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ABSTRACT In Mobile Wireless Sensor Networks there could be scenarios where absolutely all network
nodes (including the base station) are mobile, becoming a very hard task to find a communication path
between a sensor node and the base station due to many network variables are changing at each moment.
In addition, there are delay-sensitive applications that require establishing communication paths as soon
as possible to mitigate low network performance in terms of end-to-end delay, reducing, at the same
time, the energy consumption of the network. For this reason, we propose a multiobjective mathematical
optimization model for finding the optimal communication path between a source node and a sink (base
station) considering hard scenarios where all network nodes are mobile and minimizing end-to-end delay
and energy consumption. This mathematical model would offer significant advantages to evaluate new
algorithms due to we could know how far or close are the algorithm results from the optimal values given by
the mathematical model. In addition, we propose a prediction distributed routing algorithm based onMarkov
Chains that takes into account the network mobility in order to find as fast as possible a communication path
between a source node and a sink with minimal energy consumption. We also propose a deep learning
approach to predict future nodes’ distances in a mobile network to determine if future movements of
nodes will cause communication disruptions in paths. Significant findings were obtained when the Markov
Chains and Deep Learning approaches were compared in terms of predicting nodes mobility and reducing
the delay and the energy consumption in the network. The performance of our prediction algorithms (Markov
Chains and Deep Learning approaches) is evaluated against the mathematical model to determine how good
it is. Finally, to analyze our prediction algorithms considering real online scenarios, we compared it against
typical routing algorithms, obtaining promising results in terms of delay and energy consumption in all
mobile node scenarios.

INDEX TERMS Mathematical optimization model for time-varying graphs, delays, energy consumption,
prediction algorithm, Markov chains, deep learning.

I. INTRODUCTION
Mobile Wireless Sensor Networks (MWSN) are a particular
case of WSN at which some or all network nodes are mobile
due to they are attached to entities such as mobile objects,
animals, or humans. Due to these entities are continually
moving in a specific area, it is probably to experiment long
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delays to establish a path to communicate a sensor node
with a sink (base station), affecting the end-to-end delay
performance in delay sensitive applications such as military
or healthcare monitoring applications [3]. In addition, these
sensors are limited in terms of energy, whereby it is necessary
to accomplish delay requirements and, at the same time, min-
imizing energy consumption [1], [2]. In this sense, due to a
sink should not experiment undesired delays when it receives
information collected by sensors, it is necessary to propose
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mathematical models and algorithms capable of building
communication paths as fast as possible with minimal energy
consumption [3], [4].

Given the scenario described above, novel routing algo-
rithms are emerging for solving these mentioned problems
such as [11]–[13]. However, they, and many others that will
be mentioned in section II-B, do not present a mathematical
optimization model and only the sinks are mobile in the
network; that is, all network nodes are not mobile. Proposing
mathematical optimization models for representing networks
at which nodes’ position changes across time (time-varying
graphs) is not an easy task. However, there are mathemat-
ical optimization models for time-varying graphs applied
to different technological fields, such as wireless networks,
cellular networks, and vehicular networks. Nonetheless, these
types of mathematical optimization models are scarce in
scenarios where all nodes are completely mobile, and they
are not formulated considering the particular requirements
of mobile wireless sensor networks such as constraints in
terms of energy consumption, computational and memory
resources. In this sense, our work pretends to propose a
mathematical optimization model for time-varying graphs in
the context of a mobile wireless sensor network for finding
the optimal communication path between a source node and
a sink (destination node) considering all network nodes are
mobile and minimizing two objective functions: end-to-end
delay and energy consumption. The results obtained by the
mathematical optimization model could be compared against
algorithms in order to evaluate their performance in terms
of delay and energy consumption. In other words, optimal
values given by the mathematical model can be reference
values to determine how good are the results of a new
algorithm proposed in MWSN considering, obviously, the
same goals and parameters of the mathematical model. This
would give us a great advantage to evaluate new algorithms
because we would know how far or close are the algorithm
results from the optimal values given by the mathematical
model. However, we do not pretend our mathematical model
represents all the details involved in the design of an algo-
rithm in MWSN, but the comparison results between the
proposed algorithm and the mathematical model could give
clues to detect if the algorithm we are proposing is going
in the right or wrong direction. On the other hand, we also
propose prediction distributed routing algorithms to be com-
pared against the mathematical model in order to evaluate its
performance and potential application in real mobile wireless
sensor networks scenarios. The first prediction algorithm is
based on Markov Chains for considering network mobility
with the aim of finding as fast as possible a communication
path between a source node and a sink with minimal energy
consumption. The second prediction algorithm is based on
a Deep Learning approach with the same purpose as the
Markov Chains method. Both methods are compared later in
Results Section (IV) in order to extract their differences and
similarities. Finally, this paper is an extension of a previous

work presented in [15]. This extension consists of considering
the following improvements:

• In the mathematical model, we considered two objec-
tive functions: delay and energy functions to approach
delay-sensitive applications with minimal energy con-
sumption. These two functions were taken into account
to obtain optimal solutions minimizing both functions
considering network mobility.

• In the mobility prediction algorithm based on Markov
Chains, we considered not only RSSI levels of nodes but
their current energy consumption level to be selected as a
forwarding node in order to find a path between a sensor
source node and a sink.

• We considered more details for the movement model of
sensor nodes, that is, we described precisely the theoret-
ical details of the selected movement model.

• The energy consumption model applied to the sensor
nodes is described in detail and implemented with real-
istic parameters in order to obtain results adjusted to real
scenarios.

• The energy consumption model applied to the sensor
nodes is described in detail and implemented with real-
istic parameters in order to obtain results adjusted to real
scenarios.

• We propose a new prediction algorithm based on deep
learning to select the best forwarding node in order to
build a path between a sensor source node and a sink.
In addition, a dataset has been proposed to be used by
our deep learning approach to select the best forwarding
node.

A. PAPER ORGANIZATION
The remainder of this paper is organized as follows. The
general problem statement is described in section II-A;
the mathematical optimization model for the problem is
presented in III-A, and the mobility prediction algorithm
based on Markov Chains is introduced in section III-B.
In Section III-C, the mobility prediction algorithm based on
Deep Learning is described. In section IV we presents the
results obtained; and finally, section V shows the conclusions.

II. PROBLEM STATEMENT AND RELATED WORKS
A. PROBLEM STATEMENT
Figure 1.a illustrates our problem. Suppose we have an
MWSN, which at time t1 there is a communication path
between the source node n1 and a destination node (squared
node). However, at time t2, node n2 moves away from node
n3, causing a communication disruption for transmitting
information from n1 to the destination node. Once n3 has
realized this problem at time t3, n3 has to perform rout-
ing corrections in order to reestablish the communication
path between n1 and the destination node. The communica-
tion reestablishment of this path can be perfectly performed
using routing techniques but at the expense of introducing
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FIGURE 1. Problem definition.

undesired delays. In some applications, these delays can be
ignored because they do not affect application goals, but in
other ones, such as delay sensitive applications like health
monitoring, this disadvantage might result in a low end-to-
end delay network performance.

Given the problem above, our proposal consists of using
a prediction technique described in Figure 1.b [7], [8], [18].
It represents the same situation showed in Figure 1.a, but in
this case, node n3 at time t1 receives information that indicates
node n2 will rapidly be away from its communication range at
time t2. Given this information, n3 at time t1 is also analyzing
a possible candidate node, which could replace n2 in the case
of n2 fails at a future time. Indeed, if node n2 at time t2
fails because it has moved away from n3, this node at time
t2 can promptly restore the communication path between n1
and the destination node, reducing the delay described in
Figure 1.a.
Proposing mathematical optimization models for repre-

senting networks at which nodes’ position changes across
time (time-varying graphs) is not an easy task. However, there
are manymathematical optimization models for time-varying
graphs applied to different technological fields, such as wire-
less networks, cellular networks, and vehicular networks.
Nonetheless, this type of mathematical optimization model
is scarce in mobile wireless sensor networks due to this kind
of wireless network has particular constraints in terms of
energy consumption, computational and memory resources.
In this sense, our work pretends to propose a mathematical
optimization model for time-varying graphs in the context of
a mobile wireless sensor network.

B. RELATED WORKS
Due to we propose three different methods to solve the prob-
lem, that is, a mathematical optimization approach, a Markov
Chains approach, and a Deep Learning approach, we have
divided the related works into three parts respectively, which
will be described as follows.

