fourier
number, sampling frequency, window length, etc. Aiming
at the problems of cracks, scars, dry skin, poor contrast
between ridges and valleys in low-quality fingerprint images,
Bidishaw and Nalini [20] proposed an effective two-stage
block enhancement scheme, learning in the space and fre-
quency domain of the basic image. Liu et al. [21] pro-
posed a method to reconstruct the fingerprint orientation field
using weighted discrete cosine transform. Ding et al. [22]
used the classification dictionary learning to enhance fin-
gerprint image based on spectral diffusion. Although many
schemes based on filtering have been proposed for finger-
print image restoration, they still have the problem that the
accuracy and efficiency are difficult to meet at the same
time.

Yoon et al. [11] studied the multi-layer statistical model
and covariates of fingerprint matching (similarity) score
analysis and showed that the quality difference between two
fingerprints compared will greatly affect the time stabil-
ity of the fingerprint identification accuracy. To solve the
problem of the lack of minutiae features in the fingerprint
area, Deshpande et al. [12] proposed the latent minutiae
similarity (LMS) algorithm and the clustering latent minutia
pattern (CLMP) algorithm, which achieved the best results
on multiple datasets. Wang et al. [13] proposed Fin Privacy,
a privacy protection mechanism for fingerprint recognition,
which injected Laplace noises into the singular values of the
approximate singular matrix, thereby weighing privacy and
utility. Jain et al. [14] fused the comparison scores between
the potential fingerprints based on the three templates and
the reference fingerprints and retrieves a short candidate
list from the reference database. By designing the enhance-
ment and the orientation deconvolution branch, an end-to-end
deep learning model named FingerNet [25] is proposed for
potential fingerprint enhancement. To extend the fingerprint
matching technology, Manickam et al. [26] proposed the use
of Scale Invariant Feature Transform (SIFT) to enhance and
match potential fingerprints. Cao et al. [27] proposed an end-
to-end latent fingerprint search system, which consisted of
an automatic region of interest (ROI) cropping, latent image
preprocessing, feature extraction, feature comparison, and an
output candidate list.

Compared with the filtering method, the method of convo-
lutional neural network autoencoder proposed in this paper

uses statistic knowledge to realize the optimization and
application of parametric model, which can adapt to com-
plex situations without prior information. With the increase
of the amount of available data, the method based on
deep learning has obvious advantages, which benefits from
the self-organization of implicit knowledge in the training
process.

B. FEATURE DESCRIPTION BASED
DEEP LEARNING SCHEMES
Taking defect fingerprints as the object, Wang et al. [28]
proposed an improved fingerprint recognition method based
on deep CNN with point features. The experimental results
show the superiority of deep learning over kernel prin-
cipal component analysis (KPCA) and k-nearest neighbor
(KNN). Aiming at the problems of fingerprint rotation, scal-
ing, damage, Wang et al. [29] proposed a robust fingerprint
recognition method based on CNN, which is not only fast
but also has a high ability to resist abnormal degradation.
A deep learning based unique affine Fourier moment match-
ing (AFMM) method [30] is proposed to match and fuse the
scores obtained from three different fingerprint features to
deal with local and global linear distortion. Pandya et al. [31]
proposed a new deep learning architecture for fingerprint
recognition, which achieved 98.21% classification accuracy
with only a loss of 0.9. Li [32] empirically proved that
the improved CNN recognition method has fewer iterations
during the training process and the training error is also
small; when identifying unknown fingerprints, the improved
CNN method has a lower false recognition rate and rejection
rate.

Deep CNNs can learn discriminative features from origi-
nal fingerprint images instead of explicit feature extraction,
which makes them attractive in fingerprint identification.
Zia et al. [33] used the uncertainty of a Bayesian model
to reduce the number of false positives of fingerprints to
improve identification efficiency. After obtaining the num-
ber of quality improvement processes needed for fingerprint
images, the deep CNN model combined with batch normal-
ization technology was used [34]. Peralta et al. [35] proposed
a method that combined image processing with a CNN clas-
sifier for fingerprint identification, avoiding the necessity of
explicit feature extraction. Aiming at the problem that the
traditional fingerprint recognition algorithm relies too much
on the details of fingerprint and the recognition performance
is limited in mobile devices, Zeng et al. [36] proposed a
local fingerprint recognition method based on deep learning.
By improving the structure of CNN, two loss functions are
optimized, and the identification performance of fingerprint
image is improved.

Although deep learning has shown great advantages in the
pattern recognition field, it still faces many challenges. One
is that how researchers can know that a model still has a good
generalization ability for scenes that have never appeared
before [37]. Another difficulty is how to make better use
of small-scale training data [38] and multi-model data [39].
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The processing method during data transmission may also
affect the data [40]. The proposed lightweight convolu-
tional autoencoder structure is different from the traditional
autoencoder or convolutional neural network. It can reduce
the parameter scale while ensuring the feature extraction
ability and data representation function, which is conducive
to improve the reasoning speed of the model in the process of
practical application.

III. DEEP LEARNING FOR IMAGING RECONSTRUCTION
A. DEEP LEARNING FOR FEATURE EXTRACTION
The diffusion of deep learning technologies has paved the
way for extracting the features automatically. Several meth-
ods were presented to compress data in the images into a
lower dimension effectively without a significant loss of data.
The enhancements in deep learning for feature extraction are
the foundation of remarkable success in computer vision.
Sun et al. [41] explored face recognition with deep learning.
This approach is applied to the CNN to reduce the dimen-
sion of specific regions of the input images, and to obtain
a series of deep learning IDs, which are combined together.
Deep learning models have been applied as supervised and
unsupervised end-to-end regression, and classification algo-
rithms. However, they can be used for feature extraction, and
combined with machine learning to treat input complex data
efficiently without the requirement of time consuming, poor
feature extraction from the images.

