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ABSTRACT Statistics in terms of spectrum occupancy are useful for efficient and smart dynamic spectrum
sharing, and the statistics can be obtained by long-term and wide-band spectrum measurements. In this
paper, we investigate noise floor (NF) estimation for energy detection (ED)-based long-term and wide-band
spectrum measurements since the NF estimation heavily affects the ED performance and eventually
the accuracy of the statistics in terms of spectrum occupancy. Specifically, we address the following
NF estimation problems simultaneously for the first time in the spectrum measurement field: (1) slow
time-varying property of the NF, (2) frequency dependency of the NF, (3) the NF estimation in the presence
of the signal, and (4) the computational cost of the NF estimation. Firstly, we apply Forward consecutive
mean excision (FCME) algorithm-based NF estimation to deal with the above three problems ((1), (2)
and (3)) successfully. Second, we propose and apply an NF level change detection on top of the FCME
algorithm-based NF estimation to deal with the fourth problem. The proposed NF level change detection
exploits the slow time-varying property of the NF. Specifically, only if the significant NF level change is
detected, the FCME algorithm-based NF estimation is performed to reduce the redundant NF estimations.
In numerical evaluations, we show the efficiency and the validity of the NF level change detection for the
NF estimation problems, and compare the NF estimation performance with the method without the NF level
change detection.

INDEX TERMS Noise floor estimation, energy detection, dynamic spectrum access, spectrummeasurement.

I. INTRODUCTION
During the past decades, the demand for radio spectrum has
been increasing to support the bandwidth-hungry applica-
tions such as high-definition video streaming and emerging
applications (e.g., Internet of things (IoT), device-to-device
(D2D) communications), while there is little room to accom-
modate new emerging wireless systems due mainly to
fixed spectrum assignment policy. However, the spectrum
measurement campaigns around the world have shown that
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almost all the spectrum is under-utilized in time and/or space
domains [2], [3]. It means there are a lot of unused spectrum
called white space (WS). In order to solve this issue, sev-
eral types of dynamic spectrum sharing (DSS) frameworks
have been investigated, such as opportunistic spectrum access
(OSA) [4], licensed shared access (LSA) in Europe [5],
and television white space (TVWS) [6], citizens broadband
radio service (CBRS) based on spectrum access system in
the U.S. [7].

In typical OSA, there are primary users (PUs), which
have priority regarding spectrum usage, and secondary users
(SUs), which can opportunistically access the WS as long as
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the spectrum utilization by SUs does not cause any harm-
ful interference to PUs. OSA includes two important tech-
niques: spectrum sensing and wireless resource management
(e.g., bandwidth, power, etc.). Spectrum sensing is a spec-
trum awareness technique in terms of instantaneous spectrum
occupancy, either vacant or occupied [8]. The requirements of
spectrum sensing, such as accuracy, latency, and implementa-
tion cost are substantially demanding [9]. On the other hand,
in the wireless resource management in the context of DSS,
it is required to manage wireless resources to enhance the
spectrum utilization efficiency while SUs do not cause any
harmful interference to PUs.

In order to resolve the issue of spectrum sensing and pro-
vide an efficient wireless resourcemanagement, the advanced
DSA approach (known as smart spectrum access (SSA)) has
been investigated [10], [11]. In SSA, the aspect of spectrum
usage by PU, such as statistics of channel occupancy rate
(COR), which is the fraction of the time that a channel is
occupied, i.e., contains signal(s) in addition to noise [12],
can be available based on long-term, wide-band, and wide
area spectrum measurements [13]. In fact, COR statistics can
enhance not only spectrum sensing performance [14], [15],
but also the efficiency of spectrum management, channel
selection and MAC protocol [16], [17].

In this paper, we focus on the spectrum measurement part
for realizing SSA. In general, the spectrum measurement
consists of the acquisition of data associated with spectrum
usage (e.g., I/Q data, power data) and processing the obtained
data such as spectrum analysis, spectrum usage detection, and
estimation of statistical information such as COR. Actually,
there have been many spectrum measurement campaigns
(see [2], [3] and references therein), and most of the cam-
paigns use an energy detector (ED) as a spectrum usage
detection technique.We also focus on the ED-based spectrum
measurements.

