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ABSTRACT Single traditional multivariate statistical monitoring methods, such as principal component
analysis (PCA) and canonical variate analysis (CVA), are less effective in nonlinear dynamic processes.
Monitoring approaches based on radial basis kernel function have been intensively applied. However,
an infinite dimension nonlinear mapping is redundant and inefficient. To improve the efficiency of traditional
methods and consider the nonlinearity and dynamics simultaneously, this paper proposes canonical variate
nonlinear principal component analysis (CV-NPCA) based on explicit polynomial mapping and combined
statistic for detecting and identifying faults in nonlinear dynamic processes. There are twomain contributions
of the proposedmethod. First, explicit second-order polynomial mapping is introduced to combine CVAwith
PCA to simultaneously decrease the adverse effects of nonlinearity and dynamics. Second, the Qc statistic
combining residual vectors with residual components is proposed, and a two-dimensional (2D) contribution
plot and the variable with the largest contribution based on theQc statistic are given for fault identification in
the simulation study. Compared with the results of PCA, CVA, kernel principal component analysis (KPCA),
nonlinear dynamic principal component analysis (NDPCA) and kernel entropy component analysis (KECA),
the proposed method not only has relatively higher fault detection rates and identification rates but also has
lower false alarm rates in the numerical simulation process and the benchmark Tennessee Eastman process.

INDEX TERMS Canonical variate, combined statistic, explicit polynomial mapping, fault detection, fault
identification, principal component analysis, 2D contribution plot.

I. INTRODUCTION
With the increasing requirements for safe operations in
complex industrial processes, fault detection and diagno-
sis have already attracted significant interest in both indus-
trial and academic communities [1]. A large amount of
data containing significant information has been stored in
databases because sensor technology and distributed control
systems are extensively applied. These valuable data provide
great convenience for fault detection and diagnosis research
based on data-driven methods. Commonly applied multivari-
ate statistical process monitoring (MSPM) methods based
on data-driven approaches, such as principal component
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analysis (PCA) [2], [3], partial least squares (PLS) [4]–[6]
and canonical variate analysis (CVA) [7]–[9], have been
intensively investigated for fault detection and diagnosis in
complex industrial processes [1]. PCA is one of the most
extensively adopted methods because its basic principle is
relatively simple [10]. The original data space is decomposed
into two subspaces: one is the principal component space
containing the common cause variability, and the other is
the residual component space containing the process noise.
CVA obtains the state vector and residual vector spaces by
performing singular value decomposition (SVD) on a covari-
ance matrix, which is assembled from the Hankel matrix
of the original data [11]. However, nonlinearity, a dynamic
characteristic of process data, widely exists in practical com-
plex industries [12]. MSPM methods based on data-driven

149050
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-2969-2317
https://orcid.org/0000-0002-3123-7671
https://orcid.org/0000-0002-2757-4042
https://orcid.org/0000-0002-9197-8738
https://orcid.org/0000-0001-5876-3711


L. Shang et al.: Fault Detection and Identification Based on Explicit Polynomial Mapping

methods capture only the linear relationships between pro-
cess variables, which perform poorly with regard to fault
alarm rates and fault detection rates.

During the past two decades, nonlinear extensions of
MSPM methods, such as kernel functions [13], [14] and
autoassociative neural networks [15]–[17], have been pub-
lished in the literature. The kernel PCA method, which
was first applied for fault detection by Lee et al., is one
of the most commonly adopted nonlinear extensions of
PCA [18]. Its basic theory is first to project the original data
into a high dimension linear feature space using a kernel
function and then to perform corresponding computations
in that high dimension linear space. Cui et al. [19] pro-
posed improved KPCA from the geometrical viewpoint based
on feature vector selection. Alcala and Qin [20] proposed
reconstruction-based contributions (RBCs) based on KPCA
to identity fault variables. Fezai et al. [21] proposed an online
reduced KPCA algorithm for monitoring nonlinear dynamic
processes. Jiang et al. [1] proposed weighted kernel principal
component analysis for detecting faults in nonlinear chemical
processes. Dhibi et al. [22] proposed two nonlinear fault
detection methods based on an interval-reduced KPCA for
monitoring processes with nonlinear uncertainty. Nonlinear
process fault detection based on radial basis kernel map-
ping has been intensively applied. However, infinite-order
nonlinear kernel mapping can be inefficient and redundant.
As most industrial processes have dynamic characteristics,
Choi and Lee [23] first proposed dynamic principal com-
ponent analysis (DPCA) for fault detection in nonlin-
ear dynamic processes. Russell et al. [2] conducted a
comparison study of fault detection methods, PCA, CVA
and DPCA; and the CVA model achieved the best sensitivity
and promptness.

