
Received September 23, 2021, accepted October 30, 2021, date of publication November 2, 2021,
date of current version November 8, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3124856

HCE: A Runtime System for Efficiently Supporting
Heterogeneous Cooperative Execution
LANJUN WAN 1, WEIHUA ZHENG2, AND XINPAN YUAN1
1School of Computer Science, Hunan University of Technology, Zhuzhou 412007, China
2College of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, China

Corresponding author: Lanjun Wan (wanlanjun@hut.edu.cn)

This work was supported in part by the National Natural Science Foundation for Young Scientists of China under Grant 61702177; in part
by the Natural Science Foundation of Hunan Province, China, under Grant 2019JJ60048; and in part by the National Natural Science
Foundation of China under Grant 61672224.

ABSTRACT Heterogeneous systems with multiple different compute devices have come into common
use recently, and the heterogeneity of the compute device is mainly reflected in three aspects: hardware
architecture, instruction set architecture, and processing capability. Heterogeneous CPU-accelerator systems
have attracted increasing attention especially. To make full use of multiple CPUs and accelerators to execute
data-parallel applications, programmers may need to manually map computation and data to all available
compute devices, which is tedious, error-prone, and difficult. Especially for some data-parallel applica-
tions, the inter-device communication could easily become the performance bottleneck of multi-device
co-execution. Therefore, firstly, a runtime system is designed for supporting heterogeneous cooperative
execution (HCE) of data-parallel applications, which can help programmers to automatically and efficiently
map computation and data to multiple compute devices. Secondly, an incremental data transfer method is
designed to avoid redundant data transfers between devices, and a three-way overlapping communication
optimization method based on software pipelining is designed to effectively hide the inter-device commu-
nication overhead. Based on our previously proposed feedback-based dynamic and elastic task schedul-
ing (FDETS) scheme and asynchronous-based dynamic and elastic task scheduling (ADETS) scheme, the
modified FDETS that supports incremental data transfer and the modified ADETS that supports three-way
overlapping communication optimization are proposed, which not only can effectively partition and balance
the workload among multiple compute devices but also can significantly reduce data transfer overhead
between devices. Thirdly, a prototype of the proposed runtime system is implemented, which provides a set
of runtime APIs for task scheduling, device management, memory management, and transfer optimization.
Our experimental results show that the communication overhead between devices is greatly reduced using the
proposed inter-device communication optimization methods and the multi-device co-execution significantly
outperforms the best single-device execution.

INDEX TERMS Communication optimization, cooperative execution, data-parallel applications, dynamic
scheduling, heterogeneous systems, runtime system.

I. INTRODUCTION
Heterogeneous systems have become increasingly popular in
recent years. Some efforts [1]–[8] have beenmade to fully uti-
lize the available computational resources of a heterogeneous
system to execute parallel applications, which demonstrate
that the full utilization of all compute devices can result in sig-
nificant improvements in performance. However, they require
programmers to manually manage the task distribution, data

The associate editor coordinating the review of this manuscript and
approving it for publication was Laurence T. Yang.

transfers, and load balancing between devices, which would
be difficult and bring a huge programming burden. Therefore,
it is desired to provide an easier andmore efficient way to sup-
port the multi-device co-execution of parallel applications.

Recently, some heterogeneous parallel programming mod-
els and runtime systems have been devoted to make full use
of multiple CPUs and accelerators to execute parallel appli-
cations on a heterogeneous CPU-accelerator system, such
as SKMD [9], CoopCL [10], EngineCL [11], FinePar [12],
CoreTSAR [13], StarPU [14], and OmpSs [15]. These hetero-
geneous parallel programming models and runtime systems

147264 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-7236-3589

L. Wan et al.: HCE: Runtime System for Efficiently Supporting Heterogeneous Cooperative Execution

that support CPU-accelerator co-execution can help applica-
tion programmers automatically map computation and data
to multiple CPUs and accelerators. However, the efficient
inter-device task scheduling is still a great challenge for the
multi-device co-execution.

Some works [16]–[23] have recently concentrated on
inter-device task scheduling strategies in heterogeneous
CPU-accelerator systems, which statically split work across
multiple compute devices before execution or dynamically
determine the workload assignment among multiple com-
pute devices during runtime. These task scheduling strategies
provide effective workload distribution by maximizing the
utilization of all available compute devices and balancing
the workload between devices, but most of them do not take
into account inter-device communication optimization. For
some data-parallel applications, the inter-device communi-
cation could easily become the performance bottleneck of
multi-device co-execution.

In recent years, many researchers have studied the
inter-device communication optimization in heterogeneous
CPU-accelerator systems. Gowanlock and Karsin [24]
adopted CUDA streams and pinned memory to pipeline data
transfers between CPU and GPU for significantly improv-
ing the performance of the heterogeneous sorting algorithm.
Zheng et al. [25] developed a library namedHiWayLib to sup-
port efficient inter-device data transfers for pipeline programs
executing on hybrid CPU-GPU systems, which can avoid
duplicated transfers of the overlapped data by employing
the method of region-based lazy copy. Li et al. [26] pro-
posed the dual buffer rotation four-stage pipelining scheme,
which can achieve a good overlap of CPU computation, GPU
computation, and CPU-GPU data transfer. Zhang et al. [27]
developed a GPU-based parallel secure machine learning
framework named ParSecureML to boost the efficiency
of secure two-party computation. The fine-grained double
pipelining technique for overlapping PCI-E data transfer
and GPU computing is adopted in ParSecureML to reduce
intra-node communication overhead. Tan et al. [28] proposed
a fine-grained pipelining algorithm to achieve a good over-
lapped execution of GPU, CPU, PCI-E bus, and IB network,
which significantly optimizes the performance of Linpack
benchmark running on large-scale hybrid CPU-GPU clusters.
The existing researches prove that the pipelining technol-
ogy can be adopted to effectively reduce the inter-device
communication overhead. However, this requires elaborately
designing pipeline programs and inter-device task scheduling
strategies, and this will become more complicated especially
when there are multiple different compute devices in hetero-
geneous systems.

In our previous work [23], we proposed two inter-device
task scheduling strategies to enable the multi-device
co-execution of data-parallel applications, including the
feedback-based dynamic and elastic task scheduling (FDETS)
strategy and the asynchronous-based dynamic and elastic
task scheduling (ADETS) strategy. FDETS and ADETS are
preferable for data-parallel applications whose computation

and data are uniformly distributed and that are non-uniformly
distributed, respectively. The detailed descriptions of FDETS
and ADETS are given in Section III. Although our previous
work can provide efficient inter-device task scheduling for
the multi-device co-execution of data-parallel applications
which have a smaller inter-device communication overhead,
the performance of FDETS and ADETS are not satisfactory
in the multi-device co-execution of data-parallel applications
which have a larger inter-device communication overhead,
and it still requires a significant amount of development effort
to implement the multi-device co-execution of data-parallel
applications using FDETS and ADETS for programmers.
On the basis of the previously proposed FDETS and ADETS,
the following extensions are proposed in this paper: (i) the
modified FDETS that supports incremental data transfer is
proposed, which can keep a good workload balance and avoid
redundant data transfers between devices; (ii) the modified
ADETS that supports three-way overlapping communication
optimization is proposed, which can effectively split work
across devices and hide the inter-device communication over-
head; (iii) a runtime system named HCE that enables hetero-
geneous cooperative execution of data-parallel applications is
proposed, which can provide a simple and effective way for
application programmers to fully exploit multiple compute
devices to cooperatively execute data-parallel kernels (i.e.,
data-parallel for-loops) on a heterogeneous system.

This paper makes the following main contributions:
• A runtime system named HCE is designed for support-
ingmulti-device co-execution of data-parallel kernels on
heterogeneous systems, which can help programmers to
automatically and efficiently map computation and data
to multiple compute devices.

• An incremental data transfermethod is designed to avoid
redundant data transfers between devices, and the mod-
ified FDETS that supports incremental data transfer is
proposed.

• A three-way overlapping communication optimization
method based on software pipelining is designed to
effectively hide the inter-device communication over-
head, and the modified ADETS that supports three-way
overlapping communication optimization is proposed.

• A prototype of HCE is implemented that targets a het-
erogeneous system, which provides a set of runtime
APIs for task scheduling, device management, memory
management, and transfer optimization.

The rest of this paper is organized as follows. Section II
presents the overall design of HCE. Section III describes the
previous inter-device task scheduling schemes. Section IV
discusses the inter-device communication optimization meth-
ods. Section V presents the implementation of HCE.
SectionVI gives the experimental results. SectionVII reviews
related work. Section VIII concludes the work.

II. OVERALL DESIGN OF HCE
Fig. 1 shows an overview of HCE. Programmers can use the
hybrid OpenMP/CUDA/Intel Offload parallel programming

VOLUME 9, 2021 147265

L. Wan et al.: HCE: Runtime System for Efficiently Supporting Heterogeneous Cooperative Execution

FIGURE 1. An overview of HCE.

model and the runtime APIs provided by HCE to write
a program that can be cooperatively executed on mul-
tiple devices. Specifically, programmers first identify the
computational kernel (i.e., the data-parallel kernel) that
needs to be accelerated and determine which compute
devices need to participate in multi-device co-execution
of the computational kernel. Then, programmers write
the device-specific computational kernel for each compute
device that participates in multi-device co-execution, such
as the CPU/GPU/MIC kernel. Note that the CPU/GPU/MIC
kernel is the CPU/GPU/MIC version of the data-parallel code
that can run on the CPU/GPU/MIC and is implemented with
OpenMP/CUDA/Intel Offload.