One key challenge for the ED is the detection
threshold-setting to achieve target detection performances,
such as target false alarm rate. Therefore, there are several
threshold setting criteria including the m-dB criterion and
the constant false alarm rate (CFAR) criterion [18]. Basi-
cally, we need an accurate noise floor (NF) information no
matter what criteria we adopt to set the threshold satisfying
an adopted criterion. Actually, importance of the accurate
NF estimation has been pointed out [19] since the inaccurate
NF information leads to the deviated detection performance
(probabilities of detection and false alarm) from the target
one, i.e., non-guaranteed detection performance. In addition,
the inaccurate NF information also leads to Signal-to-Noise
Ratio (SNR) wall phenomenon in ED [20].

Through our long-term and wide-band NF measurements
and existing works [21]–[23], we have identified the follow-
ing challenging problems for the NF estimation: (1) slow
time-varying property of the NF, (2) frequency dependency
of the NF, (3) the NF estimation in the presence of the signal.
In addition, (4) the computational cost of the NF estimation
needs to be considered since it is expected to deploy many

low-cost spectrum sensors in the long-term, wide-band, and
wide-area measurements.

Most of the previous spectrum measurements utilizing
ED have assumed a static NF (time-invariant NF), which
is obtained by switching the receiver input to a matched
load or is measured in an anechoic chamber before starting
the measurements [24]–[26]. Thus, these estimations do not
take the problem (1) into account, while they can take the
problem (2) into account partly. We note that the problem (3)
is not an issue in these estimations since these estimations can
exclude the target wireless system signal. Obviously, these
estimations also have the low computational complexity since
the NF estimation is done only once. In this paper, we refer to
the NF estimation that estimates the NF once before starting
the measurements as the static estimation method.

On the other hand, some existing works take the problems
(1) and (2) into account. The typical related works in the spec-
trum usage measurement field and the cognitive radio field
include [27]–[33] as far as we know. These works can address
the problem (1) by successive NF estimations between con-
secutive measurements (say, 1 second interval). In addition,
they can also address the problem (3) by morphological
image processing operations [27], rank-order filtering (ROF)
[28], [29], Gaussian mixture model [30], auto-correlation
estimation [31] or Forward consecutive mean exci-
sion (FCME) algorithm [32], [33]. The reference [27] also
addresses the third problem as well as the second problem.

Especially, the FCME algorithm-based NF estimation is
based on the signal detection theory [34]. Specifically, it clas-
sifies the measured signal into two group (signal group and
noise group) and calculates the arithmetic mean of the noise
group resulting to the NF estimate. However, the original
FCME algorithm-based NF estimation does not take the third
problem directly into account. In response to the disadvan-
tage of the FCME algorithm-based NF estimation, the two
dimensional FCME algorithm-based NF estimation was pre-
sented in a conference paper [23]. The method can take the
problems (1)-(3) into account at the same time and it is the
state-of-the-art NF estimation method according to our best
knowledge. However, the problem (4) has not been addressed
(i.e., heavy computational complexity) since themethodmust
do the NF estimation frequently while the actual NF varies
with time slowly [21]. Namely, frequent NF estimations lead
to the excessive computational cost (estimation run-time) for
NF estimation.

Therefore, this paper proposes and applies an NF level
change detection for the efficient NF estimation based on
FCME algorithm.1 Specifically, the NF estimation is per-
formed only when a significant NF level change is detected.
Our aim is to reduce the run-time for the NF estimation
process as much as possible while achieving the compara-
ble NF estimation performance with respect to the state-of-

1In comparison to our conference paper [1], new contributions in this
paper are design of hyperparameters in the proposed NF estimation method,
and optimal hyperparameters are shown. Extensive and thorough numerical
evaluations present their validity.
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the-art method and getting the obtained false alarm as close
as possible to the target false alarm rate via the NF level
change detection. The main contributions of this paper are as
follows:
• We propose an NF level change detection method to
decide whether the NF estimation can be skipped or not.
The method is based on the ED result with detection
threshold based on previous NF estimate. Thus, the
NF estimation process is skipped when the previous
detection threshold is decided to be adequate.

• The proposed method has the lower computational cost
(run-time) of the NF estimation while it offers the
comparable NF estimation performance with respect
to the existing state-of-the-art two-dimensional FCME
algorithm-based NF estimation method. In addition,
the proposed method has a better NF estimation per-
formance than that of the static estimation method.
We numerically verify them.

The rest of the paper is organized as follows: Section II
is devoted to the description of spectrum usage measurement
methodology, the time variation model of NF level and the
significance of our work. In Section III, we introduce our
proposed NF estimation process with the NF level change
detection. The numerical evaluation and its corresponding
discussion are provided in Section IV. Finally, Section V
concludes our paper.