Very little literature has simultaneously considered
nonlinear and dynamic characteristics. Choi and Lee [23]
proposed a nonlinear dynamic process monitoring method-
ology based on dynamic kernel principal component analysis
(DKPCA). The simulation results confirmed that DKPCA
has the best monitoring performance compared with PCA,
DPCA and KPCA. Shang et al. [24] proposed a fault detec-
tion approach based on the augmented kernel Mahalanobis
distance for monitoring nonlinear dynamic processes. Sim-
ulation using the Tennessee Eastman process illustrated that
the proposed method improves fault detection rates compared
with conventional PCA and its variants. Yu and Khan [25]
proposed two nonlinear dynamic process fault detection
methods based on constructive polynomial mapping (CPM)
in which two customized steps are iterated to exponentially
increase the order of nonlinear mapping. Two case studies
clarified that the proposed methods offer better performance
than KICA and DKPCA. Shi et al. [26] proposed incipient
nonlinear and dynamic fault detection of rolling bearings.
Samuel and Cao [27] proposed kernel canonical variate
analysis (KCVA) for nonlinear dynamic process monitor-
ing with applications in the TE process. Shang et al. [28]
extended KCVA to efficient recursive KCVA by introducing

the first-order perturbation theory for online fault detection
in nonlinear time-varying processes.

A fault alarm will be triggered if at least one mon-
itoring statistic exceeds their corresponding control lim-
its. The essential procedure is subsequently to identify the
root reason for the specific fault. Although many studies
on fault detection have been published, only a few are
related to fault identification. The most popular contribu-
tion plot method is usually adopted for diagnosis with the
T 2 and Q statistics, which is based on the assumption that
related fault variables will cause relatively high contributions.
Zhu and Braatz [29] proposed a two-dimensional (2D) con-
tribution map based on the T 2 statistic of PCA for fault
identification. Jiang et al. [30] proposed CVA-based contri-
butions for identifying associated fault variables based on
the variations in both state and residual spaces for offline
fault identification. Li et al. [31] proposed a canonical variate
residual-based fault identification approach to identify the
contributions from variables. Shang et al. [9] proposed an
online fault identification approach based on the exponential
weighted moving average to improve the fault identification
rates (FIRs) of three types of sensor faults. Lamiaa et al. [32]
presented a sensor fault diagnosis method based on modi-
fied reconstruction-based contributions. Sun et al. [33] pro-
posed a probabilistic fault identification method by adopting
Bayesian recurrent neural networks. Shang et al. [34]
proposed an incipient fault diagnosis method for chemical
processes based on two-dimensional contribution plots of
canonical residual statistics.

Inspired by the abovementioned analysis, we propose a
nonlinear and dynamic process fault detection and identi-
fication method based on explicit second-order polynomial
mapping to overcome the disadvantages of the kernel func-
tion method and dynamic characteristics. Four contributions
of this paper are presented as follows. First, considering
the nonlinear and dynamic characteristics simultaneously,
CVA is combined with nonlinear PCA for fault detection and
identification in nonlinear dynamic industrial processes. Sec-
ond, the state vectors are projected into a high-dimensional
feature space based on explicit second-order polynomial
mapping. Third, the combined statistic Qc is proposed for
detecting the variation in the linear and nonlinear residual
space. Finally, a two-dimensional contribution plot based on
the combined statistic is given for fault identification. A sim-
ulation study of the proposed method compared with PCA,
CVA, KPCA, NDPCA [25] and KECA [35] is given in detail,
with different faults of the numerical simulation process and
the Tennessee Eastman (TE) chemical process.

