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ABSTRACT Physical layer multicasting exploits multiple antennas at the transmitter side to deliver a
common message to a group of K users. To this end, two formulations have been well addressed in the
literature: i) the max-min-fair criterion, which maximizes the signal-to-noise ratio (SNR) of the worst user
for a fixed transmit power; and ii) the quality of service (QoS) formulation, which minimizes the transmit
power subject to a target SNR. Nevertheless, it is known that the performance and complexity of these
approaches is severely degraded as the group size grows. In this paper, we propose a different formulation
that aims at minimizing the required bandwidth needed to provide the multicast service. This is achieved
by dividing the users into smaller groups and assigning the bandwidth required to provide a target rate
to each group. Contrary to the common belief, it is shown that dividing the users into different groups
that use orthogonal bandwidth allocations can lead to a smaller aggregated bandwidth than the single-
group with single bandwidth allocation counterpart, if an intelligent grouping scheme is used. An iterative
algorithm to derive the optimal number of groups is presented with an stopping criterion to reduce the
numerical complexity. It is shown through simulation that our proposed approach greatly reduces the required
bandwidth compared to existing schemes that rely on single bandwidth allocation. Interestingly, results reveal
that our proposed scheme also leads to a greater SNR for a randomly chosen user, and it reduces the variance
of the required bandwidth, which eases the implementation in real networks.

INDEX TERMS 5G networks, multicast precoding, user grouping, clustering.

I. INTRODUCTION
The increasing request and popularity of on-demand video
and broadcast-like applications for smartphones has fueled
an intensive area of research and standardization activities.
This wave was initiated with Long Term Evolution (LTE)
under multimedia broadcast/multicast service (MBMS),
multicast/broadcast single frequency network (MBSFN) and
single cell-point to multipoint (SC-PTM) technologies; and
it is now under discussion for the Fifth Generation (5G) New
Radio (NR), which has a work item targeted for Release 17
on June 2022 [1], [2].

MBMS defines MBMS service areas, that are composed
by a number of cells that announce a list of available
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broadcast services. user equipments (UEs) can subscribe to
these services to receive broadcast/multicast data [3]. Since
both channel state information (CSI) reports and hybrid
automatic repeat request (HARQ) protocols are not supported
by this technology, achievable rates provided by multicast
services are limited. To overcome this limitation, MBSFN
(also known as enhancedMBMS) was introduced in Release
9. With this scheme, MBMS service areas are divided into
MBSFN service areas, which are composed by a group of
cells that are time/frequency synchronized to mitigate inter-
cell interference. While this technology efficiently increases
the achievable rates, it lacks of flexibility since the service
areas and the resources are allocated statically [4].

SC-PTM solves these issues, since it allows a flexible
resource allocation on a per-cell basis. Although this
technology does not support CSI reports nor HARQ on
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current releases of the LTE standard, it has been shown
that SC-PTM outperforms MBMS and MBSFN in some
scenarios [4]. More importantly, SC-PTM might support
CSI reports on 5G, which would open the door to great
performance improvements mainly for two reasons. Firstly,
broadcast/multicast precoding could be exploited at the trans-
mitter side [2], [5] to determine a sub-optimal beamforming
vector for the intended group of users. Secondly, multicast
channel-aware user grouping and resource allocation can be
used to maximize a given metric, i.e., system throughput or
fairness among users.

A. RELATED WORK
There has been an extensive area of research on communica-
tion and signal theory communities to determine the optimal
broadcast/multicast precoding, which is known as physical
layer multicasting [6]. Attending to the specific scenario
under consideration, existing studies focus either on single-
group (i.e., broadcast) precoding [7]–[10] or multi-group
(i.e., multicast) precoding [11]–[15]. The former involves
that a single stream is delivered to a group of K UEs,
using N transmit antennas, in the same time/frequency
block of resources. The latter considers a type of group
spatial division multiple access, where G groups are served
in the same block of resources, but a different stream is
transmitted to each group. Although multi-group multicast
schemes have a greater flexibility, single-group multicast
is normally preferred since it does not suffer from inter-
group interference and it is simpler than the multi-group
counterpart [6].

The determination of the optimal broadcast/multicast
precoding admits two formulations [7]. The quality of service
(QoS) formulation considers the minimization of the transmit
power subject to a target signal-to-noise ratio (SNR) that
must be fulfilled by each UE. An alternative formulation is
the max-min-fair, which aims at maximizing the SNR of the
worst UE, this being the key factor that limits the performance
of the whole group, subject to a power constraint per UE.

Achieving the upper bound given by the multicast capacity
requires precoding with high rank transmit covariance
matrices, which is not feasible in practice [16]–[18]. For
this reason, sub-optimal solutions that restrict to unit rank
(i.e., transmit beamforming precoding) are widely adopted
as single-group multicast schemes [7]–[10], [19]. Despite
restricting to unit rank precoding, the aim of these works is
to reduce the numerical complexity, since the computation of
the multicast precoding requires treating the channel of a high
number of users jointly.

A pioneering work is described in [7], where it is shown
that max-min-fair and QoS formulations are equivalent
NP-hard problems, which can be expressed as a non-convex
quadratically constrained quadratic program (QCQP). The
authors propose a semi-definite relaxation (SDR) program-
ming, which relaxes the non-convex unit rank constraint to
have a convex problem that can be solved by semi-definite
programming (SDP) followed by relaxation and Gaussian

randomization (SDR-G). It is shown that solving the SDP
problem leads to the upper bound on the min SNR, whereas
the SDR-G yields good sub-optimal results close to the upper
bound.

The performance of SDR-G deteriorates asN andK grows,
and this motivated a number of research works to propose
better approximations to themulticast beamforming problem.
One of the best solutions in terms of performance is the
successive linear approximation (SLA) algorithm, which is
proposed for QoS problem in [20]. This approach involves
an iterative algorithm where the non-convex constraints are
linearized at each iteration by using first-order Taylor series
expansion. The resulting convex problem is solved and the
obtained vector is used in the next iteration. As shown in [9]
with simulations, SLA outperforms SDR-G, although at the
expense of a higher computation time.

A different approximation for the QoS problem is pre-
sented in [21]. In this work, a low-complexity algorithm
based on QR decomposition and channel orthogonalization
is proposed. The proposed algorithm is shown to provide a
better performance than SDR-G when K � N with a smaller
complexity.

On the other hand, the case of max-min-fair problem is
addressed in [22], where the non-convex part of the problem
is replaced with an equivalent non-convex bilinear trace
constraint, that is solvedwith alternatingmaximization (AM).
It is shown that AM leads to a greater min SNR than SDR-G,
but at the cost of a higher computational complexity.

The computational complexity is highly reduced in [19],
which presents an appealing algorithm named successive
beamforming (SB). This algorithm exhibits a high perfor-
mance with moderate and small number of users and it
reaches the upper bound for the case ofK = 2. The algorithm
performs orthogonalizations of the subspace spanned by each
user’s channel vector in an iterative fashion until there are
no more spatial degrees of freedom left, which results in a
reduced number of iterations (i.e., min(M ,K )).

