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ABSTRACT The process of modelling individual player performance using machine learning is a mature
task in sports analytics. The most significant challenges in machine learning include class imbalance and
high dimensionality problems. We conducted a comprehensive literature review and observed that both
the issues have been studied independently. We found that feature selection addresses the dimensionality
reduction problem by determining a subset of relevant features, while data sampling seeks to make the data
more balanced by adding or removing instances. We also found out that efforts have been taken for studying
the effect of the joint use of feature selection and balancing techniques. However, the prioritization of the
feature selection and sampling is still difficult, and the relationship between them remains unclear. This
paper presents a large-scale comparison of characterizing football players into nine positions by using FIFA
video game data, whereas most of the previous studies in this field have focused on characterizing players
into only three classes according to their positions. The proposed methodology for the study consists of
three main steps. In the first step, the sampling technique is applied to deal with class imbalance, while
the second step encompasses the feature selection technique, which deals with the high dimensionality
problem. The third step combines feature selection and data sampling to deal with both the issues. We made
the comparisons based on nine feature selection algorithms and three balancing techniques, and then we
evaluated their performance using the random forest classifier. We found that 1) feature selection techniques
did not improve the accuracy of the baseline model, 2) balancing techniques improved the accuracy compared
to the baseline, and 3) the results showed superiority of the proposed methodology, involving the joint
application of resampling and feature selection with data balanced by the random oversampling (ROS)
method and synthetic minority oversampling technique (SMOTE), compared to the results obtained only
through the use of a single technique and from the original imbalanced training set. Overall, the proposed
methodology improved prediction accuracy compared to the baseline model. Moreover, the methodology
provided a significant decrease in the number of features, from 29 to 10 features on average.

INDEX TERMS Class imbalance, data mining, data sampling, feature selection, FIFA video game, player
characterizing.

I. INTRODUCTION

Football is regarded as the most popular sport in the world in
the number of both spectators and players [1]. The popularity
of football has increased in the last few years, making it an
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essential contributor to the global economy [2]. In fact, the
revenue for European football clubs alone for 2017 was rated
at $27 bn [3]. In football, creating an optimal lineup of players
capable of winning over another list is a significant challenge
since player positions require different skills [4]. Further-
more, there is no formula or scientific equation to identify a
player’s preferred position in the team. The coaches generally
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do the assignment using their experiences and observations
about the players [5], which exposes selection of players to
many biases.

For the past two decades, machine learning has become
an essential methodology for transforming football statistics
into useful information to help teams and guide coaches
in analyzing opponents and making better decisions in real
time by using sensor-generated data. These data comprise
videos from cameras to all types of physical measurements
and human monitoring. However, research in the field of
football analytics with machine learning techniques is lim-
ited. The main reason for this is the lack of a large-scale
dataset for players, since collecting such rich information
about players might be costly, making sensed data limited to
teams with high purchasing power [5]. In football analytics,
video games such as FIFA and Football Manager (FM) are
considered as other sources of data. Since 2014, researchers
and clubs have used video games as alternative sources for
data. Shin and Robert used the FIFA video game data to
predict match results, and they found that this data can be
used in machine learning projects to make predictions with
accurate results [6].

The website of SoFIFA classifies simulated players
in the FIFA video game series into 14 positions and pro-
vides the player ratings on 29 different skills, where each
skill is evaluated on a 0-to-100 scale. All of the previous
studies, on the other hand, combined these 14 positions
into only three classes according to playing roles: defense,
midfield, and forward line. Combining these positions stems
from two main reasons. First, most players can play in mul-
tiple positions, and second, the multi-class distribution of
players in the SoFIFA data is highly skewed, leading to a
problem in classification accuracy due to class imbalance
and high dimensionality in the data. The instability in the
classes leads to the problem of class imbalance, which may
decrease the prediction performance and extend the training
period.

The class imbalance problem is considered the most signif-
icant issue in data mining. When one of the two classes has
more samples than the other, an imbalance problem occurs.
In such a situation, most classifiers are biased towards the
major classes and hence show abysmal classification rates on
minor classes. Although the minority samples rarely occur,
they are crucial to some areas, such as detecting fraud in bank-
ing operations, finding network intrusions, and diagnosing
cancer [7].

Feature selection is a process of choosing a subset of
relevant features so that the quality of prediction models can
be maintained or improved. Moreover, feature selection is one
of the essential data preprocessing steps in data mining. Data
sampling seeks to make the data more balanced by adding or
removing instances [8].

During the literature review, we identified that many
data mining techniques are helpful but not sufficient. How-
ever, some papers suggest that applying two or more tech-
niques may give better solutions for the class imbalance
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problem [9]-[12]. This paper presents a large-scale compar-
ison for characterizing football players into nine positions
using unbalanced data, namely FIFA video game data. Thus,
this paper also explores the role of data mining techniques
to improve the performance of machine learning algorithms
via treating both high dimensionality and class imbalance
problems in the used dataset. Therefore, we propose an
approach combining feature selection and data sampling to
solve the problems that exist in the above-mentioned data.
The proposed methodology for the study comprises three
main steps. The first step consists of applying the sampling
technique to deal with class imbalance, while the second
step covers the feature selection technique, which focuses on
the high dimensionality problem. The third step combines
feature selection and data sampling to resolve both the issues.
We made the comparisons based on nine feature selection
algorithms and three balancing techniques. Moreover, their
performances were evaluated using the random forest (RF)
classifier. Sections 2, 3, 4, 5, 6, 7, and 8 provide a literature
review, the steps of the methodology of the study, the FIFA
dataset used in the study, the elements of the study, the evalu-
ation metrics, the research design, and the analysis of results,
respectively. The last section of the paper encompasses the
discussion and conclusions.

II. LITERATURE REVIEW

In this section, we briefly review the literature on character-
izing football players’ positions and the studies examining
the influence of combining resampling and feature selection
techniques to manage class imbalance.

A. CHARACTERIZING FOOTBALL PLAYERS’ POSITIONS
Characterizing football players for their particular positions
according to their skills and specific metrics has attracted
coaches’ and data scientists’ attention. Therefore, most Euro-
pean clubs have enlisted data scientists or algorithms special-
ists to help them with this requirement. However, the issue
of grouping and selecting players based on their individual
skills and data using machine learning methods is an open
field that has not seen much published research [13], [14].
To the best of our knowledge, ours is the first approach
that characterizes players in nine positions in a match
according to their skills by using a supervised learning
approach.

On the other hand, most of the studies in this field focused
on characterizing players into three categories according
to their positions: defense, midfield, and forward line.
We strongly believe that building a model according to nine
positions using an extended set could reveal more insights
about the characteristics of football players required in each
position. Table 1 summarizes the most critical recent research
about the machine learning-based characterization of football
players’ positions; the comparison has been made in terms
of classifier, data type, highest accuracy, and number of
instances, features, and positions classified.
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TABLE 1. Summary of some of the most-critical recent research studies on characterizing football players’ positions.

. N. of
Ref. Data base Classifier Anghest N. of N. of Positions Assessment
ccuracy Instances Features .
classified
[15] Real data Fuzzy rule-based classifier z=759% 20 18 4 The classification has been
(Iranian club) conducted for only four
positions.
[16] EA Sports' C4.5, Backprop -ANN, ANN- 94.12% 206 28 4 The classification has been
FIFA video RBF conducted for only four
game positions.
[17] EA Sports' Neural network, Random Forests 79.1% 1700 40 3 The classification has been
FIFA video and Logistic regression. conducted for only three
game positions.
[14] EA Sports' Principal components analysis in 95% 7705 40 4 The classification has been
FIFA video conjunction with a model-based conducted for only four
game Gaussian clustering positions.
[18] EA Sports' Random Forests and Sequential 81.5% 120 34 4 The classification has been
FIFA video Minimal Optimization (SMO) conducted for only four
game positions.

B. STUDY OF THE INFLUENCE OF COMBINED
RESAMPLING AND FEATURE SELECTION TECHNIQUE

As mentioned in the Introduction section, the imbalance
problem occurs when one of the two classes has more samples
than the other. In such a situation, most classifiers are biased
towards the major classes and give poor classification rates
for minor classes. The methods for the classification of the
imbalanced dataset are divided into three main categories:
the algorithmic approach, data-preprocessing approach
(resampling), and feature selection approach. Each of these
techniques has pros and cons [7], [19], [20]. Moreover,
by means of the literature review, we observed that studies
have examined the effects of combining resampling and
feature selection to address the class imbalance. For com-
bining the two techniques, researchers have investigated four
different approaches: Approach 1 — feature selection and
modelling based on original data; Approach 2 — feature selec-
tion based on original data and modelling based on sampled
data; Approach 3 — feature selection based on sampled data
and modelling based on original data; and Approach 4 fea-
ture selection and modelling based on sampled data. The
supervised feature selection methods are strongly affected by
the distribution of data (the imbalanced problem), such that
it is natural to select the features on the sampled data and
then have them modelled on the sampled data. We, therefore,
present a comparative study using only the fourth approach
and our results also confirm the abovementioned viewpoints.
In other words, we assume that Approach 1, Approach 2, and
Approach 3 were redundant comparative studies. We believe
that the experiments conducted in our study will guide
future practices in the categorization of class-imbalanced
data. Table 2 summarizes the most critical recent research
directed towards studying the influence of combining resam-
pling and feature selection to tackle the class imbalance; the
comparison has been made in terms of classifier, data type,
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approaches, and type of feature selection and data sampling
algorithm.