The remainder of this paper is as follows. Section II briefly
reviews the principals of canonical variate analysis and prin-
cipal component analysis. Section III presents canonical
variate nonlinear principal component analysis (CV-NPCA).
Section IV provides the detailed steps of the offline and
online stages for fault detection and identification in nonlin-
ear dynamic processes. Section V illustrates the monitoring
performance of CV-NPCA for nonlinear dynamic processes
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with applications in the numerical simulation process and
the TE chemical process and provides a comparison study
of the fault detection and identification rates of PCA, CVA,
KPCA, NDPCA and KECA. The conclusions are presented
in Section VI.

II. BRIEF REVIEW OF PRELIMINARY METHODS
A brief description of the relevant methods is reviewed in this
section. CVA is introduced as a multivariate statistical anal-
ysis approach and followed by a short review of PCA. These
two methods serve as the basis of the proposed monitoring
method.

A. CANONICAL VARIATE ANALYSIS
CVA is a multivariate statistical analysis approach initially
proposed byHotelling [36]. CVA considers serial correlations
by adopting different augmented vectors. The basic theory of
CVA is to seek the best linear combinations aTyf ,r , a ∈ Rmp

and bTyp,r , b ∈ Rmp. The correlation ρfp (a, b) between the
combinations is maximized as [11]

ρfp (a, b) =
aT6fpb(

aT6ff a
)1/2(bT6ppb

)1/2 . (1)

The above optimization problem can be represented as:

max
u1,u2

uT1 (6
−1/2
ff 6fp6

−1/2
pp )u2

s.t. uT1u1 = 1; uT2u2 = 1. (2)

The covariance and cross-covariance matrices of the
past and future observations can be calculated using
6=YYT/(N − 1). The past and future Hankel matrices Yp
and Yf are defined as Yp =

[
yp,p+1 yp,p+2 · · · yp,p+N

]
∈

Rmp×N and Yf =
[
yf ,p+1 yf ,p+2 · · · yf ,p+N

]
∈ Rmp×N ,

respectively. The past and future observation vectors yp,r and
yf ,r can be assembled with the past and future measurements,
respectively.

The optimization problem can finally be solved by
singular value decomposition of the Hankel matrix
H = 6

−1/2
ff 6fp6

−1/2
pp = U6VT. The state variables

xr = Jxyp,r = Vx6
−1/2
pp yp,r are a subset of the canonical

variates. The prediction errors are represented by er = (I −
VxVT

x )6
−1/2
pp yp,r .

B. PRINCIPAL COMPONENT ANALYSIS
PCA is a classical dimension reduction technique for linear
data in which the original data space is decomposed into two
subspaces. One is the principal component space representing
the dominating variance changes of the data; and the other is
the projected space containing variables with small variances,
which are usually assumed to be noise. This is only true when
the data from industrial processes contain linear features [37].
Mathematically, given a data matrix with n samples ofm vari-
ables X ∈ Rn×m, which have zero means and unit variances,

the PCA decomposition can be represented by

X = TPT
=

k∑
i=1

(tipTi )+ E, (3)

where pi and ti are the loading vector and the score vector in
the PCAmodel, respectively. MatrixE represents the residual
space. k is the number of retained principal components.

III. CANONICAL VARIATE NONLINEAR PRINCIPAL
COMPONENT ANALYSIS
A more detailed explanation of the basic principle of PCA
and CVA can be found in [2] and [11]. The proposed hybrid
nonlinear dynamic fault detection and identification method
consists of three phases, as shown in Fig. 1. CVA is adopted
to reduce the effect of the dynamic data characteristics in the
first phase. In the second phase, the state vectors are pro-
jected into a high-dimensional space by explicit second-order
polynomial mapping. The third phase selects the first np
principal components and the remaining components by per-
forming PCA for fault detection and identification. A detailed
schematic of CV-NPCA is given as the following steps.

FIGURE 1. Schematic of fault detection and identification based
on CV-NPCA.

A. DYNAMIC DATA PREPROCESSED BY CANONICAL
VARIATE ANALYSIS
CVA is a linear dimension reduction approach based on
multivariate statistical analysis in which the past observation
vectors yp,r and future observation vectors yf ,r are assembled
by the measurement vectors. The measurement vectors are
expanded with past and future measurements as

yp,r =


yr−1
yr−2
...

yr−p

 ∈ Rmp, yf ,r =


yr
yr+1
...

yr+p−1

 ∈ Rmp, (4)

where r represents a generic index distinguished from the
sampling time, p represents the window length of the past and
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future observation windows, and yr is an observation vector
from the training data set.