1) MATHEMATICAL OPTIMIZATION RELATED WORKS
Given the problem statement above, novel routing algorithms
are emerging for solving these mentioned problems. Specif-
ically, in [11] the authors propose an algorithm to guarantee
that each source sensor node gets single hop access to a
backbone node in order to reach a mobile sink. However, they
do not present a mathematical optimization model and only
the sinks are mobile in the network; that is, all network nodes
are not mobile.

Authors in [12] present a multi-objective particle swarm
optimization for finding the optimal path in a wireless sensor
network with a mobile sink for data collection. This pro-
posal corresponds to an evolutionary approach that cannot
guarantee the optimal solution and all network nodes are not
mobile. In other words, they do not propose a mathematical
optimization model in order to obtain optimal solutions.

In [16], the authors present a minimally invasive veneer
tree using the particle optimization algorithm for routing
wireless sensor networks with a moving sink. This algorithm
is population-based, and population members try to find a
tree that has less energy and latency by sharing routing infor-
mation. The proposed algorithm was compared in terms of
energy consumption, distance, and the number of steps with
previous algorithms. However, this work does not present a
mathematical optimization model to obtain optimal values,
instead of that, they present a metaheuristic that does not
guarantee obtaining optimal values. In addition, they only
consider that the sink is mobile and not the rest of sensor
nodes.

In [17], the authors propose a mobile sink path planning
for collecting the information for static nodes located at the
bottom of the sea. They develop a Cluster Head Selection
Algorithm (CHSA) and particle swarm optimization algo-
rithm (PSO) to optimize the selection of cluster heads in
the Underwater Heterogeneous Sensor Network (UHSN).
Their proposed method can balance and save nodes energy
consumption while shortening the moving path of the mobile
sink. However, this work does not present a mathematical
optimization model to obtain optimal values, instead of that,
they present a metaheuristic that does not guarantee obtaining
optimal values. In addition, they only consider that the sink
is mobile and not the rest of sensor nodes.

In [18], the authors propose a Stochastic Optimal Routing
Algorithm (SORA) for high-lossWSNs. In SORA, the energy
conservation and transmission delay reduction problems are
firstly transformed into a stochastic optimization problem.
However, the scenario evaluated by them is completely static,
that is, none of the network nodes are mobile.
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In [19], the authors propose a routing algorithm that has
an ant colony optimization (ACO) algorithm. This algorithm
uses an endocrine cooperative particle swarm optimization
algorithm (ECPSOA) that is used to improve several metrics
in WSNs routing such as End-to-end delay, power consump-
tion, and communication cost. The algorithm is evaluated in
completely mobile network scenario, whereby is very seemed
to our proposal. However, their proposal is a metaheuristic
that does not guarantee to obtain optimal values like our
mathematical optimization model.

In [20], the authors propose a mobility and energy-aware
cross-layer searching routing algorithm that works in a sta-
tionary and mobile scenario. It provides a route to nodes
which forward data between each other directly in a single
hop, or indirectly through multiple hops via neighbouring
nodes. The algorithm works for static and mobile scenarios,
whereby is very seemed to our proposal. However, their pro-
posal is a heuristic that does not guarantee to obtain optimal
values like our mathematical optimization model.

Likewise, in [13] the authors present a complete summary
of algorithms in MWSN. However, any mathematical opti-
mization model is proposed for a mobile wireless sensor
network.

A summary of these related works is presented in Table 1.
For understanding this table is necessary to consider the
following observations:

• Static field refers to scenarios where all network nodes
do not change its positions across time.

• Mobile field refers to scenarios where all network nodes
can change its positions across time.

• Delay-sensitive field refers to scenarios where the delay
is considered to be reduced as much as possible.

• Optimal values field refers to if was proposed a method
to guarantee the obtaining of optimal values.

• Prediction field refers to if was proposed a method to
predict future positions of network nodes.

According to Table 1, we can see that our proposal is the
only one that accomplishes all fields.

On the other hand, remember that we are proposing two
prediction algorithms: one based on Markov Chains and
another based on Deep Learning. As follows, we are going to
describe the related works for these two types of algorithms.
In addition, it is necessary to take into account that our predic-
tion algorithms use RSSI levels to know the distance between
nodes instead of knowing accurate node positions through
GPS devices with the aim of reducing energy consumption
in the network and, thus, extending the network lifetime.

2) MARKOV CHAINS RELATED WORKS
According to our prediction algorithm based on Markov
Chains, notice that it operates based on the distance of
neighbour nodes to determine the best forwarding node in
terms of delay and energy consumption requirements. That
is, our Markov Chains design does not consider collecting
the exact position (through GPS modules or a high amount of

RSSI measurements) of neighbour nodes because, otherwise,
it will require too much energy wasted for determining the
exact position of each neighbour node, causing a high nega-
tive impact in terms of energy consumption in the network.
Obviously, the optimal solution would be to know the exact
position of neighbour nodes because it will allow us to know
with high certainty the movement pattern of each neighbour
node and, then, it would be the ideal method to select the
best forwarding node. However, knowing the exact position
of a node through RSSI measurements requires sending many
control packets, which represents a high energy consumption
in wireless sensor networks. In other words, our prediction
algorithm based on Markov Chains only uses a few control
packets (with RSSI information) to have a sense of distance
between two pairs of nodes instead of using a high amount
of control packets (with RSSI information) or GPS modules
to obtain accurate nodes positions. In conclusion, with the
aim of minimizing the energy consumption in the network,
our prediction algorithm based on Markov Chains only uses
distances without knowing the exact positions of nodes to
determine the best forwarding node. For this reason, our
Markov Chains method only considers knowing the distance,
and, in this sense, it cannot be compared against Markov
Chains methods that consider the exact position of neighbour
nodes because they would be not comparable methods. Next,
we are going to describe several related works based on
Markov Chains.

In [23], the authors propose a multiuser multivariate multi-
order Markov model and a multimodal user mobility pattern
prediction approach. They propose a proposed to perform
precise mobility pattern prediction based on real-world GPS
trajectory data set. In other words, this method is based on
GPS positions for predicting trajectories and, in this sense,
it does not correspond to a method to be compared with our
work due to the reasons previously explained.

In [24], the authors propose to integrate an attention tech-
nique into the Markov model to predict future locations.
However, they predict locations based on a GPS dataset that
has user coordinates. Similar to [23], thismethod is also based
on GPS positions and, in this sense, it does not correspond to
a method to be compared with our work due to the reasons
previously explained.

In [25], the authors propose a weighted Markov prediction
model based on mobile user classification. The trajectory
information of a user is extracted first by analyzing real
mobile communication data, where the complexity of a user’s
trajectory is measured using the location given by cellular
base stations. That is, accurate positions are given by cellular
networks, a technology that is not assumed and not common
to be present in our wireless sensor network scenario. In this
sense, this work does not correspond to a method to be
compared with our work.

3) DEEP LEARNING RELATED WORKS
According to our prediction algorithm based on Deep Learn-
ing, it assumes the same considerations described for the
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TABLE 1. Mathematical optimization related works summary.

prediction algorithm based onMarkov Chains, that is, it oper-
ates based on the distance of neighbour nodes to deter-
mine the best forwarding node in terms of delay and energy
consumption. Obviously, the selection of the best forward-
ing node is performed through a prediction model based
on a deep learning technique instead of using a Markov
Chains method. Likewise, our deep learning approach does
not consider the exact position of neighbour nodes due to
the reasons described previously for the prediction algorithm
based on Markov Chains. In other words, our prediction
algorithms, theMarkov Chains approach and the Deep Learn-
ing approach, take into account the same considerations in
order to be comparable, that is, both of them are based on
distance instead of knowing the exact nodes’ positions. Next,
we are going to describe several related works based on Deep
Learning techniques to predict the distance between nodes in
order to select the best forwarding node.

In [26], the authors propose ML techniques to learn the
mobility of themobile mmWave (Millimeter-wave communi-
cation) users and predict their moving directions. The authors
propose to use advanced MIMO antenna systems in cellular
base stations to know exact user positions. Thus, based on
this accurate information, they propose an ML approach to
predict user mobility. The authors propose to use advanced
MIMO base station techniques to know exact user positions.
Thus, based on this accurate information, they propose anML
approach to predict user mobility. We cannot use this ML
approach to be compared against our prediction algorithm
based on Markov Chains due to two reasons: firstly, they
assume knowing exact node positions, which is not assumed
by our Markov Chains approach and, secondly, they use
advanced antenna techniques appropriated to be employed
in cellular networks, which is quite difficult to achieve in
wireless sensor networks.

