
Received October 21, 2021, accepted October 28, 2021, date of publication November 1, 2021, date of current version November 8, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3124600

Plug-and-Play ADMM for MRI Reconstruction
With Convex Nonconvex Sparse Regularization
JINCHENG LI, JINLAN LI, ZHAOYANG XIE, AND JIAN ZOU
School of Information and Mathematics, Yangtze University, Jingzhou, Hubei 434020, China

Corresponding author: Jian Zou (zoujian@yangtzeu.edu.cn)

ABSTRACT Traditional `1-regularized compressed sensing magnetic resonance imaging (CS-MRI) model
tends to underestimate the fine textures and edges of the MR image, which play important roles in clinical
diagnosis. In contrast, the convex nonconvex (CNC) strategy allows the use of nonconvex regularization
while maintaining the convexity of the total objective function. Plug-and-play (PnP) algorithm is a powerful
framework for sparse regularization problems, which plug any advanced denoiser into traditional proximal
algorithms. In this paper, we propose a PnP-ADMM algorithm for CS-MRI reconstruction with CNC
sparse regularization. We first obtain the proximal operator for CNC sparse regularization. Then we present
PnP-ADMM algorithm by replacing the proximal operator of ADMM with properly pre-trained denoisers.
Furthermore, we conduct comparison experiments using various denoisers under different sampling tem-
plates for different images. The experimental results verify the effectiveness of the proposed algorithm with
both numerical criteria and visual effects.

INDEX TERMS Plug-and-play method, ADMM, convex nonconvex sparse regularization, compressed
sensing, MRI reconstruction.

I. INTRODUCTION
MRI is one of the most powerful clinical diagnostic tools due
to its non-invasive and non-ionizing characteristics. However,
one of the primary limiting factors of MRI application is its
relatively long image acquisition time. In order to reduce the
scanning time, MRI data are usually undersampled. How to
reconstruct MR images from undersampled measurements
without degrading quality has been a concern [1]–[4].

CS-MRI is one of the most important breakthroughs in fast
MR imaging [5]. Mathematically, for a single-coil CS-MRI
model, the acquired K-space data y ∈ Cm is given by

y = Ax+ η, (1)

where x ∈ Cn is the ground truth MR image, η ∈ Cn denotes
measurement noise or disturbance, A ∈ Cm×n(m < n) repre-
sents the CS sampling matrix. Usually, we have A = P× F
where P ∈ Rm×n is an undersampling matrix, and F ∈ Cn×n

is the Fourier transform.
The ground truth MR image x can be obtained by solving

the following regularized inverse problem

min
x

{
1
2
‖y− PFx‖22 + λφ(x)

}
, (2)
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where the nonsmooth regularization term φ(x) is used to
present some prior knowledge of x, λ is the regularization
parameter. The most used prior for MR image is sparsity in
the wavelet domain, which can be included as the regular-
ization term φ(x) = ‖9x‖1. Here, 9 is a discrete wavelet
transform, and the `1 norm is used to promote sparsity. The
convexity of the `1 norm can ensure the efficient solvabil-
ity of the objective function (2). However, `1 regulariza-
tion is a biased estimation, which tends to underestimate
the high-frequency part of x in the wavelet domain. The
high-frequency part of the wavelet domain corresponds to the
details of the image, such as fine textures and edges, which
is very important in clinical diagnosis. In contrast, existing
nonconvex regularizers (such as `q norm φ(x) = ‖9x‖q(0 <
q < 1), Capped `1 [6], Smoothly Clipped Absolute Devi-
atio (SCAD) [7] and Minimax Concave Penalty (MCP) [8],
etc.) can yield a more accurate estimate of high-amplitude
components. However, the nonconvex regularizer will make
the objective function of the problem (2) nonconvex and will
produce suboptimal local solutions [7]–[11].