An interesting approach that achieves a good tradeoff
between performance and complexity is proposed in [9]
where class adaptive algorithms are developed. At each
iteration, the beamforming vector is updated in the direction
of an inverse SNR weighted linear combination of the SNR-
gradient vectors of all the users. It is shown that the proposed
algorithms feature guaranteed convergence and state-of-the-
art performance at low complexity.

An algorithm to find the global solution is proposed
in [23]. The algorithm is based on branch-and-bound strategy,
combined with a new argument-cut technique that is used
to design convex relaxations of non-convex constraints.
Simulation results show that the proposal greatly outperforms
state-of-the art techniques when N and K are high, but the
computational complexity makes this approach unfeasible
when the channel varies quickly.

All of the above works focus on multicast precoding
given a fixed number of groups; nevertheless, user grouping
and resource allocation offer additional degrees of freedom
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that can be used to improve the system performance. The
resource allocation and user grouping problems are often
posed as maximization problems with an extremely large
solution space [24], [25], which makes low-complexity
solutions specially appealing. In [26] an opportunistic
multicast scheduling (OMS) algorithm is proposed to exploit
multi-user diversity and to increase aggregated throughput.
Nevertheless, OMS does not guarantee fairness among
multicast users. The fairness between multicast and unicast
users is addressed in [27]–[29], which is important from
the operators perspective, since it maintains a good balance
between both services. Another strategy is to form groups
that maximize the aggregated throughput [30]–[33]; however,
these works restrict to single antenna case and do not
consider multicast precoding. User grouping has been also
studied for multi-antenna systems with hybrid beamforming.
In this context, different user grouping strategies based on
channel sparsity in the beam domain has been proposed
in [34]–[37] for other applications such as physical layer
security or wireless information and power transfer (SWIPT).
These methods assume a spatial basis expansion model,
e.g., beam-domain and angular-domain, which compress
the dimension of the channel. This reduces the complexity
of related tasks such as channel estimation, suppression
of pilot contamination or user grouping. Here, users are
grouped based on the similarity of the angle of arrivals [36]
or the active beam domain sets to eliminate inter-group
interference [35].

B. CONTRIBUTIONS
Despite of their relevance, none of the aforementioned works
have addressed two paramount aspects: i) the problem of
bandwidth minimization; and ii) the interactions between
multicast precoding and user grouping.

The former aspect is closer to the problem that face
operators and vendors in practical deployments, which aim
to deliver a broadcast/multicast service with a given rate,
using as less resources as possible to maximize their profits.
Regarding multicast services, this bandwidth minimiza-
tion problem has been only addressed for core networks
[38]–[40]. These works propose different techniques to
group service demands of the same content, thus saving
bandwidth in the backbone. As for wireless access networks,
the bandwidth minimization problem has been investigated
only for unicast transmission, e.g., with non-orthogonal
multiple access (NOMA), [41], [42] and wireless relaying
scenarios [43]. Nevertheless, to the best of the authors’
knowledge, this problem has not been investigated yet for
physical layer multicast on wireless access networks.

The latter aspect is related to the fact that physical
layer multicast has been mainly investigated under two
different directions: i) multicast precoding; and ii) user group-
ing/resource allocations. On the one hand, the works that
focus on multicast precoding normally assume fixed groups.
On the other hand, the works that address user grouping and
resource allocations either ignore the multi-antenna setups or

assume simplified models that do not capture the dependence
between the user group and the performance of multicast
precoding.

These reasons motivated us to investigate the interactions
between user grouping/resource allocation and multicast
precoding. As a result, we propose an scheme that minimizes
the required bandwidth to deliver a given broadcast/multicast
service. The contributions of the present work can be
summarized as follows:
• We propose a new problem formulation for multicast
precoding and grouping. The proposed formulation aims
at determining a user partitioning into groups and a
multicast precoding for each group that minimizes the
required bandwidth.

• We propose a novel low complexity algorithm for
the above problem named adaptive multicast group-
ing (AMG). The proposed algorithm considers three
grouping criteria that differ in terms of the required
information and performance.

• The implementation aspects of the proposal are
addressed and specialized for the context of 5G
NR networks. It is discussed the availability of the
information required by the AMG algorithm in current
5G networks. To this end, the signaling mechanisms, the
available measurements and UL reports that might be
used to implement the proposed algorithm are identified.

• The performance of the proposed scheme is assessed
with extensive simulations. It has been investigated
a plethora a performance indicators, which includes
the average, the variance and the distribution of the
minimum required bandwidth, the distribution of the
optimal number of groups, the distribution of the SNR
and the average computation time. Results reveal that
the proposed approach greatly reduces the required
bandwidth compared to existing schemes that rely on
single bandwidth allocation. It is also shown that it leads
to a greater SNR for a randomly chosen user, and it
reduces the variance of the required bandwidth, which
eases the implementation in real networks.

The remainder of this manuscript is structured as follows.
The system model and problem formulation is depicted
in Section II whereas the proposed multicast scheme is
described in Section III. Section IV illustrates the benefits of
our proposal with extensive simulation results. Finally, some
conclusions are drawn in Section V.
Notation: The following notation is used throughout the

text. Matrices and vectors are represented with boldface
uppercase and lowercase letters, respectively. If6 is a matrix,
[6]n,m is used to identify its (n,m)-th element. A matrix
with N1 rows and N2 columns where all its elements are
equal to 0 is written as 0N1×N2 . (•)

∗ denotes conjugate of a
complex number whereas Re{•} and Im{•} denote the real
and imaginary parts, respectively; j =

√
−1 stands for the

imaginary unit. (•)T denotes transpose operation whereas
(•)H denotes Hermitian transpose. If X is an Hermitian
matrix, then X � 0 indicates that such a matrix is positive
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FIGURE 1. Simplified block diagram of hybrid beamforming. The relevant
blocks of the BS are drawn at the left hand side of the figure whereas the
blocks related to the UE are at the right hand side.

semi-definite. N, R and C stand for the sets of natural, real
and complex numbers respectively. If A is a set, then |A| is
the cardinality of that set; however, if a is a complex number,
|a| represents its modulus. CN (0K×1, 6) denotes the circular
symmetric complexGaussian distributionwith zeromean and
covariance 6.

II. SYSTEM MODEL
We consider a hybrid beamforming scheme, as consid-
ered in 5G for millimeter-wave (mmW) bands, where the
precoding is composed of two stages: i) a digital base-
band beamforming; and ii) an analog/radio frequency (RF)
beamforming [44]. On the one hand, base-band digital
precoding is implemented by multiplying the complex IQ
constellation symbols by a complex beamforming vector,
and thus different precoding vectors can be applied to
different blocks of time/frequency resources. By contrast, RF
beamforming is implementedwith phase shifters after digital-
to-analog converters (DACs) and frequency up-conversion in
the transmitter side, and thus RF beams can be multiplexed in
time domain only, and not in the frequency domain [44], [45].
It is considered a hierarchical and modular RF and digital
beam management as in 5G networks [46], [47]. This implies
that RF beammanagement and digital precoding computation
are performed independently.