In [27], the authors propose a neural network framework to
analyze citywide humanmobility based on rawGPS data. The
learning model is obtained considering exact user positions.
For this reason, we cannot use this ML approach against our
prediction algorithm based on Markov Chains due to they are
not comparable.

In [28], the authors propose a deep learning approach to
predict the exact future location of a node based on RSSI
measurements in a dynamic environment. They use many

RSSI control packets to determine the exact position for just
one node. We cannot use this ML approach to be compared
against our prediction algorithm based on Markov Chains
due to two reasons: firstly, they assume to determine exact
node positions, which is not assumed by our Markov Chains
approach and, secondly, the fact of using many RSSI con-
trol packets to determine exact node positions would cause
an excessive energy consumption in our wireless sensor
network.

In [29], the authors propose a deep learning approach to
determine the exact location of a device through RSSI mea-
surements and interference detection. Similar to [28], many
RSSI control packets are used to establish the exact device
position. We cannot use this ML approach to be compared
against our prediction algorithm based onMarkov Chains due
to two reasons: firstly, they assume to determine the exact
device position, which is not assumed by our Markov Chains
approach and, secondly, the fact of using many RSSI control
packets would cause an excessive energy consumption in our
wireless sensor network.

Finally, it was not possible to findworks that build machine
learningmodels based only on node distances instead of exact
node positions. The methods used by these works require a
high energy consumption or using technologies (advanced
MIMO antenna systems) that cannot be allowed in wireless
sensor networks. For this reason, in this work, we also pro-
pose a deep learning approach based on node distances in
order to be compared against our Markov Chains approach
under the same considerations.

C. CONTRIBUTIONS
• We propose a mathematical optimization model for
MWSN considering that absolutely all network nodes
are mobile, while many works present a mixed scenario
where some nodes are static and some are mobile, but
not all network nodes are mobile. However, if a work
assumes all network nodes are mobile, it proposes an
algorithm instead of proposing amathematical optimiza-
tion model. Given these previous reasons, we consider
our proposal is novel in MWSN.

• The results obtained by the mathematical optimization
model could serve as a reference to evaluate new algo-
rithms in order to analyze their performance in terms
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of delay and energy consumption in MWSN. In other
words, optimal values given by the mathematical model
can be used to determine how good are the results of a
new algorithm proposed for MWSN applications con-
sidering, obviously, the same goals and parameters of
the mathematical model.

• We proposed an algorithm based on Markov Chains
to predict if neighboring nodes will be far or close in
order to avoid future interruptions in communication
paths. This strategy allowed us to establish more reli-
able communication paths, which reduced considerably
the end-to-end delay in scenarios where the number of
nodes was scarce. In addition, in order to contrast the
Markov Chains results, we have proposed a Deep Learn-
ing approach to select the best forwarding node taking
into account only distances between nodes instead of
using the exact node positions. This feature makes our
approach very special due to most works consider exact
node positions to predict node mobility. In summary,
our approaches, with only a sense of distance between
nodes, are able to predict node mobility minimizing at
the same time the delay and energy consumption in the
network.

• While many algorithms are based on accurate positions
given by GPS devices, our prediction algorithms use
RSSI levels to avoid using GPS devices with the aim of
reducing energy consumption in the network and, thus,
extending the network lifetime.

III. PROPOSAL
A. MATHEMATICAL MODEL FORMULATION
In this section, we propose a multi-objective mathematical
optimization model to build a path from a source node to
the sink minimizing the delay and energy consumption of
the network. The mathematical model needs too much time
to provide a solution, whereby it is not an affordable and
scalable solution for real mobile wireless sensor networks
applications because they require solutions that must be
obtained as fast as possible. However, in despite of wasting
a considerable time to provide a solution, our mathematical
optimization model is used as an offline method that has
global information about the network, which allows us to
obtain the best possible solution, that is, the optimal solution
value for a specific network scenario. For this reason, it is
obvious that the mathematical model will always obtain the
best results for all metrics evaluated later in IV. As a con-
sequence, the optimal solutions offered by the mathematical
model can be used as reference values to evaluate how close
is the performance of the algorithms proposed later.

1) PROBLEM DESCRIPTION AND ASSUMPTIONS
In this section, our problem is enunciated and described in
detail, as well as some assumptions are shown in order to
simplify our mathematical optimization model.

Based on Figure 2, we will describe our problem:

FIGURE 2. Problem scenario.

• Mobile Network: Assume we have a mobile network
at which network nodes’ position changes across time
periods. For this reason, the links cost between network
nodes also changes across time periods. This means
that at each time period the network has particular links
costs. For this reason, we could say these particular links
costs reflect the network state at a given time period.
In this sense, each network at a given time period will
be called Network State. For instance, Network State
at time period 1 is called Network State 1, Network
State at time period 2 is called Network State 2, and
so on. In other words, according to Figure 2.a we have
an initial network (Network State 1) compound by four
nodes. Due to these nodes conform a network, there
are interrelations between them that we will call Links.
These links have a cost, which can be represented, for
example, by the distance, the delay, or the energy con-
sumption. In this work, we consider two types of cost:
delay cost and energy consumption cost. In the next time
period, network costs at the Network State 1 change, and
then, these new interrelations between the nodes are now
the Network State 2. As the next time period occurs,
the network at Network State 2 becomes the network
at the Network State 3, and this network will be the
network at the network State 4, and so on. For example,
Figure 3.a shows amobile network of 10 nodes at a given
time, that is, at a network state i. Due to the network will
move in the next time frame, the link costs of the network
will change, generating a new network state i+1. As the
network moves for each time frame, a new network state
is generated to represent the network movement across
time, as we can generically see in Figure 2. The same
logic applies to a bigger scenario, for example, a network
of 20 nodes in Figure 3.b.

• Nodes:Each node is denoted as nit where i is the number
node and t is the network state of the node. Depending on
the communication range, a node can communicate with
another node in the direction described by the Figure 2.
For example, n11 can communicate with n21 and n31.
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FIGURE 3. Typical networks.

• Buffers: In telecommunication networks, a router or
a sensor (a node) can decide not-sending its mes-
sage, storing it in a buffer until will be appropriate to
send it to another node. In our model, this situation
is represented as a link between n11 and n12, meaning
that n11 can store its message in its buffer, that is,
node n12.

• Costs:As was mentioned before, a link has a cost. Then,
there is a cost for sending a message from n11 to n21
called C21l

11 , and denoted as C jul
it . This expression is the

cost to carry a message from node i at the state t to node
j at the state u at the Network State l. As we mentioned
previously, we have two types of costs: delay cost and
energy consumption cost. The costC jul

it is a general form
(for illustrative reasons) for representing any cost in our
network.

• Directed graph: In Figure 2, our goal consists to carry
a message from node 1 to nodes 2 and 4. Then, our
Source node is the node 1, and our Destination nodes
are the nodes 2 and 4. In this sense, a directed graph
is constructed from Source node to Destination nodes.
For this reason, links direction points to the Destination
nodes.

• Goal: Our goal consists of carrying a message from a
Source node to a Destination node using neighboring
nodes as forwarding nodes for sending a message, and
even using buffers, if it is necessary, for waiting an

TABLE 2. Sets, parameters and variables for the mathematical model.

appropriate situation for sending the message. In this
sense, we have to find the minimum cost path between
a Source node and a Destination node considering the
network is changing across time, which is represented by
Network States. Additionally, for simplicity, we assume
only one link can be selected for sending themessage per
each Network State. This means that if a message is at
the node n11, this node at this Network State 1 can send
a message to only one neighbour, n21 or n11, or storing
it in its buffer, that is, n12.

• Example Result: According to the example shown in
Figure 2.b and based on links cost, the minimum cost
path from the Source node n11 to the Destination node
4 is the path compounded by the highlighted links: n11 to
n31, n32 to n33, n33 to n34 and n34 to n44. In other words,
X3114
11 = 1, X3324

32 = 1, X3434
33 = 1 and X4444

34 = 1.
Likewise, the minimum cost path from the Source node
n11 to the Destination node 2, is the path compounded by
the highlighted links: n11 to n12 and n12 to n22. In other
words, X1212

11 = 1 and X2222
12 = 1. Notice that the

solution does not correspond to the path n11 to n21 due to
its cost, 6, is higher than the optimal solution provided
by our proposal, that is, 4.