B. ARTIFICIAL NEURAL NETWORK
An artificial neural network (ANN) is the principle of deep
learning technologies. ANN are the brain since they are
applied by combining several simple units, which are called
as neurons. ANN models have been improved during the
years. More complex architectures, called CNNs, have been
deployed in several applications, thanks to their achievements
in computer visions. CNNs exploit a multilayer structure
which are different from hidden neurons. An ANN provides
approximation function which can be defined by the follow-
ing equation Eq [1]:

y = f′ ∗′ (x, 0) (1)

where f is the complex arbitrary continuous function, which;
parameterized by a set of coefficients [42]. The establishment
of the predictive model requires an estimation for several
parameters that approximate the targeted output. This can
be achieved by minimizing the parameters of cost function
for regression and cross-entropy for image classification.

FIGURE 1. Structure of simple autoencoder.

Gradient-descent based algorithm is utilized, based on back-
propagation algorithm [43].

C. AUTOENCODERS
Autoencoders are models where the algorithm is trained
to replicate its own input in an unsupervised way [44].
Autoencoders apply a symmetric structure which includes
three main components (encoder, decoder, latent represen-
tation), see Figure 1. An encoder part that compresses the
input into a low-dimensional representation that contains
the context of data. The second part is a decoder, which is
trained to reconstruct the features which were extracted by
the encoder. Latent representation is one component of the
autoencoder, which extracts the relevant information by com-
pressing the information, which traverses the neural network,
forcing the learnt information compression of input data
from the encoder part. The latent space reduces the dimen-
sion and compresses the complexity of the data through a
bottleneck.

The latent space is determined by X , and visible (data)
space by γ assuming they are real valued with dimensionality
J and K respectively. The parameters of the autoencoder are
optimized jointly in the encoder, and the decoder over the
least-squares reconstruction cost. This behavior is formalized
in Eq [2]

ϕ∗, ψ∗=argmin
ϕ,ψ

N∑
n=1

K∑
k=1

(y(n)k −fk
(
g
(
y(n);ϕ

)
;ψ
)
)2 (2)

In Eq [2] the encoder is represented by 8, the decoder
is defined by ψ . fk is the kth output value of f , arg rep-
resents for argument of the minimum, and given N is the
amount of data. The model is equivalent to the component’s
analysis when f, and g are linear. However, the non-linear
functions empower for a more robust non-linear mapping.
Therefore. Sigmoid function is used as activation func-
tion across hidden units. It is a useful property for image
data, which makes the learning process more stable for the
model.

Recently, autoencoders have become more widely used
for learning generative data. The objective of autoencoders
is to capture the most important features in the data. There
are different kinds of autoencoders which aim to achieve
different kinds of applications, which are described as the
following:

1) UNDERCOMPLETE AUTOENCODER
This architecture has a three-layer net, i.e., a neural network
with hidden layers. The input and the output are the same,
and it reconstructs its input to the output by using an Adam
optimizer and mean squared error loose function (MSE).
The aim of this model is to minimize the loose function by
penalizing the g(f(x)) for being varied from its input (x). This
autoencoder does not require regularization as it maximizes
the probability of data instead of copying the input to the
output.
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2) SPARSE AUTOENCODER (SAE)
This is a simple autoencoder and is easy to construct.
This model has hidden nodes more than the input nodes.
The important features are recognized from the given data.
Sparsity constraint is used in this model in the hidden lay-
ers. This is to prevent the output layers from copying the
input data. The hidden layers in this architecture are set at
a minimum value to confirm the activation value for the
sparsity constraint which is determined as p, and the penalty
function is used to prevent ρj variation from the value of p.
Kullback-Leibler variation is used as the cost function of the
penalty, determined in Eq [3].

KL (ρ ‖ ρj) = ρ ln
ρ

ρj
+ (1− ρ) ln

1− ρ
1− ρj

(3)

where ρj is not diverging from the parameter p, the
Kullback-Leibler value is 0, if not, the Kullback-Leibler value
will rise with the divergence.

3) STACKED DENOISING AUTOENCODER (SDAE)
Stacked models are neural networks with multiple layers of
sparse autoencoders. In this model, more hidden layers are
used, which helps to reduce high dimensional data into a
smaller code representing important features from the input
data. Each hidden layer in this model is more compact than
the last hidden layer. Input corruption is used only in this
architecture for initial denoising. It helps to learn the impor-
tant features from the input data, and once the mapping
function f(θ) has learnt, for further layers. the uncorrupted
layer is utilized from the previous layers.

4) CONVOLUTIONAL NEURAL NETWORK AUTOENCODER
CNNmodel is one of deep learning approach, which becomes
one of state-of-art for computer vision application due to its
significant advantages [45]. Feature learning is one of the
advantages of CNN, which it can learn and extract important
features. CNN can also learn from a large number of datasets
due to its deep architecture. Feature extraction is a crucial
issue for pattern recognition, and it is a difficult issue since
it depends on the type from the given data [46]. Features
are required as representatives for the images. CNN is a
deep learning model for feature extraction, which provides
self-learning layers. The rationale behind the convolutional
neural autoencoder is that the images could be compressed
to simple vector, which could be decoded to recreate the
original image. The element in the encoder vector does not
mean to encode one feature. Since there are millions of
parameters in the decoding network, the combination can
encode and create a massive number of features. Therefore,
convolutional neural autoencoder is implemented to perform
unsupervised learning for feature extraction and dimension
reduction. As small features are projected to a lower dimen-
sion, the distance between the vectors is significantly faster
to compute.