As shown in Fig. 1, our HCE runtime system pro-
vides some easy-to-use runtime APIs related to task
scheduling, device management, memory management, and
transfer optimization for application programmers, allow-
ing programmers to make full use of multiple compute
devices to cooperatively execute data-parallel applications
on a heterogeneous CPU-accelerator system in a simple and
effective way. The runtime system is mainly responsible
for partitioning and balancing the workload among multiple
compute devices, optimizing the inter-device data transfers,
and executing the device-specific computational kernel on
each compute device to complete its assigned workload. For
each computational kernel, it creates the same number of
controller threads as the number of compute devices that
participate in multi-device co-execution. Specifically, it cre-
ates p OpenMP threads to control p compute devices (i.e.,
p−1many-core accelerators and themulti-core CPUs), where
multiple CPUs are seen as one compute device. The thread
ti is in charge of running the device-specific computational
kernel on the i-th accelerator, where 1 ≤ i ≤ p − 1. At first,
ti transfers a part of the input data from the host to the i-th
accelerator. Then, ti launches the available accelerator threads

to concurrently perform the computational task assigned to
the i-th accelerator. Finally, ti transfers the results back to
the host. At the same time, the thread tp is in charge of
running the CPU kernel on the m k-core CPUs, where m is
the number of CPUs and k is the number of cores per CPU.
Specifically, we enable the nested parallelism of OpenMP
so that tp spawns the specified number of nested OpenMP
threads, called worker threads, to concurrently perform the
computational task assigned to the CPUs.

As noted above, we can use multiple CPUs and accelera-
tors to concurrently and cooperatively execute data-parallel
kernels. However, the key issue is how to effectively split
workload amongmultiple devices and reduce the inter-device
communication overhead, which will be discussed later.

III. PREVIOUS DYNAMIC SCHEDULING SCHEMES
This section briefly describes our previously proposed
inter-device task scheduling schemes [23], including the
FDETS scheme and the ADETS scheme.

A. THE FDETS SCHEME
FDETS firstly takes 1/n of the total workload of a computa-
tional kernel (i.e., 1/n of the total number of iterations of a
data-parallel for-loop) as the initial chunk size and assigns
the workload of the initial chunk to each compute device
that participates in multi-device co-execution of the kernel
according to the initial partition ratios, and then it constantly
and dynamically adjusts the chunk size and the partition
ratios during execution. Specifically, after the workload of
the current chunk has been completed, FDETS dynamically
decides whether the next chunk size should be doubled,
unchanged or halved compared to the current one according
to the performance change of multi-device co-execution, and
it dynamically updates the partition ratios that can determine
the assignment of the workload of the next chunk between
devices by computing the relative execution speed of each
compute device.

In order to better understand the FDETS scheme, an exam-
ple of FDETS is illustrated in Fig. 2. For simplicity, assuming
that only a CPU and a GPU are utilized. Fig. 2(a) shows
the distribution of workload between the CPU and GPU
for a data-parallel kernel to be executed once. As shown
in Fig. 2(a), W1 = W/16, W2 = 2W1, W3 = 2W2, W4 =

W3, W5 = W4/2, and W6 = W −
∑5

i=1Wi, where W is
the total workload of the kernel and Wi is the workload of
the i-th chunk. Fig. 2(b) shows the distribution of workload
between the CPU and GPU for a data-parallel kernel to be
executed several times. As shown in Fig. 2(b), during the 1-th
execution of the kernel,W1 =W/16,W2 = 2W1,W3 = 2W2,
W4 = W3, W5 = W4/2, and W6 = 3W/16. Assuming that
FDETS finds the 6-th chunk processed at the fastest speed
from the 1-th execution of the kernel, the size of the 6-th
chunk is used as the sizes of the first two chunks during the
2-th execution of the kernel. As shown in Fig. 2(b), during
the 2-th execution of the kernel,W1 = 3W/16,W2 = 3W/16,
W3 = W2, W4 = W3, W5 = W4/2, and W6 = W −

∑5
i=1Wi.

147266 VOLUME 9, 2021

L. Wan et al.: HCE: Runtime System for Efficiently Supporting Heterogeneous Cooperative Execution

FIGURE 2. An example of FDETS.

During the last execution of the kernel, W1 = 6W/16,
W2 = 6W/16, and W3 = W −

∑2
i=1Wi. It also can be seen

from Fig. 2 that the partition ratios used to determine the
assignment of the workload of one chunk between the CPU
and GPU are updated continuously. For example, after the
second chunk depicted in Fig. 2(a) has finished processing,
the partition ratio of the CPU is updated from 37.1% to
39.8%, while the partition ratio of the GPU is updated from
62.9% to 60.2%.

B. THE ADETS SCHEME
ADETS firstly assigns a chunk whose size is W/n to each
compute device that participates in multi-device co-execution
of a data-parallel for-loop, and then immediately assigns the
next chunk to one compute device once it has completed
its work. The size of the next chunk assigned to device Di
is dynamically adjusted according to the current chunk size
and the variance between the previous and current execution
speeds of device Di.
Fig. 3 shows an example of ADETS. As shown in Fig. 3,

the first and second chunks are assigned to the CPU and GPU
respectively, once the CPU or GPU has finished its work,
the next unassigned chunk is assigned to it immediately.
As shown in Fig. 3(a), the 1-th, 4-th, and 6-th chunks are
assigned to the CPU, where W1 = W/16, W4 = W/16, and
W6 = 2W4; the 2-th, 3-th, 5-th, and 7-th chunks are assigned
to the GPU, whereW2 =W/16,W3 =W/16,W5 = 2W3, and
W7 = 2W5; the last chunk is assigned to the CPU and GPU
according to the partition ratios computed in the previous
executions. In Fig. 3(b), we can see that the data-parallel
kernel needs to be executed many times, begin from the
second execution of the kernel, the sizes of the first two
chunks assigned to deviceDi are determined by the size of the
chunk processed by device Di at the fastest speed during the

FIGURE 3. An example of ADETS.

previous execution of the kernel. For example, for the CPU,
ADETS finds the 6-th chunk processed at the fastest speed
from the first execution of the kernel, thus the sizes of the
first two chunks assigned to the CPU are all W/8 during the
second execution of the kernel.

IV. INTER-DEVICE COMMUNICATION OPTIMIZATION
This section describes our proposed two inter-device commu-
nication optimization methods.

A. MOTIVATION
If the inter-device task scheduling decision is made without
considering data transfer cost on a heterogeneous system,
for some data-parallel kernels, the huge inter-device com-
munication overhead would significantly degrade the overall
performance of multi-device co-execution, so the inter-device
communication can easily become the performance bottle-
neck of multi-device co-execution. If the data transfer over-
head is higher than the performance gain actually achieved
by offloading computation, the performance of multi-device
co-execution will be worse than that of the best single-device
multi-thread parallel execution. If the partitioning decision is
made without considering data transfer cost and performance
variance of partitioning, it will be suboptimal or even cause
slowdown compared to the single-device execution.

As shown in Fig. 4(a), the execution times of the CPU-
GPU-MIC co-execution using two different inter-device task
scheduling schemes are more than the execution time of the
GPU-only execution for Jacobi with three different prob-
lem sizes. Fig. 4(b) also shows that the performance of the
CPU-GPU-MIC co-execution is not as good as that of the
GPU-only or MIC-only execution for FDTD2d with three
different problem sizes. The huge CPU-GPU and CPU-MIC
communication overheads have a great impact on the overall

VOLUME 9, 2021 147267

L. Wan et al.: HCE: Runtime System for Efficiently Supporting Heterogeneous Cooperative Execution

FIGURE 4. The execution time comparison among five different parallel
implementations for two different benchmarks.

performance of CPU-GPU-MIC co-execution for Jacobi
and FDTD2d. Therefore, the inter-device data transfers can
easily become the performance bottleneck of multi-device
co-execution for some data-parallel kernels, there is a need to
do inter-device communication optimization, and especially
our proposed task scheduling schemes should take this into
account.

B. THE INCREMENTAL DATA TRANSFER METHOD
In this subsection, we first discuss the inter-device redundant
transfers and then present the modified FDETS that supports
incremental data transfer.

1) THE INTER-DEVICE REDUNDANT TRANSFERS
For the multi-device co-execution of some data-parallel
kernels, the inter-device task schedulingmay incur large com-
munication costs due to frequent inter-device data transfers.
As shown in Fig. 5, the matrix addition contains a com-
putational kernel that needs to be executed repeatedly. For
simplicity, we assume that only a CPU and a GPU are used
to cooperatively execute the kernel. During each execution of
the kernel, a part of array A needs to be uploaded from the
host to the GPU and downloaded from the GPU to the host
due to the change in partition ratios. Similarly, the Jacobi iter-
ation has two computational kernels that need to be executed

FIGURE 5. Two typical applications that have repeated data transfers
caused by multi-device co-execution.

repeatedly. During each execution of kernel 1, A needs to
be partially uploaded to the GPU, and Anew needs to be
partially downloaded from the GPU. During each execution
of kernel 2, Anew needs to be partially uploaded to the GPU,
and A needs to be partially downloaded from the GPU.

It is apparent that there are a large amount of inter-device
data transfers during the repeated executions of the
above-described two applications, which may contain a great
deal of redundant transfers. For each accelerator that partici-
pates in multi-device co-execution, if the data to be processed
on the accelerator in the next execution are already present in
the accelerator memory, but the data are downloaded from
the accelerator at the end of the current execution and are
still uploaded to the accelerator at the beginning of the next
execution, such data transfers are considered to be redundant.