2) SETS, PARAMETERS AND VARIABLES
Next, the sets, parameters, and decision variables of the math-
ematical optimization model are summarized in Table 2.
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3) OBJECTIVE FUNCTIONS
Next, the mathematical optimization model is described as
follows:

min
∑
i∈N

∑
t∈S

∑
j∈N

∑
u∈S

∑
l∈S

∑
d∈T

(w1 ∗ F1 + w2 ∗ F2)

where F1 = Del julit ∗ X
juld
it , F2 = Ecjulit ∗ X

juld
it and

w1 + w2 = 1 (1)

This expression indicates we are going to obtain a solution
that combines delay and energy consumption requirements.
Otherwise, if we consider only one function, for example,
the delay function, the solution will only minimize the delay
without taking into account the energy consumption, which
is very disadvantageous in the context of wireless sensor net-
works because they have limited energy levels that we have to
preserve as much as possible. Likewise, if we only consider
the energy consumption function, the solution will not take
into account the appearance of long delays, whichwill cause a
negative impact on delay-sensitive wireless sensor networks.

4) CONSTRAINTS
Subject to:∑

l∈S|l>1

Ddjl = 1 ∀j ∈ N ∀d ∈ T (2)

∑
l∈S

Ddjl = 0 ∀j ∈ N | j 6= d ∀d ∈ T (3)

Ddjl ∗ DS
d
l = Ddjl ∀j ∈ N ∀l ∈ S ∀d ∈ T (4)∑

l∈S

DSdl = 1 ∀d ∈ T (5)

DSdl = 0 ∀l ∈ S | l = 1 ∀d ∈ T (6)

DSdl
∑
i∈N

∑
t∈S

∑
j∈N

∑
u∈S

X juldit Y dimD
d
jl = DSdl

∀l,m ∈ S | m = l − 1 ∀d ∈ T (7)

DSdl
∑
i∈N

Y dim = DSdl ∀l,m ∈ S | m ≤ l ∀d ∈ T (8)

DSdl
∑
i∈N

Y dim = 0 ∀l,m ∈ S | m > l ∀d ∈ T (9)∑
i∈N

∑
t∈S

∑
u∈S

∑
l∈S

X juldit = 1 ∀j ∈ N | j = d ∀d ∈ T

(10)

DSdl
∑
i∈N

∑
t∈S

∑
j∈N

∑
u∈S

X jumdit Y dinY
d
jm = DSdl

∀l,m, n ∈ S | m > 1 ∧ m = l ∧ n = m− 1 ∀d ∈ T

(11)

DSdl
∑
i∈N

∑
t∈S

∑
j∈N

∑
u∈S

X jumdit = DSdl

∀l,m ∈ S | m ≤ l ∀d ∈ T (12)∑
i∈N

∑
t∈S

∑
j∈N

∑
u∈S

X juldit Y djl = 1

∀i ∈ N | i = Source ∀l ∈ S | l = 1 ∀d ∈ T (13)

Equation 1 corresponds to the general objective function,
which is composed of two objective functions: one based
on the delay cost and the other on the energy consumption
cost. The previous expressions are explained in the following
items:
• Destination State Constraints (from 2 to 10 ): The fol-
lowing expressions are referred to the Destination State;
that is, the network state at which a Destination node is
found at the minimum possible cost.
– Defining Ddjl : D

d
jl allows to obtain the Destination

State l at which a Destination node j is found at
theminimum possible cost. The expression 2 avoids
that Ddjl will be one at first state. The equation 3
avoids Ddjl will be one for nodes different from the
destination node d .

– Defining DSdl : DS
d
l allows to determine the Des-

tination State l at which a Destination node d has
been found at minimal cost. Expression 4 allows
us to know the state l at which Ddjl was selected.
Equation 5 indicates that only one destination state
is possible. In the expression 6 we assume it is not
possible that the destination state will be the first
state.

– Selecting forwarding nodes: A forwarding node
indicates the node selected at each state for building
the minimum cost path. Expressions 7 and 8 restrict
to one the number of Y djl for each State that is less
than the Destination State. The equation 9 restricts
to zero the number of Y djl for each State that is
higher than theDestination State. The expression 10
indicates that it is possible only one link to the
Destination node for all states; that is, only one state
is selected, and for the rest of the states, the link
must be zero.

• Source State Constraint: The Source State indicates the
network state at which the Source node starts to build
the minimum cost path. The expression 11 restricts to
one the number of X juldit for the Source State.

• Intermediate State Constraints: These constraints allow
us to select the predecessor node Y dim based on the current
forwarding node Y djl . In order to understand what these
two types of nodes mean, let’s see an example. If there
is a directed link that goes from 1 to 2, the current
forwarding node is 2, and the predecessor node is 1.
The expression 11 allows us to select predecessor nodes
at intermediate states, where intermediate states refer to
the network states involved between a Destination State
and a Source State. The equation 12 restricts to one the
number of X juldit for each network state that is equal or
less than the Destination State.

• Defining the First State Solution Constraint: All con-
straints described above allow finding the minimum cost
path between a Source node and a Destination node d .
However, up to now, ourmodel does not consider that the
Destination State could be at the first network state; that
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Algorithm 1 Post-Processing Pseudocode.
1: parameters Source, Destination d
2: minSolution = MathModel(Source, Destination d)
3: costFirstState = C julit | i = Source, j = Destination, t = u = l = 1
4: if costFirstState < minSolution then
5: minSolution = costFirstState
6: end if

is, the minimum cost path to reach a destination node
d could be at the first network state. For this reason,
it is necessary to apply the following post-processing
pseudocode:
This pseudocode basically indicates that if there is a
directed link between a source node and a destination
node d at which its cost is less than the solution found by
the mathematical optimization model. In such case, the
optimal solution is at the first network state. Otherwise,
the solution is in a future network state calculated by the
mathematical optimization model.
Notice that our multi-objective mathematical optimiza-
tion model was designed for finding paths from a sin-
gle source node to multiple sinks (destination nodes).
However, later, in the Results Section (IV), we will see
that the network scenario simulation only considers one
source node and one sink. In this sense, our mathemat-
ical model is configured to find a path between one
source node and one sink.

B. MOBILITY PREDICTION ALGORITHM BASED ON
MARKOV CHAINS
In this section, we propose the use of a mobility predic-
tion algorithm based on Markov Chains to estimate future
distances between nodes in a mobile network. Forecasting
future distances help us to determine if future movements
of nodes will cause communication disruptions in paths.
Managing this information provided by the mobility predic-
tion algorithm can be useful for decreasing communication
disruptions, and therefore, result in the reduction of the end-
to-end delay in the mobile network. The details about why
the mobility prediction algorithm can reduce the end-to-end
delay of the network were described in Section II-A, specifi-
cally, in Figures 1.a and 1.b.

In order to be aware of network mobility, we use RSSI
(Received Signal Strength Indicator) measurements, which
indicate an approximated distance measurement between a
pair of nodes. Specifically, our mobility prediction method
allows each network node to estimate future distances (RSSI
measurement) of neighboring nodes for determining if they
will be farther or closer at a future time. In summary, we pro-
pose to use a mobility prediction method based on Markov
Chains for estimating future RSSI measurements, which will
help us to determine if a node will cause a communication
disruption at a future time. Managing this information will
be useful to minimize the delay experimented in the network.
Details about how we manage this information are explained
as follows.

FIGURE 4. Defining Markov states.

In relation to the Figure 4.a), suppose we have a network
that consists of two nodes: nk and nl , where nl is a neighbor-
ing node of nk . There are two times, t1 and t2, at which our
small network is evolving in time. At time t1 the node nl is
located at a certain distance from nk . However, at time t2 we
want to predict if nl will be farther or closer (or at the same
distance in t1) from nk .

Additionally, according to Figure 4.b), there is a minimum
and maximum distance at which nl can be located to establish
a communication link with nk . At a minimum distance, nl
will have a maximumRSSI, RSSImax , and, at a maximum dis-
tance, nl will have a minimum RSSI, RSSImin. At t2, nl could
be located at any distance between RSSImin and RSSImax . Our
goal consists of estimating a location between RSSImin and
RSSImax at which nl will be in a future time (in this case,
t2). Theoretically, there are infinite locations betweenRSSImin
and RSSImax , but for our model, we assume discrete locations
equitably distributed. These possible locations, at which nl
could be, we call them states. In this sense, at a future time
t2, nl could be at S1, S2, Sr or SG, where G is the maximum
number of states. The initial probability of nl for being at any
state Si is 1/G, which is called Initial Probability Distribution
of set S (π), which can be expressed as follows:

π = {Ps1 ,Ps2 , . . . ,PsG} (14)

According to Figure 5.a), suppose we want to know the
probability to go from the state S2 to the state S4, which is
calculated with the following expression:

P24 =
N (S2, S4)∑G
j=1 N (S2, Sj)

(15)

where N (Si, Sj) is the number of times that state Si follows
state Si.