Fig. 1 illustrates a simplified block diagram of the hybrid
beamforming scheme considered in this work. On the
base station (BS) side, it is observed that the base-band
digital beamforming block receives a single stream of IQ
constellation symbols and outputs N streams which are
delivered to N RF chains for digital-to-analog and frequency
up-conversion. In the context of 5G, the output of each
RF chain is named logical antenna port [48], and it is
connected to a different antenna array. The number of
physical antennas that form the different antenna arrays
determine the beamwidth and gain of the transmit RF beams
that can be synthesized [44], [49]. In this work it is assumed
that the UE has a single RF chain with a single physical
antenna to reduce the cost of mobile handsets.

The transmit RF beams are modeled using the widely
adopted sectored-pattern model [50]–[53], where it is con-
sidered that the main lobe has a constant gain of Gm with
a beamwidth of θ radians, and it is centered at the steering

angle ϕ. Angles that do not fall within the main lobe have a
constant back lobe gain Gb. It is assumed that the RF gain of
the main lobe is related to the beamwidth asGs ≈ 2π/θ [52],
[54]. It is considered that UE receiver has a single RF chain
connected to a single physical antenna for the sake of cost
saving. For this reason it is assumed that the gain of the
receive beam is just 1. Thus, with this system model, the
relevant parameters are the beamwidth of the transmit RF
beam, which also determines its beam gain, and the number
of RF chains, N , which determines the gains that can be
achieved by digital multicast beamforming.

Finally, it is considered that RF beams are time-
domain multiplexed so there is no inter-beam interference.
In addition, it is considered that mmW systems are noise-
limited rather than interference-limited and thus inter-
cell interference can be neglected, e.g., due to the high
path-loss exhibited at mmW bands, the directivity of the
RF beam patterns and the use of frequency planning
strategies [55], [56].

A. SPATIAL MODELING
The probe BS is assumed to be placed at the origin, giving
service to a cell of radius dc meters and it is equipped with N
RF chains, whereas the UEs have a single RF chain. We focus
the analysis on a probe RF beam, and thus we consider the set
of K UEs that are served by that RF beam. The K UEs can be
divided into G ∈ [1,K ] ⊂ N groups, and a different digital
beamforming vector,wg ∈ CN×1, can be used for each group
g ∈ [1,G] ⊂ N.
Each UE is identified by a given index, k ∈ K = [1,K ] ⊂

N, where K represents the set of UEs. The set of UEs that
belong to the group g ∈ [1,G] ⊂ N is expressed as Kg ⊆ K.

Each UE is assigned to a single group, i.e.,
G⋃
g=1

Kg = K and

G⋂
g=1

Kg = ∅. Besides, we define the function Kg(u), as the

u-th ordered element of the set Kg. For instance, if we have
the following UE set, K = {1, 2, 3, 4, 5}, with K1 = {1, 3}
and K2 = {2, 4, 5} for G = 2; then K1(1) = 1, K1(2) = 3,
K2(1) = 2, K2(2) = 4 and K2(3) = 5.
The UEs are associated with the RF beam that provides

the highest received power [47], [57], [58] and thus the UE
locations fall within the region R ∈ R2, which is defined
by its main lobe as R = {x ∈ R2

: ‖x‖ ≤ dc,
6 x ∈

[
ϕ − θ

2 , ϕ +
θ
2

]
}, being ‖x‖ the Euclidean norm of x,

and 6 x ∈ (−π, π] its angle.
In addition, the UE locations are drawn randomly accord-

ing to a point process (PP), 8 = {x1, ., xK } ⊂ R2.
In this work we have considered two spatial distributions:
i) the uniform Binomial point process (BPP), that models
zero interaction between node locations; and ii) a clustered
point process (CPP) that models spatial correlation between
nodes [59]. The BPP places randomly K points within the
region R with uniform distribution. The CPP is expressed
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FIGURE 2. Spatial realizations of K = 30 UE locations for a cell of radius
dc = 250 m with a RF beamwidth of θ = 2π

8 for: (a) the BPP; and (b) the
CPP with C = 3 clusters and dd = 15 m.

as 8 =
C⋃
i=1
8i + xi, where C is the number of clusters

and xi represents the center of the i-th cluster. The cluster
centers are drawn randomly within the regionRwith uniform
distribution. The PP8i represents the distribution of daughter
points and it is modeled as a BPP that places Ci points within
a disk centered at the origin with radius dd . The sum of
all daughter points placed by each of the clusters is K , i.e.,∑C

i=1 Ci = K . Fig. 2 shows a given spatial realization for the
two PPs considered in this work.

B. CHANNEL AND SIGNAL MODELING
For a given allocation block of time/frequency resources,
the channel is assumed to be flat in the time and frequency
domains. A base-band equivalent channel model is consid-
ered, and thus, the channel between the BS and the k-th UE,
ḧk ∈ CN×1, is modeled as a zero-mean complex random
vector that accounts for the RF beam patterns gains, the path-
loss and fast fading. Thus, the received signal by the k-th UE,
which belongs to user group g, is given by

rk = wg
H ḧksg

√
pt + zk (1)

where wg ∈ CN×1 is the multicast beamforming vector
and sg represents the IQ constellation symbols intended for
group g with zero mean and unit power, i.e., E[|sg|2] = 1
and E[|sg|] = 0. pt represents the transmit power per
constellation symbol which spans a bandwidth of 1f Hz.
Wide-sense stationary additive Gaussian noise is represented
as zk , and its power is pn on 1f Hz. It is assumed a constant
power spectral density (PSD) in the frequency domain, and
thus %t = pt/1f W/Hz and N0 = pn/1f W/Hz represent the
transmit and noise power spectral densities, respectively. The
channel vector ḧk ∈ CN×1 is expressed as

ḧk = h̆k‖xk‖−α/2
√
Gs (2)

where ‖xk‖ is the distance between the k-th UE and the probe
BS, and h̆k = [h̆1,k , ., h̆N ,k ]T ∈ CN×1 models the fast
fading. The path-loss model is based on the classical power
law, ‖xk‖−α/2, where α > 0 is an environmental dependent
path-loss exponent. The complex gain due to fast fading

between the i-th transmit logical antenna and the k-th user has
a marginal distribution according to a zero mean unit power
complex Gaussian distribution h̆k,i ∼ CN (0, 1).