II. SYSTEM MODEL
A configuration of time frames for a spectrum measurement
is shown in Fig. 1. The measurement period is set to long
term, such as dozens of days. A spectrum sensor continuously
acquires N complex baseband samples for one data acquisi-
tion period with the specified measurement bandwidth and
accumulates them into its own local storage by the next data
acquisition start. Data acquisition period is indexed with t ,
t ∈ {0, 1, · · · ,T − 1} and T indicates the total number of
measurement.

FIGURE 1. The configuration of time frames in measurement process.

The general signal processing used for the spectrum mea-
surement is shown in Fig. 2. The first step is the power
spectrum estimation with Welch FFT [35] using the base-
band samples at the tth period yt ∈ CN . Then, the
NF estimation is performed and we denote the estimated
NF as Ût ∈ RNFFT , where NFFT is the FFT size exploited
in Welch FFT and typically NFFT < N in Welch FFT.
In the conventional approach, the NF estimation is performed
every acquisition period. On the other hand, in our approach,
the NF estimation is performed at tth acquisition period

FIGURE 2. General signal processing model for spectrum measurement.

if a significant NF level change is detected. Otherwise the
NF estimation at t−1th acquisition period is used in tth acqui-
sition period. In Sect. III, the proposed NF estimation with the
NF level change detection will be shown. After the NF esti-
mation, the threshold setting for ED is performed with using
Ût based on the CFAR criterion. Finally, the ED with the set
threshold τPFA (t) is performed to obtain the spectrum usage
decisions Dt . Below is the more detailed explanation for the
process.

In the tth acquisition period, we model the baseband
I/Q signal yt = [yt [0], yt [1], · · · , yt [N − 1]]T ∈ CN as
the complex Gaussian random signal since we focus on the
broadband wireless system such as WLAN system and LTE
system and most all the modern broadband wireless systems
now apply the OFDM technology, where the OFDM signal
can be approximated to the Gaussian random signal as indi-
cated in [36] and [37]. However, the idea in the paper can be
applied to any broadbandwireless systems since the detection
method (ED) and the proposed NF estimation method exploit
power information that can be calculated for any radio sig-
nals. Thus, the sampled baseband signal bandlimited to the
measurement bandwidth is given by

yt [n] =

{
st [n]+ zt [n] (H1)
zt [n] (H0),

(1)

where st [n] and zt [n] are the nth observation target signal
sample and the noise signal sample which are the com-
plex Gaussian random signal with zero mean and variance
σ 2
s [t] or σ

2
z [t], respectively. Moreover, the noise signal has

a specific power spectrum shape (e.g., Fig. 3 (b)), but we
assume that the target signal has a flat power spectrum over
the measurement bandwidth. σ 2

s [t] and σ
2
z [t] are the signal

power and the time-varying noise power at the tth acquisition
period, respectively and we assume that these parameters
are at least constant over one acquisition period. We define
SNR = σ 2

s [t]/σ
2
z [t] as the constant signal-to-noise ratio for

the evaluation purpose in the numerical evaluation section.
Thus, the total signal power is adjusted according to the
given SNR value and the given total noise power at the tth
acquisition period, i.e., σ 2

s [t] = SNR× σ 2
z [t]. Moreover, the

status (H1) indicates that PU signal exists in the measure-
ment bandwidth partially or completely and the status (H0)
indicates otherwise (no signal present).

At first, the baseband signal yt is divided intoK Welch FFT
blocks with Ns samples. Thus, y(t)k , k ∈ {0, 1, · · · ,K − 1}
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FIGURE 3. NF measurement ((a) NF level evolution, (b) Power spectrum
of NF at 200kHz resolution bandwidth).