2) THE MODIFIED FDETS THAT SUPPORTS
INCREMENTAL DATA TRANSFER
To avoid redundant transfers, we design an incremental data
transfer method for data-parallel applications which have
one or more computational kernels that need to be executed
repeatedly, such as the two applications depicted in Fig. 5.
To better support the incremental data transfer, we make
some modifications to FDETS. Simply put, at the begin of
each execution of a computational kernel, the total workload
of the kernel is split according to the suitable partition ratios,
and we assign a part of the entire workload to the specified
compute device. After each compute device has completed its
work, we obtain the execution time of each compute device
to calculate the new partition ratios.

The key issues to be solved for the incremental data transfer
are as follows: (i) how to identify which parts of an arraymust
be uploaded from the host to the specified accelerator at the
begin of each execution of a computational kernel; (ii) how to
identify which parts of an array must be downloaded from the
specified accelerator to the host at the end of each execution
of a computational kernel.

Algorithm 1 describes how to determine which parts of an
array need to be uploaded from the host to the specified accel-
erator. Specifically, according to the total number of iterations

147268 VOLUME 9, 2021

L. Wan et al.: HCE: Runtime System for Efficiently Supporting Heterogeneous Cooperative Execution

Algorithm 1 Determine Which Parts of an Array Need to Be
Uploaded From the Host to the Specified Accelerator
Require: p, W , i, Rprev.j and Rcurr.j (j = 1 to i)
1: Initialize Upbegini.1 = Upendi.1 = Up

begin
i.2 = Upendi.2 = −1;

2: W begin
prev.i = W ×

∑i−1
j=1 Rprev.j;

3: W end
prev.i = W begin

prev.i +W × Rprev.i − 1;

4: W begin
curr.i = W ×

∑i−1
j=1 Rcurr.j;

5: W end
curr.i = W begin

curr.i +W × Rcurr.i − 1;

6: if W begin
curr.i < W begin

prev.i then

7: if W end
curr.i < W begin

prev.i then B Case 1

8: Upbegini.1 = W begin
curr.i ;

9: Upendi.1 = W end
curr.i;

10: end if
11: if W end

curr.i≥W
begin
prev.i and W

end
curr.i≤W

end
prev.i then B Case 2

12: Upbegini.1 = W begin
curr.i ;

13: Upendi.1 = W begin
prev.i − 1;

14: end if
15: if W end

curr.i > W end
prev.i then B Case 3

16: Upbegini.1 = W begin
curr.i ;

17: Upendi.1 = W begin
prev.i − 1;

18: Upbegini.2 = W end
prev.i + 1;

19: Upendi.2 = W end
curr.i;

20: end if
21: end if
22: if W begin

curr.i ≥ W
begin
prev.i and W

begin
curr.i ≤ W

end
prev.i then

23: if W end
curr.i ≤ W

end
prev.i then B Case 4

24: There is no need to upload data to device Di;
25: end if
26: if W end

curr.i > W end
prev.i then B Case 5

27: Upbegini.1 = W end
prev.i + 1;

28: Upendi.1 = W end
curr.i;

29: end if
30: end if
31: if W begin

curr.i > W end
prev.i then B Case 6

32: Upbegini.1 = W begin
curr.i ;

33: Upendi.1 = W end
curr.i;

34: end if
35: return Upbegini.1 , Upendi.1 , Upbegini.2 , and Upendi.2

W of the outermost for-loop of the computational kernel, the
previous partition ratios Rprev.1, Rprev.2, . . . , Rprev.i, and the
current partition ratiosRcurr.1,Rcurr.2, . . . ,Rcurr.i, we firstly get
the begin indexW begin

prev.i and the end indexW
end
prev.i of a subarray

(i.e., a section of an array) that has been processed on the i-th
compute device (i.e., a specified accelerator) in the previous
execution of the kernel, where 1 ≤ i ≤ p and p is the
number of compute devices that participate in multi-device
co-execution. Secondly, we get the begin indexW begin

curr.i and the

FIGURE 6. Different scenarios of the incremental data transfer in
uploading data from the host to the accelerator.

end indexW end
curr.i of a subarray that will need to be processed

on the specified accelerator in the current execution of the
kernel. Thirdly, we determine which parts of the subarray
need to be uploaded to the specified accelerator by comparing
W begin

prev.i , W
end
prev.i, W

begin
curr.i , and W

end
curr.i. If the whole subarray to

be processed is not present in the accelerator memory, then
it needs to be uploaded to the accelerator (see cases 1 and 6
in Fig. 6); if only a part of the subarray to be processed are
already present in the accelerator memory, then the other part
need to be uploaded to the accelerator (see cases 2, 3, and 5 in
Fig. 6); if the whole subarray to be processed is present in
the accelerator memory, then it does not need to be uploaded
to the accelerator (see case 4 in Fig. 6). Finally, Upbegini.1 and
Upendi.1 are used to store the begin index and the end index of
the first part of data that need to be uploaded to the accelerator
respectively, andUpbegini.2 andUpendi.2 are used to store the begin
index and the end index of the second part of data that need
to be uploaded to the accelerator respectively.

Algorithm 2 describes how to determine which parts of an
array need to be downloaded from the specified accelerator
to the host. Similar to Algorithm 1, according to the total
number of iterations W , the current partition ratios Rcurr.1,
Rcurr.2, . . . , Rcurr.i, and the next partition ratios Rnext.1, Rnext.2,
. . . , Rnext.i, we firstly get the begin index W begin

curr.i and the end
indexW end

curr.i of a subarray that has been processed on the i-th
compute device (i.e., a specified accelerator) in the current
execution of the kernel, where 1 ≤ i ≤ p. Secondly, we get
the begin indexW begin

next.i and the end indexW
end
next.i of a subarray

that will need to be processed on the specified accelerator
in the next execution of the kernel. Thirdly, we determine

VOLUME 9, 2021 147269

L. Wan et al.: HCE: Runtime System for Efficiently Supporting Heterogeneous Cooperative Execution

Algorithm 2 Determine Which Parts of an Array Need to Be
Downloaded From the Specified Accelerator to the Host

Require: p, W , i, Rcurr.j and Rnext.j (j = 1 to p)

1: Initialize Downbegini.1 = Downendi.1 = Downbegini.2 =

Downendi.2 = −1;
2: W begin

curr.i = W ×
∑i−1

j=1 Rcurr.j;

3: W end
curr.i = W begin

curr.i +W × Rcurr.i − 1;

4: W begin
next.i = W ×

∑i−1
j=1 Rnext.j;

5: W end
next.i = W begin

next.i +W × Rnext.i − 1;

6: if W begin
next.i ≤ W

begin
curr.i then

7: if W end
next.i < W begin

curr.i then B Case 1
8: Downbegini.1 = W begin

curr.i ;

9: Downendi.1 = W end
curr.i;

10: end if
11: if W end

next.i≥W
begin
curr.i andW

end
next.i<W

end
curr.i then B Case 2

12: Downbegini.1 = W end
next.i + 1;

13: Downendi.1 = W end
curr.i;

14: end if
15: if W end

next.i ≥ W
end
curr.i then B Case 3

16: There is no need to download data from device Di;
17: end if
18: end if
19: if W begin

next.i > W begin
curr.i and W

begin
next.i ≤ W

end
curr.i then

20: if W end
next.i < W end

curr.i then B Case 4

21: Downbegini.1 = W begin
curr.i ;

22: Downendi.1 = W begin
next.i − 1;

23: Downbegini.2 = W end
next.i + 1;

24: Downendi.2 = W end
curr.i;

25: end if
26: if W end

next.i ≥ W
end
curr.i then B Case 5

27: Downbegini.1 = W begin
curr.i ;

28: Downendi.1 = W begin
next.i − 1;

29: end if
30: end if
31: if W begin

next.i > W end
curr.i then B Case 6

32: Downbegini.1 = W begin
curr.i ;

33: Downendi.1 = W end
curr.i;

34: end if
35: return Downbegini.1 , Downendi.1 , Downbegini.2 , and Downendi.2

which parts of the subarray need to be downloaded from the
specified accelerator by comparing W begin

curr.i , W
end
curr.i, W

begin
next.i ,

and W end
next.i. If the whole subarray updated on the accelerator

in the current execution is not need for the accelerator in
the next execution, then it needs to be downloaded from the
accelerator (see cases 1 and 6 in Fig. 7); if only a part of the
subarray updated on the accelerator in the current execution
are need for the accelerator in the next execution, then the

FIGURE 7. Different scenarios of the incremental data transfer in
downloading data from the accelerator to the host.

other part need to be downloaded from the accelerator (see
cases 2, 4, and 5 in Fig. 7); if the whole subarray updated
on the accelerator in the current execution is need for the
accelerator in the next execution, then it does not need to
be downloaded from the accelerator (see case 3 in Fig. 7).
Finally, Downbegini.1 and Downendi.1 are used to store the begin
index and the end index of the first part of data that need to be
downloaded from the accelerator respectively, andDownbegini.2
and Downendi.2 are used to store the begin index and the end
index of the second part of data that need to be downloaded
from the accelerator respectively.