Recently, Selesnick proposed a new CNC sparse regular-
izer formed by subtracting the Moreau envelope of `1 norm
from itself [12]–[16]. The CNC sparse regularizer is non-
convex that can reduce the estimation bias. Meanwhile, the
convexity of the whole objective function (2) can maintain by
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adjusting the parameter settings. The CNC strategy is widely
used in image reconstruction [17], [18], image denoising [12],
[13], [19], and fault detection [20]–[22].

How to solve sparse regularization problem (2) is a chal-
lenging topic. PnP algorithm is a powerful framework for
sparse regularization problems, which plug any advanced
denoiser into traditional proximal algorithms. Ahmad et al.
proposed PnP-ADMM for MRI reconstruction with
`1-regularization [3]. In this paper, we propose a novel
PnP-ADMM algorithm to solve problem (2) with the CNC
sparse regularization. The contributions of this paper are
summarized as follows: Firstly, we propose the proximal
operator for CNC sparse regularizer in iterative form. This
iterative proximal operator can be used in other generalized
CNC regularizers, which closed-form solution is challenging
to obtain. Secondly, by replacing the proximal operator with
properly pre-trained denoisers, we obtain the PnP-ADMM
algorithm for the problem (2). Finally, we apply the pro-
posed algorithm to MRI reconstruction. Experimental results
demonstrate the superiority of the proposed algorithm.

The rest of this paper is organized as follows. In the next
section, we present some basic concepts of the proposed
method. In Section III, we introduce the CNC sparse regular-
izer and give its proximal operator in iterative form. ADMM
and PnP-ADMM algorithms are proposed to solve the CNC
sparse regularization model in Section IV. The experimental
results are demonstrated in Section V. Finally, the conclusion
is presented in Section VI.

A. RELATED WORK
MRI reconstruction algorithms can be roughly divided into
three categories: Optimization-based, neural network-based
and combination algorithms with optimization and neural
network.

Traditional first-order iterative optimization algorithms,
e.g. iterative shrinkage/thresholding algorithm (ISTA) [23],
alternating direction method of multipliers (ADMM) [24],
primal-dual hybrid gradient (PDHG) [25] and proximal gra-
dient descent (PGD) [26], [27], have achieved great success
in the past. Proximal operators are often used to deal with the
nonsmooth regularization terms. Recent works have shown
the effectiveness of the above algorithms when a simple
closed-form solution of the proximal operator can be com-
puted easily [28], [29]. However, the iterative algorithms
may be hard to build when the proximal operator is not
easy to evaluate. Furthermore, iterative algorithms often need
hundreds of iterations to converge to an optimal solution.

In recent years, with the rapid rise of deep learning, neural
networks are also used in MRI reconstruction. Neural net-
works, such as U-Net [30], [31] and generative adversarial
network (GAN) [32], are used to learn the mapping between
the k-space data and the ground truth MR image. The Net-
work parameters are learned end-to-end. Themain drawbacks
of these methods are the huge network parameters and lack
of interpretability.

Incorporating deep learning techniques into tradi-
tional optimization algorithms attracts increasing attention.
Roughly, the so-called learning-based or data-driven algo-
rithms implement in two ways. The first approach is algo-
rithm unrolling (or unfolding), which unrolls an iterative
algorithm to a deep neural network [33], [34]. The deep neural
network architecture is constructed by mapping one iteration
to a network layer and then stacking all layers together. The
network parameters are learned from real-world training data
sets through end-to-end training. Existing algorithm unrolling
includes Learning ISTA (LISTA) [35], ADMM-Net [36],
PGD-Net [37], Primal-Dual-Net (PD-Net) [38], etc.