Ill. STEPS OF METHODOLOGY

Before detailing the proposed methodology, we have
reviewed the studies examining the influences of combining
resampling and feature selection to solve class imbalance,
shed light on the ideal method in modelling, and discussed the
techniques used. The proposed methodology consists of three
main steps. The first step encompasses applying the sampling
technique to deal with class imbalance, while the second step
covers the feature selection technique, which deals with the
high dimensionality problem. The third step combines feature
selection and data sampling to deal with both the issues.
In addition to the main steps, two more steps were added to
deal with other challenges in the dataset.

1) NORMALIZE AND DOUBLE DATA

The original dataset consisted of 17,981 players; however,
some players had multiple positions. We, therefore, doubled
the number of players to 27,251. The FIFA dataset con-
tained a column that showed the player’s preferred position.
Afterwards, nine out of 14 play positions were assigned.
Later, we performed data normalization on all the dataset
features except for the attribute having the preferred position,
to ensure consistency. Thus, finally the value of each feature
ranges from 0 to 1. Moreover, some of the features have a
’+/— sign. For this reason, we did some calculations instead
of keeping them as a string.

2) DATA SPLITTING AND EVALUATION MODELS

After cleaning the dataset, 80% of the data was randomly
allocated to train the classifier, while the remaining 20% was
used for testing. In classification problems, the simplest way
to evaluate an algorithm’s performance is to use different
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TABLE 2. Summary of some of the most-critical recent research studies on the influence of combined resampling and feature selection technique on

class imbalance.

2- Feature Selection after Data
Sampling (A2).

dataset is valuable for all
feature selection methods.
-The resampling of the
imbalanced class generates a
good enhancement in
performance results for all
measurements.

Refs. Application Dataset Approaches M(l)de Highlights Assessment

[21] | Music CL200, JZ200, 1- Feature Selection after Data 1-NN, | - The benefits associated to - Only one method for feature
(Identifying KR200, CLA, Sampling (B1). SVM | resample training data are selection was considered: filter and
the melodic JAZ and KAR 2- Feature Selection before Data greater than those related to the other method was PCA.
track of a Sampling (B2). the use of feature selection. - Only two methods for sampling
given MIDI - The application of feature were considered: SMOTE and RUS.
file) reduction methods on - After sampling data in approach

imbalanced data has low B1, the study did not focus on
effectiveness’. modeling data based on original or
- The B1 approach performs | sampled data.

better than the B2 approach.

[22] | Different Three cancer 1- Feature selection based on NB, - Al and A3 approaches - Only one method for feature
application gene expression sampled data, and modeling based | MLP, | perform, on average, better selection is considered (filter).
fields. datasets and four | on original data (Al). 5-NN, | than the A2 approach. - Only one method for sampling

datasets from the | 2- Feature selection based on SVM, was considered (RUS).

UCIML sampled data, and modeling based | LR. - Researchers injected noise into the
Repository on sampled data (A2). data set. Therefore, introducing the
(Internet 3- Feature selection based on noise factor complicated the
Advertisements original data, and modeling based problem set. For the uncertainty of
dataset, Musk, on sampled data (A3). noise, the conclusions of
Satimage-4 and researchers may not fit for the

Opt digits. situation without noise.

[23] Different Steel Plates 1- Data Sampling after Feature C4.5 - Feature selection before - Only two methods for feature
application Faults, Statlog Selection (Al). sampling is mostly better selection are considered: filter and
fields. (Landsat 2- Feature Selection after Data (A1, mostly, better than A2). | wrapper.

Satellite), and Sampling (A2). - Under sampling performs - Only two methods for sampling
Spam base, better than oversampling were considered: RUS and ROS.
Optdigits, Musk, (when the dataset is highly - After sampling data in approach
Semeion imbalanced). A2, the study did not focus on
Handwritten modeling data based on original or
Digit, and sampled data.
Internet - The type of classifier was not
Advertisements. considered, as only one classifier
was used in all experiments.

[12] | Software Eclipse 2.1 1- Feature selection based on NB, - A1 approach performs, on - Only one method for feature
defect sampled data, and modeling based | MLP, average, better than the A3 selection is considered (filter).
prediction on original data (A1/ DS-FS- KNN, | and A2 approaches when the | - Considered three methods for

UnSam). SVM, | RUS was employed. sampling: RUS, ROS and SMOTE
2- Feature selection based on AND However, the A3 approach

sampled data, and modeling based | LR. performs better than the

on sampled data (A2/ DS-FS- other two approaches when

Sam). the oversampling method

3- Feature selection based on (ROS or SMOTE).

original data and modeling based

on sampled data (A2/ FS-DS).

[11] Tweet Sentiment140 1- Feature selection based on KNN, | - Overall, there is little - Only one method for feature
sentiment corpus (5:95 and | sampled data, and modeling based | C4.5, difference between the three | selection is considered (filter).
analysis 20:80 positive: on original data (A1/ DS-FS- SVM, | approaches. - Only one method for sampling

negative class UnSam). MLP, - The A3 approach performs | was considered (RUS).
ratios) 2- Feature selection based on LR, better than the Al

sampled data, and modeling based | NB, approaches for the 5:95

on sampled data (A2/ DS-FS- RBF. dataset (highly imbalanced

Sam). scenarios).

3- Feature selection based on

original data, and modeling based

on sampled data (A2/ FS-DS).

[24] | Webspam WEBSPAM- - Feature Selection after Data C4.5 - The study focuses on - The study focuses on one scenario

detection UK2006 and Sampling constructing an ensemble for data balancing (feature selection
WEBSPAM- decision tree classifier after data sampling using only one
UK200 through data balancing and method for feature selection and
select several optimal one method for sampling RUS).
feature subsets for each sub-
classifier.

[10] | Heart failure Hull-LifeLab 1- Feature Selection before Data RF, -Handling a high - Only two methods for sampling

prediction clinical database | Sampling (Al). J48 dimensional imbalanced were considered: RUS and ROS

- Three methods for feature
selection are considered: filter,
wrapper, and Embedded.

- After sampling data in approach
A2, the study did not focus on
modeling data based on original or
sampled data.

NN= neural network, SVM= Support-vector machine, NB= Naive Bayes, MLP= multilayer perceptron, LR= Logistic regression, KNN= k-nearest neighbors,
RBF= Radial basis function network, RF= Random Forest.
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training and testing sets. In this technique, the original data
is divided into two parts. The first part trains the model and
makes predictions on the second part. Moreover, it evaluates
the predictions for the expected results, and the split data size
is often based on the dataset size. The prevalence of using the
training data is between 70 and 80%, while for testing, it is
between 20 and 30% [25].

IV. DATA SCREENING AND SAMPLE SELECTION

A. DATASET DESCRIPTION

The difficulty of obtaining large-scale reliable data and the
cost problems related to this process were explained in the
Introduction section. For these reasons, in this study, we aim
to use the FIFA soccer video game data, which is commonly
used in the literature. It has been used successfully to predict
the results of football matches [6], [26], and we have seen
that it was comparable or better than other sources of football
data [6].

The EA Sports FIFA video game series system began
in 2009. It offers detailed information including weekly
updates about a broad set of European soccer players and
their skills, which covers three aspects: physical, men-
tal, and technical skills. This information is available on
the official website of the game (http://sofifa.com/). The
FIFA video game series system has resulted in a huge amount
of fine-grained data, which has proven to be particularly
useful for coaches, sports analysts, and football fans world-
wide [27], [28]. In this study, we used the dataset for the
FIFA 18 game available on Kaggle.! It contains 17,980 cases,
where each case relates to one football player. Each football
player has more than 70 attributes. These attributes can be
divided into personal attributes (e.g., age, nationality, and
value), performance attributes (e.g., overall, potential, and
stamina), and position (which is classified into 14 positions).
For our analysis, we selected 29 continuous variables (player
performance indicators on a scale of 0—100) and one categor-
ical variable (player’s position).

B. SAMPLE ANALYSIS

In this paper, we seek to characterize football positions based
on individual player skills, covering three aspects: physical,
mental, and technical skills [16], [29]. Table 3 summarizes
these skills.

There are 11 different positions in a soccer team in gen-
eral: goalkeeper, centre back, full back, wing back, centre
midfielder, central attacking midfielder, central defensive
midfielder, midfielder, winger, centre forward, and striker.
These positions represent both the player’s primary role and
their operation area on the pitch [14]. The location of these
positions on a football pitch is shown in Figure 1.

Previous studies showed that each position has different
criteria. For instance, while the criterion ’ball control’ is
significant for central attacking midfielders, it is less critical
for central defensive midfielders (see, e.g., [30]). Therefore,

1 https://www.kaggle.com/thecO3u5/fifa-18-demo-player-dataset
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TABLE 3. Description of the main variables that are used in the

performance analysis of a football player.

Physical Skills Mental Skills Technical Skills
Acceleration Aggression Ball Control
Agility Composure Crossing
Balance Interceptions Curve
Jumping Marking Dribbling
Reactions Positioning Finishing
Sprint Speed Vision Free Kick Accuracy
Stamina - Heading Accuracy
Strength - Long Passing
- - Penalties
- - Short Passing
- - Shot Power
- - Sliding Tackle
- - Standing Tackle
- - Volleys

FIGURE 1. Positions of players on football (soccer) pitch.

we also seek to find out the essential features required in the
process of characterizing players.

Through data analysis, we found that the sample dataset

had the following characteristics:

1) There are 14 positions for football players: goal-
keeper (GK), centre back (CB), right and left full
back (RB/LB), right- and left-wing back (RWB/LWB),
centre midfielder (CM), central attacking midfielder
(CAM), central defensive midfielder (CDM), right
and left midfielder (RM/LM), right and left winger
(RW/LW), centre forward (CF), and striker (ST).

2) A goalkeeper is a special position that differs from
other positions in terms of some characteristics like
"overhead exit’ and ’person-to-person battles’. So,
we ignore this position as a separate position.