Algorithm 3 describes the modified FDETS that supports
incremental data transfer. Supposing that a computational
kernel needs to be executed tolExecs times repeatedly. The
incremental data transfer can be considered in each execution
of the kernel, except for uploading data from the host to the
accelerator in the first execution and downloading data from
the accelerator to the host in the last execution. Moreover, the
partition ratios that will be used in the next execution of the
kernel need to be determined in advance when considering
the incremental data transfer. Specifically, the initial partition
ratios are adopted in the first and second executions of the
kernel. Starting with the second execution of the kernel,
the partition ratios that will be used in the next execution
are determined by the new partition ratios computed in the
previous execution.

As seen in Algorithm 3, during each execution of the
computational kernel, we firstly assign the workload Wcurr.i
(i.e., a part of the total workloadW) to deviceDi according to
its current partition ratio Rcurr.i, where 1 ≤ i ≤ p. Secondly,

147270 VOLUME 9, 2021

L. Wan et al.: HCE: Runtime System for Efficiently Supporting Heterogeneous Cooperative Execution

Algorithm 3 TheModified FDETS That Supports Incremen-
tal Data Transfer
Require: p,W , the initial partition ratios R1, R2, . . . , Rp, and

tolExecs
1: Initialize Rprev.i = 0 and Rcurr.i = Rnext.i = Ri (i = 1

to p);
2: for t = 1 to tolExecs do
3: for each controller thread ti, 1≤ i ≤p, in parallel do
4: Assign the workloadWcurr.i = W × Rcurr.i to Di;
5: if device Di is an accelerator then
6: Perform Algorithm 1 to get Upbegini.1 , Upendi.1 ,

Upbegini.2 , and Upendi.2 ;
7: Upload the data indexed fromUpbegini.1 toUpendi.1 to

device Di when Up
begin
i.1 ≥ 0;

8: Upload the data indexed fromUpbegini.2 toUpendi.2 to
device Di when Up

begin
i.2 ≥ 0;

9: end if
10: Execute the kernel on Di to completeWcurr.i;
11: if device Di is an accelerator then
12: Perform Algorithm 2 to get Downbegini.1 ,

Downendi.1 , Downbegini.2 , and Downendi.2 ;
13: Download the data indexed from Downbegini.1 to

Downendi.1 from device Di when Down
begin
i.1 ≥ 0;

14: Download the data indexed from Downbegini.2 to

Downendi.2 from device Di when Down
begin
i.2 ≥ 0;

15: end if
16: Obtain the execution time Tcurr.i of device Di;
17: Compute the execution speed of device Di:

Vcurr.i = Wcurr.i/Tcurr.i;
18: Update the partition ratios of device Di:

Rprev.i = Rcurr.i, Rcurr.i = Rnext.i;
19: end for
20: if t < tolExecs− 1 then
21: Rnext.i = Vcurr.i/

∑p
j=1 Vcurr.j (i = 1 to p);

22: else
23: Rnext.i = 0 (i = 1 to p);
24: end if
25: end for

we use device Di to execute the kernel to complete Wcurr.i.
If device Di is an accelerator, we perform Algorithm 1 to
identify which parts of the data need to be uploaded from
the host to the accelerator before execution and copy these
data to the accelerator memory, and we perform Algorithm 2
to identify which parts of the data need to be downloaded
from the accelerator to the host after execution and copy
these data to the host memory. Thirdly, we obtain the current
execution time Tcurr.i of device Di to compute its current
execution speed Vcurr.i. If device Di is an accelerator, the
current execution time should include the data transfer time.
Fourthly, we update the previous and current partition ratios
of device Di: Rprev.i = Rcurr.i and Rcurr.i = Rnext.i. Finally,
after all p compute devices have completed the cooperative

execution of the kernel, we update the next partition ratio of
device Di: Rnext.i = Vcurr.i/

∑p
j=1 Vcurr.j.

It is easy to see that the time complexity of both
Algorithm 1 and Algorithm 2 is O(2p) in the worst case,
where p is the number of compute devices that participate in
multi-device co-execution. As shown in Algorithm 3, if one
compute device is an accelerator, Algorithm 1 needs to be
executed to determine which parts of an array will to be
uploaded from the host to the accelerator, and Algorithm 2
also needs to be executed to determine which parts of an
array will to be downloaded from the accelerator to the host.
Therefore, the time complexity of Algorithm 3 is O(7λp) in
the worst case, where λ is the number of times the compu-
tational kernel needs to be executed repeatedly. Thus it can
be seen that the modified FDETS that supports incremental
data transfer described in Algorithm 3 has a lower time
complexity, and this also means that it has a lower runtime
scheduling overhead.

C. COMMUNICATION OPTIMIZATION BASED ON
SOFTWARE PIPELINING
Another effective way to reduce inter-device communication
cost is to overlap data transfers with kernel execution, this
subsection presents a three-way overlapping communication
optimization method based on software pipelining.

1) THE THREE-WAY OVERLAPPING COMMUNICATION
OPTIMIZATION METHOD BASED ON
SOFTWARE PIPELINING
The three-way overlapping communication optimization
method relies on two things: (i) the ‘‘chunked’’ computation,
i.e., the entire iteration space of a data-parallel for-loop is split
into several chunks, and multiple devices are used to cooper-
atively process these chunks; (ii) the ‘‘three-way’’ overlap of
uploading data to the accelerator, downloading data from the
accelerator, and kernel execution.

In this work, we use three software pipelines that can be run
in parallel to achieve the overlap of data transfers and kernel
execution. Specifically, the first pipeline is responsible for
asynchronously uploading the next chunk of data to the accel-
erator, the second pipeline is responsible for asynchronously
processing the current chunk on the accelerator, and the third
pipeline is responsible for asynchronously downloading the
previous chunk of data from the accelerator.

To better understand the inter-device communication
optimization method described above, an example of the
CPU-GPU communication optimization based on software
pipelining is illustrated in Fig. 8. For simplicity, assuming
that the data transfers and kernel execution take roughly the
same amount of time without considering the communication
optimization, namely the data upload, kernel execution, and
data download take up around 25%, 50%, and 25% of the total
running time, respectively.

Fig. 8(a) shows the distribution of workload between
the CPU and GPU for a computational kernel. Fig. 8(b)
shows the three-way overlap of uploading data to the GPU,

VOLUME 9, 2021 147271

L. Wan et al.: HCE: Runtime System for Efficiently Supporting Heterogeneous Cooperative Execution

FIGURE 8. An example of the CPU-GPU communication optimization based on software pipelining.

downloading data from the GPU, and kernel execution.
Specifically, firstly, the first chunk (i.e., W3) of data need to
be synchronously uploaded to the GPU before processing the
first chunk on the GPU. Secondly, pipeline 0 asynchronously
uploads the second chunk (i.e.,W4) of data to the GPU while
pipeline 1 begins asynchronously processing the first chunk.
Thirdly, pipeline 0 asynchronously uploads the third chunk
(i.e., W5) of data to the GPU, pipeline 1 asynchronously
processes the second chunk on the GPU, and pipeline 2 asyn-
chronously downloads the first chunk of data from the GPU.
Fourthly, except for the processing of the last chunk (i.e.,
W12), we repeat the following operations: pipeline 0 uploads
the next chunk of data and pipeline 2 downloads the pre-
vious chunk of data while pipeline 1 is processing the cur-
rent chunk. Finally, pipeline 2 asynchronously downloads
the second-to-last chunk (i.e., W10) of data from the GPU
while pipeline 1 begins asynchronously processing the last
chunk, and the last chunk of data need to be synchronously
downloaded from the GPU after the last chunk has finished
processing.

In the example illustrated in Fig. 8, it is readily seen that
the software pipelining mechanism can hide all of the data
transfers between the CPU andGPU, except for uploading the
first chunk of data and downloading the last chunk of data.

2) THE MODIFIED ADETS THAT SUPPORTS THREE-WAY
OVERLAPPING COMMUNICATION OPTIMIZATION
Considering that the next chunk of data need to be uploaded
to the accelerator while the current chunk is being pro-
cessed on the accelerator, how to determine the appropriate
size of the next chunk before processing the current chunk is
a key problem. In order to solve this problem and to support
the overlap of data transfers and kernel execution, we make
some modifications to ADETS. The modified ADETS that
supports three-way overlapping communication optimization
based on software pipelining is described in Algorithm 4.

Each execution of the computational kernel consists of the
following steps.
Step 1: We firstly assign a chunk whose size is Wcurr.i to

deviceDi and update the assigned workloadWa, whereWa =

Wa + Wcurr.i and 1 ≤ i ≤ p. If this is the first execution of
the kernel, Wcurr.i = Wnext.i = W/n; otherwise, we find a
chunk Wfs.i processed by device Di at the fastest speed from
the previous execution of the kernel, and Wcurr.i = Wnext.i =

Wfs.i. Secondly, we pre-assign a subsequent chunk whose size
is Wnext.i to device Di and update the assigned workload Wa
and unassigned workloadWu, whereWa = Wa + Wnext.i and
Wu = W −Wa. Thirdly, we execute the kernel on device Di
to process the first chunk assigned to it. If device Di is an
accelerator, we need to synchronously upload the first chunk
of data to Di before processing the first chunk assigned to it,
and then we need to asynchronously upload the second chunk
of data to device Di while processing the first chunk. After
device Di has completed its work, we obtain the execution
time of device Di to compute its execution speed.
Step 2: We firstly pre-assign the next chunk to device Di

if there is unassigned workload and update the assigned and
unassigned workloads. Secondly, we use deviceDi to process
the second chunk assigned to it. If deviceDi is an accelerator,
we use pipeline 0 to asynchronously upload the next chunk of
data to deviceDi, we use pipeline 1 to asynchronously process
the current chunk on device Di, and we use pipeline 2 to
asynchronously download the previous chunk of data from
device Di. After device Di has completed its work, we com-
pute the current execution speed Vcurr.i of device Di. Thirdly,
we determine the size of the chunk after the next chunk that
will be assigned to device Di (i.e.,Wnext_next.i) by comparing
Vprev.i and Vcurr.i. If |Vcurr.i − Vprev.i| ≤ Vprev.i × 10%,
Wnext_next.i = (Wcurr.i + Wnext.i)/2; otherwise, Wnext_next.i =

Wcurr.i + Wnext.i when Vcurr.i > Vprev.i, while Wnext_next.i =

(Wcurr.i+Wnext.i)/4 when Vcurr.i < Vprev.i. Finally, we update
the previous execution speed Vprev.i of device Di.