This expression can be applied for the rest of the probabil-
ities using the following expression:

Pij =
N (Si, Sj)∑G
j=1 N (Si, Sj)

(16)
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FIGURE 5. Defining Markov states.

In this sense, we have the probability to go from any state
Si to any state Sj. These probabilities can be expressed in a
matrix, which is called Transition Matrix:

T =


P11 P12 . . . P1G
P21 P22 . . . P2G
. . . . . .

. . . . . .

PG1 PG2 . . . PGG

 (17)

In relation to the Figure 5.b), suppose that in a current time
t1, nl is at state S3 and we want to estimate the future state
of nl at a future time tp. For this purpose, we can apply the
following expressions:

πp = π ∗ T p (18)

Sp = max{πp} (19)

Sp = max{Ps1 ,Ps2 , . . . ,PsG} (20)

According to the expression 20, nk can finally obtain the
most probable future state at which nl will be at time tp, and
we can use this information for routing decisions in order
to reduce the delay caused for communication disruptions
in paths. More precisely, these routing decisions are made
by our routing algorithm which, in addition to our mobility
prediction algorithm, allows us to reduce the end-to-end delay
and minimize the energy consumption of network nodes.

Based on the previous stochastic model proposed,
we present our mobility prediction algorithm. The pseu-
docode of this algorithm is shown as follows.

This algorithm pretends to find the forwarding node with
the best probability to be near to the current node in order to
find as fast as possible the paths between a source node and
multiple sinks. The Transition Matrix is calculated for each
node at each period time t in order to update this matrix with
the aim of select the most appropriated forwarding node in
terms of delay and energy consumption. Lines 1 to 3 initialize
the sensor nodes and the sink. Line 4 indicates that for each
time period, it is required to check where is a data packet in

Algorithm 2 Prediction Algorithm Based on Markov Chains
Pseudocode.
1: Initialize Path = []
2: Initialize Sensor Nodes = [N1N2 . . .Nn]
3: Initialize Sink = [S1]
4: for t = 1 to totalTimePeriods do
5: if A packet arrived to a Ni then
6: Obtain list of neighbours V
7: Obtain score of each Vj based on Probability Transition
8: Matrix and energy level
9: if |V | 6= 0 then

10: if Vj is the sink S1 then
11: Send message to S1
12: Add S1 to Path
13: end if
14: if Vj is a connected node then
15: Send message to the connected node Vj
16: end if
17: if Vj is not a connected node nor the sink then
18: Send message to the best Vj based on its score
19: end if
20: else
21: Store the message in the buffer until the next time
22: period t
23: end if
24: end if
25: end for

order to be sent through several forwarding nodes to finally
achieve the sink (line 5). If the data packet is at node i, then
we obtain the list of neighbour V (line 6). From that list,
the best forwarding node is obtained through the Probability
Transition Matrix (lines 7 and 8). If the node i does not have
neighbour nodes, the node i stores the data packet until the
next time period (lines 9, 20-23). If between the neighbour
nodes there is the sink, we send the data packet to the sink,
and then, the path has been built (lines 10 to 13). If between
the neighbour nodes there is a connected node, we send the
data packet to it because it has high chances to find faster
the sink (lines 14 to 16). Finally, if between the neighbour
nodes there is not a connected node nor the sink, we send the
data packet to the best forwarding node obtained in the lines
7 and 8. For the next time period, this process is repeated
until the sink is achieved. Once the sink is achieved, the
path between a source node and the sink has been built and
the algorithm finishes. In terms of computational complexity,
we use the Big-O notation to indicate the time complexity
of our Markov Chains approach. In this sense and according
to algorithm 2, our prediction algorithm based on Markov
Chains is O(T ∗ V ∗G); where: T is the total number of time
periods (line 4), V is the total number of neighbour nodes of a
node Ni (line 6) and, G corresponds to the number of discrete
states for calculating the Transition Matrix (line 7).

C. MOBILITY PREDICTION ALGORITHM BASED ON DEEP
LEARNING
In this section, we also propose a deep learning approach to
predict future distances between nodes in a mobile network.
Predicting future distance helps us to determine if future
movements of nodes will cause communication disruptions in
paths. For this reason, handling this information provided by
the mobility prediction algorithm can be useful for decreas-
ing communication disruptions, and therefore, result in the
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FIGURE 6. Deep learning approach.

reduction of the end-to-end delay in the mobile network. The
details of this approach are described in the following items.

1) DEEP LEARNING APPROACH
We propose to use a supervised deep multi-layer percep-
tron (DMLP) neural network for predicting future nodes’
positions in a mobile network taking into account the same
considerations seen with the Markov Chains approach. These
considerations are described as follows:
• In order to be aware of network mobility, we use RSSI
(Received Signal Strength Indicator) measurements,
which indicate an approximated distance measurement
between a pair of nodes. Specifically, our deep learning
method allows each network node to estimate future dis-
tance measurements (RSSI levels) of neighboring nodes
for determining if they will be farther or closer at a future
time. This will help us to determine if a node will cause a
communication disruption at a future time. Handling this
information will be useful to minimize the delay and the
energy consumption experimented in the network.

• With the aim of minimizing the delay and the energy
consumption in the network, this deep learning approach
pretends to find the forwarding node with the best
chances to be near to the current node (the node that has
a packet and has to send it to a neighbour node) in order
to build as fast as possible a path between a source node
and a sink.

Taking into account the previous considerations, Figure 6
shows a diagram that summarizes the operation of our deep
learning approach.

This diagram (Figure 6) is divided in two phases: Offline
Phase and Online Phase, which are described in detail as
follows:
• Offline Phase: The offline phase is used to build a deep
learning model to classify the best forwarding node to
be selected in terms of minimum distance and energy
consumption. A dataset compound of many samples
is used to feed a training phase in order to obtain a
learning model for a classification task. The dataset and
the classification proposal are explained in detail in the

FIGURE 7. Dataset for node i .

FIGURE 8. Dataset features.

Dataset section. This offline phase is performed outside
of the network simulator operation described in III-D.

• Online Phase: The online phase predicts in real time the
best forwarding node to be selected in terms ofminimum
distance and energy consumption. In detail, each node
i has an intern prediction phase to determine the best
forwarding node when it will be required, that is, when
a node i has a packet that has to be sent to a forwarding
node in order to build a path to achieve the sink.

2) DATASET
A dataset compound of many samples is used to feed a
training phase in order to classify the best forwarding node
to be selected in terms of minimum distance and energy con-
sumption. This dataset represents the fact of having several
neighbour nodes with a certain distance (RSSI level) from
a node i and a certain energy consumption level. In other
words, each neighbour node has a distance in relation to
a node i and also has an energy consumption level. These
values, distance, and energy consumption, must be denoted
across time in order to predict the best forwarding node in
the future. In detail, each neighbour node j must describe
its distance (respect to a node i that has a message packet)
and energy consumption level at a different time in order to
know which neighbour node will be farther or closer in the
future (See Figure 7). The samples of this dataset are shown in
Figure 8.
This dataset is described in detail as follows:

• s1 to sk correspond to all samples from which the deep
learning model will learn. Notice that this learning pro-
cess corresponds to an offline phase.

• Each si has two types of values: distance values and
energy consumption values.

• At each sk , distance values are assigned for each neigh-
bour node j, in this case, node 1, node 2 and node m.
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These values are manually assigned in order to fill out all
of these values for the training phase. In addition, each
neighbour node j has a distance value related to a specific
time tp in order to represent the fact that this neighbour
node is moving, and then, this movement means that
distance changes across time. Each neighbour node j
has, from t1 to tn, to represent its movement in terms
of distance values.

• Similar to distance values, at each sk , energy consump-
tion values are also assigned for each neighbour node j.
These values are also manually assigned in order to fill
out all of these values for the training phase. In addition,
each neighbour node j has an energy consumption value
related to a specific time tp in order to represent the fact
that this value can change across time. Each neighbour
node jmay have, from t1 to tn, different energy consump-
tion values.