3) The original dataset consisted of 17,981 players, but
since some players had multiple positions, we doubled
the number of players to 27,251.

4) To avoid class overlapping, we considered nine primary
positions out of 14, where previous studies [30], [31]
indicated that the skills required for some positions are
the same. For example, right and left full back, and
right and left midfielder. Table 4 summarizes the nine
primary positions.
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TABLE 4. Summary of the nine main positions.

n. Primary position Comments
#0 | Striker Independent position
#1 | Winger RW and LW are considered as one
position.
#2 | Midfielder RM and LM are considered as one
position.
#3 | Center Midfielder Independent position
#4 | Central Attacking | Independent position
Midfielder
#5 | Center Forward Independent position
#6 | Central Defensive | Independent position
Midfielder
#7 | Center back Independent position
#8 | Defender Full backs (RB/LB) and Wing backs
(RWB/LWB) are considered as one
position. Moreover, in modern
football, there's hardly any difference
between Full backs and Wing backs.

Class overlapping is a critical problem in which data
samples appear as valid instances of more than one class.
Researchers have found that misclassification often occurs
near class boundaries, where overlapping usually occurs
as well. Therefore, the class overlapping problem may be
responsible for noise in datasets [32], [33].

5- There are 29 relevant features for the prediction in

players’ position (see Table 3).

6- Imbalanced data. For example, among 27,251 players
for nine positions, only 350 players were centre for-
ward, which accounted for only 1.28% of the samples.
Figure 2 shows the class imbalance ratios of data. The
observations in Figure 2 are summarized in Table 5.
Formula (1) represents the method to calculate each
class’s imbalance ratio [34].

0 1 2 3 4 5 6 7 s

Prefarrsd_Positions.

£

¥

0

g
8

)

FIGURE 2. Distribution of players in the original dataset according to nine
positions.

Label cardinality of D is the average number of labels of
the examples in D:

1 D]
LED) = 75D, il
Y]

Imbalance ratio = ———— €))]
LC(D) — |Yil
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TABLE 5. Distribution of players in the dataset.

Class Label N. of players Imbalance ratio
0 3219 11.8%
1 1962 7.1%
2 5090 18.6%
3 3589 13.1%
4 2281 8.3%
5 350 1.28%
6 2663 9.7%
7 3630 13.3%
8 4467 16.3%
Total number of 27251
players

V. ELEMENTS OF COMPARATIVE STUDY

A. RESAMPLING TECHNIQUES

A dataset is entitled to be imbalanced if it contains more
samples from one class than from the rest. Resampling
techniques are considered one of the most commonly used
means to deal with imbalanced datasets. Resampling tech-
niques include removing examples from the majority class
(undersampling) or duplicating examples from the minority
class (oversampling), as shown in Figure 3. Therefore, in this
paper, we present a comparative study about the influence
of combining these resampling methods and three feature
selection methods for tackling class imbalance.

(@ (b)

Copies of the

|
minority class -

Samples of

A majority class
&
=

Original dataset

Original dataset

FIGURE 3. A general example for resampling techniques:
(a) undersampling, (b) oversampling.

For this study, we selected the following resampling meth-
ods, which are among the most reported methods in the
literature. Additionally, these methods have not been tested
with feature selection methods, except in the study presented
by [12], in which only one way has been used to feature
selection (see Table 2).

1) RANDOM UNDERSAMPLING (RUS)
The RUS deletes examples in the majority class and can result
in losing information invaluable to a model.

2) RANDOM ONDERSAMPLING (ROS)
The ROS duplicates examples from the minority class in

the training dataset and can result in overfitting for some
models [35].

3) SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE
(SMOTE)

In the SMOTE method, each minority class sample is taken
and synthetic samples are created by looking at any or all of
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the sample’s k neighbour. Thus, the minority class becomes
oversampled. The main difference from other sampling meth-
ods is the synthetic samples’ production, which is facilitated
by looking at their nearest neighbours instead of copying and
replicating the minority class samples. The main disadvan-
tage of the SMOTE method is the noise it generates. Noises
are often intricately intertwined with the other class; they
confuse the model and are hard to predict [36].

B. FEATURE SELECTION
Feature selection is one of the main preprocessing steps in
many machine learning applications. It is a process of select-
ing a subset of relevant features, reducing data dimensionality
for use in model construction (so that prediction performance
will be improved or maintained), and speeding up the learning
process. Many features may be irrelevant or contain no useful
information. Thus, their inclusion may negatively impact
classification performance. Therefore, feature selection also
helps data miners acquire a better understanding of their
data by telling them about the necessary features and their
correlation with each other [8], [37]. In contrast to other
dimensionality reduction techniques, such as those based
on projection (e.g., principal component analysis), feature
selection techniques do not alter the variables’ original rep-
resentation. Thus, they preserve the original semantics of the
variables, thereby offering the advantage of interpretability
by a domain expert [38]. In this way, they can find out the
required player performance attributes for each position, and
acoach would have an objective criterion to select the players.
Feature selection techniques can be broadly categorized
into three categories, depending on how they combine the fea-
ture selection search with the construction of a classification
model: filter, wrapper, and embedded. The following subsec-
tions provide a brief explanation of each technique and the
most prominent advantages, disadvantages, and algorithms
used in this study.

1) FILTER METHODS
The random filter feature selection methods use statistical
techniques to obtain a specific score and assign it to each
feature. By only looking at the intrinsic properties of the data,
filter methods can assess the relevance of features [39]. The
selection of a subset of features is made as a preprocessing
step; this means that after each feature’s score is calculated,
the low-scoring features are removed, and the remaining are
used as predictors in the model construction [38], [40].

Thanks to its simplicity, filter feature selection methods
are widely used in sports predictions [41]. Examples of this
method and the usage areas in sports prediction are infor-
mation gain, chi-squared, ANOVA [42], mutual information
(MI) [43], correlation-based feature selection (CFS), INTER-
ACT algorithm, ReliefF, and minimum redundancy maxi-
mum relevance (mRMR) [44].

In this study, we used CFS, chi-squared, MI, and mRMR
as filter feature selection methods. The following subsections
provide a brief explanation of each algorithm.
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a: CORRELATION-BASED FEATURE SELECTION

ALGORITHM (CFS)

This method uses the correlation-based heuristic evaluation
function to determine the merit of a particular feature subset
for predicting the class label and the level of correlation
among them. In other words, the CFS is used to calculate
subsets for the evaluation of features with the following
basic hypotheses, which are based on the heuristic that
’Good feature subsets contain features highly correlated
(predictive of) with the classification, yet uncorrelated (not
predictive of) to each other’.

The heuristic uses the Pearson’s correlation coefficient
which can be calculated using the following formula:

Ms = o 2)
Vk+k(k—=1Dr
where Ms is the merit of the current subset of features,
k is the number of features, ¥¢y is the mean of the cor-
relations between each feature and the class variable, and
7 is the mean of the pairwise correlations between every two
features [12].

Correlation coefficients whose magnitude is between 0.7
and 0.9 indicate variables that can be considered highly corre-
lated. Moreover, coefficients whose magnitudes are between
0.5 and 0.7 indicate variables that can be considered moder-
ately correlated [45].

b: CHI-SQUARED (CS)

The chi-squared feature evaluation tells the significance of
each of the original features. Based on this, the user can
choose to keep the most-significant and discard the least-
significant features. In the chi-squared feature selection,
a feature’s significance is measured by the chi-squared test
statistic between the feature and the target class. Equation (3)
is used to calculate the chi-squared statistic, where ‘observed’
is the actual number of class observations and ’expected’ is
the number of class observations that would be expected if
there were no relationships between the feature and class. The
sum is over each value of the feature since the chi-squared
method requires that numeric features be discretized before
calculating [46].

=3 (observed — expected )2 /(expected) 3)

A high chi-squared test score indicates that the feature
and the target class are unlikely to be independent and that,
therefore, we should keep the feature in our new dataset.

¢: MUTUAL INFORMATION (MI)

The MI is another statistical method used in feature selection.
It is the measure of how two variables (x, y) are mutually
dependent. It evaluates the *'measure of data’ gathered about
one arbitrary variable through the other random variable.
Equation 4 is used to calculate the MI between two discrete
random variables x and y :

Px,y)
p () p(y)
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where p(x, y) is the joint probability function of X and Y,
and p(x) and p(y) are the marginal probability distribution
functions of X and Y, respectively.

For continuous random variables, the summation is
replaced by a double integral as

_ P(x,y)
IX,Y)= p(x, y)log(—————)dxdy (%)
yJx p (x) p(y)

d: MINIMUM REDUNDANCY MAXIMUM

RELEVANCE (mRMR) TECHNIQUE

The mRMR is a feature selection approach that tends to select
features with a high correlation with the class (output) and a
low correlation among themselves. For continuous features,
the F-statistics can be used to calculate correlation with the
class (relevance), and the Pearson’s correlation coefficient
can be used to calculate the correlation among the features
(redundancy). Thereafter, features are selected one by one
by applying a greedy search to maximize the objective func-
tion, which is a function of relevance and redundancy. Two
commonly used types of the objective functions are mutual
information difference (MID) criterion and mutual informa-
tion quotient (MIQ) criterion, which represent the difference
or the quotient of relevance and redundancy [47].