In terms of the equations in [11], let r equal p + 1, p +
2, · · · , p + N . The Hankel matrices of the past and future
observations Yp and Yf are defined as:

Yp =
[
yp,p+1 yp,p+2 · · · yp,p+N

]
∈ Rmp×N , (5)

Yf =
[
yf ,p+1 yf ,p+2 · · · yf ,p+N

]
∈ Rmp×N . (6)

Hankel matrices contain N = l − 2p + 1 columns. The
covariance and cross-covariance matrices can be calculated
by using

6pp = YpYT
p/(N − 1), (7)

6ff = YfYT
f /(N − 1), (8)

6fp = YfYT
p/(N − 1). (9)

The solution to the problem of finding the best linear
combinations can be obtained by performing SVD on the
scaled Hankel matrix.

H = 6−1/2ff 6fp6
−1/2
pp = U6VT

c . (10)

The state vectors, which are a part of the estimated canon-
ical variates, are defined as follows:

xr = Jxyp,r = Vx6
−1/2
pp yp,r , (11)

where Vx includes the first nc columns of Vc. The number of
singular values nc should be given in advance. The prediction
residuals in the scaled past observation space are represented
as follows:

er = Fyp,r = (I− VxVT
x )6
−1/2
pp yp,r . (12)

where I is mp by mp dimensional identity matrix. m means
the number of variables. And p denotes the window length of
past observation.

B. STATE VECTOR MAPPING BASED ON AN EXPLICIT
SECOND ORDER POLYNOMIAL
This subsection introduces state vector mapping based on an
explicit second-order polynomial, which can be an efficient
alternative to the radial basis kernel method. The detailed
second-order polynomial mapping procedure is given as
follows:

(x1 x2)
φ
→(x1 x2 x21 x

2
2 x1x2). (13)

For a two-dimensional vector, the number of mapped state
vectors will increase to 5. For a D-dimensional data vector,
it should be noted that the mapped state vector has the number
of dimensions as follows:

P =
D(D+ 3)

2
. (14)

The subsequent step can reduce the number of dimensions
by standard PCA. Specifically, a state vector xr ∈ Rm first

undergoes an explicit second-order polynomial mapping to
become the mapped state vectors gr ∈ R(m(m+3)/2).

gr = [xr1, · · · xrm, x2r1, · · · x
2
rm, xr1xr2, · · · , xr(m−1)xrm].

(15)

After mapping the first nc state vectors into a
high-dimensional space, we can obtain the matrix G ∈

R(N×(m(m+3)/2) with much fewer nonlinear characteristics.

G = [g1, g2, · · ·, gN ]T. (16)

In the mapped latent space, the most significant
l-dimensional (l < D) latent vectors and D − l dimension
residual vectors can be obtained by PCA.

C. PERFORMING PRINCIPAL COMPONENT ANALYSIS
As the subsequent steps for obtaining the matrix G, the
standard PCA algorithm is adopted to determine the loading
vector and the diagonal matrices V, 3 simultaneously by
performing eigenvalue decomposition on the matrix S.

S = GTG/(Nt − 1) = V3VT, (17)

where V is the loading vector matrix, and 3 is the diagonal
matrix 3 = diag(λ1, λ2, · · · , λk ). Nt is the total number of
samplings of test data. Matrix G is expressed as the sum of
the product of the loading and score vectors.

G = TPT
=

k∑
i=1

(tipTi )+ E, (18)

where P represents the first np columns of loading vector
matrix V, np is the number of retained principal elements,
pi is the loading vector, ti is the score vector in the
PCAmodel, andE represents the residual matrix. The change
direction of the matrix data G is mainly reflected in the first
np principal elements. The cumulative contribution rate
is generally adopted to choose the number of principal
components np.

IV. FAULT DETECTION AND IDENTIFICATION BASED ON
CV-NPCA
The T 2 statistic and the Qc combined statistic can be
adopted to detect faults for complex industrial processes. The
T 2 statistic represents the data variation in the principal
component space, which can be calculated according to the
following formula with each past observation ypp assembled
by the testing fault data set:

T 2
= yTppP3

−1PTypp. (19)

The Qc combined statistic reflects the variation of the
testing fault data within the nonlinear residual space of CVA
and the linear residual space of PCA.