in the kth Welch FFT block is given by y(t)k =

[yt [kNs], · · · , yt [kNs + Ns − 1]]T . The power spectrum esti-
mation with Welch FFT consists of three steps: segmentation
of y(t)k with a specific FFT size and an overlap ratio, calcu-
lation of multiple power spectra, and averaging of the power
spectra [35]. The baseband signal y(t)k,l, l ∈ {0, 1, · · · , L−1}
at lth segment and kth Welch FFT block is given by

y(t)k,l = [yt [kl(1− ρ)NFFT ], · · · ,

yt [kl(1− ρ)NFFT + NFFT − 1]]T . (2)

where NFFT is the FFT size and the overlap ratio ρ is set
to 0.5 [38]. Moreover, Ns and NFFT are assumed to be powers
of two. In this case, the number of segments L is given
by L = 2Ns/NFFT − 1.
After the segmentation, normal FFT is performed for each

segment. The result of FFT operation of y(t)k,l is given by

Y(t)
k,l =

1
√
NFFT

FWy(t)k,l, (3)

where F = (exp(−j2πmf /NFFT ))m,f ∈0,1,··· , NFFT−1 is the
discrete Fourier transform matrix. The diagonal matrix
W = diag(w0,w1, · · · , wNFFT−1) is a matrix where its
diagonal elements are coefficients wm of the utilized FFT
window with

∑NFFT−1
m=0 w2

m = 1. Hamming window is used
in this process [33].

The calculated power spectra based on Welch FFT at kth
Welch FFT block is given by

P(t)
k =

1
L

L−1∑
l=0

|Y (t)
k,l [f ]|

2

= [P(t)k [0], · · · , P(t)k [f ], · · · , P(t)k [NFFT − 1]]T , (4)

where f ∈ {0, 1, · · · , NFFT − 1} indicates the index number
of frequency bin.We define a matrix Pt = [P(t)

1 P(t)
2 · · ·P

(t)
K ] ∈

RNFFT×K .

The ED result indicates a presence of signal component at
the kth Welch FFT block and the f th frequency bin as

Dt [k, f ] =

{
1 (P(t)k [f ] > τPFA [f ](t))
0 (otherwise),

(5)

where 1 and 0 respectively indicate that a presence of sig-
nal component (H1) and an absence of signal component
(H0) are assumed. The detection threshold τPFA (t) is set based
on NF estimate OUt = [Û [t, 0], Û [t, 1], · · · , Û [t, f ], · · · ,
Û [t,NFFT − 1]]T so that τPFA [f ](t) satisfies the CFAR
criterion.

A. TIME VARIATION MODEL OF NOISE FLOOR LEVEL
Fig. 3 shows (a) the time variation of the NF level for
one week (01/12/2018–07/12/2018) and (b) the power spec-
trum of the NF. This result was measured at our labora-
tory in Koganei campus, Tokyo University of Agriculture
and Technology, Tokyo, Japan. The spectrum sensor used
was a real-time spectrum analyzer (Tektronix RSA306B).
The result was obtained every one minute by switching the
sensor input to a matched load. Fig. 3 (a) verifies that the
NF level slowly changes with time between around
−94.05dBm and −93.72dBm. On the other hand, Fig. 3 (b)
shows that the NF has the frequency-dependency.

Based on our two dimensional NFmeasurement campaign,
we model the NF level variation in time and frequency
domains as [23]

U [j, f ] = γjµref [f ], (6)

where γj and µref [f ] indicate the NF level variation factor
and the NF at a reference time instant j = tref denoted by the
reference NF level, respectively. The coefficient γj indicates
a gain to obtain the NF level at time j and it is frequency-
independent. The reference NF level at a reference time can
be obtained from a measurement in an anechoic chamber or
by using a radio frequency (RF) terminator at the spectrum
sensor to avoid the presence of signal component. Then, the
reference NF µref [f ] is calculated by time averaging of noise
power spectra, and it is given by

µref [f ] =
1
M

M−1∑
m=0

Pm,ref [f ], (7)

where M and Pm,ref [f ] indicate the number of time aver-
aging and noise power spectrum, respectively. Furthermore,
we assume the NF at least do not change during one data
acquisition time.

B. SIGNIFICANCE OF NF LEVEL CHANGE
According to the result in Fig. 3 (a), the NF level change is at
most 0.4 dB. This NF level change affects the obtained false
alarm rate since estimated NF level is used to set the threshold
τPFA [f ](t). The obtained false alarm rate can be calculated as
follows [23]

PFA=Prob(P
(t)
k [f ] > τPFA |H0)= 0̃

(
L,

τPFA

γtµref [f ]/L

)
, (8)
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FIGURE 4. Obtained false alarm rate as a function of NF level variation
factor.

where 0̃(α, θ) indicates a normalized incomplete Gamma
function. The threshold τPFA [f ](t) is set based on the CFAR
criterion and is given by [23]

τPFA [f ] =
γµref [f ]