2) WRAPPER METHODS
The wrapper feature selection methods generate several fea-
ture subsets evaluated according to their predictive power
when used with a specific classifier [39]. As described by
Saeys et al., a search procedure in the space of possible
feature subsets is defined, and various subsets of features are
generated and evaluated. The evaluation of a specific subset
of features is obtained by training and testing a specific classi-
fication model. A search algorithm is then *wrapped’ around
the classification model to search the space for all feature sub-
sets. The application of wrapper methods to high-dimensional
datasets requires special attention since with the increase
in number of features, the space of feature subsets grows
exponentially and becomes computationally impossible. The
heuristic search methods are used to guide the search for an
optimal subset of features to tackle this problem [38], [40].
The two most common greedy searching techniques used
to perform wrapper-style feature selection are sequential
feature selection and recursive feature elimination (RFE).
Sequential feature selection algorithms can be either forward
as sequential forward selection (SFS) or backward as sequen-
tial backward elimination (SBE). In this study, we used SFS,
SBE, and RFE as wrapper feature selection methods. The
following subsections provide a brief explanation of each
algorithm.

a: SEQUENTIAL FORWARD SELECTION (SFS)

The SFS starts from the empty set. It performs best when
only a small number of features are involved. Nonetheless,
the main disadvantage of SFS is that it cannot remove features
that become insignificant after the addition of other features.
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b: SEQUENTIAL BACKWARD ELIMINATION (SBE)

The SBE works in the opposite way to that of the SFS. The
SBE starts with a full set of features. It works best with many
features in the dataset [48].

¢: RECURSIVE FEATURE ELIMINATION (RFE)

Given an external estimator that assigns weights to features
(e.g., the coefficients of a linear model), the RFE aims to
select features by recursively considering smaller and smaller
sets of features. First, the estimator is trained on the initial
set of features and the importance of each feature is obtained
through any specific attribute. Then, the least important fea-
tures are pruned from the current set of features. This proce-
dure is recursively repeated on the pruned set until the desired
number of features to select is eventually reached [49].

3) EMBEDDED METHODS

As for the wrappers, the embedded methods depend on a
specific learning algorithm. Further, while the search and
evaluation procedures are separated in the wrappers, the
embedded method performs feature selection in the classifier
construction using its internal parameters. Therefore, they are
faster than the wrappers and are more efficient as they avoid
the use of all the available data by not needing to divide the
data into a training set and a test set [50].

Decision trees such as RF, extra tree, and XGBoost are
popular approaches for embedded methods. Other embed-
ded methods are the least absolute shrinkage and selection
operator (LASSO) with the L1 penalty and ridge with the
L2 penalty for constructing a linear model. These two meth-
ods shrink many features to zero or almost near zero [51].
In this study, we used RF and LASSO as embedded feature
selection methods. The following subsections provide a brief
explanation of each algorithm.

a: EMBEDDED-RANDOM FOREST (RF)

The feature evaluation approach based on the RF is known
as embedded method [52]. It provides a variable importance
criterion for each feature by computing the mean decrease in
the classification accuracy for out-of-bag (OOB) data from
bootstrap sampling [53]. Assuming bootstrap samples b =
1,..., B, the mean decreases in classification accuracy 5]
for variable x; as the importance measure is given by

1 B 0ob 00b
D= 3 szl(Rb — R} (6)
where RZ"b denotes the classification accuracy for OOB data
KZOb using the classification model 7p; and RZJ‘.’I’ is the clas-

sification accuracy for OOB data EZj”h permuted the values

of variable x; in Zz"b (G = 1,...,N). Finally, a z-score
of variable x; representing the variable importance criterion
D;

could be computed using the formula x; = v-/_«j/E’ after the
)

standard deviation s; of the classification accuracy decrease
has been calculated.

149273



IEEE Access

M. A. Al-Asadi, S. Tasdemir: Empirical Comparisons for Combining Balancing and Feature Selection Strategies

b: EMBEDDED-LEAST ABSOLUTE SHRINKAGE AND
SELECTION OPERATOR (LASSO)

The LASSO is a powerful method that helps perform regular-
ization (L1) and feature selection of the given data. It penal-
izes the beta coefficients in a model. The LASSO method
limits the sum of the values of the model parameters, where
the sum has to be less than the specific fixed value. This
shrinks some of the coefficients to zero, indicating that a
particular predictor or certain features will be multiplied by
zero to estimate the target. During this process, the variables
that have a non-zero coefficient after shrinking are selected
to be a part of the model. It also adds a penalty term to the
cost function with a lambda value tuned [51]. This is how the
LASSO reduces the overfitting caused and helps in feature
selection; it uses the following equation:

M M

2
Zi:l 0 = 9i)2 - Zi:l (yi - Zf:o Wi xij)
.Y <yl )

When lambda (1) is 0, the equation is reduced, leading to
no elimination of the parameters. An increase in A causes an
increase in bias, and a decrease in A causes an increase in
variance.

C. CLASSIFICATION

The final step of our proposed methodology involves a super-
vised learning predictive model. The classification stage aims
to characterize football players into nine positions. In this
study, we used only one classifier in empirical comparisons as
we seek to increase classification accuracy based on balanc-
ing techniques and feature selection regardless of the classi-
fier. Therefore, the RF was selected for this task. The RF was
chosen owing to its frequent use in the literature of character-
izing players [17], [18] and data mining domains. Moreover,
it is a relatively fast state-of-the-art algorithm [12], [54].

1) RANDOM FOREST (RF)

The RF is an ensemble classification approach that has proved
its high accuracy and superiority. The RF consists of several
uncorrelated decision trees. For a classification operation, the
RF classifier creates a set of decision trees from a randomly
selected subset of training data. It then collects the votes
from different decision trees to decide the final class of
the test target. The general architecture of the RF is shown
in Figure 4.

The RF was first introduced in 1999 by Leo Breiman. In his
studies, Breiman explored various methods of randomization
of decision trees (sampling), for example, using bagging or
boosting [55]. In bootstrap, the classifier creates new datasets
from the original data and then calculates the average errors
in these groups to estimate variance. (Unlike cross-validation
sampling like hold out in which data is divided into two parts
for training and testing.) As for the RF, its hallmarks mainly
include [56]

149274

Instance

Random Forest/'r {l TR
T—
- ﬁ g =
= - oL
K0 5% X KA
\\ : / \
-} N dbdb'd é ®'
Tree-1 Tree-2 Tree-n

Class-A Class-B Class-B

rl\d:ginrily-'-V(\litlg ] |

Final-Class|

FIGURE 4. Random Forests-based classification process.

1) Bootstrap sampling (bagging) — randomly selecting
number of samples with replacement.

2) Feature selection randomly — randomly selecting only
a small number of m instances in each node’s split.

3) Full-depth decision tree growing.

4) OOB error — calculating error on the samples not
selected during bootstrap sampling.

V1. EVALUATION METRICS

In machine learning, several metrics are used to evaluate the
performance of the classification models. Generally, statis-
tical methods, such as hold-out (train-and-test split), cross-
validation, and bootstrap, can be used with predictive models
to get estimates of model performance using the training
set [57]. Confusion matrix, classification report, and accuracy
are considered as the most critical metrics for evaluating the
classification models using the testing data [25].

A. HOLD-OUT (TRAIN AND TEST SPLIT)

In classification problems, the simplest way to evaluate the
algorithm’s performance is to use different training and test-
ing sets. In this technique, the original dataset is split into two
parts. The first part trains the algorithm and makes predictions
on the second part and then evaluates predictions against the
expected results. Generally, the size of the split data is based
on the size of the dataset. It the common to use 70-90% of the
data for training and 10-30% for testing [25]. In this study,
we used the train-and-test split for splitting data. The samples
(see Table 5) were randomly divided into 70% for training and
30% for testing.

B. CONFUSION MATRIX

A confusion matrix is a practical presentation of the accuracy
of a model with two or more classes. The matrix displays
predictions on the x-axis and accuracy outcomes on the
y-axis. The matrix cells are the number of predictions made
by the algorithm [25], as shown in Figure 5.

In the confusion matrix, true positives (TP) correspond to
the number of correct positive predictions. Similarly, false
positives (FP), true negatives (TN), and false negatives (FN)
are the numbers of incorrect positive predictions, correct
negative predictions, and incorrect negative predictions,
respectively.
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FIGURE 5. Confusion Matrix.

Like the previous studies [58], the minority class was
considered positive, while the majority class was considered
negative. Therefore, according to Tables 4 and 5, the centre
forward position was regarded as positive (minority class)
while the midfielder was considered as negative (majority
class), which means
TP: The player is a midfielder and is classified as a mid-
fielder.

FP: The player is a midfielder and is classified as a centre
forward.

TN: The player is a centre forward and is classified as a
centre forward.

FN: The player is a centre forward and is classified as a
midfielder.

C. CLASSIFICATION REPORT

Classification report provides a convenient representation
when working on classification problems to give you a quick
idea of a model’s accuracy using several measures derived
from the confusion matrix for the model. The classification
report displays the precision, recall, F/-score, and support
(the number of actual occurrences of the class in the specified
dataset). These metrics give a more profound intuition of
the classifier behaviour over total accuracy, which can mask
functional weaknesses in one type of binary or multi-class
problem. In binary classification, the precision, recall, and
FI-score are defined as shown in formulas (8), (9), and (10),
respectively [59]. However, in multi-classification, it can
compute the performance measures in the same way as it can
define one class as positive and the other as unfavourable.

. TP
Precision = —— ()
FP 4+ TP
TP
Recall = —— )
FN + TP

(precision * recall)
F1 score

(recall 4 precision) (10)

Since we are dealing with an imbalanced class problem,
recall is an important metric to consider. From the football
point of view, having high values of FN is not good. Midfield-
ers are usually good at defense and offence, unlike the centre
forward players who are not required to be good at defense.
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This means, having too many FP is not as severe as the latter
case.