Besides the uncorrelated case, it is considered the case
where the fading of different users can be correlated based
on their distance. This latter distance dependent correlation
model is based on the observation made in some works,
(e.g., [60] and references therein), where it is shown that
there exists a correlation between nearby locations that
tend to decrease as the distance increases. Therefore, it is
proposed to model the correlation between the k-th and q-
th UEs as ρk,q = E[h̆∗i,k h̆i,q] = exp(−β‖xk − xq‖), being
β ≥ 0 a factor that models how strong the correlation is
and ‖xk − xq‖ the distance between the two UEs. It has
been chosen a decreasing exponential to capture the fact
that the correlation is stronger between nearby locations
and decreases as the distance increases. Besides of this, the
proposed model considers the case of maximal correlation,
i.e., ρk,q = 1, and the independent case as particular cases
that are modeled with β = 0 and β → ∞ respectively.
Finally, the vector of complex gains for the i-th transmit
logical antenna w.r.t. the K UEs is generated according to a
multivariate Gaussian distribution as h̆(i) = [h̆i,1, ., h̆i,K ] ∈
C1×K ∼ CN (01×K , 6), where [6]k,q = ρk,q
and 6 ∈ RK×K .

C. BANDWIDTH ALLOCATION AND RATE ADAPTATION
It is assumed that a broadcast/multicast service is intended
to be delivered to K UEs associated with the probe RF
beam. The target binary rate of such a service is RT bps.
The K UEs are divided into G groups that use a different
beamforming vector,wg, on a different bandwidth allocation,
Bg, of |Bg| Hz. The bandwidth allocations to different
groups are orthogonal to avoid inter-group interference and

thus
G⋂
g=1

Bg = ∅. The overall bandwidth allocated to the

broadcast/multicast service is

B =
G⋃
g=1

Bg (3)

The SNR of UE k that belongs to group g, γk (wg), is given
by

γk (wg) =
|wgḧk |2pt

pn
= |wghk |2 (4)

where hk ∈ CN×1 is the scaled channel gain, which is
expressed as

hk = ḧk

√
%t

N0
= h̆k

√
γ̄k (5)

being γ̄k = ‖xk‖−αGs
%t
N0

the average SNR when N = 1.
The transmission rate of each group is adapted to the min

SNR of the group, and thus the spectral efficiency (SE) (i.e.,
rate) of group g is expressed as log2(1+ min

k∈Kg
γk (wg)) bps/Hz.
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III. PROPOSED USER GROUPING, BANDWIDTH
ALLOCATION, AND PRECODING SCHEME
A. PROBLEM FORMULATION AND PROPOSED
ALGORITHM
We consider a precoding and grouping scheme that aims
at minimizing the bandwidth |B| needed to provide a
broadcast/multicast service that requires RT bps. Therefore,
the problem can be posed as obtaining the user division into
G groups, Kg, with g ∈ [1,G], and multicast beamforming
vector for each group, wg ∈ CN×1, that minimizes the
overall required bandwidth. More formally, this problem can
be formulated as

arg min
G, {K1, · · · ,KG},

{w1, · · · ,wG}

|B| (6)

with |B|= RT
G∑
g=1

log−12 (1+ min
k∈Kg

γk (wg)) (7)

s.t. ‖wg‖ = 1, ∀g ∈ [1,G] ⊂ N (8)

where (7) comes after (3) and the fact that the achievable
binary rate of every group g ∈ [1,G] ⊂ N must be equal to
RT . To seek for a sub-optimal solution, we split this problem
in two parts: user grouping and multicast precoding. The
user grouping assumes a number of groups and outputs the
partition of users into G groups, Kg ∀g ∈ [1,G] ⊂ N.

1) USER GROUPING
The proposed user grouping algorithm relies on the observa-
tion that highly correlated channels increases the multicast
beamforming gain [9], [18]. Thus, the proposed algorithm
aims at assigning the same group to users whose channel
is similar. To this end, a K-means++ (KM) algorithm has
been selected due to its reduced complexity and quality of
final solution [61]. This clustering algorithm partitions a data
set of K points into G groups using an iterative algorithm
to minimize the sum of data sample-to-centroid distances,
summed over all G clusters. The centroid of each group is
the mean of the points that belong to the group and it is also
an output of the algorithm. We define three different data set
types, which are used as input to KM, to devise three grouping
algorithms that differ in performance and complexity.
i) Scaled channel matrix: This option considers that

the data set is the matrix H ∈ CN×K , which is built
by stacking the scaled channel gain of each user, i.e.,
hk ∈ CN×1

∀k ∈ K as column vectors. Since KM algorithm
restricts to real data samples, the input data set for KM
algorithm is formed by stacking the real and imaginary parts
of H as [Re{H}T , Im{H}T ]T ∈ R2N×K . Hence, each data
sample is a real point in R2N . This grouping algorithm is
labeled as KM-CSI.
ii) Location information: Here the input to the KM

algorithm is the position xk ∈ R2 of every user k ∈
K. The data set is the PP of all UEs locations, 8, which
can be arranged as a matrix 8 ∈ R2×K . Compared to

KM-CSI, this type of data set lacks of information about the
instantaneous channel gain of every user; nevertheless, the
size of the data set is smaller as well as its complexity. This
grouping algorithm is labeled as KM-loc.
iii) Reference signal received power (RSRP): The reference

signal received power (RSRP) represents the average received
power by a given user k and it is expressed as: µk =
‖xk‖−αGs%t . The data set is then a vector of K real elements
µ = [µ1, ., µK ] ∈ R1×K . Contrarily to KM-loc and
KM-CSI, this method lacks of information about distances
between the different users and it only has information about
distances towards the BS. However, it has a smaller data size
and complexity than the other two options. It is labeled as
KM-RSRP.

The proposed algorithm, AMG, requires any of these three
types of information. The availability of such information in
5G networks is discussed in Section III-B whereas the impact
of the type of information used on the performance is assessed
in Section IV-B.

2) MULTICAST BEAMFORMING
Themulticast precoding considers a partition of the users into
G groups and then it computes a beamforming vector for each
group that maximizes the min SNR. The following state-of-
the art multicast precoding vectors have been considered in
this paper:
i) SDR-G: This algorithm was proposed in [7]. The

algorithm approximates the max-min-fair problem into the
following convex problem that can be solved via SDP. Hence,
with SDR-G, the multicast beamforming vector for group g
can be computed as follows:

1) Solve the relaxed SDP problem to obtain the positive
semi-definite matrix, X ∈ CN×N :

max
X∈CN×N ,t∈R

t (9)

s.t. trace(XQk ) ≥ t, ∀k ∈ Kg (10)

trace(X) = 1, X � 0 (11)

where Qk ∈ CN×N and Qk = hkhHk � 0.
2) Perform Gaussian randomization. This involves thatM

triplets of candidate beamforming vectors are randomly
generated and the best one after M realizations is
selected. Each triplet consists on the following vectors,
w(a)
g , w(b)

g ,w
(c)
g ∈ CN×1, that are generated as

w(a)
g = U3

1
2 e(a)g (12)

where U ∈ CN×1 is obtained after eigen-
decomposition of X = U3UH and [e(a)g ]i = exp(jθi)
being θi uniformly distributed on [0, 2π ), being