L
0̃−1

(
L, ṖFA

)
, (9)

where ṖFA is a given target false alarm rate and 0̃−1 indicates
the inverse of a normalized incomplete Gamma function.
Fig. 4 shows the obtained false alarm rate in case of the target
false alarm rate ṖFA = 0.01 as a function of the NF level
variation factor, γ , where γ implies the NF estimation error
and γ = 0dB indicates no NF estimation error. The result
indicates that the false alarm rate can be significantly large,
such as 0.45 in the case of L = 1000 and γ = 0.3dB.
This means the COR value may be estimated as 0.95 if
the real COR value is 0.5 and measurement is in a high
SNR environment. Therefore, the NF level change, such as
γ = 0.3dB, is not negligible for false alarm rate. In addition,
it is well know that this also leads to the SNR wall behaviour
for energy detector [20].

III. PROPOSED NF ESTIMATION PROCESS
The block diagram of proposed NF estimation process is
shown in Fig. 5. It consists of two blocks: Block 1 (B1),
which is NF level change detection and Block 2 (B2), which
is NF estimation based on the FCME algorithm. The process
of NF level change detection in B1 is executed every data
acquisition time t except for the first measurement t = 0.
On the other hand, NF estimation in B2 is only executed when
the NF level change is detected or t = 0 since the spectrum
sensor does not know the NF at first. Therefore, the proposed
method can reduce the computational cost of NF estimation
processes if the computational cost of the process in B1 is
smaller than one in B2 and the NF level changes slowly.

In B2, we exploit the two-dimensional FCME algorithm-
based NF estimation as the NF estimation as it can achieve
the highly-accurate NF estimation performance while con-
sidering the frequency-dependency of the NF [23]. Briefly,
the two-dimensional FCME-based NF estimation estimates
the NF level variation factor γt at time instant t exploiting the
reference NFµref [f ] and the estimated power spectrum in the
time-frequency plane Pt , where the description of the refer-
ence NF is provided in Subsect. II-A [23]. More specifically,
it locates the noise-only power samples in power spectrum
samples Pt based on the FCME algorithm, flattens or nor-
malizes the located noise-only power spectra in frequency
exploiting µref [f ], and estimates γt by applying the FCME
algorithm again. Then, the resultant NF estimate is Û [t, f ] =
γ̂t · µref [f ] where γ̂t indicates the estimate of γt . After esti-
mating the NF in B2, the ED is performed based on the set
threshold with the estimated NF.

On other hand, for other data acquisition time, i.e., t ∈
{1, 2, · · · ,T − 1}, the processes in B1 are performed at
first. It includes the tentative ED using the threshold from
the previous data acquisition, i.e., τPFA (t − 1), and the NF
level change detection. The frequency bins where detection
decision was ‘‘noise-only’’ are used for noise level change
detection. They are normalized using the reference NF and

FIGURE 5. Block diagram of the proposed NF estimation process.
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then minimum is taken. Minimum of ED decision values
has been used for NF estimation [39] and here it is used
for different purpose, for change detection. The normalized
minimum is compared with two thresholds derived from the
previous round NF level variation factor. The purpose is to
notice when NF is increasing or decreasing. If the change of
the NF is detected, the processes in B2 are enforced and the
ED result is the final ED result, i.e.,Dt = Dt,final . Otherwise,
the ED result equals to the tentative ED result (Dt = Dt,ten.),
and Û [t, f ] = Û [t − 1, f ] and τPFA [f ](t) = τPFA [f ](t − 1).
Below is themore detailed description for theNF level change
detection.

The NF level change detection exploits the result of the
tentative ED, Dt,ten. and the power spectrum Pt . Let a set
2[f ] to be a set consisting of the indices of zeros (‘‘noise-
only’’) in Dt,ten.[f ], i.e., 2[f ] = {k|Dt,ten.[f ] = 0}, where
Dt,ten.[f ] indicates the tentative ED result at frequency bin f .
Then, we define a value pt,ave.[f ] as the average value of a
vector pt,2[f ] in time. Specifically, pt,ave.[f ] is given by

pt,ave.[f ] =
1
|2[f ]|

∑
k∈2[f ]

P(t)k [f ], (10)

where |2[f ]| indicates the cardinality of 2[f ] and pt,2[f ] =
[P(t)k∈2[f ][f ]]. After that, we perform the NF flattening process
using the reference NF µref [f ]. This process is done as

δt [f ] =
pt,ave.[f ]
µref [f ]

. (11)

We can detect the NF level change by the thresholding
process against δt [f ] since δt [f ] can be an estimate of γt .
Specifically, we decide that the NF level changes if min(δt ) >
ηH or min(δt ) < ηL . Otherwise, i.e., min(δt ) lies in between
ηL and ηH , we decide that the NF level does not change.
We apply two thresholds, ηL and ηH since the NF level
possibly increases or decreases. Both thresholds are set based
on γ̂t−1 and two hyperparameters (1L , 1H ) and these are
given by

ηL = 1L · γ̂t−1, ηH = 1H · γ̂t−1, (12)

where the hyperparameters are set in advance before the spec-
trum measurements by solving the following optimization
problem 14 via the exhaustive search.