The second approach is PnP, which plugs any advanced
denoiser into traditional proximal algorithms. Existing PnP
algorithms include PnP-ADMM, PnP-FBS, and PnP-ISTA,
have shown their superiority in image reconstruction, image
restoration, and other inverse imaging fields [3], [39]–[45].
Compare with algorithm unrolling, PnP has several advan-
tages. First of all, when there is not enough data for end-
to-end training, any traditional or pre-trained denoiser can
be used as a modular component under the PnP frame-
work. Commonly used denoisers include traditional hand-
designed denoisers, such as soft threshold, Total Variation
(TV) [46], Block-Matching 3D (BM3D) [47], and deep neu-
ral network denoisers [48]–[51]. Secondly, the convergence
of PnP algorithms can guarantee theoretically under some
general assumptions. For example, [39] used the bounded
noise reducer hypothesis to analyze the convergence. Refer-
ence [40] studied the convergence of some PnP frameworks
under a specific Lipschitz condition on the denoisers. Refer-
ence [41] proved the convergence of PnP algorithms under
the assumption that the denoiser is nonexpansive.

II. PRELIMINARIES
In this section, we recall some basic concepts of proximal
operator and monotone operator theory, which will be helpful
in the rest of the paper. These concepts can be found in
classical convex optimization literature [52], [53].

For a proper, closed, convex function g(x), its proximal
operator prox is defined as

proxλg(y) = argmin
x

{
1
2
‖y− x‖22 + λg(x)

}
. (3)

As a special case, if g(x) = ‖x‖1, then its proximal operator
proxλ‖·‖1 is the element-wise soft threshold

proxλ‖·‖1 (y)i = [|yi| − λ]+ sgn (yi)

=


yi − λ, yi ≥ λ,
0, |yi| < λ,

yi + λ, yi ≤ −λ.
(4)

where yi is the i-th element of y. The soft threshold can be
viewed as a denoiser since it can reduce the elements of y
towards zero.

For a general regularized model

min
x
{f (x)+ λg(x)} , (5)
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where f (x) is a convex and differentiable data-fidelity term,
g(x) is a convex but nonsmooth regularization term.

By using the proximal operator proxαg, PGD iteration
for (5) is given by

xk+1 = proxαg(x
k
− α∇f (xk )), (6)

where ∇f (x) is the gradient of f (x) and α is the step size.
The main iteration steps of ADMM for the problem (5) can

be summarized as

xk+1 = prox 1
β
f

(
zk −

1
β
uk
)
, (7)

zk+1 = prox 1
β
g

(
xk+1 +

1
β
uk
)
, (8)

uk+1 = uk + β
(
xk+1 − zk+1

)
. (9)

Since f (x) is a convex and differentiable, subproblem (7)
have analytic solutions. If the proximal operator prox 1

β
g can

be expressed in a simple closed-form, ADMM can solve (5)
efficiently.

The key idea behind PnP-ADMM is to plug in a pow-
erful pre-trained denoiser in place of the proximal operator
prox 1

β
g. In this case, subproblem (8) becomes

zk+1 = Hσ

(
xk+1 +

1
β
uk
)
, (10)

where Hσ denotes a pre-trained denoiser with denoising
parameter σ .
Figure 1 provides an intuitionistic illustration of ADMM

and PnP-ADMM framework.

FIGURE 1. ADMM (left) and PnP-ADMM (right).

III. CNC SPARSE REGULARIZATION AND ITS
PROXIMAL OPERATOR
Recently, Selesnick proposed a new CNC sparse regularizer
formed by subtracting the Moreau envelope of `1 norm from
itself [12]–[16]. To be specific, the CNC sparse regularizer is
represented by

φb(x) = ‖x‖1 − Sb(x), (11)

where Sb(x) = minv{‖v‖1 + b2
2 ‖x− v‖22} is the Moreau

envelope of ‖x‖1, b is the scaling parameter that can control

the nonconvexity of φb(x). φb(x) is a nonconvex regularizer
that can reduce the estimation bias. Meanwhile, the convexity
of the whole objective function (2) can maintain by adjusting
the parameter settings. Particularly, the objective function
in (2) is convex if b2 ≤ ATA

λ
and is strictly convex if

b2 < ATA
λ

[14].
By the definition of the proximal operator, the proximal

operator of the CNC sparse regularizer can be defined as

proxλφb (y) = argmin
x

{
1
2
‖y− x‖22 + λφb(x)

}
. (12)

The proximal operator of φb(x) may not have a simple
explicit formula since φb(x) is nonconvex. However, we can
still obtain the PGD iteration by rearranging the formula of
the objective function.