147272 VOLUME 9, 2021

L. Wan et al.: HCE: Runtime System for Efficiently Supporting Heterogeneous Cooperative Execution

Algorithm 4 The Modified ADETS That Supports
Three-Way Overlapping Communication Optimization
Require: p, W , the initial chunk size W/n, and tolExecs
1: for t = 1 to tolExecs do
2: Initialize Wprev.i = 0, Wa = 0, Wu = W , and Vprev.i = 0;
3: for each controller thread ti, 1 ≤ i ≤ p, in parallel do
4: if t == 1 then
5: Wcurr.i = Wnext.i = Wnext_next.i = W/n;
6: else
7: Find a chunk Wfs.i processed by Di at the fastest speed

from the (t−1)-th execution of the kernel;
8: Wcurr.i = Wnext.i = Wnext_next.i = Wfs.i;
9: end if
10: Assign a chunk whose size is Wcurr.i to Di;
11: Update the assigned workload: Wa = Wa + Wcurr.i;
12: while Wu > 0 or Wnext.i > 0 do
13: if Wnext.i > 0 then
14: Pre-assign a chunk whose size is Wnext.i to Di;
15: end if
16: Update the assigned workload: Wa = Wa + Wnext.i;
17: Update the unassigned workload: Wu = W −Wa;
18: if device Di is an accelerator then
19: if Wprev.i == 0 then
20: Upload the first chunk of data to Di;
21: end if
22: if Wnext.i > 0 then
23: Use pipeline 0 to asynchronously upload the next

chunk of data to Di;
24: end if
25: Use pipeline 1 to asynchronously execute the kernel

on Di to complete the workload Wcurr.i;
26: if Wprev.i > 0 then
27: Use pipeline 2 to asynchronously download the

previous chunk of data from Di;
28: end if
29: if Wnext.i == 0 then
30: Download the last chunk of data from Di;
31: end if
32: else
33: Execute the kernel on Di to complete Wcurr.i;
34: end if
35: Obtain the current execution time Tcurr.i of Di;
36: Compute the current execution speed of Di:

Vcurr.i = Wcurr.i/Tcurr.i;
37: if Vprev.i > 0 then
38: Determine the size of the chunk after the next chunk

assigned to Di (i.e.,Wnext_next.i) by comparing Vprev.i
and Vcurr.i;

39: end if
40: if Wnext_next.i > Wu then Wnext_next.i = Wu; end if
41: Wprev.i = Wcurr.i, Wcurr.i = Wnext.i, Wnext.i =

Wnext_next.i;
42: Update the previous execution speed: Vprev.i = Vcurr.i;
43: end while
44: end for
45: end for

Step 3: Repeat Step 2 until the unassigned workload has
finished assignment and all the chunks assigned to device
Di have finished processing. If device Di is an accelerator,
we need to synchronously download the last chunk of data
from Di after the last chunk assigned to it has finished
processing.

Compared with the original ADETS, the modified ADETS
with communication optimization does not address the load
imbalance that might happen at the end of the entire iteration
space. Although this may result in some performance loss,
the overall performance can still be greatly improved due
to a significant reduction in the inter-device communication
overhead.

When a heterogeneous system has p compute devices that
participate in multi-device co-execution and a computational
kernel needs to be executed λ times repeatedly, the time
complexity of the modified ADETS that supports three-way
overlapping communication optimization described in
Algorithm 4 is O(λW/p) in the worst case, where W is
the total workload of the computational kernel. It is read-
ily seen that the modified ADETS that supports three-way
overlapping communication optimization can provide a
low-overhead runtime scheduling.

TABLE 1. A subset of the runtime APIs provided by HCE.

V. THE IMPLEMENTATION OF HCE
This section presents the runtime APIs provided by HCE and
an example of using HCE.

A. THE RUNTIME APIs PROVIDED BY HCE
As shown in Fig. 1, our proposed HCE provides a set of
runtime APIs for task scheduling, device management, mem-
ory management, and transfer optimization. A subset of the
runtime APIs provided by HCE are listed in Table 1.

VOLUME 9, 2021 147273

L. Wan et al.: HCE: Runtime System for Efficiently Supporting Heterogeneous Cooperative Execution

In our proposed HCE, task scheduling aims to effectively
split work across devices, such as FDETS, ADETS, the
modified FDETS that supports incremental data transfer,
and the modified ADETS that supports three-way overlap-
ping communication optimization. Device management is
responsible for keeping and updating the required informa-
tion for each compute device that participates in multi-device
co-execution, such as the begin and end positions of the
iteration space assigned to the specified compute device.
Memory management is responsible for the allocation and
deallocation of accelerator memory and the data transfer
between devices. Transfer optimization aims to effectively
reduce inter-device communication overhead, such as our
proposed incremental data transfer method and three-way
overlapping communication optimization method based on
software pipelining.

B. EXAMPLE OF USING HCE
Fig. 9 shows an example of using the hybrid OpenMP/CUDA
parallel programming model and the runtime APIs provided
by HCE to write a matrix addition program that can be
cooperatively executed on a hybrid CPU-GPU system. The
implementation of the matrix addition consists of the follow-
ing seven key steps.
Step 1: Programmers need to set the number of compute

devices that participate in multi-device co-execution (see
line 2 in Fig. 9).
Step 2: Programmers need to specify the begin and end

positions of the outermost for-loop of the computational ker-
nel (see line 4).
Step 3: Programmers can use the hybrid OpenMP/CUDA

parallel programming model to write two device-specific
computational kernels and a CUDA kernel function (see
lines 6-20). Specifically, the CPU kernel mainly contains an
OpenMP parallel region (see lines 6-10) and the GPU kernel
mainly includes data transfer and CUDA kernel launch codes
(see lines 15-20).
Step 4: Programmers can use some runtime APIs related

to memory management to handle the accelerator memory
allocation and deallocation (see lines 24-26 and 34-36).
Step 5: Programmers can use some runtime APIs related to

device management to specify the unique device ID, device
type, device number, and the computational kernel function
of each device (see lines 27-30).
Step 6: Programmers need to specify the initial parti-

tion ratios that will be used in the task scheduling (see
lines 31-32).
Step 7: Programmers need to specify the task scheduling

scheme and the initial chunk size and to launch the task
scheduling (see line 33).

As noted above, with the aid of HCE, it is not necessary
for programmers to know which chunks of the computation
are going to be scheduled to which device or to specify which
parts of the data are going to be copied to/from which accel-
erator, because these complicated and cumbersome works are
automatically performed by HCE.

FIGURE 9. The matrix addition written using the hybrid OpenMP/CUDA
parallel programming model and the runtime APIs provided by HCE.

VI. EXPERIMENTAL EVALUATION
This section first presents the experimental setup, next evalu-
ates the effectiveness of our proposed inter-device communi-
cation optimization methods, then evaluates the performance
of HCE’s multi-device co-execution, and finally presents the
performance comparison among HCE, StarPU, and OmpSs.

A. EXPERIMENTAL SETUP
A serials of experiments are conducted on the following two
different test platforms: (i) a hybrid CPU-GPU-MIC system
consisting of two Intel Xeon E5-2640v2 CPUs, an NVIDIA
Tesla K40c GPU, an Intel Xeon Phi 7110P Coprocessor,
and 64GB host memory; (ii) a hybrid CPU-GPU-GPU system
consisting of two Intel Xeon E5-2680v4 CPUs, two NVIDIA
Tesla P100 GPUs, and 256GB host memory. On each test
platform, the multi-core CPUs and all many-core accelerators
are interconnected through the PCI-E bus. The specifications
of these CPUs and accelerators are as follows:
• Xeon E5-2640v2 CPU: 8 cores at 2.0GHz.
• Xeon E5-2680v4 CPU: 14 cores at 2.4GHz.
• Tesla K40c GPU: 2880 CUDA cores at 745MHz, 12GB
device memory, and 288GB/s memory bandwidth.

• Tesla P100 GPU: 3584 CUDA cores at 1189MHz, 16GB
device memory, and 732GB/s memory bandwidth.

• Xeon Phi 7110P Coprocessor: 61 cores at 1.1GHz, 8GB
device memory, and 352GB/s memory bandwidth.

147274 VOLUME 9, 2021

L. Wan et al.: HCE: Runtime System for Efficiently Supporting Heterogeneous Cooperative Execution

FIGURE 10. Comparison of the performance before and after the inter-device communication optimization implemented in the CPU-GPU-MIC
co-execution.

FIGURE 11. The percentage of time spent on inter-device communication in the CPU-GPU-MIC co-execution.

