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ABSTRACT The tactful networking paradigm is expected to play a crucial role in the next generation
networks. Accordingly, adaptive human-aware environments, sensitive to the daily human behavior and
individual traits have to be provided, in order to offer a fully immersive and customized experience to
users. On the basis of data collected by actual cognitive experiments, this paper proposes a learning
framework to discover the multi-sensory human perceptual experience. The paper applies the mixture
density network to identify the perception model considering different senses, and then the multi-sensory
integration is performed, accordingly to the actual neuro-cognitivemodel. Furthermore, a supervised learning
module has been used to cluster the users on the basis of the human perception identification strategy
previously designed, assuming a multimodal structure for the cognitive brain activity. Finally, a practical
contextualization is presented, in relation to the haptics virtual reality services.What emerges from the results
is the effectiveness of the tactful approach, i.e., brain-aware, involving the proposed framework, which is
validated in comparison to the more conventional brain-agnostic scheme. In fact, the system performance,
expressed in terms of reliability in guaranteeing the service exploitation before a target deadline based on the
integrated perception, reaches remarkable improvements applying the brain-aware strategy, which exploits
the human perception knowledge.

INDEX TERMS Human-in-the-loop, quality-of-experience, tactful networking, supervised learning.

I. INTRODUCTION
One of the most salient features of the next generation net-
works is expected to be the need to manage human-aware
applications, for example ultimate virtual reality services,
or more in general those involving the extended reality (XR),
or haptic communications. In fact, the new era of wireless net-
works will be characterized by architectures, communication
models and technological solutions able to guarantee services
based on daily humans behavior, including the psychological
and cognitive aspects of the human brain, as well as the every-
day humans habits, in order to meet the users expectations
more naturally [1]. The recently emerged tactful networking
paradigm has marked a divide between the user-centric appli-
cations, typical of the previous network generations, and the
new era human-aware perspective, denoting a novel inter-
disciplinary area referred to the human behavior analysis.
The user-centric approach is interested in whether and how
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the user participation may help to solve the challenges of
the networks, in order to guarantee the users’ target require-
ments satisfaction. Differently, with the advent of the tactful
networking, which boosts the human-in-the-loop vision, the
attention has been posed to the extraction and analysis of
the human-traits, expressed in terms of human perception,
capability in observation, interpretation, and reaction of the
humans to the surrounding environment. Looking forward,
by involving the human subjective sphere of the individuals
within the new era networks and applications design, such
as the human personality, the routines, the brain cognitive
limitations, and so on, the quality-of-experience (QoE) may
be empowered, offering the chance to realize tactful network
ecosystems, i.e., environments adaptive to the human context,
sensitive to human behavior and interests, and able to support
real-time and interactive virtual environments soliciting the
users’ five senses [1].

Within this context, the exploitation of advanced machine
learning techniques to deeply investigate the cognitive
aspects of the human brain and the behavioral individual
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traits, is gaining momentum, expecting to play a crucial role
in next generation networking [1]. In reference to this, some
pioneer multidisciplinary studies have been proposed, for
example [2] and [3], in which the users’ delay perception
has been analyzed and substantial efforts have been made
to design a framework able to catch the human perception
dynamics in relation to a wide range of individual features,
such as age, personality, etc., representing remarkable liter-
ature improvements. What emerges in papers [2] and [3] is
that there exist individual human brain limitations in perceiv-
ing quality-of-service (QoS) improvements above a certain
threshold, leading to biases in how the human brain translates
the QoS in the actual QoE level, perceiving a QoE lower than
the expected one [2]. In fact, the recent multi-disciplinary
literature has started highlighting the actual cognitive lim-
itations of the human brain in perceiving different QoS in
video streaming transmission, in reference to both the rate
and the delay metrics [2], [4], [5], confirming that human
users cannot perceive QoS gains due to the intrinsic cognitive
constraints.