A convolutional autoencoder has a structure similar to
CNN. It has the same basic components that includes

convolutional filters and pooling layers. However, there is
difference in the structure of the architecture that both input
and output nodes have the same dimension. In regard to this,
the reconstructed data can be compared to the input data.
The difference between the input data and the reconstructed
data can be considered as an algorithm function for the
autoencoder thus the learning process is not dependent on the
labelled data. A CNN autoencoder is a kind of unsupervised
learning architecture. Convolutional neural network (CNN)
is a family of deep learning models, which has one or more
convolutional layers. It is mainly used for imaging process-
ing and feature extraction from the images. Convolutional
autoencoder use convolution operator to encode the input
features and replicate them in the output with the minimum
reconstruction error. Convolutional autoencoder operation
includes m convolutional kernels, and the output layer m
featuremap. The input featuremap is produced from the input
layer, n represents the number of input channels. The latent
representation for convolutional autoencoder of k-th feature
map in the encoder is defined by Eq [4] where σ represents
the activation function and ∗ is the two dimensional con-
volutional. The reconstruction in the decoder is defined by
using the following formula see Eq [5], where c represents the
bias per the input channel, and H represents the latent feature
maps.

hk = σ (x ∗W k
+ bk ) (4)

y = σ (
∑

kεH
hk∗W̃ k + c) (5)

CNNs architecture is well-suited for recognition of the
objects in the images. To optimize the performance of CNN
architecture for a specific application scenario, we need to
train, and fine-tune this architecture effectively. Therefore,
starting from trained CNN architecture, new data are fed
containing unknown classes. Once the network is in place,
a new task can be carried out such as fingerprint classification
in our case.

IV. METHODOLOGY
A. DATASET DESCRIPTION
Fingerprint image datasets were collected from different
resources. In this research, we used four different datasets
to assess the effectiveness of autoencoders for replicating
the given input data from fingerprint images to their out-
put. These images were detached from the real identity of
the individuals and were acquired from different scanners,
sensors, and inked devices. The datasets are described as the
following:

1) DATASET I
This dataset has 250 images with size of 200 × 200 pixels.
These images were acquired by using the fingerprint device,
Digital persona model (4500) reader which were taken from
students and faculty staff at YCCE College [47].
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2) DATASET II
This dataset is made up of 250 images with size of 153 ×
185 pixels. These images were also collected using the same
fingerprint (Digital personamodel (4500) reader) device from
individuals and members at YCCE College [48].

3) DATASET III
This dataset was collected from database of Sokoto Coventry
Fingerprint Dataset (SOCOFing). It is designed for academic
research purposes. This dataset is comprised of 6,000 finger-
print images, belonging to 600 African subjects. It consists
of specific features and attributes for both genders, hand, and
finger names as well as synthetically modified versions with
three different levels of alteration for central rotation, oblit-
eration, and z-cut by utilizing the STRANGE framework.
STRANGE toolbox is a novel approach for generation of
realistic synthetic alterations on the images of fingerprint.
These alterations were performed using simple, medium, and
advanced parameter settings in the STRANGE toolbox over
500dbi resolution images. The resolution of these images is
96× 103 pixels. The images of this dataset were collected by
using a scanner, Hamster plus (HSDU03PTM). This dataset
is categorized into three levels of alteration difficulties: easy,
medium, and hard [49].

FIGURE 2. Samples for fingerprint images from 4 datasets.

4) DATASET IV
This dataset consists of 320 images with different sizes
of images. These images were collected from fingerprint
verification competition database (FVC2004). In FVC2004,
we have four databases DB1, DB2, DB3, and DB4 based on
the type of the scanner used for acquiring the fingerprint and
image size [50]. This dataset has lesser quality for pattern
features of fingerprint in comparison to the other datasets.
FVC2004 dataset is considered state of the art and the most
challenging database due to its perturbations and complex
context features in the fingerprint images. These images were

designed for training and evaluating deep learning models
for pattern recognition purposes. Figure 2 below, shows some
samples from four datasets of fingerprint images.

B. DEEP LEARNING MODELS
In the experiments, we used the sparse and convolutional neu-
ral autoencoders to obtain the recreated fingerprint images
with the best replication to prove the effectiveness of those
autoencoders for fingerprint feature recreation.

1) SPARSE AUTOENCODER
We started the experiments with the Sparse autoencoder
with the pre-processing activities. The images were split
into 80% for training, and 20% for testing for each dataset.
The pre-processing has been performed on both training and
testing data for each dataset. The image of each dataset
was rescaled into 100 × 100 pixels (width and height) for
all datasets, and we eliminated the blank space around the
fingerprint image itself. This was done in order to achieve
an equal number of tiles while cropping the fingerprint
images.

FIGURE 3. The pre-processing workflow to prepare the Fingerprint
images to be trained and tested with the Sparse autoencoder.