Qc = yTpp(I− PPT)ypp + eTr er , (20)

where I is the identity matrix.
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The upper control limits of the T 2 and Qc statistics can be
calculated under the assumption that the probability distri-
butions of the state vectors and the residual vectors are Gaus-
sian. If the assumption of a normal distribution does not hold,
the probability density function (PDF) is usually adopted by
a nonparametric direct estimation approach. Kernel density
estimation is the dominant nonparametric method to estimate
the PDFs of T 2 and Qc statistics [8]. Assume that z1 is a
random variable, and p(z1) denotes the probability density
function.

P(z1 < h) =
∫ h

−∞

p(z1)dz1. (21)

Therefore, if p(z1) is known, an appropriate control limit
can be determined for a specific confidence bound α. The
control limits are estimated by replacing p(z1) with the
PDF estimation of the T 2 and Qc statistics.∫ T 2

UCL

−∞

p(T 2)dT 2
= α, (22)∫ QUCL

−∞

p(Qc)dQc = α. (23)

During the online detection process, a fault can be detected
when one of the conditions T 2 > T 2

UCL(α) orQc > QcUCL(α)
is fully satisfied.

After detecting a fault, the urgent work is to find the
root reason for the fault. The contributions of the T 2

and Qc statistics are derived for diagnosis in this section.
Considering the contribution based on the residual vectors
and principal components from the CV-NPCA model, a
2D variable contribution plot for fault identification was
proposed.

Motivated by the contribution of T 2 in [9], the contribution
of T 2 andQc statistics based on the residual vectors and prin-
cipal components from the CV-NPCA model can be defined
as follows. The contributions of the ith measured variable to
statistical index J are denoted by CJ

i,k , J ∈
{
T 2,Qc,Q1,Q2

}
at time point k .

CT 2

i,k =

p−1∑
j=0

yTppP3
−1VT

(i+mj,1:np)y
i+mj
pp(k)

=

p−1∑
j=0

(yi+mjpp(k) )
T
V(i+mj,1:np)3

−1
(1:np,1:np)

VT
(i+mj,1:np)y

i+mj
pp(k)

(24)

where yi+mjpp(k) denotes the i + mj column of ypp at time
point k , V(i+mj,1:np) denotes the i + mj row of matrix
V(:,1:np), and np is the number of principal components
from PCA.

CQc
i,k = CQ1

i,k + CQ2
i,k (25)

CQ1
i,k =

p−1∑
j=0

Ci,j,kCT
i,j,k (26)

Ci,k,j = (yi+mjpp(k) )
TV(i+mj,1:np)(Inp − VT

(i+mj,1:np)V(i+mj,1:np))

CQ2
i,k =

p−1∑
j=0

yi+mjpp(k)F(i+mj,:)(y
i+mj
pp(k)F(i+mj,:))

T
(27)

where F(i+mj,:) denotes the i+ mj row of matrix F. Inp is the
identity matrix with np dimensions.
For an objective comparison, the contribution indices CT 2

i,k

and CQc
i,k should be calculated using min-max normalization

for each variable. The 2D contribution plot of the T 2 and
Qc statistics is shown in different colors.
The offline training and online detection and identification

of the proposed approach can be summarized in the following
detailed steps:
Offline Training
1) Set the initial value of p and collect the dataY ∈ Rm×l .

The order of system nc should also be given in advance.
2) Assemble matrices Yp and Yf using formulas (5)

and (6), respectively.
3) Calculate the cross-covariance and covariance using

formulas (7)-(9).
4) Decompose matrix H by SVD using formula (10).
5) Compute the state and residual vectors using formu-

las (11) and (12), respectively.
6) Project the state vectors using an explicit second-order

polynomial using formulas (15) and (16).
7) Calculate np principal components by eigenvalue

decomposition using formulas (17) and (18).
8) Calculate the T 2 statistic, Qc combined statistic

and their corresponding control limits using formu-
las (19)-(23). If T 2 > T 2

UCL(α) or Qc > QcUCL(α),
then a fault exists.

Online fault detection and identification
1) Obtain measurements at sample time 2p and assemble

the past observation vector ypp.
2) Calculate the monitoring statistic T 2 and the com-

bined statistic Qc using formulas (19) and (20),
respectively.