To set the hyperparameters properly, we introduce a min-
max optimization problem as follows. It minimizes the maxi-
mum computational cost (run-time) in terms of NF estima-
tion process over the whole target SNR region, while the
mean absolute error (MAE) between the obtained false alarm
rate PFA,o and the target false alarm rate ṖFA is lower than the
allowable mean absolute error. The MAE of the false alarm
rate implies the NF estimation performance since the good
NF estimation leads to the smaller MAE and is given by

MAEPFA (ηL , ηH ) = E[|PFA,o − ṖFA|], (13)

where E[·] denotes expectation. Mathematically, the above
criterion is defined as

min
{ηL ,ηH }

max
SNR∈[SNRmin SNRmax ]

C(ηL , ηH ; SNR)

subject to MAEPFA (ηL , ηH ; SNR) ≤ εPFA , (14)

where C(ηL , ηH ; SNR), MAEPFA (ηL , ηH ) and εPFA indicate
the run-time given an SNR and hyperparameters, the MAE
in terms of the obtained false alarm rate given an SNR and
hyperparameters, and the allowable MAE of false alarm rate,
respectively. The target SNR region is between SNRmin and
SNRmax , where SNRmin and SNRmax are the minimum target
SNR value and the maximum target SNR value, respectively.

IV. NUMERICAL EVALUATIONS
In this section, we evaluate the NF estimation performance
and the spectrum occupancy detection performance of the
proposed method based on computer simulations. For com-
parison, we evaluate the performances of the widely used
static estimation method and the two-dimensional FCME
algorithm-based NF estimation [23] which is the current
state-of-the-art method. We assume the spectrum measure-
ments of one wireless local area network (WLAN) channel
with 20MHz bandwidth over 2.4GHz band and there is no sig-
nal in adjacent channels except the target channel. Common
parameters are summarized in Table 1. Fig. 6 shows (a) the
assumed NF variation in time and (b) the assumed reference
NF, respectively. These correspond to the approximation to
the NF by noise measurements as mentioned in Subsec. II-A
(Fig. 3). Specifically, we calculated the NF level and the
power spectrum of the NF (the reference NF) according to
the experimental result of Fig. 3 by means of polynomial
approximation. All the results in this section are evaluated
using the time variation pattern and the power spectrum of
the NF as shown in Fig. 6.

TABLE 1. Parameter set.

A. HYPERPARAMETERS OPTIMIZATION
In this subsection, the hyperparameters, 1L and 1H , are
optimized based on (14). We show the optimization result in
the case of COR = 0.5 as an example. The target SNR region
is set to SNR ∈ [−10 10] in dB, εPFA = 2×10−3 and the target
false alarm rate is set to 0.01. An exhaustive search is applied
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FIGURE 6. NF setting in the simulations ((a) Assumed NF evolution,
(b) Assumed reference NF).

to find the optimal solution, i.e. 1L = 0.83 and 1H = 0.91.
The search range is1L = 0.75 to1L = 0.95 and1H = 0.75
to 1H = 0.95 with 0.01 step size. This leads to 210 possible
combinations of the hyperparameters considering1H > 1L .
The obtained false alarm rate is defined by

PFA,o,t =

∑NFFT−1
f=0

∑K−1
k=0 Dt [k, f ]|H0

NH0

, (15)

where Dt [k, f ]|H0 and NH0 are the detection result given the
true H0 state and the total number of the true H0 state in the
time and frequency domain, respectively.

To confirm the impact of 1L and 1H on performances,
Figs. 7 and 8 show the MAE of false alarm rate and the
average rum time which indicates the computational cost.
Specifically, the performances obtained by the optimal solu-
tion and non-optimal cases are compared in the figures. The
selected non-optimal 1L and 1H are (1L = 0.87 and
1H = 0.89) and (1L = 0.87 and 1H = 0.93). The former
non-optimal case (1L = 0.87 and 1H = 0.89) can achieve
the lowest MAE performance in the target SNR region as

FIGURE 7. MAE in terms of the obtained PFA as a function of SNR.