The objective function of equation (12) can be expressed
as

F(x) =
1
2
‖y− x‖22 + λ‖x‖1 − λSb(x). (13)

As noted by Theorem 6.60 in [52], Sb(x) is differentiable
and its gradient is given by

∇Sb(x) = b2
[
x− prox 1

b2
‖·‖1

(x)
]
. (14)

Let h(x) = 1
2‖y− x‖22 − λSb(x) and g(x) = λ‖x‖1. h(x) is

also differentiable, and its gradient is

∇h(x) = x− y− λb2
[
x− prox 1

b2
‖·‖1

(x)
]
. (15)

Furthermore, the proximal operator of g(x) = λ‖x‖1 is the
soft threshold. So the PGD iteration for (13) can express as

xk+1 = proxαg
(
xk − α∇h(xk )

)
= proxαλ‖·‖1

{
(1− α)xk + αy

+αλb2
[
xk − prox 1

b2
‖·‖1

(xk )
]}
. (16)

Finally, we can get the iterative expression of proxλφb as
follows

proxλφb (y) = proxαλ‖·‖1
{
(1− α)xk + αy

+αλb2
[
xk − prox 1

b2
‖·‖1

(xk )
]}
. (17)

We also give a numerical example to verify the validity of
the iterative expression of proxλφb .When the variables in (12)
reduce to scalar (one-dimensional) and b2 ≤ 1/λ, proxλφb
can be expressed as firm threshold function [10], [14], i.e.,

proxλφb (y) = firm(y; λ, 1/b2), (18)

where

firm(y; λ,µ) =


0, |y| ≤ λ,
µ(|y| − λ)
µ− λ

sign(y), λ ≤ |y| ≤ µ,

y, |y| ≤ µ.

(19)
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Firm threshold is a generalization of the hard threshold and
soft threshold. When µ→ λ and µ→∞, the firm threshold
function is close to the hard threshold function and the soft
threshold function, respectively.

We set α = 1, λ = 1 and b = 1/
√
2, plot firm threshold

function (18) and the iterative solutions (17) with different
initial values x(0) in Figure 2. As shown in Figure 2, although
the initial values are different, the iterative solutions converge
to the firm threshold after a few iterations. This means that the
iterative expression of the proximal operator is equally valid
when the closed-form expression is difficult to obtain.

FIGURE 2. Firm threshold and iterative solutions with different initial
values.

IV. PnP-ADMM ALGORITHM
A. ADMM ITERATION FOR CNC SPARSE REGULARIZATION
This subsection gives the ADMM algorithm for sparse reg-
ularization model (2) with CNC regularizer. In this case,

problem (2) can be expressed as

min
x

{
1
2
‖y− PFx‖22 + λφb(9x)

}
, (20)

while φb(9x) is defined as (11).
Set z = 9x, then the augmented Lagrangian form of (20)

is given by

L(x, z,u) =
1
2
‖y− PFx‖22 + λφb(z)+ uT (9x− z)

+
β

2
‖z−9x‖22. (21)

According to ADMM iteration, the minimizer of func-
tion (21) can be found by solving the following sub-problems.
Step 1: Update xk+1 with zk and uk fixed:

xk+1

= argmin
x

{
1
2
‖y− PFx‖22 +

(
uk
)T
9x+

β

2
‖z−9x‖22

}
= argmin

x

{
β

2

∥∥∥∥9x−
(
zk −

1
β
uk
)∥∥∥∥2

2
+

1
2
‖y− PFx‖22

}
=

(
FTPTPF+ β9T9

)−1 (
FTPT y+ β9T zk −9Tuk

)
.