We also applied different filters to the image to enhance the
sparse autoencoder model’s understanding of the structure.
We converted the images into grayscale whereas the pattern
features of the fingerprints present as a black color, and the
background of the images show as white. This is to improve
and achieve a binary image for extracting the features. This
process minimizes the distortion and the variableness in the
fingerprint images, with an outcome of the extraction of
beneficial data which also introduces specific artifact fea-
tures that can affect the stages of pre-processing. As per the
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FIGURE 4. Structure of the Sparse Autoencoder (SAE).

TABLE 1. Training hyper-parameters for sparse autoencoder.

FIGURE 5. Training performance for the sparse autoencoder (SAE) with
different sizes for cropped tiles of fingerprint images: A) Tile size (50 ×

50), B) Tile size (25 × 25), C) Tile size (20 × 20) and D) Tile size (10 × 10).

requirement of this model, it is important to train and test the
architecture with small images, therefore we performed the
process of cropping, dividing each image into the tiles, and
reassembling these tiles in the form of a reconstructed image.
We performed the copping of each single image and created
tiles with different sizes (50 × 50, 25 × 25, 20 × 20, and

TABLE 2. The measured values for mean square error (MSE) for sparse
autoencoder with different sizes of cropped tiles during training process.

FIGURE 6. Structure of CNN Autoencoder.

10 × 10) of pixels to examine the sparse autoencoder archi-
tecture with more than one scenario. This pre-processing
has been carried by the imaging processing toolbox.
Figure 3 shows the pre-processing workflow to prepare fin-
gerprint images to train and test the sparse autoencoder
model.

The Sparse autoencoder has been designed which includes
an input layer (encoder), an output layer (decoder) and the
latent representation (hidden units), see Figure 4. We set
the number of hidden units in the laten representation
with 50 neurons.We selected the transfer function for encoder
and decoder for this architecture. For encoder part, we chose
the linear satlin, and for decoder part, we selected the lin-
ear function purlin. Table 1 shows the best hyperparameter
selected and used in the training stage. L2 regularization is
utilized for training the architecture to overcome overfitting
problems. The sparse autoencoder has been trained with four
datasets with various sizes of cropped images into tiles with
various pixels sizes (50 × 50, 25 × 25, 20 × 20, and 10 ×
10). This is to examine and analyze the performance of the
sparse autoencoder by comparing the loose function among
different sizes of cropped tiles. Our aim was to have the latent
representation of the input learnt features of fingerprints from
the images by the SAE model and obtain the most minimum
mean square error value (MSE), which can be determined
as the average of the square for the variation between the
predicted and the original values. MSE is an essential algo-
rithm, corresponding with the produced value of mean square
error loss. We carried out the training process for the sparse
autoencoder and as we can see in Figure 5, the learning curve
of the sparse autoencoder enhanced where the size of the
cropped tiles is reduced, we achieved the best learning curve
for the architecture with a cropped tile size of 10× 10 pixels.
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Furthermore, we performed the measurement for the val-
ues of the mean square error, and we assessed the best value
when the sparse autoencoder has been trained with cropped
tiles size of 10 × 10 pixels, see Table 2.

2) CONVOLUTIONAL NEURAL NETWORK AUTOENCODER
(THE PROPOSED ARCHITECTURE)
In this section, we will discuss the experiments for recreating
the fingerprint images with the CNN autoencoder. As part
of preprocessing, the images of four datasets are with pixel
values ranging from 0 – 255. These images are resized into
224× 224 pixels. These 224× 224 images are converted into
matrix 224 × 224 × 1. This is to account the requirement
to feed the input data into the convolutional neural network
input layer. The images have been randomly split into 70%
for training, 20% for validation, and 10% for testing the
model for each dataset. It is important to partition the data to
generalize the model and reduce the chances of overfitting.
The proposed approach includes a set of convolutional and
max pooling layers, see Figure 6.

TABLE 3. Training hyper-parameters for CNN autoencoder.

We constructed the CNN architecture with 11 layers. This
light-weight architecture is established with a low number of
CNN layers to account the requirement of IoT and low-cost
embedded devices in terms of power consumption and mem-
ory usage. The convolutional layers were used to map the
features from the input images. The filter size has been
set to [3 × 3]. This size is commonly used for the CNNs
models. These filters determine the height and the width
of the regions in which the neural network connect to the
input. Max pooling layers were utilized in this model to
down-sample the images into small regions. The filter size
for stride has been set in these layers with [2 × 2]. The CNN
autoencoder will be split into two parts, which are encoder,
and decoder. The first part (encoder) will include the first
layer with 32 filters, second layer with 64 filters, and the final
layer with 128 filters. The second part (decoder) will include
the first layer with 128 filters, second layer with 64 filters,

TABLE 4. Performance of the CNN autoencoder vs sparse autoencoder
among all datasets.

FIGURE 7. Training and validation loose curves for a CNN autoencoder
throughout all four datasets of fingerprint images.
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FIGURE 8. The results for the reconstructed images by using (A) Sparse
autoencoder (SAE), (B) CNN autoencoder on the testing sets for four
datasets.

and the final layer with 32 filters. Hyper-parameters have
been set to optimize the training of the CNN autoencoder,
see Table 3. We trained the CNN autoencoder with a number
of epochs which were set with 1000 for each dataset. These
epochs will determine the duration for the training time that
the algorithm will work throughout the training dataset. L2
regularization has been fine-tuned with 0.005. We set the
batch size with 128 for training the model. Figure 7 shows the
training and validation loose curves for the CNN autoencoder
throughout all four datasets.