FIGURE 8. Average run time as a function of SNR.

shown in Fig. 7. However, the average run time in Fig. 8 is
longest in the target SNR region. Thus, this result indicates
the trade-off relationship between the run-time performance
and the NF estimation accuracy for the proposed method and
it is due to theNF level change detection. Thus, more skipping
the NF estimation process, shorter the run-time, but worse the
NF estimation performance and vice versa. However, we note
that the MAE in terms of the obtained false alarm rate for the
proposed method can satisfy the allowable MAE, εPFA .
The result in the later non-optimal case (1L = 0.87 and

1H = 0.93) indicates an another trade-off in terms of the
MAE of false alarm rate and the run-time performances as a
function of SNR. Specifically, in the low SNR region, such
as less than 1 dB, the MAE of false alarm rate is relatively
high, but it is low in the high SNR region. On the other
hand, in the low SNR region, the least run time is achievable,
however it has the longer run time in the high SNR region.
This implies that it is required to properly set the hyperparam-
eters for the NF level change detection. Thus, the thresholds
(or 1L and 1H ) for the NF level change detection in the
later non-optimal case are almost proper from the perspective
of the hyperparameters optimization problem (14) since the
MAE of the obtained false alarm rate and the average run
time in the later non-optimal case are almost same as ones
in the case of the optimal solution in the low SNR region.
However, the thresholds in the later non-optimal case are
not proper from the perspective of the computational cost
(i.e., longer run time than one for the optimal solution) in the
high SNR region since the upper threshold (i.e., 1H = 0.93)
for the later non-optimal case is slightly higher than the
optimal upper threshold (1H = 0.91). In fact, the deci-
sion statistics of the NF level change detection (the min-
imum statistics of δt , min(δt )) tends to be larger as the
SNR increases. As a result, the upper threshold for the later
non-optimal case results in an increase in the number of
the two-dimensional FCME algorithm-based NF estimation
executed, i.e., longer run time in the high SNR region since
the number that the NF level changes are detected increases.
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B. COMPARATIVE EVALUATION
In this subsection, we compare performance of the pro-
posed NF estimation and the two-dimensional FCME
algorithm-based NF estimation when the COR is 0.2, 0.5
and 0.8 in the time-varying NF scenario. We use the time
variation pattern of the NF as shown in Fig. 6 (a). The
different COR values indicate the low, moderate, and high
channel occupancy environments, respectively. For the pro-
posed NF estimation, we use the optimal hyperparameters for
each COR value found by the exhaustive search mentioned
in the previous subsection. Thus, the optimal hyperparam-
eters are 1L = 0.75, 1H = 0.94, 1L = 0.83, 1H = 0.91
and 1L = 0.82, 1H = 0.90 for COR = 0.2, 0.5 and 0.8,
respectively.

Fig. 9 evaluates the NF estimation performance. Specifi-
cally, the figure shows theMAE in terms of the NF estimation
and is defined as follow:

MAENF =
1
T

T−1∑
t=0

NFFT−1∑
f=0

|Û [t, f ]− U [t, f ]|, (16)

FIGURE 9. MAE in terms of the NF estimation in linear scale.

where T , NFFT Û [t, f ] andU [t, f ] is the number of measure-
ments (number of simulation trials), the number of frequency
bins, the estimated NF in linear scale at tth measurement
and f th frequency bin and the true NF in linear scale at
tth measurement and f th frequency bin, respectively. For
reference, the result of the static estimation method is also
shown.

From this figure, the two-dimensional FCME algorithm-
based NF estimation has a better NF estimation performance
than the proposed method in the target SNR region since the
proposed method can skip the two-dimensional FCME-based
NF estimation by applying the NF level change detection
to reduce the computational cost (run-time) at the cost of
the slight NF estimation accuracy. Actually, it indicates the
trade-off relationship between the computational cost and the
NF estimation accuracy for the proposed method as men-
tioned in the previous subsection.

Moreover, for the two-dimensional FCMEalgorithm-based
NF estimation, we can see the different NF estimation perfor-
mance for each COR value. This is due to the less number of
noise samples in the case of the higher COR value. In fact, the
method in principle estimates the NF by averaging the noise
samples.