[w(b)
g ]i =

√
[X]i,ie(b)g (13)

where e(b)g ∈ CN×1 are generated using the same
procedure as for e(a)g ∈ CN×1, and finally

w(c)
g = U3

1
2 e(c)g (14)
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where e(c)g ∈ CN×1 is a vector of zero-mean, unit-
variance complex circularly symmetric uncorrelated
Gaussian random variables.

ii) Adaptive update (AU): This is an iterative algorithm
which is proposed in [9]. With this algorithm, each update
takes a step in the direction of an inverse SNRweighted linear
combination of the SNR-gradient vectors of all |Kg| users.
At iteration m, the beamforming vector of group g is updated
as follows

w̃(m+1)
g = w(m)

g + ξ

|Kg|∑
k=1

QKg(k)(
w(m)
g

)H
QKg(k)w

(m)
g +ε

w(m)
g

w(m+1)
g = =

w̃(m+1)
g

‖w̃(m+1)
g ‖

(15)

where ξ is the fixed positive step-size for every iteration and ε
is a positive constant that is introduced for numerical stability.
iii) SB: this algorithm involves a maximum of min(N ,K )

iterations. With iteration k the algorithm equalizes the SNRs
of the k UEswith smallest SNR, and it stops if the SNRs of the
rest of users is greater than that value or if there are no more
degrees of freedom, i.e., k + 1 > min(N ,K ). The details are
described in [19].
iv) Random beamforming (RBF): this scheme con-

siders that the beamforming vector is randomly gener-
ated according to a complex Gaussian distribution where
[wg]i ∼ CN (0, 1/N ).

Both stages, user grouping and multicast precoding,
assume a number of groups, G. Hence, the proposed
algorithm goes through an increasing number of groups
in an iterative fashion, starting with a single group. The
proposed algorithm for user grouping, bandwidth allocation
and beamforming, referred to as AMG, is summarized in
Algorithm 1, and it is explained as follows. Firstly, the
algorithm sets the initial required bandwidth with the highest
value, and the variable stop, which is used as stopping
criterion (lines 1 to 3). Then, a loop is executed to search for
the best number of groups, `, within the range [1,K − 1]
(lines 4 - 11). At each iteration, the algorithm partitions
the users in ` groups according to either KM-CSI, KM-loc
or KM-RSRP criteria (line 6). Afterwards, it computes the
multicast precoding for each group, wg ∈ CN×1, and the
required bandwidth, |B(`)

|, (lines 7 - 10). To save computation
time, we can limit the maximum number of iterations (i.e.,
groups) to a given value, Gmax . The algorithm iterates until
the maximum number of groups to explore,Gmax , is reached,
or the stopping criterion is fulfilled. We propose as stopping
criterion whether the required bandwidth of current iteration,
`, is greater than the bandwidth of the previous iteration
(line 11). The effect of such an stopping criterion will be
assessed in Section IV with simulation results. The obtained
solution, which can explore a number of groups up to K − 1,
is finally compared with the results of unicast transmission,
where the number of groups is K (lines 12 - 16). This unicast
transmission uses MRT beamforming which achieves the

Algorithm 1 AMG
Input: K, hk ∀k ∈ K
Output: G?, γ ?min,g, |B

?
g|, w

?
g ∈ CN×1, K?g ∀g ∈ [1,G?]

Data: Data for user grouping:
KM-CSI: [Re{H}T , Im{H}T ]T ∈ R2N×K

KM-loc: 8 ∈ R2×K

KM-RSRP: µ ∈ R1×K

1: Set |B(0)
|→ ∞

2: ` = 0
3: stop = false
4: while ` ≤ min (Gmax ,K − 1) & (∼stop) do
5: ` = `+ 1
6: Partition the UE set in ` groups, K(`)

g ∀g ∈ [1, `],
according to the chosen user grouping algorithm: KM-
CSI, KM-loc or KM-RSRP

7: Compute the multicast beamforming vector, w(`)
g ∈

CN×1, for each group g ∈ [1, `] according to the
chosen method: SDR-G, adaptive update (AU), SB or
random beamforming (RBF)

8: Compute the min SNR per group, γ
(`)
min,g =

min
k∈Kg

γk

(
w(`)
g

)
using (4)

9: Compute the required bandwidth per group as |B(`)
g |=

RT
log2(1+γ

(`)
min,g)

10: |B(`)
|=

∑̀
g=1
|B(`)

g |

11: stop = |B(`)
|> |B(`−1)

|

12: end while
13: Compute the required bandwidth for unicast transmission

as |B(K )
|=

K∑
k=1

RT
log2(1+‖hk‖2)

, which uses maximum ratio

transmission (MRT) beamforming w(K )
k = hHk ∀k ∈

[1,K ].
14: if |B(`)

|< |B(K )
| then

15: G? = `
16: else
17: G? = K
18: end if
19: |B?g|= |B

(G?)
g | ∀g ∈ [1,G?]

20: w?g = w(G?)
g ∈ CN×1

∀g ∈ [1,G?]

21: γ ?min,g = γ
(G?)
min,g ∀g ∈ [1,G?]

22: K?g = K(G?)
g ∀g ∈ [1,G?]

capacity of the MISO channel. If the bandwidth of multicast
transmission with ` groups is smaller than the one required
by unicast transmission, then G? = `, whereas unicast
transmission is selected otherwise.

B. IMPLEMENTATION ASPECTS
In this subsection the implementation aspects of the proposed
AMG scheme in real systems and its application to 5G NR
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FIGURE 3. Block diagram of AMG implementation.

are discussed. The block diagram of the proposed scheme is
illustrated in Fig. 3. The time is divided into transmission
time intervals (TTIs), and it is considered that the channel
is time invariant within the TTI although it varies between
different TTIs. It is observed that the AMG block computes
the number of groups, G?, the min SNR, γ ?min,g, and the
required bandwidth, |B?g|, per group. All these metrics are
forwarded to the Rate Adaptation block, which adapts the
symbol rate intended to each group to the link conditions of
the worst UE, given by γ ?min,g. In real systems, e.g., 5G NR,
this is achieved by selecting an appropriate modulation and
coding scheme (MCS).