V. EXPERIMENTAL RESULTS AND DISCUSSION
Wedemonstrated the predictions of fingerprint features on the
four testing datasets with a sparse autoencoder, and the pro-
posed CNN autoencoder. The variation for the performance
achieved by the two investigated architectures were evaluated
as the classification type and database varied. The mean
square error (MSE) has been utilized to calculate the error
between the estimated fingerprint features and the original
fingerprint features. We used the MSE formula in Eq [6]
because it is the most common estimator of image quality
measurement metric. It is a full reference metric to calculate
the differences in pixel values between the input and output
images to evaluate the accuracy for autoencoders.

MSE =
1
n

∑n

i=1
(Yi − Ŷ )

2
(6)

FIGURE 9. Cumulative match characteristics (CMC) curves display
fingerprint matching results. (A) CMC results by the proposed approach
(CNN autoencoder) (B) CMC results by Sparse autoencoder.

TABLE 5. Performance of the proposed approach vs state-of-the-art
methods by using fingerprint images from FVC2004 database.

In Eq [6] MSE represents the mean square error, n is the
number of data points, Yi represents the observed value and
Ŷ represents the predicted value. According to the results
from these experiments on the testing datasets, the mean
square error (MSE) for sparse autoencoder has been improved
by manual enhancement of the fingerprint images during
the pre-processing activities. It showed that the process of
cropping the images increased the learning capability for
sparse autoencoder, allowing fast training time and enhanced
the performance for the architecture. The CNN autoencoder
achieved very good results for recreating the fingerprint fea-
tures. The proposed algorithm showed better performance in
comparison to the sparse autoencoder among four datasets,
see Figure 8 A & B, and Table 4.

It is observed that the features with complex patterns in
the original fingerprint images produced the best latent rep-
resentation in the recreated images by this model, which
minimized the MSE error. The proposed approach eliminated
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FIGURE 10. Comparison of the proposed approach (CNN autoencoder),
and sparse autoencoder vs. other pre-trained models in terms of memory
usage.

overfitting and any possible data leakage in the reconstructed
images. Further to our exploration, we performed the valida-
tion experiments on four testing datasets. This is to evaluate
the fingerprint matching performance for the proposed model
(CNN autoencoder) and sparse autoencoder among these
datasets. We used cumulative match characteristics (CMC)
as a performance evaluation between the reconstructed and
the original features in the fingerprint images. Cumulative
match characteristics is a metric used to assess the accuracy
of algorithms that produce scores of possible matches in
the biometric systems. Throughout the results, the proposed
approach achieved very good identification rate with 98.1%
for Dataset I, 97% for Dataset II, 95.9% for Dataset III, and
95.02% for Dataset IV, and overcomes sparse autoencoder
identification accuracy, which was recorded at 92.3% for
Dataset I, 90.01% for Dataset II, and 87.5% for Dataset III,
and 70% for Dataset IV, see Figure 9 A & B.

This is to note that the proposed approach had better
identification rate than sparse autoencoder on replicating
the fingerprint features on Dataset IV which were col-
lected from a fingerprint verification competition database
(FVC2004). We compared the CNN autoencoder with other
state-of-the-art methods [51], [52], which used the same
fingerprint images from FVC2004 database. It can be seen
that the proposed reconstruction algorithm produced the
highest accuracy compared to these state-of-the-art algo-
rithms, see Table 5. Therefore, the proposed approach has
been performed effectively on real-word images vs. sparse
autoencoder, and other methodologies. Hence, the proposed
CNN model can be used for fingerprint identification in
several application fields.

We measured the memory size for the proposed archi-
tecture, and sparse autoencoder, which are 1.257 MB. and
0.155 MB, respectively. This is the advantage of the proposed
verses other pre-trained architectures such as SqueezeNet,
Alexnet, Resnet50, and ShuffleNet. Figure 10 shows the com-
parison of the CNN autoencoder vs. the sparse autoencoder,
and other pre-trained models in terms of memory size. These

models utilize large CNN layers which require a massive
disk size for deployment on an embedded system, and IoT
devices.

VI. CONCLUSION AND OTHER EXPERIMENTAL TARGETS
This work implements a novel approach for reconstruct-
ing fingerprint images based on CNN architecture. The
CNN autoencoder is designed with an encoder and decoder,
modelling the challenge of fingerprint image recreation by
extracting the input image features, and replicating well-fined
details in the output image. The proposed CNN autoen-
coder showed very good performance for replicating the
fingerprint features from the images and overcomes the
sparse autoencoder and other state of art methodologies in
terms of calculating the cumulative match characteristics
between the estimated and the original features. We tested the
proposed algorithm on four different fingerprints databases
(Dataset I, Dataset II, Dataset III, Dataset IV), and obtained
an identification of rate of 98.1%, 97%, 95.9%, and 95.02
respectively. Indeed, analyzing the obtained experimental
results, the convolutional autoencoder is the most suitable
technique for recreating complex context fingerprint fea-
tures as it improved and sharpened the fingerprint features
on real-world fingerprint images such as FVC2004 and
SOCOFing databases. The measured memory size of the
proposed CNN autoencoder is much lower than the state
of art AI methods and this makes it suitable to run on
low-cost embedded devices. Therefore, CNN autoencoder is
viable option for biometric authentication and identification
applications.

We foresee two different directions that can further
enhance the performance of this model, one direction is to
integrate the proposed approach within fingerprint scanners
such as Lumidigm and Secugem sensors, which will give the
final outcome on how the model performs in reconstructing
the images. In addition to that, it could consider other data
augmentation techniques using histogram-based operations
and other geometric transformations to improve the mean
square error value for the proposed approach.