3) If the monitoring statistics do not exceed their corre-
sponding control limits, the process operates normally.
If the monitoring statistics T 2 > T 2

UCL(α) or Qc >
QcUCL(α), then a fault exists.

4) After a fault is detected, the 2D contributions of statis-
tics can be calculated by formulas (24) and (25).

5) Subsequently, the number of variables with the largest
contribution is identified.

6) Finally, the 2D contribution figures are intuitively plot-
ted to diagnose the root reason.

In summary, the entire flowchart of the CV-NPCA pro-
cedure for fault detection and identification in nonlinear
dynamic processes is given in Fig. 2. First, offline training
obtains the projection matrices and the upper control limits.
Second, online detection and identification, in which the
continuous collection p+f samples are recursively performed
as a moving window, are used to check whether the process is
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TABLE 1. Comparison of FDRs and FARs (%) in a numerical case.

FIGURE 2. Flowchart of CV-NPCA for fault monitoring and identification.

normal. p, f respectively represent the window length of the
past and future observation.

V. SIMULATION STUDY
To verify the performance and effectiveness of the proposed
fault detection and identification method, a numerical simu-
lation process and the Tennessee Eastman chemical process
are adopted.

A. NUMERICAL SIMULATION
A numerical simulation process, which is a five-dimensional
nonlinear dynamic system, is considered to generate the
training and fault datasets. The model can be formulated as
follows [24]:

x(k+1) = f [x(k)]+ g[u(k)]+ w(k), (28)

yk = h[x(k)]+ e(k), (29)

where u = [u1 u2]T and y = [y1 · · · y4]T represent the
inputs and outputs, respectively; and k and x = [x1 · · · x5]T

denote the sampling time and system state, respectively.

The mapping functions f , g, h are given as follows:

f(x) =


0.67x1 − 0.27x2x3 + 0.14x240.17x4x5
−0.24x1x2 − 0.45x2 + 0.14x3x4 + 0.11x4
0.17x1 − 0.31x3 + 0.26x4 + 0.04x1x5
0.12x1 − 0.07x2x3 − 0.66x4 + 0.03x25
−0.26x1 − 0.14x2 + 0.16x4 + 0.21x25


(30)

g(x) =


1.21x1 + 0.67x2 + 0.25x33
0.95x2 + 0.33x3 + 0.32x5
0.23x22 + 1.03x3 + 0.26x4
0.94x1 + 0.21x4 + 0.47x5

 (31)

and

h(x) =


0.26u1 + 0.93u2
2.45u1 + 0.34u22
0.28u21 + 0.25u22
0.37u21 + 0.31u2

0.56u1 + 0.05u32

 . (32)

In the two formulas (28) and (29), w and e denote Gaus-
sian white noise with standard deviations of [0.03; 0.03;
0.04; 0.04; 0.03]T and [0.06; 0.04; 0.06; 0.08]T, respec-
tively. The initial state satisfies x(1) = [1.319; 0.706; 0.438;
0.213; 0.025]T. The training dataset contains 400 normal
samples. The testing dataset considers the following two
types of faults.

1) Actuator additive faults: u = u∗ + f .
2) Sensor precision degradation: x = x∗ + e.
Assume that sensor faults occur at x1 and actuator faults

occur at u1. All of the testing datasets contain 1000 samples,
and faults are introduced at the 401st sampling instant and
remain until the end. Several methods, such as PCA, CVA,
KPCA,NDPCA [25] andKECA [35], have been adopted; and
their fault detection rates (FDRs) and fault alarm rates (FARs)
are compared. A 90% CPV is used to determine the number
of principal components. For NDPCA and CV-NPCA, the
maximum time lag is set as 2. The control limits of all the
mentioned detection methods are determined by the kernel
density estimation method with a 99% confidence level.
In the monitoring charts of Fig. 3, only CV-NPCA and

KECA detected the faults simultaneously. However, the Qc
statistic of CV-NPCA has a relatively higher FDR than that
of Q from KECA. The 2D contribution plots used to identify
actuator fault variables are plotted in Fig. 4. The comparison
in Table 1 obviously shows that the CV-NPCA method not
only has higher FDRs for the T 2 and Qc statistics but also
has lower FARs for the statistics than other methods for the
two types of faults.
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FIGURE 3. Monitoring charts of actuator additive faults.