In software, these two test platforms are built on top of the
Red Hat Enterprise Linux Server release 8.0 operating system
with NVIDIA CUDA Toolkit 10.2 and Intel C++ Compiler
17.0 using auto-vectorization and optimization flag -Ofast.

Table 2 lists 8 representative benchmarks: Jacobi,
FDTD2d, Seidel2d, and Heat3d are from the PolyBench
suite [29]; K-means and BFS are from the Rodinia bench-
mark suite [30]; GEMM and BLKS are from the NVIDIA
CUDA SDK [31]. Each benchmark includes one or more
data-parallel kernels, and OpenMP, CUDA, and Intel Offload
are responsible for the parallelization of the outermost
for-loop within each data-parallel kernel on the CPU, GPU,
and MIC, respectively. In our experiments, for each bench-
mark with different problem sizes, we use a random number
generator to produce 100 different instances, and the average
execution time of 100 different instances is considered.

B. EVALUATION OF THE INTER-DEVICE COMMUNICATION
OPTIMIZATION METHODS
To evaluate the effectiveness of our proposed communication
optimization methods, we run Jacobi, FDTD2d, Seidel2d,

TABLE 2. Benchmarks used in our experiments.

Heat3d, K-means, and BLKS on the hybrid CPU-GPU-MIC
system using FDETS without communication optimization
(FDETS without CO) and ADETS without communica-
tion optimization (ADETS without CO) proposed in [23],
FDETS with communication optimization (FDETS with
CO) described in Section IV-B2, and ADETS with com-
munication optimization (ADETS with CO) described in
Section IV-C2. The incremental data transfer method is used
in the CPU-GPU-MIC co-execution of Jacobi, FDTD2d,
Seidel2d, and Heat3d. The three-way overlapping commu-
nication optimization method based on software pipelining
is used in the CPU-GPU-MIC co-execution of K-means
and BLKS.

Fig. 10 shows a comparison of the performance before
and after the inter-device communication optimization imple-
mented in the CPU-GPU-MIC co-execution of six different
benchmarks. The results show that the two communica-
tion optimization methods significantly improve the overall
performance of multi-device co-execution. Compared with
FDETS without CO, FDETS with CO achieves an average
speedup of 2.35×, 2.40×, 2.23×, and 2.38× for Jacobi,
FDTD2d, Seidel2d, and Heat3d, respectively. Similarly, com-
paredwith ADETSwithout CO,ADETSwith CO achieves an
average improvement in performance of 42.17% and 41.95%
for K-means and BLKS, respectively.

To clearly explain the reasons for the performance
improvement, we measure the inter-device communica-
tion time and the total execution time of CPU-GPU-MIC
co-execution. Fig. 11 presents the percentage of time
spent on inter-device communication in the CPU-GPU-MIC
co-execution of six different benchmarks. When using
FDETS without CO, the inter-device communication takes
up about 77%, 88%, 78%, and 74% of the total execution

VOLUME 9, 2021 147275

L. Wan et al.: HCE: Runtime System for Efficiently Supporting Heterogeneous Cooperative Execution

time of Jacobi, FDTD2d, Seidel2d, and Heat3d, respectively.
However, when using FDETS with CO, it only takes up about
23%, 25%, 24%, and 23% of the total execution time of
Jacobi, FDTD2d, Seidel2d, and Heat3d, respectively. Simi-
larly, the inter-device communication times of ADETS with
CO are reduced by an average of 70.99% and 68.11% than
that of ADETS without CO for K-means and BLKS, respec-
tively. The results show that the communication overhead
between devices can be greatly reduced with the help of our
proposed two communication optimization methods. Specif-
ically, a large amount of redundant data transfers between
host and accelerator are avoided by using the incremental data
transfer method for Jacobi, FDTD2d, Seidel2d, and Heat3d,
and a great deal of data transfer overhead between host and
accelerator could be hidden by using the three-way over-
lapping communication optimization method for K-means
and BLKS.

C. EVALUATION OF HCE’s MULTI-DEVICE CO-EXECUTION
In this subsection, we first compare the performance of
HCE’s multi-device co-execution with that of the best
single-device execution on the hybrid CPU-GPU-MIC
system, and then evaluate the performance of HCE’s
CPU-GPU-GPU co-execution.

1) COMPARISON WITH THE BEST
SINGLE-DEVICE EXECUTION
This subsection compares the performance of HCE’s CPU-
GPU-MIC co-execution with that of the best single-device
execution. In this experiment, the best single-device execu-
tion refers to the best one among the 16-core CPU-only,
GPU-only and MIC-only executions. To better evaluate the
performance of HCE’s multi-device co-execution, a suit-
able inter-device task scheduling scheme is adopted for each
benchmark. Specifically, FDETS without CO is adopted for
GEMM; ADETS without CO is adopted for BFS; FDETS
with CO is adopted for Jacobi, FDTD2d, Seidel2d, and
Heat3d; ADETS with CO is adopted for K-means and BLKS.

Fig. 12 demonstrates the speedup of HCE’s CPU-
GPU-MIC co-execution over the best single-device execution
for each benchmark with small, medium, and large prob-
lem sizes. The results show that HCE’s CPU-GPU-MIC
co-execution is much faster than the best single-device
execution in most cases, e.g., it achieves performance
improvements of up to 1.14×, 1.16×, and 1.43× in Seidel2d,
K-means, and BLKS, respectively. However, the modest per-
formance improvement of 0.32× is observed in BFS. This is
because BFS runs much faster on the best compute device as
compared to other compute devices. The best compute device
undertakes the majority of the work in the CPU-GPU-MIC
co-execution of BFS. As a consequence, the other compute
devices contribute less to the overall performance of CPU-
GPU-MIC co-execution.

In general, a proper inter-device task scheduling scheme
should be adopted according to different data-parallel appli-
cations. FDETS without CO and ADETS without CO are

FIGURE 12. The speedups of HCE’s CPU-GPU-MIC co-execution over the
best single-device execution for different benchmarks.

applicable to some data-parallel applications that have small
inter-device communication overhead, FDETS with CO is
suitable for some data-parallel applications which have one
or more computational kernels that need to be executed
repeatedly and may contain a large amount of redundant
data transfers, and ADETS with CO is suitable for some
data-parallel applications whose multi-device co-execution
may incur huge inter-device communication overhead.

2) PERFORMANCE EVALUATION ON MULTIPLE GPUs
This subsection evaluates the performance of HCE’s CPU-
GPU-GPU co-execution. In this experiment, a suitable
inter-device task scheduling scheme is adopted for each
benchmark as described in Section VI-C1.

Fig. 13 shows a performance comparison of the 28-core
CPU-only execution, CPU-GPU co-execution, and CPU-
GPU-GPU co-execution for different benchmarks with
large problem size. It is obvious that HCE’s multi-device
co-execution is much faster than the CPU-only execution.
Specifically, compared with the 28-core CPU-only execution,
CPU-GPU-GPU co-execution achieves speedups of up to
6.91×, 6.33×, 5.41×, 9.96×, 12.70×, 6.07×, 8.23×, and
5.06× in Jacobi, FDTD2d, Seidel2d, Heat3d, K-means, BFS,
GEMM, and BLKS, respectively. The performance benefit
mainly comes from the full utilization of two Intel Xeon
14-core E5-2680v4 CPUs and two Tesla P100 GPUs each
with 3584 CUDA cores of the hybrid CPU-GPU-GPU sys-
tem.We believe that this is also due to the good load balancing
and lower communication overhead between devices.

Fig. 13 also shows that the performance is improved
with an increase in GPUs. Compared with the CPU-GPU
co-execution, CPU-GPU-GPU co-execution achieves a
77.96%, 77.03%, 72.71%, 76.23%, 85.55%, 74.11%,
80.18%, and 71.69% performance improvements for Jacobi,
FDTD2d, Seidel2d, Heat3d, K-means, BFS, GEMM, and
BLKS, respectively. The results show that an additional
GPU brings significant performance improvement for most
benchmarks, as the GPU performs much better than the CPU
and the increased CPU-GPU communication cost is small.

Although the two 14-core E5-2680v4 CPUs performworse
than the Tesla P100 GPU for most benchmarks, HCE assigns
a small amount of work to the two CPUs and achieves a good
load balance. Fig. 14 shows the execution time comparison

147276 VOLUME 9, 2021

L. Wan et al.: HCE: Runtime System for Efficiently Supporting Heterogeneous Cooperative Execution

FIGURE 13. Performance evaluation on multiple GPUs.

FIGURE 14. Execution time comparison among CPU, GPU 0, and GPU 1 in
the CPU-GPU-GPU co-execution of each benchmark.

among CPU, GPU 0, and GPU 1 in the CPU-GPU-GPU
co-execution of each benchmark. In Fig. 14, Tcpu, Tgpu0, and
Tgpu1 denote the time the CPU, GPU 0, and GPU 1 take
to complete its assigned workload, respectively. From the
figure, we see that the difference in the execution time of
each compute device is very small for most benchmarks. The
good load balance between devices mainly benefits from our
proposed inter-device task scheduling schemes.

D. COMPARISON WITH StarPU AND OmpSs
This subsection compares the performance of HCE with that
of StarPU [14] and OmpSs [15]. StarPU is a runtime system
that offers a unified view of the computational resources to
allow programmers to exploit the computing power of the
available CPUs and accelerators, while transparently han-
dling low-level issues such as data transfers in a portable fash-
ion. It provides task programming APIs for data partitioning
and task scheduling across heterogeneous devices. OmpSs
provides a task-based programming model where users can
offload computation and data to multiple devices by adding
OmpSs directives and clauses, and it is able to schedule tasks
in a data flow way to the available CPUs and accelerators
based on the task graph built at runtime.