REFERENCES
[1] V. Conti, C. Militello, F. Sorbello, and S. Vitabile, ‘‘A multimodal tech-

nique for an embedded fingerprint recognizer in mobile payment systems,’’
Mobile Inf. Syst., vol. 5, no. 2, pp. 105–124, 2009.

[2] H. Alshehri, M. Hussain, H. A. Aboalsamh, Q. Emad-Ul-Haq, M. AlZuair,
and A.M. Azmi, ‘‘Alignment-free cross-sensor fingerprint matching based
on the co-occurrence of ridge orientations and Gabor-HoG descriptor,’’
IEEE Access, vol. 7, pp. 86436–86452, 2019.

[3] B. Jin, L. Cruz, and N. Goncalves, ‘‘Deep facial diagnosis: Deep transfer
learning from face recognition to facial diagnosis,’’ IEEE Access, vol. 8,
pp. 123649–123661, 2020.

[4] J. Sang, H. Wang, Q. Qian, H. Wu, and Y. Chen, ‘‘An efficient fingerprint
identification algorithm based on minutiae and invariant moment,’’ Pers.
Ubiquitous Comput., vol. 22, no. 1, pp. 71–80, Feb. 2018.

[5] I. N. Figueiredo, S. Moura, J. S. Neves, L. Pinto, S. Kumar, C. M. Oliveira,
and J. D. Ramos, ‘‘Automated retina identification based on multi-
scale elastic registration,’’ Comput. Biol. Med., vol. 79, pp. 130–143,
Dec. 2016.

[6] Q. Zheng,M. Yang, and J. Yang, ‘‘Improvement of generalization ability of
deep CNN via implicit regularization in two-stage training process,’’ IEEE
Access, vol. 6, pp. 15844–15869, 2018.

VOLUME 9, 2021 147897



S. Saponara et al.: Recreating Fingerprint Images by Convolutional Neural Network Autoencoder Architecture

[7] C. Luo, J. Wu, J. Li, J. Wang, W. Xu, Z. Ming, B. Wei, W. Li, and
A. Y. Zomaya, ‘‘Gait recognition as a service for unobtrusive user iden-
tification in smart spaces,’’ ACM Trans. Internet Things, vol. 1, no. 1,
pp. 1–21, Mar. 2020.

[8] D. Ezhilmaran and M. Adhiyaman, ‘‘A review study on latent fingerprint
recognition techniques,’’ J. Inf. Optim. Sci., vol. 38, nos. 3–4, pp. 501–516,
May 2017.

[9] O. Dospinescu and I. Lîsîi, ‘‘The recognition of fingerprints on mobile
applications—An Android case study,’’ J. Eastern Eur. Res. Bus. Econ.,
pp. 1–11, Feb. 2016, doi: 10.5171/2016.813264.

[10] K. Shaheed, H. Liu, G. Yang, I. Qureshi, J. Gou, and Y. Yin, ‘‘A systematic
review of finger vein recognition techniques,’’ Information, vol. 9, no. 9,
p. 213, Aug. 2018.

[11] S. Yoon and A. K. Jain, ‘‘Longitudinal study of fingerprint recognition,’’
Proc. Nat. Acad. Sci. USA, vol. 112, no. 28, pp. 8555–8560, 2015.

[12] U. U. Deshpande et al., ‘‘Automatic latent fingerprint identification system
using scale and rotation invariant minutiae features,’’ Int. J. Inf. Technol.,
Aug. 2020, doi: 10.1007/s41870-020-00508-7.

[13] T. Wang, Z. Zheng, A. K. Bashir, A. Jolfaei, and Y. Xu, ‘‘FinPrivacy: A
privacy-preserving mechanism for fingerprint identification,’’ ACM Trans.
Internet Technol., vol. 21, no. 3, pp. 1–15, Jun. 2021.

[14] K. Cao and A. K. Jain, ‘‘Automated latent fingerprint recognition,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 41, no. 4, pp. 788–800, Apr. 2019.

[15] C.-H. Park, J.-J. Lee, M. J. T. Smith, S.-I. Park, and K.-H. Park, ‘‘Direc-
tional filter bank-based fingerprint feature extraction and matching,’’ IEEE
Trans. Circuits Syst. Video Technol., vol. 14, no. 1, pp. 74–85, Jan. 2004.

[16] Y. Mei, B. Zhao, Y. Zhou, and S. Chen, ‘‘Orthogonal curved-line Gabor
filter for fast fingerprint enhancement,’’ Electron. Lett., vol. 50, no. 3,
pp. 175–177, Jan. 2014.

[17] C. Tang, N. Yang, and Q. Mi, ‘‘Fingerprint enhancement using the second-
order oriented partial differential equation,’’ in Proc. 5th Int. Congr. Image
Signal Process., Oct. 2012, pp. 307–311.

[18] S. Chikkerur, V. Govindaraju, and A. N. Cartwright, ‘‘Fingerprint image
enhancement using STFT analysis,’’ in Proc. Int. Conf. Pattern Recognit.
Image Anal. (Lecture Notes in Computer Science), vol. 3687. Springer,
2005, pp. 20–29.

[19] M. Ghafoor, I. A. Taj, and M. N. Jafri, ‘‘Fingerprint frequency normalisa-
tion and enhancement using two-dimensional short-time Fourier transform
analysis,’’ IET Comput. Vis., vol. 10, no. 8, pp. 806–816, Dec. 2016.