D. CLASSIFICATION ACCURACY

A typical metric for measuring the performance of learning
systems is the classification accuracy rate. It is the number
of correct predictions made divided by the total number of
predictions made. Classification accuracy is considered as the
most popular evaluation metric for classification problems in
machine learning [25]. However, empirical evidence shows
that this measure is biased regarding the data imbalance
and proportions of correct and incorrect classifications [60].
Therefore, these shortcomings have motivated the search for
new measures such as precision, recall and F/-score. Classi-
fication accuracy is defined in formula (11):

(TN + TP)

Accuracy = (11
(TP 4+ FP 4+ FN 4 TN)

VIl. RESEARCH DESIGN

In this study, we aim to create a machine learning classifier
to characterize football players’ positions. Moreover, we seek
to address the imbalance problem in the dataset.

A. RESEARCH QUESTIONS
The research questions for this study are as follows:
Research Question 1: Can machine learning algorithms
make recommendations to improve team performance?
Research Question 2: Can data mining techniques
improve the performance of machine learning algorithms?
To answer the first question, we discuss the implementa-
tion of the baseline algorithm in Section (8.1) and evaluation
of its performance on our data. Thus, we explore one of
the primary aspects of sports analytics in football using a
supervised predictive model to characterize players accord-
ing to nine positions. For the second question, in Sections
(8.2) and (8.3), we discuss the importance of applying two
preprocessing techniques, resampling and feature selection,
to jointly reduce the complexity of training datasets and
solve the class imbalance problem. We used three different
algorithms of the following preprocessing techniques: RUS,
ROS, and SMOTE. For resampling, nine methods for feature
selection were used to evaluate the effectiveness of the vari-
ous techniques and build a machine learning classifier.

B. DESIGN OF COMPARATIVE EXPERIMENTS
A Python module called scikit-learn was used to build
machine learning models and execute feature selection algo-
rithms. Moreover, a python toolbox called imbalanced-learn
API was used to tackle the curse of imbalanced datasets.
All models were created using the default parameters unless
otherwise noted.

The design of comparative experiments was based on the
3 x 9 crossings of resampling and feature selection meth-
ods using the RF classifier, which produced four different
combinations:
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FIGURE 6. Averaged results of experiments in terms of the confusion matrix.
1) Baseline (one model). 039
2) Resampling versus baseline (three models).
3) Feature selection versus baseline (nine models). 0283
4) Joint application of resampling and feature selection 038
(27 models).
. . . . 0.375
Figure 6 shows the results of four previous combinations S
in terms of the confusion matrix for the dataset, which used to 037
evaluate the algorithm in Research Question 1 and to develop 0365
the predictive models for Research Question 2 (consisting
. . 0.36
of 40 models). In the next section, the results of these matrices
is interpreted and clearly presented in terms of precision, 0355
recall, and FI—SCOFG. Precision Recall Accuracy

VIIl. ANALYSIS OF RESULTS

The results in Figure 6 were analyzed in the following three
ways, organized from a low to a high level of detail. (Each
comparative analysis involves all the possible cases obtained
from the combination of a classifier [see 5.3], a data partition
[see 6.1], and performance measures [see 6.2, 6.3, and 6.4].

A. BASELINE MODEL

A baseline is a simple procedure for making predictions on
a specific predictive problem. The skill of this model pro-
vides the bedrock for the lowest acceptable performance of
a machine learning model on the original dataset, by which
all other models can be evaluated. If a model achieves per-
formance at or below the baseline, it means that something
is wrong or the model is not appropriate for your problem.
Random forest is used to establish the baseline model in
our experiments. The classification report results in terms
of accuracy, precision and recall, which were summarized
in Figure 7.

We acknowledge that tuning the algorithm’s parameters
can lead to better results, but we adopt the classification
model’s default parameters in all the experiments. Thus,
we seek to maintain baseline performance as the basis for
comparison. The focus of this study is not to examine the
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FIGURE 7. Summary regarding the performance of the baseline model (in
terms of accuracy, precision, and recall).

pros and cons of the used classification models. However,
it focuses on investigating the joint influence of resampling
and feature selection for tackling class imbalance.

B. LEVEL A (THE HIGHEST LEVEL OF ANALYSIS)

1) RESAMPLING VERSUS BASELINE (A1)

In this sublevel, the resampling techniques used in the study
were analyzed. In the first column of Figure 6, the classi-
fication results obtained from resampled training sets were
compared with those provided by the corresponding original
training sets in terms of the confusion matrix.

Figure 8 shows the resampled sets after applying the three
resampling techniques in terms of accuracy, precision and
recall. Owing to random behaviour of the RUS, ROS, and
SMOTE, the resampled sets were randomly divided into
70% for training and 30% for testing in each experiment
involving these techniques. The results obtained from these
experiments are summarized as follows: The use of resam-
pling techniques improved accuracy, precision, and recall
compared with baseline, and the ROS had a relative advantage
compared to other methods of balancing.
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TABLE 6. Attributes table for features that were selected using nine types of feature selection.

Feature (skill) CSF | CS | MI | mRMR | SFS | SBE | RFE | Emb.-RF | LASSO
1 Acceleration
2 Aggression
3 Agility v
4 | Balance v
5 Ball control
6 Composure
7 Crossing v v v v v
8 Curve v
9 Dribbling v v v v v v
10 | Finishing v 4 4 v v v v v
11 | Free kick accuracy v
12 | heading accuracy v v v v
13 | Interceptions v v v v v v v v
14 | Jumping
15 | Long passing v v v v v
16 | Long shots v v v v
17 | Marking v 4 v v v v v
18 | Penalties v v
19 | Positioning v v v v v v v
20 | Reactions v
21 | Short passing v v
22 | Shot power v v
23 | Sliding tackle v v 4 v v v v
24 | Sprint speed v
25 | Stamina v
26 | Standing tackle v v v v v v v
27 | Strength v v
28 | Vision v v v v v v
29 | Volleys v v v v

Total 10 10 | 10 | 10 10 10 10 12 11

0.6

05

04

Precision
03
Recall
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0.2

0.1

Baseline RUS ROS SMOTE

FIGURE 8. Summaries regarding the performance of resampling methods
models (in terms of accuracy, precision and recall).

2) FEATURE SELECTION VERSUS BASELINE (A2)

In this sublevel, the feature selection techniques used in the
study were analyzed. Table 6 shows the new subsets whose
dimensionality was reduced by the nine feature selection
techniques, where nine subsets were produced. The imple-
mentations of the feature selection techniques used are those
included in the scikit-learn library with their default param-
eters except for some parameters set in advance. In the CSF,
the most critical parameters are the correlations between
each feature and the class variable. We set it to 0.5 in our
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experiments, which leads to a subset of 10 features being
produced. For the chi-squared algorithm, we set (k = 10)
for all the datasets to specify the 10 best features with
highest chi-squared statistics. For the MI algorithm, the
10 features with the highest MI score were selected. For
the mRMR algorithm, the MIQ criterion was used as an
objective function to specify the 10 best features that have
high correlation with the class. For SFS, SBE, and RFE algo-
rithms, subsets of 10 features were generated and evaluated
by the RF classifier. For the LASSO algorithm, we set alpha
to 0.1 in our experiments, and a subset of 11 features was
produced.

Analysing the results, in the first row in Figure 6, the
classification results obtained from the training and test sets
whose dimensionality was reduced by feature selection tech-
niques are compared with those provided by the correspond-
ing original training sets (baseline) in terms of the confusion
matrix. The classification report results in terms of accuracy,
precision, and recall are summarized in Figure 9, for sets
whose dimensionality was reduced. The results obtained from
this experiment can be summarized as follows: The use of
feature selection techniques alone tends to deteriorate results
for all models compared with the baseline model in terms of
accuracy, precision, and recall; thus, the experiments demon-
strate that the evaluated feature selection techniques did not
improve the accuracy of the classifier.
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TABLE 7. Attributes table for features that were selected using nine types of feature selection over RUS.
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Feature (skill) CSF | CS | MI | mRMR | SFS | SBE | RFE | Emb.-RF | LASSO

1 Acceleration 4 v

2 Aggression

3 Agility v v

4 Balance v v

5 Ball control

6 Composure v v

7 Crossing v v

8 Curve v

9 Dribbling 4 v v v v

10 | Finishing v v v v v v

11 | Free kick accuracy

12 | heading accuracy v v v

13 | Interceptions v v v v v v v

14 | Jumping v v

15 | Long passing v v v

16 | Long shots v 4 v v

17 | Marking v v v v v v v

18 | Penalties

19 | Positioning v v v v v v

20 | Reactions v v

21 | Short passing v

22 | Shot power v v v

23 | Sliding tackle v v v v v v v

24 | Sprint speed v v v

25 | Stamina v v v

26 | Standing tackle v v 4 v v v v

27 | Strength v v v

28 | Vision v v

29 | Volleys v v v

Total 6 10 | 10 | 10 10 10 10 12 10
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FIGURE 9. Summary regarding the performance of the feature selection

methods (in terms of accuracy, precision and recall).

C. LEVEL B (A MIDDLE LEVEL OF ANALYSIS)

In this level, the classification results obtained from the
joint application of resampling and feature selection were
compared with baseline results in terms of the confusion
matrix (see the second, third, and fourth rows in Figure 6).
Experiments in this level included the following steps (which
represent the main methodology proposed for this study):

1) Applying the sampling technique to deal with class
imbalance.

149278

FIGURE 10. The results of the approaches that combine resampling and
feature selection models (in terms of accuracy, precision and recall).

2) Using the feature selection technique to deal with the
high dimensionality problem.

3) Modelling the models based on sampled data and the
new subset selected by feature selection techniques.

It is worth noting that applying feature selection to the
balanced data produced subsets that differed slightly from
those that resulted from applying feature selection to the
unbalanced data (Tables 7, 8, and 9).

In Figure 11, the results of these experiments in terms of
accuracy, precision, and recall are summarized in Figure 10.