Nevertheless, the challenges concerning the design ofmod-
els and frameworks to realistically fit the actual capability of
the human behavioral perception, in order to incorporate it in
the practical realization ofXR environments soliciting several
senses simultaneously, are still numerous. For example, due
to the intrinsic complexity of the data collection and themulti-
facet nature of the topic, literature lacks in models to identify
human perceptions different from that related to the visual
cortex cognitive awareness.

This paper proposes the formulation of a statistical learn-
ing framework to model the human perception of the users
considering different senses. More in depth, the contributions
of the paper in comparison to the existing literature can be
summarized as follows
• A multidisciplinary machine learning based framework,
which aims at providing a model to identify the multi-
sensorial delay perceptions of the human brain, consid-
ering actual data deriving from cognitive science trade
journals experiments as [6]–[8], and credited neuro-
cognitive perceptive brain models [9]–[13];

• The application of a Gaussian mixture based learning
method to identify the human perception related to dif-
ferent sensory channels to cluster users in relation to
the Gaussian mode which better fits the corresponding
perception dynamic;

• The design of a framework to model the multi-
sensorial human perception experience considering the
integration of different sensory channels stimulated
simultaneously, and the potential dominance of the
visual perception on the haptic cue. The proposed
framework has been contextualized to a tactful network
arranged to handle haptics virtual reality (HVR) ser-
vices, to show the advantages of performing human-
perception based solutions, in reference to the system
reliability in guaranteeing the service exploitation before
a target deadline.

The rest of the paper is organized as follow. Section II
presents the review of the prior works related to our study.
Section III describes the proposed human perception iden-
tifier model. Then, the Section IV presents the contextual-
ization of the proposed model to a HVR scenario and the
corresponding performance analysis. Finally, the conclusions
are drawn in Section V.

II. RELATED WORKS
Several works have been proposed involving the users’ per-
sonal information, such as the behavioral patterns or the
social interactions, into frameworks devoted to address the
traditional problems of the modern networks. Examples are
represented in papers [15], [19], and [2]. The user-centric
vision was adopted in paper [15], where authors aim at
optimizing the resource allocation procedure in wireless
small cell networks, throughout matching theory, considering
device-to-device communication. Moreover, authors in [15]
apply matching theory considering as relevant feature the
social aspects, providing a context-aware resource allocation
framework based on the social interactions. Studies about
the human perception have been proposed in [19], in which
the authors design a spectrum sharing strategy on the basis
of the human psychological behavior of the users involved
in the network. Paper [2] presents a power minimization
considering the limitations of the human brain in perceiving
different QoS levels, applying the Lyapunov optimization.

The multi-sensory perception has been the focus of
paper [20], in which a multi-sensory learning framework
has been designed to convert text sentence into visual and
auditory representations to support autistic students. The
paper [21] conducts an experiment about the human per-
ception, in reference to both the visual and proprioceptive
stimuli. The experiment is focused on 8 subjects with trained
proprioception and 8 subjects with visual training. The cor-
responding results highlight that the learning rate of the
visual perception is remarkably higher than that related to
the proprioception; although the statistical error results to
be decreasing as the learning training increases, the error
still results significant for proprioception and non-significant
for visual channel. Furthermore, the error in the test phase
results to be higher than in the training because during the
test, the process involved is the multi-sensory integration.
The authors in paper [22] address the problem of the human-
computer interaction, aiming at providing the state-of-the-
art in data representation involving more than one sensory
channel. The paper has considered 154 examples of multisen-
sory data representations, in order to propose a design space
along three dimensions: use of modalities, representation
intent and human–data relations. In the paper [23], a control
system prototype based on Arduino has been designed for
the heat and scent simulations, within the VR environments.
The proposed system represents a multisensory VR simulator
developed in Unity 3D to prevent hazards such as fire, smoke,
and so on. The paper [24] exploits a multilayer perceptron
architecture to classify unisensory stimuli, on the basis of

147550 VOLUME 9, 2021



B. Picano: Multi-Sensorial Human Perceptual Experience Model Identifier

FIGURE 1. Uni-sensory most probable mode identification.