[20] J. Bidishaw and T. Nalini, ‘‘Two stage block-wise fingerprint enhancement
using discrete wavelet transform,’’ Int. J. Comput. Sci. Inf. Technol., vol. 5,
no. 3, pp. 2837–2846, 2014.

[21] M. Liu, S. Liu, and Q. Zhao, ‘‘Fingerprint orientation field reconstruction
by weighted discrete cosine transform,’’ Inf. Sci., vol. 268, pp. 65–77,
Jun. 2014.

[22] S. Ding,W. Bian, H. Liao, T. Sun, and Y. Xue, ‘‘Combining Gabor filtering
and classification dictionaries learning for fingerprint enhancement,’’ IET
Biometrics, vol. 6, no. 6, pp. 438–447, Nov. 2017.

[23] Q. Zheng, P. Zhao, D. Zhang, and H. Wang, ‘‘MR-DCAE: Mani-
fold regularization-based deep convolutional autoencoder for unautho-
rized broadcasting identification,’’ Int. J. Intell. Syst., vol. 36, no. 2,
pp. 7204–7238, 2021, doi: 10.1002/int.22586.

[24] S. Chakraborty andK. Rao, ‘‘Fingerprint enhancement by directional filter-
ing,’’ in Proc. 9th Int. Conf. Elect. Eng./Electron., Comput., Telecommun.
Inf. Technol., May 2012, pp. 1–4.

[25] J. Li, J. Feng, and C.-C. J. Kuo, ‘‘Deep convolutional neural network for
latent fingerprint enhancement,’’ Signal Process., Image Commun., vol. 60,
pp. 52–63, Feb. 2018.

[26] A.Manickam, E. Devarasan, G.Manogaran,M. K. Priyan, R. Varatharajan,
C.-H. Hsu, and R. Krishnamoorthi, ‘‘Score level based latent fingerprint
enhancement and matching using SIFT feature,’’ Multimedia Tools Appl.,
vol. 78, no. 3, pp. 3065–3085, Feb. 2019.

[27] K. Cao, D.-L. Nguyen, C. Tymoszek, and A. K. Jain, ‘‘End-to-End
latent fingerprint search,’’ IEEE Trans. Inf. Forensics Security, vol. 15,
pp. 880–894, 2020.

[28] Y. Wang, Z. Wu, and J. Zhang, ‘‘Damaged fingerprint classification
by deep learning with fuzzy feature points,’’ in Proc. 9th Int. Congr.
Image Signal Process., Biomed. Eng. Informat. (CISP-BMEI), Oct. 2016,
pp. 280–285.

[29] W. Yani, W. Zhendong, Z. Jianwu, and C. Hongli, ‘‘A robust damaged
fingerprint identification algorithm based on deep learning,’’ in Proc.
IEEE Adv. Inf. Manage., Communicates, Electron. Autom. Control Conf.
(IMCEC), Oct. 2016, pp. 1048–1052.

[30] H.-R. Su, K.-Y. Chen, W. J. Wong, and S.-H. Lai, ‘‘A deep learning
approach towards pore extraction for high-resolution fingerprint recogni-
tion,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Mar. 2017, pp. 2057–2061.

[31] B. Pandya, G. Cosma, A. A. Alani, A. Taherkhani, V. Bharadi, and
T. M. McGinnity, ‘‘Fingerprint classification using a deep convolutional
neural network,’’ in Proc. 4th Int. Conf. Inf. Manage. (ICIM), May 2018,
pp. 86–91.

[32] H. Li, ‘‘Feature extraction, recognition, and matching of damaged fin-
gerprint: Application of deep learning network,’’ Concurrency Comput.,
Pract. Exper., vol. 33, no. 6, p. e6057, Mar. 2021.

[33] T. Zia, M. Ghafoor, S. A. Tariq, and I. A. Taj, ‘‘Robust fingerprint clas-
sification with Bayesian convolutional networks,’’ IET Image Process.,
vol. 13, no. 8, pp. 1280–1288, Jun. 2019.

[34] W.-S. Jeon and S.-Y. Rhee, ‘‘Fingerprint pattern classification using con-
volution neural network,’’ Int. J. FUZZY Log. Intell. Syst., vol. 17, no. 3,
pp. 170–176, Sep. 2017.

[35] D. Peralta, I. Triguero, S. García, Y. Saeys, J. M. Benitez, and F. Herrera,
‘‘On the use of convolutional neural networks for robust classification
of multiple fingerprint captures,’’ Int. J. Intell. Syst., vol. 33, no. 1,
pp. 213–230, Nov. 2017.

[36] F. Zeng, S. Hu, and K. Xiao, ‘‘Research on partial fingerprint recogni-
tion algorithm based on deep learning,’’ Neural Comput. Appl., vol. 31,
pp. 4789–4798, Jun. 2018.

[37] Q. Zheng, P. Zhao, Y. Li, H. Wang, and Y. Yang, ‘‘Spectrum interference-
based two-level data augmentation method in deep learning for automatic
modulation classification,’’Neural Comput. Appl., vol. 33, pp. 7723–7745,
Nov. 2020.

[38] Q. Zheng, X. Tian, M. Yang, and H. Su, ‘‘CLMIP: Cross-layer manifold
invariance based pruning method of deep convolutional neural network for
real-time road type recognition,’’ Multidimensional Syst. Signal Process.,
vol. 32, no. 1, pp. 239–262, Jan. 2021.