• For each sk , the best forwarding node j in terms of dis-
tance and energy consumption is labeled. In other words,
from node 1 to m, one of them is selected to be the best
forwarding node. In this sense, this case corresponds
to a multiclass classification problem, at which from
many categories (neighbour nodes), one of them must
be labeled as the correct one. Once each sample sk is
labeled, a training phase is launched in order to create a
learning model according to this dataset.

• In a previous item, we said that each neighbour node
i had several neighbour nodes from node 1 to node m.
Initially, the default value of m was assumed to be equal
to N − 1, where N was the total number of network
nodes, and minus 1 to omit the node i. However, after
several tests taking into account a network of maxi-
mum of 50 nodes, a communication radius of 20m and
the Markov-Gauss Mobility model, we obtained that,
on average, the maximum number of neighbour nodes
for a node i was 8. In this sense, there was a significant
reduction of the number of features, going from N−1 to
only 8.

• In a previous item, we said that each neighbour node
j had a distance and an energy consumption value for
each time from t1 to tn. The n value was considered
for three scenarios: 5, 10, and 15. n = 5 means that it
will be considered the last five values of distance and
energy consumption to determine the best forwarding
node. Likewise, for n = 10 and n = 15 it will be
considered the last ten and fifteen values, respectively,
of distance and energy consumption to determine the
best forwarding node. It is necessary to test several val-
ues of n in order to determine the best results in terms of
delay and energy consumption in the network simulator,
which is described later.

• Considering the previous items, and taking into account
that m = 8, n can be at least 15, and there are dis-
tance and energy consumption values, each sample sk
has 240 columns (8 × 15x2). As we said previously,
an additional column is added to each sk in order to

TABLE 3. Parameters and results for training and testing phases.

label it, indicating the best forwarding node j in terms
of distance and energy consumption.

Once each sample sk is labeled, a training phase is launched
in order to create a learning model according to this dataset.
The dataset was divided into two groups: one group for
the training phase, and another group for the prediction
phase (testing phase). Table 3 summarizes the parameters
and results for the training and testing phases. For this clas-
sification problem, we used the Deep Learning Toolbox in
MATLAB. In detail, we configured a five-layer neuronal net-
work with a sofmax activation function. For each sample sk ,
and once our model has been trained, this softmax activation
function shows us the probability of each neighbour node
to be the best forwarding node. In other words, if a node i
has eight neighbour nodes with certain values of distance and
energy consumption across time, then, the softmax activation
function shows a list {P1,P2, . . .P8} where Pi is the proba-
bility of the neighbour node i to be the best forwarding node
and,

∑8
i=1 Pi = 1. In this sense, the best forwarding node

corresponds to the neighbour node with highest probability,
that is, Pbest = max{P1,P2, . . .P8}. The training and testing
results are shown in Table 3.

From Table 3 is necessary to remark the following details:

• The deep learning model obtained through the training
phase is applied later in the network simulator to select
the best forwarding node for a node iwhen it has a packet
that needs to be sent to any of its neighbour nodes j.

• The higher is n, better values are obtained for accuracy,
precision, recall, and F1. In other words, a higher value
of n allows the learning model to have more distance
information in order to improve the distance prediction
of its neighbours.

Based on the description of our Deep Learning approach,
we present the pseudocode of how this approach is incorpo-
rated in our network simulator, which will be described later,
to select the best forwarding neighbour node in terms of delay
and energy consumption. The pseudocode of this algorithm is
shown the Algorithm 3.

This algorithm pretends to find the best forwarding node
in terms of delay and energy consumption according to the
explanation described in section III-C2. Lines 1 to 3 initialize
the sensor nodes and the sink. Line 4 indicates that for each
time period, it is required to check where is a data packet in
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Algorithm 3 Prediction Algorithm Based on Deep Learning
Pseudocode.
1: Initialize Path = []
2: Initialize Sensor Nodes = [N1N2 . . .Nn]
3: Initialize Sink = [S1]
4: for t = 1 to totalTimePeriods do
5: if A packet arrived to a Ni then
6: Obtain list of neighbours V
7: Obtain the best forwarding node Vj applying the Deep
8: Learning Prediction phase
9: if |V | 6= 0 then
10: if Vj is the sink S1 then
11: Send message to S1
12: Add S1 to Path
13: end if
14: if Vj is a connected node then
15: Send message to the connected node Vj
16: end if
17: if Vj is not a connected node nor the sink then
18: Send message to the best Vj based on its score
19: end if
20: else
21: Store the message in the buffer until the next time
22: period t
23: end if
24: end if
25: end for

order to be sent through several forwarding nodes to finally
achieve the sink (line 5). If the data packet is at node i, then
we obtain the list of neighbour V (line 6). From that list, the
best forwarding node is obtained through the Prediction Phase
of the Deep Learning approach (lines 7 and 8). If the node
i does not have neighbour nodes, the node i stores the data
packet until the next time period (lines 9, 20-23). If between
the neighbour nodes there is the sink, we send the data packet
to the sink, and then, the path has been built (lines 10 to 13).
If between the neighbour nodes there is a connected node,
we send the data packet to it because it has high chances to
find faster the sink (lines 14 to 16). Finally, if between the
neighbour nodes there is not a connected node nor the sink,
we send the data packet to the best forwarding node obtained
in lines 7 and 8. For the next time period, this process is
repeated until the sink is achieved. Once the sink is achieved,
the path between a source node and the sink has been built and
the algorithm finishes. In terms of computational complexity,
we use the Big-O notation to indicate the time complexity of
our Deep Learning approach. In this sense and according to
algorithm 3, our prediction algorithm based on Deep Learn-
ing is O(T ∗V ); where: T is the total number of time periods
(line 4) andV is the total number of neighbour nodes of a node
Ni (line 7). The complexity obtained for the Deep Learning
approach (O(T ∗ V )) is less than the Markov Chains method
(O(T ∗ V ∗ G)). For this reason, in terms of computational
complexity, the Deep Learning approach is recommended to
be used for our problem.

D. NETWORK SIMULATOR
In order to test our prediction distributed routing algorithm
based on Markov Chains and the Deep Learning approach,
we have designed a Mobile Wireless Sensor Network Sim-
ulator in MATLAB, which has the following basic network
components:

• Destination node: It is the final node that will receive a
data message. In our simulations, this node will always
be the last network node.

• Source node: This node will have a data message, which
must arrive to the destination node. In our simulations,
this node will always be the first network node.

• Connected node: If a message arrives to this node, this
node knows the path to achieve the destination node.
This is a technique that helps us to find faster the sink
when the data packet is close to it.

• Forwarding node selection:When a node has a datames-
sage, this process consists to select properly a neighbour
node as a forwarding node, which is selected accord-
ing to the following priorities: If among the neighbour
nodes there is the destination node, then, the forwarding
node is the destination node. If among the neighbour
nodes there is not the destination node, but there is a
connected node, then, the forwarding node is the con-
nected node. If among the neighbour nodes there is not
a destination node neither a connected node, then, the
forwarding node is a node obtained by the Prediction
method selected: the Markov Chains approach or the
Deep Learning approach.

• Sink refreshing: This process consists to determine
which nodes will be connected nodes at each certain
period. This refreshing process is required due to net-
work mobility, since it causes that connected nodes
established in a previous state period, they will not pos-
sibly be connected nodes in the next period.

• Loop detection: It is a very important process in order to
avoid that a packet remains in a loop.

• Prediction at each k-state with the Markov Chains
approach: At each network state the Transition Matrix
(T) is calculated for all network nodes, except the des-
tination node. Remember that this Transition Matrix
stores the probability of each node to be at certain dis-
tance level respect to their neighbour nodes.

• Prediction at each k-state with the Deep Learning
approach: At each network state and for each node i,
the last n distance, and energy consumption values are
considered to determine the best forwarding node.

• Prediction for selecting a forwarding node: As we said
before, if among the neighbour nodes there is not a desti-
nation node neither a connected node, then, the forward-
ing node is a node given by the Prediction method. In the
case of the Markov Chains approach, this forwarding
node is selected based on the information given by the
Transition Matrix (see lines 7 and 8 in Algorithm 2).
On the other hand, in the case of the Deep Learning
approach, this forwarding node is selected based on the
information given by the Prediction Phase (see lines
7 and 8 in Algorithm 3).