FIGURE 2. Multi-sensory human perception identification framework.

which, then, a generalized feature-integrating model is pro-
posed to analyze the multisensory combination. Furthermore,
the development of a multi-sensory augmented reality system
for the cultural heritage has been performed in [25], aiming at
evoking several stimuli with SensiMAR prototype. The pro-
posed system is referred to offer a multi-sensory experience
involving the visual reconstructions, soundscape of ancient
times, and smell very common during the historical period
considered.

This paper aims at pursuing a multi-disciplinary approach
to the multi-sensory human perception, in order to provide
a valuable integrated multi-sensory model to be exploited in
tactful networking applications. Nevertheless many studies
have been conducted in relation to human visual-haptics
combination, this paper has the goal to merge the neurocog-
nitive aspects of the human brain with the machine learning
techniques in order to provide a comprehensive framework
for human perceptual experience to be exploited in tactful
networking. In this sense, for the best of author’s knowledge,
there is not yet a similar work in the existing literature.

III. HUMAN PERCEPTUAL EXPERIENCE MODEL
IDENTIFIER
As it is conspicuous from literature [2], [3], [6]–[8], the
human cognitive perception does not result from only one
distinctive trait of the individuals, rather it derives from a
multitude of attributes, hereafter referred as features, such as
gender, age, diseases, or the distance from a reference point.

In this paper the presence of diseases inhibiting one or more
sensory channels is not taken into account, as well as the
condition in which the sensory stimuli are not referred to the
same scene. In order to design and support reactive multi-
senses soliciting XR environments, the match between user
features profiles and the corresponding cognitive perception
has to be performed. By focusing first of all on only one
sensory channel j, let F = {1, . . . , n} be the set of users,
and let {f 1, . . . , f n} be the set of the features vectors cor-
responding to n users, respectively. Consequently, f i ∈ Rm

represents the features vector of the i-th user and, for each f i,
i = 1, . . . , n,Fj represents the features matrix, in which entry
i is f Ti . Then, the vector β

j is the user uni-sensory perception
vector, whose element βi(t)j expresses the perception of user i
in reference to the j-th human sense. The features vectors
can be collected from neurocognitive experiments focusing
on each sense, such as those in [6]–[8]. In accordance with
Fig. 1 and Fig. 2, the proposed learning framework con-
sists of an unsupervised learning module implementing the
mixture density network (MDN) estimation [26], and of a
supervised learning solution to cluster the users on the basis
of the features they exhibit. More in depth, the unsupervised
learning module allows to match the users’ features vectors
f i with the most probable perception mode, supposing a user
uni-sensory perceptual experience. Then, a strategy for the
multi-sensory integration is proposed, on the basis of the uni-
sensory perceptual values previously considered. In this way,
a labeled dataset in which each features vector is classified on
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the basis of the multi-sensory perception value is produced.
Therefore, the labeled dataset is used to train a supervised
learning module aiming at classifying the users on the basis
of their multi-sensory perceptual experience value, in accor-
dance with the corresponding features vector.

A. UNSUPERVISED UNI-SENSORY PERCEPTUAL
EXPERIENCE IDENTIFICATION MODEL
The unsupervised learning block consists of the MDN mod-
ule that adopts the Gaussian mixture model (GMM) and
the Expectation Maximization algorithm (EM) to solve the
unsupervised clustering problem [2], [27]. Accordingly to
the statistical learning [27], the mixture model exploits the
Bayes rule to give the degree of membership of an element
to any cluster, hereafter referred as brain mode, by resorting
to the conditional probabilities. More in depth, the MDN
module allows to model the conditional probability distri-
bution p(ωji|f i), where ω

j
i ∈ Rm+1 represents the vector

including βi(t)j and the corresponding features f i. From the
GMM model assumption follows that we have a normalized
linear combination of K Gaussian distributions. Therefore,
we obtain that [2], [27]