[39] A. Mohammed Ali and A. Kadhim Farhan, ‘‘A novel improvement with
an effective expansion to enhance the MD5 hash function for verifica-
tion of a secure E-document,’’ IEEE Access, vol. 8, pp. 80290–80304,
2020.

[40] A. Mohammed Ali and A. K. Farhan, ‘‘Enhancement of QR code capacity
by encrypted lossless compression technology for verification of secure
E-document,’’ IEEE Access, vol. 8, pp. 27448–27458, 2020.

[41] Y. Sun, X. Wang, and X. Tang, ‘‘Deep learning face representation from
predicting 10,000 classes,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2014, pp. 1891–1898.

[42] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[43] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning rep-
resentations by back-propagating errors,’’ Nature, vol. 323, no. 6088,
pp. 533–536, Oct. 1986.

[44] W.Garrison Cottrell, P.Munro, andD. Zipser, ‘‘Learning internal represen-
tations from gray-scale images: An example of extensional programming,’’
in Proc. 9th Annu. Conf. Cogn. Sci. Soc., 1987, pp. 208–240.

[45] S. Hijazi, R. Kumar, and C. Rowen. (2015). Using Convolutional
Neural Networks for Image Recognition. [Online]. Available:
https://ip.cadence.com/uploads/901/cnn_wp-pdf

[46] M. Maggipinto, C. Masiero, A. Beghi, and G. A. Susto, ‘‘A convolutional
autoencoder approach for feature extraction in virtual metrology,’’ Proc.
Manuf., vol. 17, pp. 126–133, Jan. 2018.

[47] U. Gawande. Fingerprint Color Image Database. V1. MATLAB
Centra File Exchange. Accessed: Jan. 8, 2021. [Online]. Available:
https://www.mathworks.com/matlabcentral/fileexchange/52507-
fingerprint-color-image-database-v1

[48] U. Gawande. Fingerprint Color Image Database. V1. MATLAB
Centra File Exchange. Accessed: Jan. 8, 2021. [Online]. Available:
https://www.mathworks.com/matlabcentral/fileexchange/52508-
fingerprint-color-image-database-v2

[49] Y. Isah Shehu, A. Ruiz-Garcia, V. Palade, and A. James, ‘‘Sokoto coventry
fingerprint dataset,’’ 2018, arXiv:1807.10609.

[50] D. Maio, D. Maltoni, R. Cappelli, J. L. Wayman, and A. K. Jain,
‘‘FVC2004: Third fingerprint verification competition,’’ in Proc. Int.
Conf. Biometric Authentication Berlin, Germany: Springer, 2004,
pp. 1–7.

[51] A. T. Gowthami and H. R. Mamatha, ‘‘Fingerprint recognition using zone
based linear binary patterns,’’ Proc. Comput. Sci., vol. 58, pp. 552–557,
2015, doi: 10.1016/j.procs.2015.08.072.

147898 VOLUME 9, 2021

http://dx.doi.org/10.5171/2016.813264
http://dx.doi.org/10.1007/s41870-020-00508-7
http://dx.doi.org/10.1002/int.22586
http://dx.doi.org/10.1016/j.procs.2015.08.072


S. Saponara et al.: Recreating Fingerprint Images by Convolutional Neural Network Autoencoder Architecture

[52] U. U. Deshpande, V. S. Malemath, S. M. Patil, and S. V. Chaugule,
‘‘CNNAI: A convolution neural network-based latent fingerprint matching
using the combination of nearest neighbor arrangement indexing,’’ Fron-
tiers Robot. AI, vol. 7, p. 113, Sep. 2020, doi: 10.3389/frobt.2020.00113.

SERGIO SAPONARA received the Ph.D. degree
in electronic engineering from the University of
Pisa, Italy. He was a Marie Curie Fellow with
IMEC, Belgium. He is currently a Full Professor
of electronics with the University of Pisa. He is
a Full Professor of electronics and a Leader of
the I-CAS Laboratory, Università di Pisa, Italy.
He has coauthored about 300 scientific articles and
holds 18 patents. He is a Funding Member of the
IoT CASS SiG. He has been a TPC member of

over 100 international IEEE and SPIE conferences. Since 2017, he has been
an IEEE IMS Distinguished Lecturer. He is an associate editor of several
IEEE and IET journals.

ABDUSSALAM ELHANASHI (Member, IEEE)
received the M.Sc. degree in electronic engineer-
ing from the University of Glasgow, Scotland,
in 2017. He is currently pursuing the Ph.D. degree
with the Electronic Systems Laboratory, Depart-
ment of Information Engineering, University of
Pisa, Italy. His current research interests include
artificial intelligence, imaging processing, and
deep learning in the IoT devices. He is a mem-
ber of the Institution of Engineering Technology
Community (IET).

QINGHE ZHENG (Member, IEEE) received the
B.S. degree in communication engineering from
the Xi’an University of Posts and Telecommuni-
cations, in 2014, and the Master of Science degree
in information and communication engineering
fromShandongUniversity, in 2018. He is currently
pursuing the Ph.D. degree in information and com-
munication engineering with the Intelligent Signal
Processing Laboratory (ISP-L), School of Infor-
mation Science and Engineering, Shandong Uni-

versity. His research interests include multidimensional signal processing,
machine learning, and pattern classification. He is a member of IAENG.

VOLUME 9, 2021 147899

http://dx.doi.org/10.3389/frobt.2020.00113