B. TE PROCESS SIMULATION
The schematic of the TE process shown in Fig. 5 con-
sists of five equipment units: a reactor, recycling compres-
sor, vapor-liquid separator, product condenser and product
stripper. Two products were produced from four reactants.

Additionally, an inert product and a byproduct were also
presented for a total of eight components [38]. A dis-
tributed control strategy [39] was adopted to make the
TE process stable. The relationship among process vari-
ables is highly nonlinear because of adopting a decentralized
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FIGURE 4. Contribution plots of actuator additive faults.

control strategy. The TE process includes 53 measurements
corrupted by additive noise, which are 41 process variables
with 12 manipulated variables. In the TE process simulator,
the sampling time for most of the variables is 3 minutes.
Five variables are sampled every 15minutes, and 14 variables

are sampled at 6-minute intervals [38]. Furthermore, there is
strong autocorrelation between process data samples because
the recycling of the residual reactants results in dynamic
characteristics of the system. In the case study, 16 of the
3-minute sampled process variables are selected for fault
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TABLE 2. Selected process variables from the TE process.

TABLE 3. Three types of process faults.

TABLE 4. Parameters used in TE process simulation.

detection and identification [25]. These process variables and
corresponding descriptions are listed in Table 2.

The TE data blocks include the training and test-
ing data. Each data block includes one normal opera-
tion (Fault 0) and 20 fault operations (Fault 1-Fault 20).
These 20 faults cover a wide range of fault types, which
include step faults, random variations, slow drift, sticking and
unknown faults. A brief description of the three types (step,
random variation and unknown) of TE faults is given in
Table 3 for this case study.

FIGURE 5. The Tennessee Eastman process.

Every testing data block has 960 sampled measurements,
and each fault is introduced at the 160th sample time. This
means that the TE process is under control before introducing
the specific fault. The normal operating data will be assigned
as the training data. To compare the monitoring performances
impartially, the parameters used in the TE process simu-
lation are listed in Table 4. The width parameter c of the
RBF kernel is chosen to be c = 500×m, as recommended in
the literature [18].

C. FAULT 2: B COMPOSITION, A/C RATIO CONSTANT
Fault 2 of the TE process is a step fault in the composi-
tion of inert B while the A/C ratio remains constant. The
monitoring charts of the statistics generated by PCA, KPCA,
CVA, NDPCA, KECA and CV-NPCA are presented in Fig. 6
for further performance comparison. As shown in the figure
intuitively, all of the statistics from different approaches suc-
cessfully detected the step fault. The FARs should be adopted
for monitoring performance accurately [36].

TABLE 5. Comparison of FDRs and FARs (%) in the TE process case.
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FIGURE 6. Monitoring charts of fault 2.

A 2D contribution plot is adopted to identify the fault
variable. Although all of the contribution plots from the
six different approaches in Fig. 7 show correct identification
results, they have different FIRs, as shown in the largest
contribution variable figure. CV-NPCA has the highest fault

identification rate of 98.1459%, which verifies the effective-
ness of adopting explicit second-order polynomial mapping.
The FIRs from PCA, CVA, and KPCA are less than 98%.
Because of employing the kernel function, KPCA has the
highest fault identification rate of 97.8996% among those
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FIGURE 7. Contribution plots of fault 2.

three methods. A step fault in the composition of inert B
causes the purge rate (MXEAS(10)) to increase rapidly. The
purge rate (MXEAS(10)) is 8. This result is consistent with
the identification results in the largest contribution variable
figure.

D. FAULT 11: REACTOR COOLING WATER INLET
TEMPERATURE
Fault 11 of the TE process is associated with the reactor
cooling water inlet temperature, which is a random variation
in the process variable. To further illustrate the performance
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FIGURE 8. Monitoring charts of fault 11.

comparison, the monitoring charts of the statistics gener-
ated by six methods are presented in Fig. 8. It is intuitively
observed from the figures that CV-NPCA is more sensitive,
especially after the 700th sampling time.