p(ωji) =
K∑
k=1

p(z)p(ωji|z) =
K∑
k=1

πkN (ωji|µ
j
k ,C

j
k ), (1)

in which N (ωji|µ
j
k ,C

j
k ) represents the k-th Gaussian compo-

nent density characterized by mean vector µjk and covariance
matrix C j

k , considering the sensory channel j. Furthermore,
by introducing the latent binary random vector z, in which
only one component is set to one and the other are zero,
we have that p(zk = 1) = πk , which expresses the Gaussian
component activated. More in depth, under the assumption of
a multi-modal cognitive human activity, z gives information
about the Gaussian mode fitting the human brain. In order
to cluster data on the basis of the most probable mode to
which they belong to, the EM algorithm aims at finding
πk , µ

j
k and C j

k to maximize the log likelihood function
expressed by [27]

L =
∑
i

ln
K∑
k=1

πkN (ωji|µ
j
k ,C

j
k ). (2)

Due to the complexity in maximizing (2), the EM acts in
accordance with the following steps [27]

1) Randomly initialize πk , µ
j
k and C

j
k ;

2) For each mode, compute the responsibility [27]

r jk =
πkN (ωji|µ

j
k ,C

j
k )∑K

l=1 πlN (ωji|µ
j
l,C

j
l)
; (3)

3) On the basis of the current responsibility value, the
parameters are updated;

4) Repeat steps 1)-3) until convergence.
Consequently, the output of the EM, i.e., the unsupervised
learning, is represented by the GMM corresponding to the

dataset matrix M j, where M j = [Fj||β j]. Therefore, in
reference to the obtained GMM model, each data sample
ω
j
i, is labeled with the most probable Gaussian component

k computed as follows [26]

χ
j
i = argmax p(zk = 1|ωji) = argmax r jk , (4)

in which

p(zk = 1|ωi) =
πkN (µjk ,C

j
k )∑K

l=1 πlN (µjl,C
j
l)
. (5)

At this stage, before resorting to the supervised learning
module, we need to integrate together the output vectors of
the unsupervised learning, i.e., yj = [χ j1, . . . ., χ

j
n]T , for each

sense j.

B. MULTI-SENSORY INTEGRATION
As previously detailed, the unsupervised learning mod-
ule returns, for each sense j, the output vector yj =
[χ j1, . . . ., χ

j
n]T , expressing the most probable brain mode for

each user. Then, let Kj
k be the k-th cluster, then Kj

k includes
all the users’ having as most probable mode χ jk , in reference
to the sensory channel j. Therefore, among the elements
belonging to Kj

k , the user i
? can be identified as follows

i?k = minBjk , (6)

where the set Bjk = {i ∈ F |f i has mode Kj
k}. Similarly, the

user belonging to the k-th cluster exhibiting the maximum
perception value can be defined as

i′k = maxBjk . (7)

What it is intuitive to understand, the perception level
of the users belonging to the k-th cluster, considering the
sensory system j, is surely within the range [β ji?k

, β
j
i′k
]. Due

to the fact that lower is the delay perceived on a sensory
channel, greater is the sensibility of the users in discerning
the fluctuations occurred on that sense, it is reasonable to
consider the worst case value β ji?k

as delay perception thresh-
old for the considered k-th cluster of users when only one
sensory channel is involved. In fact, the clustering method
previously discussed may be useful to group together users
with a common delay perception for a given sensory sys-
tem. Nevertheless, whether and how the users’ perception
varies under the simultaneous stimulation of different sensory
channels is still an open issues object of debate. Some stud-
ies have highlighted that sending stimuli contemporaneously
on different sensory systems may originate interference on
cognitive perception or even empower the human overall
perception [9]–[13].

Although in many studies the advantages of the multi-
sensory integration is emerged, other papers have highlighted
that the brain, integrating information stemmed by some
different channels, may lose the individual sensory system
perception, leading to the metameric condition. Accordingly,
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FIGURE 3. System scenario.

there may be different physical stimuli that lead to exactly
the same perceptual experience, indiscriminable from one
another [10].