Experimental comparisons with baseline model are made
on the average basis of the average accuracy, precision,
and recall for the nine feature selection methods over the
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TABLE 8. Attributes table for features that were selected using nine types of feature selection over ROS.
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Recall
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Baseline RF-ROS RF - SMOTE

FIGURE 11. The results of the approaches that combine resampling and
feature selection models (based on the average accuracy, precision, and
recall for the nine feature selection methods).

three balancing methods RUS, ROS, and SMOTE. The fol-
lowing inference can be made from Figures 10 and 11:

- The use of feature selection with data balanced by the
RUS method leads to deteriorating results for all mod-
els compared with the baseline in terms of accuracy,
precision, and recall.

- The use of feature selection with data balanced by the
ROS and SMOTE methods leads to improved accuracy,
precision, and recall compared with the baseline model.
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Feature (skill) CSF | CS | MI | mRMR | SFS | SBE | RFE | Emb.-RF | LASSO
1 Acceleration 4 v
2 Aggression
3 Agility v
4 Balance
5 Ball control
6 Composure v
7 Crossing v v
8 Curve v
9 Dribbling v v v v
10 | Finishing v v v v v v v
11 | Free kick accuracy
12 | heading accuracy v v v v
13 | Interceptions v v v v v v v
14 | Jumping
15 | Long passing 4 v v v
16 | Long shots v |V
17 | Marking v v v v v v v v
18 | Penalties v
19 | Positioning v v v v v v v
20 | Reactions v v
21 | Short passing v v
22 | Shot power v v
23 | Sliding tackle v v v v v v v v v
24 | Sprint speed v v v
25 | Stamina v v v
26 | Standing tackle v v v v v v v v v
27 | Strength v v
28 | Vision v v v
29 | Volleys v v v

Total 7 10 | 10 | 10 10 10 10 12 10

- - The use of feature selection with data balanced by the
e i ROS and SMOTE methods leads to improved accuracy,

precision, and recall compared with the baseline. Thus,
there is no single filter, wrapper, or embedded-based
feature selection method that is the best. Therefore, the
experimental comparisons with the baseline were made
on the basis of the average accuracy, precision, and
recall.

Appendix A shows the performance evaluation of all tested
models for each class, in addition to the baseline.

D. LEVEL C (THE LOWEST LEVEL OF ANALYSIS)

At this level, the results of the proposed methodology for
the joint application of resampling and feature selection ana-
lyzed in Level B were compared with the results obtained
only by the use of a single technique and from the original
imbalanced training set analyzed in Level A. The results
of all the previous experiments of Levels A and B ver-
sus the baseline model are summarized in Figure 12. The
results obtained from this figure can be summarized as
follows:

- The results showed superiority of the proposed method-
ology, involving the joint application of resampling
and feature selection with data balanced by the ROS
and SMOTE methods, compared to the results obtained
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TABLE 9. Attributes table for features that were selected using nine types of feature selection over SMOTE.

149280

Feature (skill) CSF | CS | MI | mRMR | SFS | SBE | RFE | Emb.-RF | LASSO
1 Acceleration v
2 Aggression v
3 Agility v
4 | Balance v
5 Ball control
6 | Composure v
7 Crossing v v
8 Curve
9 Dribbling v v v
10 | Finishing v v v v v v
11 | Free kick accuracy v
12 | heading accuracy v v v v
13 | Interceptions v v v v v v v
14 | Jumping v
15 | Long passing 4 v v
16 | Long shots v | v
17 | Marking v v v v v v v v v
18 | Penalties v v v
19 | Positioning v v v v v v v
20 | Reactions v v
21 | Short passing v
22 | Shot power v v v
23 | Sliding tackle v v v v v v v
24 | Sprint speed v v v
25 | Stamina v
26 | Standing tackle v v v v v v v
27 | Strength v v v v v
28 | Vision v v v v
29 | Volleys v v v

Total 7 10 | 10 | 10 10 10 10 12 10

only by the use of a single technique and from the
original imbalanced training set analyzed in Level A.
By comparing the results obtained from
Figures 10 and 12, the most accurate model
(embedded-RF feature selection and ROS) achieved
an accuracy of 57.3%, precision of 56.4%, and recall
of 57.4%. The model built using the RFE feature
selection and ROS had a comparable accuracy and
precision of 57.2% and 57.2%, respectively, and a
recall of 56.3%.

The proposed methodology improved prediction
accuracy compared to baseline. Moreover, it pro-
duced a drastic reduction in the number of features,
from 29 to 10 on average. This means these features,
at least in a statistical sense, are the most influential
factors for predicting player position.

Based on the model that achieved the highest accu-
racy (embedded-RF feature selection and ROS) and
Table 8, the most important attributes in characterizing
a player’s position are crossing, dribbling, finishing,
heading accuracy, interceptions, long passing, marking,
positioning, sliding tackle, standing tackle, strength,
and vision.

This model could be used as an initial model for char-
acterizing football players according to the multivariate
performance data; this information can be beneficial to
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FIGURE 12. The results for all the experiments (in terms of accuracy,
precision, and recall).

coaches since it can be used as an objective criterion
for evaluating a player.

IX. DISCUSSION AND CONCLUSION

A. RESEARCH QUESTION 1

To answer the Research Question 1 (Can machine learning
algorithms make recommendations to improve team perfor-
mance?), we implemented the baseline algorithm using an
RF classifier to characterize football player’s positions and
evaluate their performance on our data. Since the data used
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TABLE 10. A review analysis of the comparison models.

0 0.577 | 0.605 0.59 956 0 0.565 | 0.610 | 0.586 953 0 0.576 | 0.589 | 0.582 956
o] 1 0.262 0.2 | 0.227 604 1 0.271 0.2 | 0.230 604 1 0.246 | 0.175 | 0.205 604
%J 2 | 0376 | 0391 | 0.383 | 1503 2 10393 | 0407 | 0.399 | 1527 2 | 0375 | 0403 | 0.388 | 1503
; 3 0.214 | 0.236 | 0.224 | 1070 % 3 0.221 | 0.230 | 0.225 | 1075 é 3 0.215 | 0.237 | 0.226 | 1070
=S| 4 0.102 | 0.095 | 0.099 651 4 0.098 | 0.086 | 0.092 684 4 0.100 | 0.092 | 0.096 651
g’ 5 0.011 | 0.011 | 0.011 90 5 0.022 | 0.020 | 0.021 101 5 0.035 | 0.033 | 0.034 90

6 0.176 | 0.159 | 0.167 839 6 | 0.153 | 0.153 | 0.153 792 6 | 0.165 | 0.151 | 0.158 839

7 0.609 | 0.599 | 0.604 | 1101 7 1 0.639 | 0.627 | 0.633 | 1096 7 1 0.613 | 0.599 | 0.606 [ 1101

8 0.528 | 0.559 | 0.543 | 1362 8 0.529 | 0.568 | 0.548 | 1344 8 0.533 | 0.565 | 0.549 | 1362

0 0.551 | 0.619 | 0.583 113 0 0.539 | 0.548 | 0.543 956 0 0.569 | 0.576 | 0.573 956

1 0.25 ] 0.195 | 0.219 113 1 0.238 | 0.171 | 0.199 604 1 0.223 | 0.164 | 0.189 604

2 0.286 | 0.264 | 0.275 106 2 0.337 | 0.360 | 0.348 | 1503 2 0.363 | 0.387 | 0.375 | 1503

3 0.365 | 0.396 0.38 96 3 0.184 | 0.203 | 0.193 | 1070 3 0.204 | 0.225 | 0.214 | 1070
é 4 0.221 | 0.232 | 0.227 99 8 4 0.055 | 0.049 | 0.052 651 g 4 0.100 | 0.097 | 0.098 651

5 0.322 | 0.277 | 0.298 101 5 0.020 | 0.022 | 0.021 90 5 0.031 | 0.033 | 0.032 90

6 0.471 | 0.434 | 0.452 113 6 0.117 | 0.099 | 0.107 839 6 | 0.143 | 0.129 | 0.135 839

7 0.65 | 0.705 | 0.677 95 7 0.581 | 0.582 | 0.582 | 1101 7 | 0594 | 0.579 | 0.586 | 1101

8 0.546 | 0.651 | 0.594 109 8 0.473 | 0.518 | 0.494 | 1362 8 0.524 | 0.551 | 0.537 | 1362

0 0.703 | 0.664 | 0.683 | 1513 0 0.569 | 0.571 | 0.570 956 0 0.570 | 0.582 | 0.576 956

1 0.614 | 0.686 | 0.648 | 1524 1 0.251 | 0.195 | 0.220 604 1 0.238 | 0.177 | 0.203 604

2 0.374 | 0.286 | 0.324 | 1548 2 0.353 | 0.379 | 0.366 | 1503 2 0.371 | 0.392 | 0.381 | 1503

3 0.342 | 0.313 | 0.327 | 1530 3 0.191 | 0.207 | 0.199 | 1070 3 0.216 | 0.236 | 0.226 | 1070
§ 4 0.49 | 0.484 | 0.487 | 1540 E 4 0.079 | 0.071 | 0.075 651 E 4 0.096 | 0.092 | 0.094 651

5 0.829 1| 0.907 | 1495 5 0.031 | 0.033 | 0.032 90 5 0.021 | 0.022 | 0.022 90

6 0.458 | 0.492 | 0.474 | 1564 6 0.142 | 0.119 | 0.130 839 6 0.149 | 0.130 | 0.139 839

7 0.69 | 0.681 | 0.685 | 1491 7 0.603 | 0.606 | 0.604 | 1101 7 0.610 | 0.602 | 0.606 | 1101

8 0.541 | 0.546 | 0.544 | 1538 8 0.481 | 0.523 | 0.501 | 1362 8 0.516 | 0.551 | 0.533 | 1362