The constellation symbols for each group, sg, are delivered
to the precoding stage, where they are multiplied by the
beamforming vector per group, w?g ∈ CN×1, which is
obtained by the AMG block. The precoded symbols for
each group are delivered to the Bandwidth Allocation block
which stacks blocks of symbols for each group and maps
them into the portion of bandwidth allocated to each group.
As seen in the figure, the bandwidth that is not used by
the broadcast/multicast service is available to other services.
Since the required overall bandwidth, |B?g|, depends on the
channel of every UE, it varies on a TTI basis. Finally, the
digitally beamformed stream to each group is transmitted
using the same RF beam, which is received by the K UEs.
The 5G standard supports several reporting quantities that

can be used to develop the proposed scheme. Firstly, the
scaled channel matrix per UE, hk ∈ CN×1, is used by the
multicast beamforming stage as well as user grouping in case
of KM-CSI. This metric can be obtained with the precoding
matrix indicator (PMI) and channel quality indicator (CQI)
report quantities [47], [57]. The former report quantity leads
to a precoding vector that belongs to a given codebook, whose
type is specified by higher layer configuration [62]. This
precoding vector can be understood as a quantized version
of the Hermitian channel vector, i.e., hHk ∈ C1×N , since this
is the optimal precoder of the single user MISO channel [63].
The CQI, on the other hand, indicates the appropriate MCS

FIGURE 4. Coherence time of the channel versus the beamwidth, θ , for a
non-line-of-sight (NLOS) scenario. The figure evaluates equation (36)
of [68], assuming a scattering radius of 1000 wavelengths, an original
pointing direction of 5 degrees and a target correlation of 0.5. The
expression is evaluated for frequency bands centered at 7, 24 and 60
GHz, and user speeds of 3 and 108 km/h (i.e., 0.83 and 30 m/s).

to achieve a block error rate (BLER) below a given target
value, which can be configured to either 10−1 or 10−5 in 5G
networks [64]. This CQI is computed by the UE based on the
estimated SNR [65], and thus, it can be used in real systems
in combination with the PMI to get the scaled channel matrix
given by (5).

Another required metric is the RSRP, which is needed
at the user grouping stage if KM-RSRP algorithm is used.
Thismetric actually corresponds to an existing report quantity
which is named L1-RSRP in the 5G standard [66].

Lastly, the location information is used by the user
grouping stage in case of KM-loc. This can be achieved
thanks to 5G NR positioning protocol of current releases 15
and 16. Some methods that are part of the standard and
can be used to this end are uplink time difference of arrival
(UTDOA), enhanced cell ID (E-CID), multicell round trip
time (Multi-RTT) and uplink angle of arrival (UL-AoA) [67].

As it was justified in the introduction, a paramount chal-
lenge of multicast precoding algorithms is the computational
time due to the complexity of the underlying optimization
problems that needs to be solved. The solution of the user
grouping and multicast precoding determined by the AMG
algorithm is valid for a time period where the joint channel
of all the users can be considered as roughly constant. Thus,
this period of time, which is named coherence time, acts as a
system requisite for the chosen multicast precoding and user
grouping algorithm. As shown in [68], the coherence time
highly depends on different factors such as the velocity of the
users, the frequency band and the beamwidth. From Fig. 4
it is observed that the coherence time ranges from thousands
of ms down to a few ms or even fractions of ms. It is seen
that reducing the beamwidth increases the coherence time,
whereas it can be reduced by increasing the frequency band
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TABLE 1. Default simulation parameters.

and/or the user velocity. More specifically, for a beamwidth
of 45 degrees a pedestrian that moves at 3 km/h and receives a
multicast transmission at 7 GHz has a coherence time around
50 ms. If the set of users has this coherence time, the AMG
algorithm should take less than 50 ms to compute the user
partition into groups and the related multicast beamforming
vectors. Nevertheless, as explained in Section III, the AMG
algorithm can use different precoding (e.g., SDR-G, AU,
RBF) and grouping algorithms (i.e., KM-CSI, KM-loc, KM-
RSRP) that lead to different computational time as well
as different performance. So an appropriate choice can be
selected based on the expected coherence time to have an
appropriate balance between performance and computational
time.

IV. SIMULATION RESULTS AND DISCUSSIONS
The performance of the proposed scheme is assessed with
simulations. It is considered a path-loss exponent of α = 4,
and a beamwidth of θ = 2π/8 radians with a main lobe gain
of Gs = 8. The thermal noise is assumed to be Nth = −174
dBm/Hz, with a noise figure, NF = 7 dB, and thus the noise
PSD is N0 = Nth + NF = −167 dBm/Hz. The results
have been obtained through Monte Carlo simulations with
103 realizations.
The default parameters considered in this section are

summarized in Table 1. These parameters have been used to
obtain each figure unless otherwise stated in the caption.

The performance of the proposed algorithm, AMG,
is compared to two extreme alternatives: i) unicast trans-
mission, which considers MRT beamforming and orthogonal
bandwidth allocation to each UE; and ii) broadcast, which
involves a single group with single bandwidth allocation and
a single multicast beamforming vector.

Three multicast beamforming algorithms are considered
as described in Section III. The AU algorithm uses a
step size ξ = 0.1, with a factor of ε = 10−3 to
avoid numerical instability and 100 iterations. The SDR-G
algorithm usesM = 30NK randomizations as recommended
in [7], which involves 7200 random trials for the default
parameters.

FIGURE 5. Average required bandwidth for BPP spatial distribution with
uncorrelated fading and N = 8 RF chains.

FIGURE 6. Cumulative distribution function (CDF) of required bandwidth
for BPP spatial distribution with uncorrelated fading and N = 8 RF chains.

The proposed algorithm described in Algorithm 1 consid-
ers an stopping criterion as described in line 11. To assess the
impact of such a stopping criterion it is also considered the
case where the algorithm executes Gmax iterations (line 11
is removed). This allows us to evaluate the increment in the
required bandwidth due to the early stopping but also the
savings in computation time.

Next subsections illustrate the performance of the proposed
algorithm under diverse scenarios to get insights about
the performance trends and interplay between different
parameters.

A. PERFORMANCE WITH INDEPENDENT FADING AND
BPP SPATIAL DISTRIBUTION
Firstly, the performance of AMG is assessed for a BPP spatial
distribution. This type of distribution models independent
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FIGURE 7. Probability mass function (PMF) of the chosen number of groups G? with (red) and without (light blue) a stopping criterion |B(`)|< |B(`−1)|
for: (a) %t = −100 dBm/Hz; (b) %t = −90 dBm/Hz; and (c) %t = −80 dBm/Hz. The UE locations follow a BPP with K = 30 and it is considered uncorrelated
fading with N = 8 RF chains. The PMF is represented as a semi-transparent colored bar diagram. The intersection of probability values with and without
stopping criteria is represented in dark blue.

locations of the UEs, which are drawn randomly with
uniform distribution. The fading is also assumed to be
independent.

Figures 5 and 6 show the mean and cumulative distribution
function (CDF) of the required bandwidth versus the transmit
PSD for the proposed AMG algorithm, with and without
an stopping criterion. Results for the case of unicast and
broadcast transmissions are also presented.