Within this context, in order to model the multi-sensory
human perception under simultaneous stimulation of differ-
ent sensory channels, we can define, for each user i, the
multi-sensory vector si ∈ RJ , where J represents the number
of sensory channels stimulated simultaneously. Furthermore,
the entries in si represent the cluster to which they belong
to, derived from the module previously described. Then,
numerous neuro-cognitive studies have highlighted that the
integration of the sensory cues are interpreted by the brain
as a weighted sum of individuals perceptions. Consequently,
a prior estimation of the multi-sensory perception βi may be
represented by the following expression

βi =

J∑
j=1

wjµ
j
i, (8)

where the weight wj has to be properly defined, for example
as the normalized reciprocal variance:

wj =
1/σ 2

j∑J
j=1 1/σ

2
j

. (9)

Consequently, the integrated perception βi results to be
given by the sum of the uni-sensory perception, weightedwith
the reliability corresponding to each perception estimation,
since the reciprocal of the variance is a measure of the relia-
bility of such an estimation.

Nevertheless, other experimental studies as [11], [28], [29]
have brought to light the existence of a relationship of dom-
inance and recessive among the different sensory channels.
In particular, the visual perception has been recognized as
dominant when it is integrated with the haptic channel and
the variance associated with visual estimation is lower than
that associated with haptic estimation [11]. In this case, the
weight associated to the visual system wV is set as

wV = wH
σ 2
H

σ 2
V

, (10)

in whichwH represents the weight given to the haptic cue and
σ 2
H and σ 2

V are the variance of the haptic and visualmodalities,
respectively.

C. SUPERVISED USER-MULTISENSORY PERCEPTION
ASSOCIATION
Once the multi-sensory integration is provided, we dispose

of pair {f i, βi}, in which βi depends on the elements yji, for
each j, of the output vectors yj, i.e., si. Thus, the pair {f i, βi}
is used to train the supervised learning module which realizes
a classifier that, for each human features vector f i as input,
returns the corresponding integrated perception value βi. Let
β = [β1, . . . ., βn]T be the vector of the integrated perception
values. Given the matrix Fj and β, the supervised learning
module builds a model g such that βi = g(f i), in which

g = argmin ĝ

n∑
i=1

ζ (βi, ĝ(fi)), (11)

and ζ (·) is a 0−1 loss function [2], [27], and g is approximated
exploiting the points (f i, βi). In addition, to prevent overfit-
ting, the Elbow method has been applied [2], [27]. Figure 4
summarized the proposedwhole framework, posing emphasis
on the relationship existing between the different modules of
the framework.

Therefore, the proposed framework, represented in
Figure 2, acts as follows
1) For each features vector f i, and each sensory channel j

stimulated, the GMM model based on ωji is applied;
2) For each user i and sensory channel j, χ ji is computed;
3) For each most probable mode χ ji , the variance σ 2

j is
calculated;

4) For each user i, the multi-sensory perception e is com-
puted by resorting to the brain multi-sensory integra-
tion expressed by (8);

5) The model described in (8) and (9) is applied when
σV > σH to find βi; otherwise the multi-sensory
perception βi is computed applying (8), (9), and (10);

6) At this point, a supervised learning module is applied
to cluster the users accordingly to their βi, on the
basis of the features vector fi. More in depth, in ref-
erence to Fig. 2, this module aims at associating to
the feature vector f i of each user, the corresponding
effective delay perception βi. In fact, steps 1) − 5)
produce a labeled dataset which can be used for training
the supervised learning module, making possible the
association between users’features vectors f i and the
corresponding perception values βi.

In the following section a case of study related to the VR
haptics services is presented, exploiting the multi-sensory
human perceptual experience model identifier proposed.