(22)

Step 2: Update zk+1 with xk+1 and uk fixed:

zk+1

= argmin
z

{
λφb(z)−

(
uk
)T

z+
β

2

∥∥∥z−9xk+1
∥∥∥2
2

}
= argmin

z

{
β

2

∥∥∥∥z− (9xk+1 +
1
β
uk
)∥∥∥∥2

2
+ λφb(z)

}

= prox λ
β
φb

(
9xk+1 +

1
β
uk
)

= prox αλ
β
‖·‖1

{
(1− α)zk + α

(
9xk+1 +

1
β
uk
)

+
αλb2

β

[
zk − prox 1

b2
‖·‖1

(
zk
)]}

. (23)

The last equation is by definition of proxλφb (·) in 17.
Step 3: Update uk+1 with xk+1 and zk+1 fixed:

uk+1 = uk + β
(
9xk+1 − zk+1

)
. (24)

Finally, by rearranging equations (22)-(24), we can
get the ADMM algorithm for CNC sparse regularization
(ADMM-CNC) as Algorithm 1.

B. PnP-ADMM ITERATION FOR CNC SPARSE
REGULARIZATION
As mentioned in the section IV-A, the proximal operators
prox 1

b2
‖·‖1

and proxαρλ‖·‖1 in (23) are soft thresholds with

different parameters 1/b2 and αρλ. Furthermore, they can be
viewed as denoisers with varying abilities of denoising.

The basic idea behind the original PnP framework is to plug
in powerful denoisers in place of the proximal operators. If we
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FIGURE 3. ADMM-CNC algorithm (left) and PnP-ADMM-CNC algorithm
(right).

replace the proximal operators prox 1
b2
‖·‖1

and proxαρλ‖·‖1
with two appropriate denoisers Hσ1 and Hσ2 , where σ1 and
σ2 are denoising parameters. The larger the value of σ1 and
σ2 is, the greater the denoising intensity will be. Then (23)
can be rewritten as

zk+1 = Hσ2

{
(1− α)zk + α

(
9xk+1 +

1
β
uk
)

+
αλb2

β

[
zk − Hσ1

(
zk
)]}

(25)

Algorithm 1 ADMM-CNC

Require: f , x0, α > 0, λ > 0, β > 0, b > 0.
Ensure: x.

while ‘‘stopping criterion is not met’’ do
xk+1 =

(
FTPTPF+ β9T9

)−1
·
(
FTPT y+ β9T zk −9Tuk

)
;

sk+1 = prox 1
b2
‖·‖1

(
zk
)
;

tk+1 = (1− α)zk + α
(
9xk+1 + 1

β
uk
)

+
αλb2
β

(
zk − sk+1

)
;

zk+1 = prox αλ
β
‖·‖1

(
tk+1

)
;

uk+1 = uk + β
(
9xk+1 − zk+1

)
.

end while

Finally, we can get plug-and-play ADMM algorithm
for CNC sparse regularization (PnP-ADMM-CNC) as
Algorithm 2. Figure 3 provides a intuitionistic illustration of
ADMM-CNC and PnP-ADMM-CNC framework.

V. NUMERICAL EXPERIMENT
A. IMPLEMENTATION DETAILS
In this section, we empirically validate the proposed PnP-
ADMM-CNC algorithm in the context of CS-MRI recon-
struction. We consider 15 widely used MR images and three
sampling templates, as shown in Figure 4 and Figure 5.

FIGURE 4. MR images.
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FIGURE 5. Sampling templates.

TABLE 1. Denoisers under the PnP framework.

TABLE 2. Quantitative results of different algorithms. The best results are highlighted in bold.