It is observed that our proposal greatly outperforms broad-
cast and unicast transmissions for a wide range of transmit
PSD values. This demonstrates that it is beneficial to divide
the users into different groups, since the required bandwidth
can be potentially reduced. On the one hand, the performance
of multicast precoding algorithms is deteriorated as the group
size increases [6]. This involves that dividing the users into
smaller groups will lead to a higher min SNR, min

k∈Kg
γk
(
wg
)
,

of the groups than the single group counterpart. If the
increase in the min SNR is high enough, then it leads to
an smaller required bandwidth than using a single group.
On the other hand, grouping users with similar channel
realizations increases the gain of the multicast precoding.
This statement is based on the observation that correlated
scaled channels (including fast fading and average SNR)
increase the performance gain of multicast precoding [9],
[18]. Hence, our proposed AMG scheme relies on these
two ideas to find a sub-optimal number of groups, G?, user
partition, K?g ∀g ∈ [1,G?], and multicast beamforming that
minimizes the required bandwidth.

The performance loss due to early stopping is negligible
as it can be observed from the average required bandwidth in
Fig. 5 as well as from its distribution in Fig. 6. Interestingly,
the average required bandwidth is smaller for unicast than
for broadcast transmission in the low transmit power regime.
This means that, on average, the impact of the increase
in min SNR, which yields an increase on the SE, leads

to an smaller aggregated bandwidth than the single group
counterpart. However, as the transmit power is increased,
the required bandwidth of broadcast transmission tends to be
much smaller than the unicast alternative.

Fig. 7 illustrates the probability mass function (PMF)
of the sub-optimal number of groups, G?, with (red) and
without (blue) an stopping criterion, for different transmit
PSD values. It can be observed that the distribution of
G? takes a wider set of values when the transmit power
is small. Nevertheless, as the transmit power is increased,
the range of values is narrower and more concentrated
around small values. This might be expected in view of
Fig. 5 and 6 since the performance of broadcast gets closer
to the performance of AMG as the transmit power is
increased.

If we compare the PMF of the number of groups with
and without stopping criterion, we observe that the effect
of the stopping criterion is to concentrate the distribution
around smaller values ofG?. This is related to the fact that the
early stop prevents from searching solutions related to greater
number of groups.

As it is seen in the pseudo-code of Algorithm 1, the
algorithm always searches a solution in the unicast case, since
computing the unicast beamforming vector is trivial in terms
of computational complexity. When an stopping criterion
is used and %t = −100 dBm/Hz, there is a probability
of 0.067 to find the unicast case as sub-optimal solution
(i.e., G? = K ).
Nevertheless, for the same transmit PSD of−100 dBm/Hz,

the unicast case is not selected if no stopping criterion is
considered, which is labeled in the legend asGmax = K . This
involves that the optimal solution is never the unicast solution,
i.e., G? = K , if an exhaustive search is considered. Yet, the
unicast solution is better than the solution found by the loop
of lines 4-11 in Algorithm 1, if an stopping criterion is used,
with a probability of 0.067.
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FIGURE 8. CDF of required bandwidth for the 3 proposed grouping
algorithms. The UE locations follow a BPP with K = 30 and it is
considered uncorrelated fading with N = 8 RF chains.

B. EFFECT OF GROUPING ALGORITHMS
The effect of the three proposed grouping algorithms is
illustrated in Fig. 8. As it is mentioned in Section III,
among the 3 grouping algorithms, KM-CSI is the one that
requires a higher amount of data, i.e., 2NK real numbers.
This algorithm is followed by the KM-loc, which requires 2K
real numbers and KM-RSRP, which requiresK real numbers.
As it can be seen in Fig. 8, the performance of the different
grouping algorithms follows the amount of data used. Thus,
the smallest bandwidth in statistical terms is obtained by KM-
CSI, whereas KM-RSRP leads to the highest bandwidth and
KM-loc obtains intermediate results.

C. SNR DISTRIBUTION AND VARIANCE OF
REQUIRED BANDWIDTH
The complementary cumulative distribution function (CCDF)
of the SNR of a randomly chosen UE is shown in Fig. 9 for
AMG, unicast and broadcast schemes with different transmit
PSD values. It can be observed that unicast transmission,
which is based on MRT, achieves the highest SNR in
statistical terms. This is expected since multicast precoding
uses the same beamforming vector for a group of users,
and thus its performance deteriorates as the group size
increases. Nevertheless, broadcast transmission, which uses
single group multicast precoding, achieves a much smaller
required bandwidth than unicast transmission for a broader
set of transmission power values, as it was discussed in
Fig. 5 and 6. Interestingly, AMG achieves a smaller required
bandwidth than broadcast and unicast approaches, but at
the same time, it leads to a higher SNR than broadcast
transmission.

Fig. 10, on the other hand, shows the variance of the
required bandwidth for AMG, unicast and broadcast schemes
versus the transmit PSD, %t . The variance of the required

FIGURE 9. Complementary cumulative distribution function (CCDF) of
SNR of a randomly chosen UE for different transmit PSDs values,
%t = {−100,−90,−80} (dBm/Hz). The UE locations follow a BPP with
K = 30 and it is considered uncorrelated fading with N = 8 RF chains.

FIGURE 10. Variance of the required bandwidth versus %t . The UE
locations follow a BPP with K = 30 and it is considered uncorrelated
fading with N = 8 RF chains.

bandwidth is an important metric for frequency planning.
As it wasmentioned in Section III-B, the bandwidth that is not
used by the multicast/broadcast service can be used by other
services. Therefore, having an small variance of the required
bandwidth is highly appealing, since it eases the frequency
planning of the other services that can be accommodated
in the available bandwidth. It can be observed that AMG
achieves an smaller variance than broadcast transmission
in the considered range of transmit power and it also
achieves an smaller variance than unicast transmission for
%t > −85 dBm/Hz, while for %t < −85 dBm/Hz the differ-
ence in terms of performance between AMG and unicast is
negligible.

VOLUME 9, 2021 149147



F. J. Martín-Vega et al.: Physical Layer Multicast Precoding and Grouping Scheme for Bandwidth Minimization

FIGURE 11. Average required bandwidth versus %t for different multicast
precoding algorithms. The UE locations follow a BPP with K = 30 and it is
considered uncorrelated fading with N = 8 RF chains.

FIGURE 12. Average computation time for different multicast precoding
algorithms. The UE locations follow a BPP with K = 30 and it is
considered uncorrelated fading with N = 8 RF chains.

D. PERFORMANCE VERSUS COMPLEXITY
The trade-off between performance and complexity for
different multicast precoding algorithms is shown in
Fig. 11 and 12. Results reveal that unicast transmission and
broadcast with RBF lead to the smallest average computation
time. Nevertheless, the required bandwidth for broadcast with
RBF is the highest, and its performance is clearly inferior
to other alternatives. These results highlight the importance
of multicast precoding, which leads to great performance
improvements compared to the RBF case, thanks to the
use of channel information of all the users and different
RF chains. It is observed that AMG greatly improves the
performance compared to broadcast and unicast alternatives.
Even with RBF, AMG leads to an smaller required bandwidth

than the unicast case and its broadcast counterpart. This is
specially relevant at high transmit powers, where the required
bandwidth of AMGwith RBF tends to be also greatly smaller
than the unicast case.