In this experiment, we implement 8 benchmarks using
our proposed HCE, the newest StarPU 1.3.8’s rich C
APIs [32], and OmpSs 19.06’s directives [33] on the hybrid
CPU-GPU-GPU system. The performance model-based
dmda (deque model data aware) scheduler is used in StarPU,
which schedules tasks where their termination time will be
minimal with taking task execution performance models and
data transfer time into account. The versioning scheduler is

used in OmpSs, which can automatically profile each task
implementation and choose the most suitable implementa-
tion each time the task must be run. Given that StarPU and
OmpSs support the overlap of data transfers with computa-
tion, our proposed FDETS with communication optimization
and ADETS with communication optimization are adopted
in HCE.

FIGURE 15. Performance comparison among HCE’s, StarPU’s, and
OmpSs’s GPU-GPU co-execution for different benchmarks.

Fig. 15 gives the performance comparison among HCE’s,
StarPU’s, and OmpSs’s GPU-GPU co-execution for dif-
ferent benchmarks with large problem size. The results
show that HCE yields better performance than StarPU and
OmpSs for some data-parallel applications. For example,
compared with StarPU, HCE achieves 31.07%, 32.17%, and
29.32% performance improvements for Jacobi, FDTD2d, and
BFS, respectively; compared with OmpSs, HCE achieves
38.53%, 39.39%, and 33.72% performance improvements
for Seidel2d, K-means, and BLKS, respectively. Note that
OmpSs achieves a slightly better performance than HCE for
some data-parallel kernels (such as GEMM) that need to be
executed one time and have a small inter-device commu-
nication overhead. For these 8 benchmarks, HCE achieves
an average of 27.61% and 33.17% performance improve-
ments over StarPU and OmpSs, respectively. The perfor-
mance improvement is mainly due to HCE’s inter-device task
scheduling schemes can provide lower runtime scheduling
overhead and higher device utilization and effectively reduce
the data transfer overhead between devices. Although our
proposed HCE performs better than StarPU and OmpSs for
some data-parallel applications, this does not mean that HCE
can replace StarPU and OmpSs, because they have their own
advantages, disadvantages, and limitations.

VII. RELATED WORK
Heterogeneous CPU-accelerator systems have come into
common use recently. Some directive-based parallel pro-
gramming models have been developed as a powerful
way to easily harness the computing power of many-core
accelerators, such as hiCUDA [34], OpenMPC [35], and
OpenACC [36]. They allow programmers to use directives
to identify which parts of a program should be automatically
offloaded to an accelerator, but they do not allow for offload-
ing parallel codes to multiple CPUs and accelerators. Unlike

VOLUME 9, 2021 147277

L. Wan et al.: HCE: Runtime System for Efficiently Supporting Heterogeneous Cooperative Execution

these works, Shuja et al. [37] proposed a framework for single
instruction multiple data instruction translation and offload-
ing for mobile devices (SIMDOM) in heterogeneous mobile
and cloud environments, which allows mobile applications to
be executed on edge and cloud servers, and various modules
of the SIMDOM framework for optimal execution parameters
are analyzed systematically and comprehensively in [38].

Some heterogeneous parallel programming models and
runtime systems [9]–[15] have recently focused on how to
fully utilize multiple compute devices to execute parallel
applications on a heterogeneous system. To make full use of
multiple compute devices in OpenCL, SKMD [9] provides
an OpenCL runtime for heterogeneous devices, which takes a
kernel written for a single device and executes it across multi-
ple devices. Similar to SKMD, CoopCL [10] also provides an
OpenCL runtime that targets CPU-GPU systems, which takes
applicationswritten for a single device and automatically runs
each kernel on both CPU and GPU. EngineCL [11] presents
an OpenCL-based runtime system that effectively splits the
workload of a single massive data-parallel kernel to multiple
different compute devices so as to maximize their utilization.
FinePar [12] offers a software framework that enables the
fine-grained workload partitioning between the CPU and
GPU on the same die for irregular applications written in
OpenCL. Most of existing parallel applications are writ-
ten in OpenMP, if SKMD, CoopCL, EngineCL, or FinePar
is adopted to implement the multi-device co-execution of
these applications, programmers need to make a big effort to
rewrite these applications using OpenCL.

CoreTSAR [13] can automatically schedule data-
parallelism tasks between CPU and GPU based on Accel-
erated OpenMP. It supports co-scheduling of parallel loop
regions across an arbitrary number of CPUs and GPUs.
In our previous work [23], we have discussed CoreTSAR’s
two dynamic scheduling strategies: quick scheduling and
split scheduling. Both StarPU [14] and OmpSs [15] are
most closely related to our proposed HCE. In Section VI-D,
StarPU and OmpSs are introduced in detail, and the per-
formance comparison among StarPU, OmpSs, and HCE are
made. As shown in Fig. 15, the results show that HCE can
achieve better performance than StarPU and OmpSs for some
data-parallel applications. Moreover, HCE supports the more
efficient data transfer between devices in comparison with
StarPU and OmpSs.

In a nutshell, our HCE provides efficient inter-device
task scheduling strategies and inter-device communication
optimization methods and some easy-to-use runtime APIs,
which can help programmers to automatically and efficiently
map computation and data to multiple compute devices on a
heterogeneous CPU-accelerator system.

VIII. CONCLUSION
In this paper, we present HCE, a runtime system that
efficiently supports the heterogeneous cooperative execu-
tion of data-parallel applications on hybrid CPU-accelerator
systems. HCE provides a simple and effective way for

application programmers to fully exploit the available com-
pute devices to accelerate their applications, reducing the
burden on programmers and allowing them to concentrate
their attention on the application itself. In order to effec-
tively reduce the communication overhead between devices,
we propose two inter-device communication optimization
methods, andwhich have been integrated into the inter-device
task scheduling schemes. A prototype of HCE is built on
hybrid CPU-accelerator systems. The experimental results
show that the data transfer overhead can be greatly reduced
with the help of our proposed inter-device communica-
tion optimization methods and the multi-device co-execution
using HCE provides much better performance than the best
single-device execution. Compared with the widely used
StarPU and OmpSs, HCE also achieves a better performance
for some data-parallel applications.

In future work, we plan to extend HCE to support effi-
cient execution of data-parallel kernels on heterogeneous
CPU-accelerator clusters. Moreover, considering that the
thread configuration would affect the performance of a com-
pute device, we will explore how to dynamically determine
the best thread configuration of each compute device accord-
ing to the workload assigned to it during runtime.

REFERENCES
[1] J. Kim and B. Nam, ‘‘Co-processing heterogeneous parallel index for

multi-dimensional datasets,’’ J. Parallel Distrib. Comput., vol. 113,
pp. 195–203, Mar. 2018.

[2] M. Tayyub and G. N. Khan, ‘‘Heterogeneous design and efficient
CPU-GPU implementation of collision detection,’’ IADIS Int. J. Comput.
Sci. Inf. Syst., vol. 14, no. 2, pp. 25–40, Dec. 2019.

[3] H. Zou, S. Tang, C. Yu, H. Fu, Y. Li, and W. Tang, ‘‘ASW: Accelerat-
ing Smith–Waterman algorithm on coupled CPU–GPU architecture,’’ Int.
J. Parallel Program., vol. 47, no. 3, pp. 388–402, Jun. 2019.

[4] O. Pearce, ‘‘Exploring utilization options of heterogeneous architectures
for multi-physics simulations,’’ Parallel Comput., vol. 87, pp. 35–45,
Sep. 2019.

[5] T. S. Abdelrahman, ‘‘Cooperative software-hardware acceleration of
K-means on a tightly coupled CPU-FPGA system,’’ ACM Trans. Archit.
Code Optim., vol. 17, no. 3, pp. 1–24, Aug. 2020.

[6] L. Mabrouk, S. Huet, D. Houzet, S. Belkouch, A. Hamzaoui, and
Y. Zennayi, ‘‘Efficient adaptive load balancing approach for compres-
sive background subtraction algorithm on heterogeneous CPU–GPU plat-
forms,’’ J. Real-Time Image Process., vol. 17, no. 5, pp. 1567–1583,
Oct. 2020.

[7] N. Naz, A. HaseebMalik, A. B. Khurshid, F. Aziz, B. Alouffi, M. I. Uddin,
and A. AlGhamdi, ‘‘Efficient processing of image processing applications
on CPU/GPU,’’Math. Probl. Eng., vol. 2020, Oct. 2020, Art. no. 4839876.

[8] R. Souza, A. Fernandes, T. S. F. X. Teixeira, G. Teodoro, and R. Ferreira,
‘‘Online multimedia retrieval on CPU–GPU platforms with adaptive work
partition,’’ J. Parallel Distrib. Comput., vol. 148, pp. 31–45, Feb. 2021.

[9] J. Lee, M. Samadi, Y. Park, and S. Mahlke, ‘‘SKMD: Single kernel on
multiple devices for transparent CPU-GPU collaboration,’’ ACM Trans.
Comput. Syst., vol. 33, no. 3, pp. 1–27, Sep. 2015.

[10] K. Moren and D. Gohringer, ‘‘CoopCL: Cooperative execution of OpenCL
programs on heterogeneous CPU-GPU platforms,’’ in Proc. 28th Euromi-
cro Int. Conf. Parallel, Distrib. Netw.-Based Process. (PDP), Västeras,
Sweden, Mar. 2020, pp. 224–231.