E. ENERGY MODEL
The energy consumption model is required to take into
account special considerations. If a node has to send a data
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packet of K bits to another node located at a D distance,
then, the following are the expressions to calculate the energy
consumption in the transmitter node as well as the receiver
node. In the transmitter node, the consumption isEelec+Eamp,
where Eelec is the energy consumption for codification, mod-
ulation and filtering. Eamp corresponds to energy consump-
tion for the Transmitter Power Amplifier. In the same way,
in the receiver node, the consumption corresponds to Eamp.
Then, the expressions for the transmitter and receiver sensor
are the following [19]:

Etx = (Eelec + Eamp) ∗ K ∗ D2 (21)

Erx = Eamp ∗ K ∗ D2 (22)

In the constraint 21 there will have a higher energy con-
sumption than constraint 22 because for transmission is
required an extra consumption for codification, modulation
and filtering (Eelec), in addition to energy consumption for
amplifying the signal received (Eamp). In detail, in the context
of this work is possible to send two types of packets: data
packets and control packets. A data packet corresponds to
information that is collected by a source sensor node and,
then, this source node needs to build a path in order to send
this data packet to the sink. Thus, when a data packet has to
be sent to a neighbour node, the expression 21 is applied to
the node that sends the data packet and, the expression 22
is applied to the node that receives the data packet. In this
sense, this data packet is sent several times through different
network nodes until it achieves the sink. The data packet
size corresponds to the value indicated in 4. On the other
hand, in the context of our work, a control packet is used to
collect information about the distance of neighbour nodes in
order to build a path according to the indications given for
our prediction algorithms, that is, the prediction algorithm
based on Markov Chains and the prediction algorithm based
on Deep Learning. The control packet size corresponds to the
value indicated in 4.

F. MOBILITY MODEL
With respect to the network nodes movement, the present
approach was evaluated considering a Gauss-Markov mobil-
ity model [9], [20], at which the mobility network was con-
figured for not being totally random in order to be predictable
because, otherwise, there would not have any reason of apply-
ing a prediction method in scenarios where the movements
of the sensors are totally randomized. In other words, the
mobility network must be predictable in a certain manner
sincewe are dealingwith sensors attached to objects, animals,
or humans which exhibit movements that are not totally
randomized, that is, present a certain movement pattern.

In this model, the values of the mobility speed and move-
ment direction of the node at each instant are calculated only
on the basis of those values in the previous instants as follows:

vn = αvn−1 + (1− α)v+
√
(1− α2)vxn−1 (23)

θn = αθn−1 + (1− α)θ +
√
(1− α2)θxn−1 (24)

FIGURE 9. Mobility model.

where vn and θn denote the new speed and direction of the
mobile node at time interval n, respectively, 0 ≤ α ≤ 1 is
the tuning parameter to vary the randomness degree, v and
θ are the expected values of the speed and direction as the
Gauss–Markov random process, respectively, and vxn−1 and
θxn−1 are Gaussian distributed random variables with zero
mean and unit variance, and independent of vn and θn.
In this sense, positions provided by the mobility model

were used to calculate distances, which were used to deter-
mine RSSI values, as follows [14]:

RSSId = RSSId0 − 10n ∗ log10

(
d
d0

)
(25)

In Equation 25, n, d0 and RSSId0 are given values, and
configured for outdoor environments [14]. The first one cor-
responds to the path loss coefficient. The second one indicates
a known distance of reference, and the third one establishes
the RSSI level at distance reference d0. Finally, the RSSI level
for a specific distance d is calculated through the previously
given data values.

As we presented in previous sections, these RSSI values
were used as an indirect way (since we assume nodes are not
equipped with GPS devices) to know how far are two pairs of
nodes.

IV. IMPLEMENTATION AND RESULTS
Our mathematical optimization model was implemented
using GAMS, and MATLAB was used for implementing
the rest of the approaches. In order to properly under-
stand the results, it is necessary to describe each label pre-
sented in the figures as follows:
• Mathematical Model: It corresponds to the multi-
objective mathematical optimization proposed in
section III-A. This mathematical model was imple-
mented in GAMS. In addition, for this model, w1 =

0.5 and w2 = 0.5 to provide the same weight for the
delay function and energy consumption function.

• PAMC: It corresponds to the Prediction Algorithm based
on Markov Chains proposed in section III-B.
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• PADL for n = 15: It corresponds to the Prediction
Algorithm based on Deep Learning for n = 15 proposed
in section III-C. Remember that n = 15 means that it
will be considered the last fifteen values of distance and
energy consumption of neighbour nodes to determine
the best forwarding node.

• PADL for n = 10: It corresponds to the Prediction
Algorithm based on Deep Learning for n = 10 proposed
in section III-C. Remember that n = 10 means that it
will be considered the last ten values of distance and
energy consumption of neighbour nodes to determine
the best forwarding node.

• PADL for n = 5: It corresponds to the Prediction
Algorithm based on Deep Learning for n = 5 proposed
in section III-C. Remember that n = 5 means that it will
be considered the last five values of distance and energy
consumption of neighbour nodes to determine the best
forwarding node.

• AODV for MWSN: This algorithm corresponds to the
traditional AODV algorithm enhanced to be applied in
mobile wireless sensor networks [21]. Remember that
this algorithm is based on distances to find routes and,
thus, we want to know if our prediction algorithm can
surpass it.

• Random Algorithm: This algorithm builds a path select-
ing a random neighbour node as a forwarding node.

These approaches (except the Mathematical Model) were
tested 10000 times for each network size in order to obtain
significant results. In other words, 10000 different scenar-
ios for each network size were generated to evaluate each
approach. The mathematical optimization model was tested
100 times for each network size instead of 10000 because it
is an offline solution that requires too much time. In addition,
the maximum number of network states (network move-
ments) for each network size was 10000, that is, the number
of times that each network node changed its position. This
value was enough for finding a path from the source node to
the sink for each approach.

In summary, we have proposed prediction distributed rout-
ing algorithms that takes into account the network mobility in
order to build as fast as possible a path between a source node
and a sink, comparing their performance against the optimal
solution given by the mathematical optimization model and
compared against traditional routing algorithms such as the
AODV for MWSN and the Random Algorithm described
previously.

Table 4 summarizes the most important parameters
assumed in the simulations.

From Table 4, we assume to deploy the nodes in an area
of 100× 100 m2 considering a communication radius (rc) of
20 meters. We also assume just one source node and one sink
in order to build a path from this source node to the sink. The
rest of the information is supported by references given in this
table.

The metrics used to evaluate the performance of each
approach are the following:

TABLE 4. Simulation parameters.

• Delay: It corresponds to the time needed to carry a data
packet from the source node to the sink.

• Energy Consumption: It corresponds to the energy
wasted for all the network since a data packet is trans-
mitted from the source node until it is received by the
sink.

• Hops: It corresponds to the number of hops taken by a
data packet since it is transmitted from the source node
until it is received by the sink.

• Overhead: It corresponds to the control packets required
to build a path to carry a data packet from the source
node to the sink.

The most important results are described and analyzed in
the following items:

• Figures 10a, 10c, 10e and 10g present the performance
of each approach for delay, energy consumption, hops
and overhead respectively. Figures 10b, 10d, 10f and 10h
are just a zoom in version of Figures 10a, 10c, 10e
and 10g respectively. This zoom in is performed to see
in detail the performance from 30 to 50 nodes.