As seen from Fig. 11, the smallest required bandwidth is
obtained with SDR-G precoding. However, as it is observed
in Fig. 12, this precoding leads to the highest computation
time with both (the broadcast and AMG) alternatives.
Hence, SDR-G precoding does not seem appropriate for real
implementations due to its high numerical complexity. After
SDR-G, AU is the precoding technique that leads to the
smallest required bandwidth for broadcast transmission as it
is illustrated in Fig. 11. In case of broadcast, SB requires a
greater bandwidth than AU as it is expected, since AU leads
to a higher minimum SNR for a high number of users [9].
Nevertheless, it is observed that AMG/SB leads to a smaller
bandwidth than AMG/AU, which suggests that SB performs
better with AMG. The reason behind this is that SB exhibits a
high performance for a small number of users, and it reaches
the upper bound for the case ofK = 2 as shown in [19]. Since
AMGpartitions the users into smaller groups, this can explain
why SB leads to an smaller bandwidth when it is used by the
AMG algorithm.

The greater differences observed in terms of computation
time are due to the chosen multicast precoding option. For
instance, with broadcast transmission under the simulated
parameters listed in Table 1 and % = −100 dBm/Hz, SDR-G
precoding requires around 176 times more computation time
than AU; AU consumes roughly 42 times more time than SB;
whereas SB requires around 8 times more time than RBF.

The increment in terms of computation time due to
the use of AMG is clearly smaller than the differences
observed between different multicast precoding algorithms.
More specifically, the increment of computation time with
AMG/AUwith respect to broadcast/AU is around 4.10 times;
whereas the increment of AMG/SDR-G with respect to
broadcast/SDR-G is roughly 4.28 times.

As it was discussed in Section III-B, the coherence
time of the channel imposes a system requisite for the
chosen multicast precoding and user grouping algorithm. It is
observed from Fig. 12 that AMG/AU leads to around 50 ms
of average computational time, whereas AMG/SB leads to
around 8 ms and AMG/RBF leads to 4 ms. AMG/SDR-G
requires the highest computation time, which is around 5 s
due to its high complexity. As it is observed, SB requires a
small computational time compared with SDR-G and AU.
The reason behind this is that the number of iterations
performed by SB is limited to min(N ,K ), which is greatly
smaller than the number of iterations and randomizations
required by AU and SDR-R (i.e., 100 iterations and
7200 random trials respectively). These simulation results
have been obtained with an Intel i7 processor and MATLAB
R2020b. Nevertheless, such computation times can be greatly
reduced implementing and optimizing the code, e.g., for C++
and using more powerful processor as used in commercial 5G
base stations.
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FIGURE 13. Effect of spatial and fading correlations in the distribution of
the required bandwidth. It is considered K = 30 and % = −100 dBm/Hz.
The case of spatial correlation considers a CPP with 3 and a cluster
radius, dd = 15 m, but it considers that the fading of different UEs is
independent. The case of fading correlation considers the distance
dependent correlation model with β = 0.01, but the UE locations follow
a BPP.

FIGURE 14. Effect of spatial and fading correlations in the
complementary distribution of the SNR of a randomly chosen UE.

Finally, the saving in computation time due to the use of
an early stopping is also assessed for the case of AMG/AU in
Fig. 12. It is observed that such a saving is around 26 times,
which is considerable bearing in mind that the early stopping
leads to minor reduction in required bandwidth.

E. EFFECT OF SPATIAL AND FADING CORRELATIONS
The effect of the spatial and fading correlations is assessed in
terms of the CDF of the required bandwidth, in Fig. 13, and
CCDF of the SNR of the typical UE, in Fig. 14. To model
the fading correlation, it has been selected a factor of
β = 0.01 for the distance dependent correlation model.

FIGURE 15. Average required bandwidth versus number of RF chains, N .
The UE locations follow a BPP with K = 30 and it is considered
uncorrelated fading with %t = −100 dBm/Hz.

FIGURE 16. Average required bandwidth versus number of users, K . The
UE locations follow a BPP and it is considered uncorrelated fading with
%t = −100 dBm/Hz.

The spatial correlation has been modeled with a CPP, where
3 clusters of UEs are randomly placed over the sector of the
probe RF beam. Each cluster is modeled as a disk of radius
dd = 15 m, with 10 UEs each randomly placed.
It is confirmed that both the spatial and fading correlations

are beneficial in terms of required bandwidth and SNR of the
UEs since they increase the SNR and reduce the bandwidth
in statistical terms.

F. EFFECT OF THE NUMBER OF UEs AND RF CHAINS
To conclude this section, the effect of the number of served
users and available RF chains is shown in Fig. 15 and 16
respectively. Fig. 15 shows the average required bandwidth
ranging from 2 up to 32 RF chains. It is shown the high impact
of the number of RF chains. For instance, with AMG, the
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decrease of average required bandwidth between N = 2 and
N = 32 is around 17.5 times. In all the simulated range, the
improvement of AMG with respect to the other alternatives
is notorious.

The average bandwidth versus the number of users,
K , is illustrated in Fig. 16. As it is seen, the required
bandwidth of all the considered techniques increases as the
number of users increases. Nevertheless, the performance
of broadcast transmission greatly worsens as the number
of users increases, compared to the AMG and unicast
approaches. More specifically, the bandwidth reduction of
AMG with respect to broadcast transmission is 42% for
K = 35, 60% for K = 100, and 82% for K = 200
users. This confirms the observation made in other papers
(e.g., [6], [7], [9]) that the performance ofmulticast precoding
deteriorates as the group size grows. This exacerbation of the
increase of required bandwidth that happens with broadcast
transmission does not happen with AMG, as observed in
Fig. 16. This is due to the fact that AMG smartly divides the
UE set into smaller groups and thus it benefits from higher
multicast beamforming gains, even when the number of users
increases. Since AMG searches for a sub-optimal number of
groups, the growth in the required bandwidth as K increases
is less notorious than in the broadcast case, and thus AMG is
even more appealing as K increases.

V. CONCLUSION
In this paper a novel grouping and precoding scheme,
named AMG, has been proposed. This algorithm relies
on a new formulation of the multicast problem that aims
at minimizing the required bandwidth, since it is a key
metric to increase the operator profits. The implementation
aspects of the proposal have been addressed. To this end,
its suitability to be integrated in the context 5G NR, using
the signaling mechanisms and the available measurements
has been discussed. Extensive simulation results have been
provided to demonstrate the benefits of the proposal. Hence,
the proposal has been assessed in terms of the mean and
distribution of the required bandwidth, the complementary
distribution of the SNR, the PMF of the optimal number of
groups, and the average computation time. Different grouping
and multicast precoding algorithms have been compared
under different fading and spatial correlation models. Results
reveal that the proposed approach reduces the required
bandwidth up to 82% for 200 users compared to existing
schemes. It is also shown that AMG leads to a greater SNR
for a randomly chosen user, and it reduces the variance of the
required bandwidth, which eases the implementation in real
networks.
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