0 0.626 | 0.656 | 0.641 | 1513 0 0.520 | 0.526 | 0.523 956 0 0.586 | 0.593 | 0.589 956

1 0.548 0.49 | 0.517 | 1524 1 0.242 | 0.182 | 0.208 604 1 0.251 | 0.187 | 0.214 604

2 0.309 | 0.297 | 0.303 | 1548 2 0.346 | 0.369 | 0.357 | 1503 . 2 0.374 | 0.397 | 0.385 | 1503
E 3 0.255 | 0.251 | 0.253 | 1530 o 3 0.202 | 0.219 | 0.210 | 1070 z 3 0.209 | 0.230 | 0.219 | 1070
g 4 0.423 | 0.392 | 0.406 | 1540 E 4 0.083 | 0.078 | 0.081 651 é 4 0.102 | 0.095 | 0.098 651
“| s 0.835 | 0.857 | 0.846 | 1495 2 5 0.023 | 0.022 | 0.023 90 é 5 0.010 | 0.011 | 0.011 90

6 0.413 0.43 | 0.422 | 1564 6 0.147 | 0.129 | 0.137 839 = 6 0.161 | 0.145 | 0.153 839

7 0.666 0.67 | 0.668 | 1491 7 0.590 | 0.559 | 0.574 | 1101 7 0.625 | 0.615 | 0.620 | 1101

8 0.502 | 0.559 | 0.529 | 1538 8 0.488 | 0.543 | 0.514 | 1362 8 0.536 | 0.565 | 0.550 | 1362
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TABLE 10. (Continued.) A review analysis of the comparison models.

0 0.560 | 0.576 | 0.568 956 0 0.442 | 0442 | 0.442 | 120 0 0.558 | 0.642 | 0.597 120
1 0.239 | 0.166 | 0.196 604 1 0.234 | 0.161 | 0.190 | 112 % 1 0.250 | 0.152 | 0.189 112
2 | 0363 | 0390 | 0376 | 1503 % 2 |1 0.208 | 0.214 | 0.211 98 Z 2 | 0227 | 0.224 | 0.226 98
% 3 0.215 | 0.237 | 0.226 | 1070 : 3 0.248 | 0.291 | 0.268 | 103 z 3 0.252 | 0.301 | 0.274 103
= 4 0.098 | 0.089 | 0.094 651 § 4 0.243 | 0.245 | 0.244 | 102 é 4 0.245 | 0.245 | 0.245 102
5 0.031 | 0.033 | 0.032 90 : 5 0.235 | 0.253 | 0.244 95 'n-é 5 0.299 | 0.274 | 0.286 95
6 0.136 | 0.120 | 0.128 839 6 0.426 | 0.351 | 0385 | 114 = 6 | 0380 | 0.360 | 0.369 114
7 0.594 | 0.583 | 0.589 | 1101 7 | 0583 ] 0.733 | 0.649 | 101 7 1 0.635 | 0.723 | 0.676 101
8 0.525 | 0.565 | 0.544 | 1362 8 0.450 | 0.450 | 0.450 | 100 8 0.495 | 0.530 | 0.512 100
0 0.439 | 0417 | 0.427 120 0 0.492 | 0.483 | 0.487 | 120 0 0.559 | 0.517 | 0.537 120
1 0.188 | 0.134 | 0.156 112 1 0.282 | 0.196 | 0.232 | 112 1 0.205 | 0.143 | 0.168 112
2 0.209 | 0.194 | 0.201 98 2 0.196 | 0.194 | 0.195 98 2 0.186 | 0.194 | 0.190 98
% 3 0.202 | 0.194 | 0.198 103 % 3 0.185 | 0.214 | 0.198 | 103 é 3 0.232 | 0.252 | 0.242 103
:: 4 0.242 | 0.225 | 0.234 102 : 4 0.173 | 0.137 | 0.153 | 102 g 4 0.258 | 0.225 | 0.241 102
8 5 0.177 | 0.211 | 0.192 95 % 5 0.237 | 0.295 | 0.263 95 E 5 0.241 | 0.295 | 0.265 95
6 0.308 | 0.281 | 0.294 114 6 0.356 | 0.316 | 0335 | 114 6 | 0385 | 0351 | 0.367 114
7 0.545 | 0.663 | 0.598 101 7 0.628 | 0.752 | 0.685 | 101 7 ] 0.619 | 0.693 | 0.654 101
8 0.317 | 0.400 | 0.345 100 8 0.321 | 0.360 | 0.340 | 100 8 0.400 | 0.480 | 0.436 100
0 0.535 | 0.575 | 0.554 120 0 0.430 | 0.483 | 0.455 | 120 0 0.683 | 0.622 | 0.651 | 1580
1 0.182 | 0.107 | 0.135 112 1 0.275 | 0.196 | 0.229 | 112 1 0.608 | 0.638 | 0.622 | 1573
2 0.196 | 0.194 | 0.195 98 2 0.204 | 0.194 | 0.199 98 2 0.345 | 0.285 | 0.312 | 1549
% 3 0.248 | 0.243 | 0.245 103 ‘g 3 0.159 | 0.165 | 0.162 | 103 8 3 0.306 | 0.282 | 0.293 | 1481
m, 4 0.214 | 0.216 | 0.215 102 z 4 0.183 | 0.186 | 0.184 | 102 E 4 0.458 | 0.485 | 0.471 | 1453
8 5 0.210 | 0.232 | 0.220 95 5:) 5 0.218 | 0.200 | 0.209 95 8 5 0.837 | 0.990 | 0.907 | 1527
6 0.391 | 0.395 | 0.393 114 6 0.250 | 0.263 | 0.256 | 114 6 0.459 | 0.485 | 0.472 | 1586
7 0.642 | 0.782 | 0.705 101 7 0.603 | 0.693 | 0.645 | 101 7 0.660 | 0.680 | 0.670 | 1463
8 0.425 | 0.450 | 0.437 100 8 0.330 | 0.340 | 0.335 | 100 8 0.492 | 0.475 | 0.483 | 1531
0 0.535 | 0.508 | 0.521 120 (1} 0.552 | 0.575 | 0.563 | 120 (1} 0.706 | 0.640 | 0.672 | 1580
1 0.225 | 0.143 | 0.175 112 1 0.195 | 0.152 | 0.171 | 112 1 0.621 | 0.653 | 0.636 | 1573
2 0.216 | 0.245 | 0.230 98 2 0.268 | 0.306 | 0.286 98 2 0.359 | 0.299 | 0.326 | 1549
% 3 0.295 | 0.320 | 0.307 103 % 3 0.265 | 0.291 | 0.278 | 103 8 3 0.302 | 0.289 | 0.295 | 1481
:.‘ 4 0.202 | 0.176 | 0.188 102 : 4 0.219 | 0.206 | 0.212 | 102 C,‘ 4 0.462 | 0.489 | 0.475 | 1453
E 5 0.211 | 0.242 | 0.225 95 E 5 0.312 | 0.263 | 0.286 95 8 5 0.836 | 0.997 | 0.909 | 1527
6 0.386 | 0.342 | 0.363 114 6 0.394 | 0.342 | 0.366 | 114 6 0.465 | 0.468 | 0.466 | 1586
7 0.628 | 0.703 | 0.664 101 7 0.630 | 0.743 | 0.682 | 101 7 0.673 | 0.710 | 0.691 | 1463
8 0.424 | 0.530 | 0.471 100 8 0.500 | 0.570 | 0.533 | 100 8 0.513 | 0.486 | 0.499 | 1531
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TABLE 10. (Continued.) A review analysis of the comparison models.