Fault 11 caused a great shock of the cooling water flow
rate in the reactor, which made the temperature of the reactor
fluctuate. The other variables remain near the set points as

in normal operations. However, only 16 variables sampled
for 3 minutes are adopted for this case study, and the cooling
water flow rate in the reactor is not included in the data set.
The most relevant fault variable is the temperature of the
reactor (XMEAS(9)). Although all of the contribution plots
from different approaches show correct identification results,
they have different FIRs, as shown in the largest contribution
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FIGURE 9. Contribution plots of fault 11.

variable in Fig. 9. CV-NPCA has the highest fault iden-
tification rate of 70.7921%, which verifies the effective-
ness of adopting explicit second-order polynomial mapping.
The FIRs of PCA, KPCA, NDPCA, and KECA are less
than 70.5%. PCA has the lowest fault identification rate of
39.9507% among those four methods.

E. FAULT 19: UNKNOWN
The description of fault 19 is unknown according to [40].
It can be observed that the Qc statistic of CV-NPCA is
more sensitive and has the highest FDRs in Fig. 10. The
Q statistic of CVA has nearly the same results, as shown in
the figure.

149062 VOLUME 9, 2021



L. Shang et al.: Fault Detection and Identification Based on Explicit Polynomial Mapping

FIGURE 10. Monitoring charts of fault 19.

The specific description of fault 19 is not given. However,
it can be observed from the contribution plot from different
approaches. Recycle flow (stream 8) (XMEAS(5)) is the root
reason for this unknown fault. Although all figures show cor-
rect identification results, they have different FIRs, as shown

in the largest contribution variable in Fig. 11. CV-NPCA
has the highest fault identification rate of 66.2723%, which
verifies the effectiveness of adopting explicit second-order
polynomial mapping. FIRs from CVA, KPCA, NDPCA,
and KECA are less than 60%. KECA has the lowest fault
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FIGURE 11. Contribution plots of fault 19.

identification rate of 10.7275% among those four methods.
This may be because the parameter of the radial basic func-
tion is not optimal in this case study.

Compared with PCA, CVA, KPCA, NDPCA and KECA,
Table 5 shows that the proposed CV-NPCA has relatively

higher FDRs for T 2 statistics and the Qc combined statistics
for faults 2, 6, 8, 10, 11, 12, 16, 17, 18, and 19. Process
faults 3, 4, and 9 are hard to detect, so they are ignored in
the discussion. That is, the proposed CV-NPCA can explain
much more variance in the principal component and residual

149064 VOLUME 9, 2021



L. Shang et al.: Fault Detection and Identification Based on Explicit Polynomial Mapping

TABLE 6. Detection delay sampling times in the TE process case.

space than the other process monitoring methods. Regarding
the rest of the faults, the proposed CV-NPCA has nearly
the same performance as that of the compared methods.
From the simulation comparison, the proposed method has
relatively high sensitivity in most fault cases compared to
other methods. The detection delay sampling time presented
in Table 6 is calculated as the difference between the fault
starting sampling time and the fault detection sampling time.

While the statistics exceeded the control limit at three
consecutive sampling moments, the fault detection time can
be identified. CV-NPCA has relatively lower FARs than other
methods. In particular, the Qc statistic of CV-NPCA have the
lowest FAR.

VI. CONCLUSION
To improve the effectiveness of traditional approaches in
monitoring nonlinear dynamic processes, a fault detection
and identification approach based on explicit second-order
polynomial mapping and combined statistic is proposed.
Training data are first preprocessed by adopting different
augmented vectors from CVA to eliminate the strong serial
correlation among variables. Then, state vectors are projected
by explicit second-order polynomial mapping into a higher
dimensional feature space. Finally, the np principal compo-
nents and residual vectors are obtained by conventional PCA
for online monitoring. The combined statistic Qc is proposed
formonitoring the variation in both nonlinear and linear resid-
ual spaces. The corresponding upper control limits are calcu-
lated based on probability density estimation. This approach
is applied to a numerical simulation and the TE chemical
process for fault detection and identification. Compared to
the simulation results of PCA, CVA, KPCA, NDPCA and
KECA, the proposed CV-NPCA can effectively reduce the
adverse effect from the nonlinear and dynamic characteristics
of industrial process data. The proposed method can obtain
not only much higher FDRs but also relatively higher FIRs.
An approach for incipient fault detection and diagnosis will
be further investigated based on combining CVA with PCA.
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