IV. BRAIN-AWARE END-TO-END DELAY ANALYSIS FOR
HAPTICS VR SERVICES
The problem presented here is contextualized to the HVR ser-
vices, which is one of the most disruptive applications among
those expected in the next generation networks. It is important
to highlight that the analysis proposed in the following has the
only purpose of providing a contextualization to the frame-
work previously designed. Therefore, the markovian analysis

VOLUME 9, 2021 147553



B. Picano: Multi-Sensorial Human Perceptual Experience Model Identifier

FIGURE 4. Proposed framework.

FIGURE 5. Distribution of audition perception considering 100 users.

TABLE 1. Simulation parameters.

presented represents a simplification of the problem in its
complete form, and it has been given in order to provide an
insight about the practical application of the multi-sensory
perception model developed. Nevertheless, the proposed con-
textualization can be extended to more complex and detailed
analysis.

FIGURE 6. Distribution of touch perception considering 100 users.

Typically, HRV services solicit the vision, the audition, and
the touch. In order to provide a useful application example of
the proposed framework, we refer to the scenario considered
in [34] and [35], whose main parameters are reported in
Table 1. In reference to Fig. 3, a set of Q HVR users has
been considered. Each user injects in the network a Poisson
traffic flow with mean rate λq packets/ms, q = 1, . . . ,Q.
The communication link is provided by a SBS, expected to
operate at terahertz frequencies, which represent one of the
most promising option to guarantee communications char-
acterized by simultaneously high rate, high reliability, and
low latency for immersive VR experiences. After receiving
computation, the packets are sent back to the user, throughout
the transmission subsystem. The focus here is the evaluation
of the delay due to the computing and transmission sub-
system, i.e., the end-to-end delay, in reference to the delay

147554 VOLUME 9, 2021



B. Picano: Multi-Sensorial Human Perceptual Experience Model Identifier

FIGURE 7. Distribution of vision perception considering 100 users.

FIGURE 8. Distribution of integrated perception βi considering 100 users.

target deadline k̂ . Both the computation and the transmission
subsystems service times have been assumed as exponentially
distributed, with mean service time x̄1 = 5 ms and x̄2 =
0.75 ms, in accordance with the reference scenario analyzed
in [34], [36] and [35]. Hereafter the reliability of the system
refers to the probability of guaranteeing the target deadline k̂ .
Therefore, the HVR packets arrive at the computational sub-
system with a Poisson process with mean rate λ = Qλq.
The parameter of the exponential distribution modeling the
service time of the computational subsystem is µ1 = 1/x̄1.
Consequently, the corresponding processor load ρ is given
by ρ = x̄1λq. The computation subsystem results to be a
M/M/1 system. Due to the Burke’s theorem [30], we have
that the arrival process at the transmission subsystem results
to be a Poisson process with mean rate λ, independent from
that at the computational subsystem. Then, the exponential
distribution modeling the service time of the transmission
subsystem is µ2 = 1/x̄2.

Consequently, the overall e2e delay needed to accomplish a
HVR request service, is given by the sum of two independent

FIGURE 9. Reliability as a function of ρ.

time contributions: the time needed to complete service at
the computation subsystem (t1), and the time spent at the
transmission subsystem (t2) to send back to the HVR user
the outcome of the service requested.

Let ψ1(t) and ψ2(t) be the pdf of the random variable t1
and t2, respectively. The pdf of the overall e2e delay results
to be given by the convolution

π (t) = ψ1(t) ∗ ψ2(t).

In accordance with the standard queueing theory [30] we
have

ψ1(t) = (µ1 − λ)e−(µ1−λ)t = φ1e−φ1t ,

ψ2(t) = (µ2 − λ)e−(µ2−λ)t = φ2e−φ2t , (12)

where φ1 = µ1 − λ, and φ2 = µ2 − λ. After some algebraic
manipulations we have that the reliability metric R for the
tandem model considered is

R =
∫ k̂

0
π (t)dt. (13)

The uni-sensory model perception has been realized by
considering the experimental data collected and merged by
neuro-cognitive paper journals as [13], [31], [32], in refer-
ence to each sense involved in the HVR services. Conse-
quently, the uni-sensory perception histogram corresponding
to each sense involved in this application is reported in Fig. 5,
Fig. 6, and Fig. 7, considering 100 users. Differently, Fig. 8
represents the histogram of the delay perception, consider-
ing 100 users.