[11] R. Nozal, J. L. Bosque, and R. Beivide, ‘‘EngineCL: Usability and per-
formance in heterogeneous computing,’’ Future Gener. Comput. Syst.,
vol. 107, pp. 522–537, Jun. 2020.

[12] F. Zhang, B.Wu, J. Zhai, B. He, andW. Chen, ‘‘FinePar: Irregularity-aware
fine-grained workload partitioning on integrated architectures,’’ in Proc.
2017 IEEE/ACM Int. Symp. Code Gener. Optim. (CGO), Austin, TX, USA,
Feb. 2017, pp. 27–38.

147278 VOLUME 9, 2021

L. Wan et al.: HCE: Runtime System for Efficiently Supporting Heterogeneous Cooperative Execution

[13] T. R. W. Scogland, W. C. Feng, B. Rountree, and B. R. D. Supinski,
‘‘CoreTSAR: Core task-size adapting runtime,’’ IEEE Trans. Parallel Dis-
trib. Syst., vol. 26, no. 11, pp. 2970–2983, Nov. 2015.

[14] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, ‘‘StarPU:
A unified platform for task scheduling on heterogeneous multicore archi-
tectures,’’Concurrency Comput., Pract. Exper., vol. 23, no. 2, pp. 187–198,
Feb. 2011.

[15] J. Planas, R. M. Badia, E. Ayguade, and J. Labarta, ‘‘Self-adaptive OmpSs
tasks in heterogeneous environments,’’ in Proc. IEEE 27th Int. Symp.
Parallel Distrib. Process. (IPDPS), May 2013, pp. 138–149.

[16] R. K and N. N. Chiplunkar, ‘‘A survey on techniques for cooperative
CPU-GPU computing,’’ Sustain. Computing: Informat. Syst., vol. 19,
pp. 72–85, Sep. 2018.

[17] K. Moren and D. Göhringer, ‘‘Automatic mapping for OpenCL-programs
on CPU/GPU heterogeneous platforms,’’ in Proc. 18th Int. Conf. Comput.
Sci. (ICCS), Wuxi, China, Jun. 2018, pp. 301–314.

[18] Y. Che, C. Xu, and Z. Wang, ‘‘Load balancing a multi-block grids-based
application on heterogeneous platform,’’ in Proc. IEEE 23rd Int. Conf.
Comput. Sci. Eng. (CSE), Guangzhou, China, Dec. 2020, pp. 44–49.

[19] K. Chronaki, A. Rico, M. Casas, M. Moretó, R. M. Badia, E. Ayguadé,
J. Labarta, and M. Valero, ‘‘Task scheduling techniques for asymmetric
multi-core systems,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 7,
pp. 2074–2087, Jul. 2017.

[20] Z. Li, Y. Zhang, A. Ding, H. Zhou, and C. Liu, ‘‘Efficient algorithms for
task mapping on heterogeneous CPU/GPU platforms for fast completion
time,’’ J. Syst. Archit., vol. 114, Mar. 2021, Art. no. 101936.

[21] M. Agostini, F. O’Brien, and T. Abdelrahman, ‘‘Balancing graph pro-
cessing workloads using work stealing on heterogeneous CPU-FPGA sys-
tems,’’ in Proc. 49th Int. Conf. Parallel Process., Edmonton, AB, Canada,
Aug. 2020, pp. 1–12.

[22] B. Pérez, E. Stafford, J. L. Bosque, and R. Beivide, ‘‘Sigmoid: An auto-
tuned load balancing algorithm for heterogeneous systems,’’ J. Parallel
Distrib. Comput., vol. 157, pp. 30–42, Nov. 2021.

[23] L. Wan, W. Zheng, and X. Yuan, ‘‘Efficient inter-device task scheduling
schemes for multi-device co-processing of data-parallel kernels on hetero-
geneous systems,’’ IEEE Access, vol. 9, pp. 59968–59978, 2021.

[24] M. Gowanlock and B. Karsin, ‘‘A hybrid CPU/GPU approach for optimiz-
ing sorting throughput,’’ Parallel Comput., vol. 85, pp. 45–55, Jul. 2019.

[25] Z. Zheng, C. Oh, J. Zhai, X. Shen, Y. Yi, and W. Chen, ‘‘HiWayLib:
A software framework for enabling high performance communications for
heterogeneous pipeline computations,’’ in Proc. 24th Int. Conf. Architec-
tural Support Program. Lang. Oper. Syst., Providence, RI, USA, Apr. 2019,
pp. 153–166.

[26] T. Li, Q. Dong, Y. Wang, X. Gong, and Y. Yang, ‘‘Dual buffer rotation
four-stage pipeline for CPU–GPU cooperative computing,’’ Soft Comput.,
vol. 23, no. 3, pp. 859–869, Feb. 2019.

[27] F. Zhang, Z. Chen, C. Zhang, A. C. Zhou, J. Zhai, and X. Du, ‘‘An
efficient parallel secure machine learning framework on GPUs,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 9, pp. 2262–2276, Sep. 2021.

[28] G. Tan, C. Shui, Y. Wang, X. Yu, and Y. Yan, ‘‘Optimizing the LINPACK
algorithm for large-scale PCIe-based CPU-GPU heterogeneous systems,’’
IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 9, pp. 2367–2380,
Sep. 2021.

[29] L.-N. Pouchet. PolyBench: The Polyhedral Benchmark Suite. Accessed:
Jan. 12, 2021. [Online]. Available: http://polybench.sourceforge.net

[30] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron. Rodinia: The Rodinia Benchmark Suite. Accessed:
Jan. 16, 2021. [Online]. Available: http://www.cs.virginia.edu/rodinia/
doku.php

[31] NVIDIA Corporation. CUDA SDK. Accessed: Jan. 19, 2021. [Online].
Available: https://developer.nvidia.com/cuda-downloads

[32] Université de Bordeaux. StarPU Handbook. Accessed: May 18, 2021.
[Online]. Available: https://files.inria.fr/starpu/starpu-1.3.8/html

[33] Barcelona Supercomputing Center Programming Models Group.
OmpSs Specification. Accessed: Feb. 8, 2021. [Online]. Available:
https://pm.bsc.es/ftp/ompss/doc/spec

[34] T. D. Han and T. S. Abdelrahman, ‘‘HiCUDA: high-level GPGPU pro-
gramming,’’ IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 1, pp. 78–90,
Jan. 2011.

[35] S. Lee and R. Eigenmann, ‘‘OpenMPC: Extended OpenMP for efficient
programming and tuning on GPUs,’’ Int. J. Comput. Sci. Eng., vol. 8, no. 1,
pp. 4–20, Feb. 2013.

[36] OpenACC Working Group. OpenACC 3.1 Specification. Accessed:
Jan. 8, 2021. [Online]. Available: http://www.openacc.org/specification

[37] J. Shuja, A. Gani, K. Ko, K. So, S. Mustafa, S. A. Madani, andM. K. Khan,
‘‘SIMDOM: A framework for SIMD instruction translation and offloading
in heterogeneous mobile architectures,’’ Trans. Emerg. Telecommun. Tech-
nol., vol. 29, no. 4, p. e3174, Apr. 2018.

[38] J. Shuja, S.Mustafa, R.W.Ahmad, S. A.Madani, A. Gani, andM.K.Khan,
‘‘Analysis of vector code offloading framework in heterogeneous cloud and
edge architectures,’’ IEEE Access, vol. 5, pp. 24542–24554, 2017.

LANJUN WAN was born in Hunan, China,
in 1982. He received the B.S. and M.S. degrees
in computer science and technology from the
Hunan University of Technology, Zhuzhou, China,
in 2005 and 2009, respectively, and the Ph.D.
degree in circuits and systems fromHunan Univer-
sity, Changsha, China, in 2016. He is currently an
Assistant Professor with the School of Computer
Science, Hunan University of Technology. He has
published many research articles in international

conferences and journals, such as JPDC, CCPE, ParCo, Sensors, and IEEE
ACCESS. His research interests include high-performance computing, parallel
computing, and industrial big data analysis. He serves as a Reviewer for the
JPDC, CCPE, and IEEE ACCESS.

WEIHUA ZHENG was born in Guangxi, China,
in 1969. He received the B.S. degree in computer
science and technology from the National Uni-
versity of Defense Technology, Changsha, China,
in 2002, the M.S. degree in computer science and
technology from Xiangtan University, Xiangtan,
China, in 2010, and the Ph.D. degree in computer
science and technology from Hunan University,
Changsha, in 2015. He is currently an Associate
Professor with the College of Electrical and Infor-

mation Engineering, Hunan University of Technology, Zhuzhou, China.
He has published many research articles in international conferences and
journals, such as SPL, TCS, and IEEE/ACMTRANSACTIONS ON COMPUTATIONAL

BIOLOGYANDBIOINFORMATICS. His research interests include fast Fourier trans-
form, image processing, and parallel computing.

XINPAN YUAN was born in Hunan, China,
in 1982. He received the B.S., M.S., and Ph.D.
degrees in computer science and technology
from Central South University, Changsha, China,
in 2005, 2008, and 2012, respectively. He is cur-
rently an Associate Professor with the School of
Computer Science, Hunan University of Tech-
nology, Zhuzhou, China. He has published many
research articles in international conferences and
journals, such as IJNS, JIPS, and Information. His

research interests include information retrieval, natural language processing,
and parallel computing.

VOLUME 9, 2021 147279