• In all figures, we could verify that our mathemat-
ical model always obtained the best results, which
was expected. In other words, our mathematical model
proposal always obtains the best solution for each
network size for all metrics. Remember that the math-
ematical model needs too much time to provide a solu-
tion, whereby it is not an affordable solution for real
mobile wireless sensor networks applications because
they require solutions that must be obtained as fast as
possible. In this sense, in this work our mathematical
optimization model is used as an offline method that
has global information about the network, which allows
us to obtain the best possible solution, that is, the opti-
mal solution value for a specific network scenario. For
this reason, it is obvious that the mathematical model
always obtains the best results for all metrics evaluated.
As a consequence, the optimal solutions offered by the
mathematical model can be used as reference values to
evaluate how close is the performance of our prediction
algorithms (PAMC and PADls), AODV for MWSN, and
the Random Algorithm to these optimal solutions.
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• Figures 10a and 10b show the delay performance of all
approaches for each network size (10 to 50 nodes). Here,
our prediction algorithms (PAMC and PADLs), after the
mathematical model, showed a better performance than
AODV for MWSN and Random Algorithm for each
network size. These results confirm that using mobility
prediction is very useful to establish fastly a path from
a source node to the sink. In detail, in terms of the
Deep Learning approach, the model used for n = 15
(PADL for n = 15) showed better results than the
Markov Chains approach (PAMC). In other words, after
the mathematical model, the PADL for n = 15 obtained
the best results in terms of delay performance. This
indicates that a high value of n (15) for PADL allowed
us to predict more precisely the movement pattern of
neighbour nodes and, thus, selecting a better forwarding
node. In other words, a higher value of n allows the
learning model (PADL) to have more distance informa-
tion in order to improve the distance prediction of its
neighbours. Remember that a better forwarding node
represents the node that will be closer in the future to
the node i, that is, the node that has a data packet and
is deciding which neighbour node must be selected as
a forwarding node to build a path between a source
node and the sink. Selecting a forwarding node with
this method reduces the delay caused for communication
disruptions.
On the other hand, as network size decreases, the delay
performance of our prediction algorithms (PAMC and
PADLs) is each time better than AODV for MWSN
and the Random Algorithm. This means that if our net-
work has few nodes, our prediction algorithms (PAMC
and PADLs) are capable of obtaining a large advantage
against the other algorithms (AODV for MWSN and the
Random Algorithm) for finding the destination node.
Few nodes mean that there is less probability to find a
neighbour node, and thus, is more difficult to establish a
path to the sink. However, our prediction algorithms are
capable of finding reliable forwarding neighbour nodes,
allowing us to establish fastly a communication path
to the sink. In other words, the fact of finding reliable
forwarding neighbour nodes indicates we are selecting
forwarding nodes with less probability of suffering an
interruption, that is, neighbour nodes that, in the next
future, will be closer to the node that currently has a
packet to be sent.
In addition, as network size increases, the delay perfor-
mance of AODV forMWSN and the RandomAlgorithm
is each time closer to our prediction algorithms (PAMC
and PADLs). This means that if a network has many
nodes, this favors the fact of establishing a path for
AODV for MWSN and the Random Algorithm. Many
nodesmean that there is more probability to find a neigh-
bour node, and thus, is easier to establish a path to the
sink since there is less chance to suffer an interruption.

In summary, the prediction capability is more effective
as network size decreases.
Finally, in terms of delay performance, it is recom-
mended to use our prediction algorithms as network size
decreases, that is, for small networks (10 to 40 nodes).
In contrast, as network size increases, the prediction
capability begins to be irrelevant against traditional solu-
tions such as AODV for MWSN and the Random Algo-
rithm.

• Figures 10e and 10f show the hops performance of all
approaches for each network size (10 to 50 nodes). There
is a clear proportionality between the delay performance
and the hops performance. This is because themore hops
are necessary to traverse the network to finally achieve
the sink, the more delay is required. In this sense, the
behavior of each approach for the hops performance
evaluation is equivalent to the delay performance. For
this reason, the same analysis done for the delay perfor-
mance is applied to the hops performance.

• Figures 10g and 10h show the overhead performance of
all approaches for each network size (10 to 50 nodes).
According to these figures, our prediction algorithms
(PAMC and PADLs) require many control packets to
build as fast as possible a path between a source
node and the sink. The more nodes are in the net-
work, the more control packets are needed for our
prediction algorithms because each network node con-
tinually collects distance information from its neigh-
bour nodes according to the information provided in
sections III-B and III-C.

• Figures 10c and 10d show the energy consumption per-
formance of all approaches for each network size (10
to 50 nodes). According to these figures, for 10 and
approximately 15 nodes in the network, our predic-
tion algorithms (PAMC and PADLs) have less energy
consumption than AODV for MWSN and the Random
Algorithm. In detail, PADL for n = 15 obtained the best
results in terms of energy consumption performance for
10 and approximately 15 nodes in the network. PADL
for n = 15 needed less energy consumption than the
other algorithms (not the mathematical model) because
it required a less number of hops and control packets to
build a path between a source node and the sink. That is,
the fewer hops and control packets are needed to build
a path, the fewer amount of transmission and reception
processes that waste energy are needed. On the other
hand, as network size increases, the energy consump-
tion of our prediction algorithms (PAMC and PADLs)
increases because the more nodes the network has, the
more control packets are needed to build a path. Remem-
ber that, in our prediction algorithms, all nodes contin-
ually collect distance information from their neighbour
nodes to build a path to the sink. As a result, the energy
consumption of AODV for MWSN and the Random
Algorithm is less than our prediction algorithms because
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FIGURE 10. Results.

they do not need as many control packets as our predic-
tion algorithms.

In summary, the performance of our prediction algorithms
(PAMC and PADLs) in small networks (10 to 40 nodes)
is very beneficial since it allows us to find fastly a path
between a source node and a sink. However, as network size
increases, the prediction capability begins to be irrelevant
against traditional algorithms such as AODV for MWSN
and the Random Algorithm. However, analyzing at the same

time the delay and the energy consumption performances,
our prediction algorithms are recommended to be used in
small networks, that is, from 10 to 15 nodes approximately.
Anyway, our prediction algorithms offer the best results in
terms of delay as the network size increases, specially PADL
for n = 15, but at the expense of increasing the energy
consumption of the network. Thus, our prediction algorithms
could be used depending on the requirements of the applica-
tion. For example, we can simply use AODV for MWSN or
the RandomAlgorithm for applications that do not have delay
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FIGURE 10. (Continued.) Results.

requirements but needs to minimize energy consumption.
On the other hand, if the application has delay requirements
but does not need to minimize the energy consumption,
we can use our prediction algorithms, specially PADL for
n = 15. Finally, if the application has requirements in terms
of delay and energy consumption, we can use our prediction
algorithms in small networks, but if the network size is not
small, we can use our prediction algorithms at the expense
of increasing the energy consumption of the network.

V. CONCLUSION
We proposed a multi-objective optimization model and pre-
diction distributed routing algorithms based on Markov
Chains and a Deep Learning approach for finding the min-
imum cost path between a source node and a gateway node
(destination node) considering all nodes are mobile. The
results obtained by the mathematical optimization model
served as a reference to evaluate our prediction algorithms
and other traditional algorithms in order to analyze their
performance in terms of delay and energy consumption in
MWSN. In other words, optimal values given by the mathe-
matical model were be used to determine how good were the
results obtained by the algorithms. Additionally, we imple-
mented typical distributed routing algorithms to know the
performance of the prediction distributed routing algorithm.
As expected, our mobility prediction algorithms obtained the
best solutions in terms of delay and energy consumption
compared against not-using prediction techniques (AODV for
MWSN and the Random Algorithm), being more effective as
network size decreases.

In detail, our mobility prediction algorithms allowed us
to establish the most reliable path for finding the sink and,
at the same time, it allowed us to obtain the best path to the
sink compared against traditional algorithms in terms of delay
and energy consumption. Thus, the reliability offered by the
mobility prediction algorithms allowed us to select the most
stable forwarding nodes in terms of their network connectiv-
ity. In this sense, it was less likely that a data message would
be in isolated network zones, and then, there was a higher
probability to reach the sink by the data message. For this

reason, when the number of network nodes was scarce, the
mobility prediction algorithms performance was too high in
terms of delay in comparison with the rest of the algorithms.
In other words, we proposed to apply our prediction algorithm
in networks of 10 to 40 nodes because we considered more
interesting the fact of applying the prediction methods in
scarce networks where the number of neighbours is very
limited and, for this reason, the probability of finding a sink
is much less than in large networks. This means that if our
network has few nodes and, as a consequence, it is more
difficult to find a path to a sink, our prediction algorithm was
capable to obtain a large advantage in terms of delay against
traditional algorithms for finding the sink.

In terms of energy consumption, the energy performance
of our proposal besides the delay performance makes the
mobility prediction algorithms totally suitable for scarce net-
works, that is, for mobile wireless sensor networks applica-
tions where the number of nodes is not too high and it is
required data messages arrive at the sink as soon as possible.

In summary, the performance of our prediction algorithms
in small networks (10 to 40 nodes) is very beneficial since
they allow us to find fastly a path between a source node and
a sink at minimum energy consumption. However, as network
size increases, the prediction capability begins to be irrelevant
against traditional algorithms such as AODV for MWSN and
the Random Algorithm.

As future works, we are planning to evaluate our dataset
in other network simulators such as OMNET++ and
EDGF [30]. On the other hand, our proposed network sim-
ulator was developed taking into account the network layer,
but, in addition, we are considering to extend our proposal for
incorporating the MAC layer.
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