0 0.708 | 0.653 | 0.680 | 1580 0 0.723 | 0.649 | 0.684 | 1580 0 0.706 | 0.651 | 0.677 | 1580
1 0.602 | 0.653 | 0.627 | 1573 1 0.619 | 0.666 | 0.642 | 1573 1 0.610 | 0.643 | 0.626 | 1573
” 2 |10374 1 0292 | 0328 | 1549 8 2 10383 | 0317 | 0.347 | 1549 E 2 | 0361 | 0303 | 0.330 | 1549
% 3 0.308 | 0.284 | 0.296 | 1481 f:f 3 0.331 | 0.305 | 0.317 | 1481 g 3 0.305 | 0.287 | 0.296 | 1481
E 4 0.458 | 0.482 | 0.470 | 1453 E 4 0.460 | 0.493 | 0.476 | 1453 2 4 0.462 | 0.485 | 0.473 | 1453
5 0.836 | 0.988 | 0.906 | 1527 5 0.836 | 0.991 | 0.907 | 1527 5 0.841 | 0.988 | 0.908 | 1527
6 0.473 | 0.503 | 0.487 | 1586 6 | 0478 | 0.484 | 0.481 | 1586 6 | 0463 | 0479 | 0.471 | 1586
7 0.684 | 0.703 | 0.693 | 1463 7 1 0.679 | 0.702 | 0.690 | 1463 7 1 0.676 | 0.705 | 0.691 | 1463
8 0.519 | 0.501 | 0.510 | 1531 8 0.550 | 0.538 | 0.544 | 1531 8 0.512 | 0.486 | 0.499 | 1531
0 0.698 | 0.644 | 0.670 | 1580 0 0.722 | 0.660 | 0.690 | 1580 0 0.699 | 0.645 | 0.671 | 1580
1 | 0.609 | 0.646 | 0.627 | 1573 1 | 0.618 | 0.655 | 0.636 | 1573 1 | 0.606 | 0.654 | 0.629 | 1573
2 0.359 | 0.283 | 0.317 | 1549 § 2 0.377 | 0.307 | 0.339 | 1549 2 0.362 | 0.287 | 0.320 | 1549
§ 3 0.320 | 0.294 | 0.307 | 1481 E' 3 0.318 | 0.299 | 0.308 | 1481 E 3 0.317 | 0.295 | 0.306 | 1481
plg 4 | 0455 ] 0490 | 0.472 | 1453 _é 4 | 0473 | 0.506 | 0.489 | 1453 % 4 | 0.465 | 0.497 | 0.480 | 1453
% 5 0.834 | 0.991 | 0.906 | 1527 § 5 0.837 | 0.995 | 0.909 | 1527 EI 5 0.838 | 0.993 | 0.909 | 1527
6 0.483 | 0.511 | 0.497 | 1586 5 6 0.485 | 0.482 | 0.484 | 1586 6 | 0471 | 0.489 | 0.480 | 1586
7 | 0.671 | 0.684 | 0.678 | 1463 7 | 0.688 | 0.712 | 0.700 | 1463 7 | 0.675 | 0.699 | 0.678 | 1463
8 0.514 | 0.496 | 0.505 | 1531 8 0.545 | 0.541 | 0.543 | 1531 8 0.510 | 0.487 | 0.498 | 1531
0 0.704 | 0.646 | 0.674 | 1580 0 0.705 | 0.639 | 0.670 | 1580 0 0.708 | 0.644 | 0.674 | 1580
1 0.614 | 0.645 | 0.629 | 1573 1 0.608 | 0.652 | 0.629 | 1573 1 0.618 | 0.664 | 0.640 | 1573
2 0.360 | 0.305 | 0.330 | 1549 2 0.372 | 0.305 | 0.336 | 1549 @ 2 0.362 | 0.291 | 0.322 | 1549
8 3 0.319 | 0.300 | 0.309 | 1481 § 3 0.320 | 0.290 | 0.304 | 1481 é 3 0.317 | 0.291 | 0.304 | 1481
: 4 0.456 | 0.483 | 0.469 | 1453 9; 4 0.473 | 0.506 | 0.489 | 1453 : 4 0.468 | 0.496 | 0.481 | 1453
53 5 0.840 | 0.991 | 0.909 | 1527 E 5 0.839 | 0.988 | 0.907 | 1527 E 5 0.836 | 0.991 | 0.907 | 1527
6 0.469 | 0.484 | 0.476 | 1586 6 0.473 | 0.499 | 0.486 | 1586 E 6 0.474 | 0.505 | 0.489 | 1586
7 0.657 | 0.678 | 0.668 | 1463 7 0.677 | 0.692 | 0.648 | 1463 7 0.670 | 0.679 | 0.675 | 1463
8 0.512 | 0.485 | 0.498 | 1531 8 0.526 | 0.511 | 0.518 | 1531 8 0.512 | 0.500 | 0.506 | 1531
0 0.694 | 0.631 | 0.661 | 1580 0 0.545 | 0.562 | 0.553 | 1580 0 0.707 | 0.641 | 0.672 | 1580
1 0.605 | 0.657 | 0.630 | 1573 1 0.482 | 0.411 | 0.444 | 1573 1 0.616 | 0.661 | 0.637 | 1573
2 0.362 | 0.281 | 0.317 | 1549 2 0.296 | 0.287 | 0.291 | 1549 2 0.364 | 0.298 | 0.328 | 1549
8 3 0.317 | 0.301 | 0.309 | 1481 E 3 0.228 | 0.238 | 0.233 | 1481 E 3 0.316 | 0.295 | 0.305 | 1481
Z 4 0.457 | 0.480 | 0.468 | 1453 % 4 0.321 | 0.311 | 0.316 | 1453 E 4 0.461 | 0.490 | 0.475 | 1453
(:IQJ 5 0.839 | 0.991 | 0.909 | 1527 % 5 0.712 | 0.756 | 0.733 | 1527 gl. 5 0.839 | 0.990 | 0.908 | 1527
6 0.471 | 0.487 | 0.479 | 1586 6 0.355 | 0.334 | 0.344 | 1586 6 0.473 | 0.499 | 0.486 | 1586
7 0.672 | 0.692 | 0.682 | 1463 7 0.629 | 0.661 | 0.644 | 1463 7 0.675 | 0.707 | 0.690 | 1463
8 0.519 | 0.512 | 0.515 | 1531 8 0.422 | 0.460 | 0.440 | 1531 8 0.519 | 0.482 | 0.500 | 1531
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TABLE 10. (Continued.) A review analysis of the comparison models.

S| & ~ = & o & & = &
0 | 0.712 | 0.649 | 0.679 | 1580 E 0 | 0.714 | 0.657 | 0.684 | 1580
m| 1 ] 0616 | 0.652 | 0.633 | 1573 % 1 | 0.615 ] 0.655 | 0.634 | 1573
S 2 | 0357  0.292 | 0.321 | 1549 Z 2 | 0.380 | 0.305 | 0.338 | 1549
E 3 | 0320 | 0.291 | 0.305 | 1481 "f 3 | 0325 (0297 | 0311 | 1481
é 4 | 0473 | 0.502 | 0.487 | 1453 E 4 | 0463 | 0490 | 0.476 | 1453
“1 5 | 0838 ] 0997 [ 0910 | 1527 E 5 ] 0.837 | 0.991 | 0.908 | 1527
6 | 0474 | 0.503 | 0.488 | 1586 5 6 | 0479 | 0.508 | 0.493 | 1586
7 ] 0.690 | 0.712 | 0.701 | 1463 7 1 0.689 | 0.706 | 0.698 | 1463
8 | 0.521 | 0.500 | 0.510 | 1531 8 | 0.545 | 0.530 | 0.537 | 1531
0 | 0.709 | 0.652 | 0.679 | 1580 0 | 0.703 | 0.638 | 0.669 | 1580
1 | 0.618 | 0.648 | 0.633 | 1573 1 | 0.621 | 0.648 | 0.634 | 1573
@l 2 [0366]0298] 03291549 | B | 2 | 0351|0294 ] 0320 1549
E 3 | 0316 | 0.292 | 0.303 | 1481 g 3 | 0315 | 0.298 | 0.306 | 1481
E 4 [ 0471 | 0502 | 0486 [ 1453 | 4| 4 | 0454 | 0480 | 0.467 | 1453
l';_ll 5 | 0.835] 0.991 | 0.907 | 1527 % 5 | 0.839 ] 0.993 [ 0.909 | 1527
[ 6 [ 0470 [ 0482 | 0.476 | 1586 ﬂ 6 | 0464 | 0.471 | 0.467 | 1586
7 | 0.682 ] 0.698 | 0.690 | 1463 7 | 0.678 | 0.699 [ 0.689 | 1463
8 | 0.543 | 0.541 | 0.542 | 1531 8 | 0.504 | 0.496 [ 0.500 | 1531

in the study were unbalanced, the accuracy of the model did
not exceed 37%.

B. RESEARCH QUESTION 2

To answer the Research Question 2 (Can data mining
techniques improve the performance of machine learning
algorithms?), we examined the importance of applying two
preprocessing techniques, re-sampling and feature selection,
to jointly reduce the complexity of training datasets and
solve the class imbalance problem by making empirical com-
parisons; a total of 40 predictive models were tested. The
proposed methodology for the study consisted of three main
steps. The first step consisted of applying the sampling tech-
nique to deal with class imbalance; the second step con-
sisted of the feature selection technique, which dealt with the
high dimensionality problem, and the third step combined
feature selection and data sampling to deal with both the
issues.

Our approach goes beyond the studies presented in
Table 2. We offer a comprehensive study in which we uses
nine selection algorithms based on the main feature selection
algorithms — filter, wrapper, and embedded in addition to
three methods for data balancing. We trained models using
the RF as an objective function for each position. Based
on the experiments, we concluded that 1) feature selection
techniques did not improve the accuracy of the baseline
model, 2) balancing techniques improved accuracy compared
to the baseline, and 3) the results showed superiority of
the proposed methodology, involving the joint application of
resampling and feature selection with data balanced by the
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ROS and SMOTE, compared to the results obtained only
through the use of a single technique and from the original
imbalanced training set.

Overall, the proposed methodology improved the predic-
tion accuracy compared to the baseline, and an accuracy
of more than 57% was reported. Moreover, the proposed
methodology provided a significant decrease in the number of
features, from 29 to 10 on average. This means these features,
at least in a statistical sense, are the most influential for
predicting player position. This information can be beneficial
to coaches since these features can be used as an objective
criterion for evaluating a player. Moreover, this model could
be used as an initial model for characterizing football players
according to the multivariate performance data.

On the other hand, regarding player position, our approach
goes beyond the studies presented in Table 1, which were
limited to classifying players into the three central positions
(defender, midfielder, and attacker). In contrast, we sought to
find the specific role in those positions (e.g., centre midfielder
or central attacking midfielder).

This study supports the concept that specific performance
indicators define each position of players in football. Addi-
tionally, we believe that the quantitative analysis of the mul-
tivariate performance data using machine learning methods
(like classification) is an essential step in this process.

Finally, our study has shown that the data collected from
video games such as FIFA could improve prediction quality.
Furthermore, these games can also be used as an essential
source for retrieving sports data and executing artificial intel-
ligence analyses.
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X. FURTHER STUDIES

Further studies can improve the performances reported in this
study. New experiments could easily be set up by merely
replacing techniques regarding data balancing, feature selec-
tion, or classification algorithms. In this sense, we intend to
expand the applied options of the different feature selection
techniques by trying ReliefF [44] as a filter method, bidi-
rectional elimination (Stepwise Selection) [61] as a wrapper
method, and regularized L2 logistic regression as an embed-
ded method. We will also plan more experiments on datasets
and other applications to test whether the proposed approach
can be used more generally and robustly.

APPENDIX A
See Table 10.
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