The grey value range of all MR images is [0, 1], and the
size is set to 256 × 256, the undersampling rate is 30%,
the measurement noise ηe ∼ N (0, σεIk) with noise level
σε = 15/255. All experiments are executed on a PC with
Intel(R) Core(TM) i7-8750HM, 2.20GHz CPU, 16GB mem-
ory, and NVIDIA GeForce GTX 1060.1

We compared the proposed PnP-ADMM-CNC algo-
rithm with different kinds of MRI reconstruction methods:
(1) Zero-Filling, which simply applies the inverse Fourier

1The source code is available at https://github.com/zj15001/PNP_
ADMM_CNC_MRI

transform with the unsampled K-space data filled with zeros.
(2) BM3D-MRI, which uses decoupled iterations alternating
over a BM3D denoising step [54]. (3) U-Net, the state-of-
the-art network architecture for end-to-end MRI reconstruc-
tion [31]. (4) PD-Net, the state-of-the-art unrolling algorithm
for MRI reconstruction [38]. (5) ADMM-`1 and ADMM-
CNC, traditional iterative algorithms for `1 and CNC sparse
regularization, respectively. Additionally, U-Net and PD-Net
are trained on fastMRI dataset with Cartesian under-sampling
schemes, which training details can be found in [4].

It has been shown that the choice of denoiser affects
the performance of the PnP algorithms [43], [44]. For
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FIGURE 6. Visual comparison results of different algorithms on Cervical spine_2 MR image with random sampling template. The first and
third rows show the reconstructed images. The second and fourth rows show the difference between the ground truth image and the
reconstructed images.

Algorithm 2 PnP-ADMM-CNC

Require: f , x0, α > 0, λ > 0, β > 0, b > 0.
Ensure: x.

while ‘‘stopping criterion is not met’’ do
xk+1 =

(
FTPTPF+ β9T9

)−1
·
(
FTPT y+ β9T zk −9Tuk

)
;

sk+1 = Hσ1
(
zk
)
;

tk+1 = (1− α)zk + α
(
9xk+1 + 1

β
uk
)

+
αλb2
β

(
zk − sk+1

)
;

zk+1 = Hσ2
(
tk+1

)
;

uk+1 = uk + β
(
9xk+1 − zk+1

)
.

end while

PnP-ADMM-`1 and PnP-ADMM-CNC, we consider sev-
eral state-of-the-art denoiser, includingmodel-based denoiser
BM3D [47] and five neural network-based denoisers
(DnCNN [48], FDnCNN [50], IRCNN [49], FFDNet [50]
and DRUNet [51]) are used as denoisers under the

PnP framework. Table 1 lists the characteristics of the above
denoisers briefly. As shown in [44], DRUNet achieves supe-
rior performance against other deep neural network denois-
ers. In particular, ADMM-CNC and ADMM-`1 can also be
considered as special PnP algorithms if we view the soft
threshold function as a special denoiser.

As mentioned in [40] and [55], PnP method has high gen-
eralizability due to its plug-and-play nature. It does not even
require problem-specific training. Neural network denoisers
that learn from natural images could also obtain satisfac-
tory results in MRI reconstruction and seismic interpola-
tion. In our experiment, we also do not train the denoisers
on the MRI image dataset. The five neural network-based
denoisers used in the experiment are downloaded from
https://github.com/cszn/KAIR. These denoisers are trained
on natural images datasets, e.g., BSD dataset [56], DIV2K
dataset [57] and Flick2K dataset [58].

Furthermore, we only consider two proximal operators
to replace with the same kind of denoiser in the experi-
ment of this paper. As mentioned in [44], DnCNN needs
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FIGURE 7. Visual comparison results of different algorithms on Brain_2 MR image with radial sampling template. The first and third
rows show the reconstructed images. The second and fourth rows show the difference between the ground truth image and the
reconstructed images.

to learn a single model for each noise level separately, and
other denoisers can deal with various noise levels via a sin-
gle model. Therefore, we set denoising parameters σ1 =
5σε/3 = 25/255, σ2 = σε = 15/255 for DnCNN and σ1 =
σ2 = σε = 15/255 for the other four neural network-based
denoisers. Other algorithmic hyperparameters, including the
step size α, regularization parameter λ and nonconvexity con-
trol parameter b, are properly tuned for the best reconstruction
performance with respect to the ground truth MR image.