On the basis of the integrated perception model obtained
in Fig. 8, the value of k̂ may be set in accordance with
the multi-sensory perception values estimated for the users
experience and reported in that figure. It is important to
highlight that the target deadline k̂ has been set equal to
the statistical average of the perception values distribution
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FIGURE 10. Reliability as a function of Q.

FIGURE 11. Reliability as a function of ρ.

illustrated in Fig. 8. In such a way, the target deadline results
to be less stringent in comparison to the deadline imposed
by the strict QoS requirements which, typically, is set to 20
as in standard literature [33], [34], [36] and [35]. In fact,
the delay perception gives the opportunity to exploit more
effectively the network resources and to offer simultaneously
an immersive and fully satisfying XR experience to the users.
Aiming at highlighting the benefits deriving from the tactful
networking approach, considering the values presented in
Fig. 8, Fig. 9 shows the system reliability as a function of
the processor load ρ, considering Q = 1. The results are
obtained by pursuing both the tactful networking (TN) and
the more conventional brain-agnostic (BA) scheme, which
considers k̂ = 20 ms. Differently, the TN approach sets
the target deadline k̂ equal to the statistical average of the

FIGURE 12. Reliability as a function of x̄1.

FIGURE 13. Reliability as a function of x̄2.

obtained numerical values according to the perception val-
ues distribution illustrated in Fig. 8. As it is clearly evident
from the Fig. 9, the TN strategy guarantees reliability values
higher than those reached by applying the BA scheme. Such
a trend is also confirmed by Fig. 10, in which the reliability
is expressed as a function of the number of users Q. In this
case, the arrival rate λq has been set the same for all the Q
users and it is equal to 0.1 packets/ms. Also in this case, the
results confirm the validity and the advantages of adopting
a TN strategy, in order to offer more reliable HVR services
and to handle a greater number of users. Fig. 11 considering
a target reliability equal to 0.9, represents the number of users
manageable by system without lowering reliability below the
fixed target. As it is evident from the Fig. 11, also in this case,
the improvements reached by applying the TN strategy con-
firms the validity of the human-aware approach. In addition,
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FIGURE 14. BA Reliability as a function of k̂ .

Fig. 12 and Fig. 13 express the system reliability as a function
of the mean service time of the first (x̄1) and the second (x̄2)
subsystem, respectively. From Fig. 12 and Fig. 13 is evident
that the computation subsystem represents the bottleneck of
the considered tandem network. In fact, the system reliability
trend is steeper when x̄1 increases, in comparison to the reli-
ability obtained by increasing the value of x̄2. Finally, Fig. 14
shows the system reliability behavior for different values of k̂ ,
considering the BA approach. As it is straightforward to note,
the reliability grows when we have less stringent deadline
values.

V. CONCLUSION
This paper has proposed a learning based framework tomodel
the human perception considering the five sensory systems,
assuming the cognitive human brain activity as having a
multimodal structure. The mixture density network has been
applied to identify the conditional probability distribution of
having, for each sense, a perception level, assuming some
individual traits. Furthermore, a multi-sensory perception
model has been assumed, in accordance to the neurocognitive
literature, to perform sensory integration. Then, a supervised
learning module has been used to cluster the users on the
basis of their integrated perceptive sensitivity. Finally, the
contextualization to the HVR services, in order to exhibit
the advantages resulting from the adoption of a brain-aware
decision making scheme based on the proposed framework,
instead of a more common brain-agnostic approach, has been
performed. The case of study presented aims at highlighting
the performance improvements considering the system relia-
bility in guaranteeing a perceptual target deadline.
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