On the other hand, we can see that both the proposed
method and the two-dimensional FCME algorithm-based NF
estimation have a much better NF estimation performance
than one of the static estimation method. This is because
that the static estimation method estimates the NF only once
when starting the measurements and cannot track the time
variation of the NF while both the proposed method and the
two-dimensional FCME algorithm-based NF estimation can
do it.

Figs. 10 and 11 show probabilities of detection and false
alarm, respectively. For the probability of detection result,
we only show the result in the case of COR = 0.5 since
other probability of detection results for COR = 0.2 and
COR = 0.8 are almost same as the result of COR = 0.5
and it is easy to see the result. From Fig. 10, we can see that
both NF estimation methods attain the comparative detection

FIGURE 10. Probability of detection as a function of SNR.

FIGURE 11. Probability of false alarm as a function of SNR.
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probability and have a nearly equal detection probability to
the ideal and target detection performance due to the highly
accurate NF estimation. Here, the ideal and target detection
probability indicates the probability of detection with the
detection threshold (9) applying the 0.01 target false alarm
rate.

On the other hand, Fig. 11 shows the small difference in
terms of the obtained false alarm rate between the proposed
method and the two-dimensional FCME algorithm-based NF
estimation. This result is related to the NF estimation perfor-
mance shown in Fig. 9. Thus, the lower MAE in terms of the
NF estimation has the closer false alarm rate to the target false
alarm rate with 0.01 and vice versa.

Fig. 12 shows the MAE in terms of the obtained false
alarm rate of the proposed method and the two-dimensional
FCME algorithm-based NF estimation. The figure indi-
cates that both methods satisfy the allowable MAE accu-
racy, εPFA = 0.002. However, the two-dimensional FCME
algorithm-based NF estimation has better MAE performance
since the two-dimensional FCME algorithm-based NF esti-
mation has better NF estimation performance as shown in
Fig. 9. In fact, the result is related to the NF estimation
performance shown in Fig. 9 due to (8). Thus, the lowerMAE
in terms of the NF estimation results in the lower MAE in
terms of the false alarm rate and vice versa.

FIGURE 12. MAE in terms of the obtained PFA as a function of SNR.

Finally, we evaluate the average run-time of the proposed
method and the two-dimensional FCME algorithm-based
NF estimation. Fig. 13 shows the run-time of the pro-
posed method is at most 10 times faster than one of the
two-dimensional FCME algorithm-based NF estimation in
the case where COR = 0.2. On the other hand, the run-time
of the proposed method is at most 2 times faster than the
one of the two-dimensional FCME algorithm-based NF esti-
mation in the case where COR = 0.8. Comparing with
Fig. 12, we can see that these two figures are inter-related.
In fact, the lower MAE of the obtained false alarm rate, the
higher the average run time due to the trade-off between the
NF estimation performance and the computational cost (run-
time) for the proposedmethod. On the other hand, the average

FIGURE 13. Computational cost (run-time).

run time of the two-dimensional FCME algorithm-based NF
estimation is shorter in the case of the high COR value.
This is due to the less number of noise samples averaging
for the NF estimation. Therefore, the proposed approach can
reduce the computational cost (run-time) significantly while
maintaining accuracy of NF estimation.

V. CONCLUSION
In this paper, we have proposed an efficient NF esti-
mation process (NF level change detection plus FCME
algorithm-based NF estimation) for ED-based long-term and
wide-band spectrum measurements. In fact, the proposed NF
estimation process can deal with slow time-varying property
and frequency dependency of the NF, the NF estimation in the
presence of the signal, and the computational cost at the same
time. Especially, the proposed process attempts to reduce
the computational cost by exploiting slow time-varying NF
via the proposed NF level change detection. Numerical
evaluations have shown that the proposed method enables
an accurate spectrum occupancy detection, considering the
frequency-dependency and slowly time-varying property of
the NF, while it can achieve 10 times faster run-time than one
of the FCME algorithm-based NF estimation without the NF
level change detection in case of the low COR environment.
In this paper, we have numerically evaluated the effect of the
thresholds on the NF estimation performance and the com-
putational cost and shown the trade-off relationship between
the NF estimation performance and the computational cost.
As one of our future works, we will analyze the trade-off
relationship theoretically. In addition, we will investigate a
thresholds (hyperparameters) settingmethod for the proposed
NF estimation method that satisfies the optimization problem
(Eq. (14)).
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