B. EXPERIMENTAL EVALUATION CRITERIA
To evaluate the quality of the reconstruction, relative error
(RE), peak signal-to-noise ratio (PSNR) and structural simi-
larity (SSIM) are used.

RE is defined as

RE =
‖x− x0‖2
‖x0‖2

, (26)

where x and x0 are the reconstructed and the ground truth
image, respectively.

PSNR is defined as

PSNR = 10 · log10

(
MAX2

x0
MSE

)
, (27)

where MSE = 1
mn ‖x− x0‖22, and MAXx0 is the maximum

value of the ground truth MR image data.
RE and PSNR are sometimes mismatched to perceive

visual quality. In contrast, SSIM measures the structural sim-
ilarity of two images, which is defined as

SSIM =
(2µxµx + c1)

(
2σxy + c2

)(
µ2
x + µ

2
y + c1

) (
σ 2
x + σ

2
y + c2

) , (28)

where µx and µy are the means of x and y, σx and σy are the
variances of x and y, σxy is the covariance of x and y, c1 and c2
are constants that maintain stability. Lower RE, higher PSNR
and SSIM mean better quantitative performance.

C. IMPLEMENTATION RESULTS
We first compare different algorithms on 15 MR images with
three sampling templates, as shown in Figure 4 and 5. The
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average values of RE, PSNR, and SSIM are summarized in
Table 2. As one can see, the algorithms for CNC regulariza-
tion outperform the algorithms for regularization since CNC
regularization can reduce the reconstruction bias. On the
other hand, PnP-PGD significantly outperforms traditional
PGD since more powerful denoisers are embedded into the
PnP framework. In addition, DRUNet has achieved the best
performance in most of the evaluation criteria among all
the advanced denoisers. Specifically, compared with Zero-
Filling, the average PSNR and SSIM of PnP-PGD-CNC with
DRUNet denoiser are increased by 9.37 dB and 0.32, and
the average RE is reduced by 0.12. U-Net and PD-Net per-
form well under Cartesian sampling, but not so well under
other sampling since they are trained with Cartesian sampling
schemes.

To get a more intuitive understanding of the reconstruc-
tion performance, we also design two visual comparisons of
different algorithms on Cervical spine_2 (Figure 4(e)) and
Brain_2 (Figure 4(b)) MR image with the random sam-
pling template (Figure 5(a)) and the radial sampling template
(Figure 5(b)), respectively. The reconstruction results are
shown in Figure 6 and 7. To show the difference more clearly,
we enlarge two local regions, display the PSNR values on
the reconstructed images and set the grey value range of the
difference images to [0,0.2]. From Figure 6 and 7, it can
be seen that PnP-PGD-CNC with the DRUNet denoiser can
reconstruct more fine details and contrasts, which leads to the
lower error level around edges and high-frequency areas.

VI. CONCLUSION
In this work, we propose a novel PnP algorithm for CNC
sparse regularization. CNC sparse regularization can reduce
the reconstruction bias and ensure the global convexity of
the objective function. PnP algorithm is obviously superior to
the traditional optimization-based algorithm, which is mainly
benefited from the powerful pre-trained denoisers. Exper-
iments results have demonstrated that the proposed PnP-
ADMM-CNC algorithm with a powerful deep denoiser can
improve the reconstruction result.

In this work we only consider a single-coil CS-MRI
model with simulated MR data. As parallel MRI can lead
higher image quality, it is important to apply the pro-
posed algorithm on multi-coil CS-MRI model with acquired
MR data. we will employ the proposed algorithm to the
practical MR application in our future work. In addition,
wewould like to extend the proposed algorithm to other tasks,
such as seismic interpretation [55] and Electrical impedance
tomography [59].
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