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ABSTRACT The feature of leaky cable fixture extracted by Local Binary Pattern (LBP) and its variants in
high-speed railway tunnel has the defects of lacking description and high dimension. This paper proposes a
new operator named Multi-scale Continuous Gradient Local Binary Pattern (MCG-LBP), which can realize
the scale transformation of feature maps and ensure the low dimensionality of descriptors. For MCG-
LBP, firstly a bi-directional triplet around the central pixel is presented to indicate the specific direction
of gradient in circle neighborhood. Then, an effective dimensionality reduction strategy is introduced to
perform successive down-sampling iterations. Finally, the multi-scale joint descriptors are encoded by
continuous gradient sequences from different down-sampling maps, and Support Vector Machines is used
to classify faulty cable fixtures. The proposed MCG-LBP can elicit a discriminative description through
complementary gradient information generated by the combination of different single-scale features. While
the low dimensionality of descriptor and no complex parameter to deal with both make it has higher
computational efficiency. Experimental results show that the Recall and Precision ofMCG-LBP reach 92.6%
and 83.5% respectively on cable fixture data set, which is superior to the state-of-the-art methods.

INDEX TERMS MCG-LBP, bi-directional triplet, dimensionality reduction, fault detection, leaky cable
fixture, support vector machines.

I. INTRODUCTION
High-speed rail is one of the most economical transporta-
tions globally, and it’s also a landmark product of modern
informatization construction. As the transportation demand
increases, it is particularly essential to maintain the regular
operation of railway communication systems. The network
of mountain tunnel sections is mainly realized by covering
leaky cables that are usually hung on the tunnel wall and
fixed with specialized fixtures [1]. Fig. 1 shows the leaky
cable fixtures which will be seriously affected by air pressure
and power waves generated when a high-speed train passes
through the tunnel. At the same time, the humid tunnel geo-
logical environment will also accelerate the loosening or even
detachment of cable fixtures. The detectionmethod ofmanual
positioning and regular inspection one by one is not only
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restricted severely by environmental and human factors, but
also has great safety hazards. With the increasing mileages
of railway tunnels, it is obvious that traditional inspection
methods can no longer meet actual needs, and automatic
inspection has become an inevitable trend of the development
in cable fixture detection. To achieve this technology, firstly
a high-speed camera needs to be placed on the train to col-
lect an entire picture that is taken during the tunnel section.
Then computer vision approaches are used to extract cable
fixture characteristics frame by frame to realize inspection
work [2]. Currently, the database acquisition part has been
implemented already, but the detection part is still mainly in
the stage of manual playback video to troubleshoot, which
requires a lot of human resources. As for handcraft methods,
Shang uses Snake to determine the location of leaky cable,
and also operates Haar to extract the characteristics of the
fixtures, which are easily disturbed by wall cracks and back-
ground noise [3]. To achieve fixture detection, Zhang et al.
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FIGURE 1. The samples of leaky cable fixture. (a) Tunnel and leaky.
(b) Faulty cable fixture and normal cable fixture.

uses Yolo.v4 [4], and Ma uses SSD [5], but their results
are not good due to the insufficient data set of faulty cable
fixture. Therefore, it is necessary to continuously optimize
the feature extraction algorithm, reduce the dependence on
the fault data set, and improve the anti-interference ability.
Some comprehensive surveys about texture descriptors can
be found in [6].

Due to the discriminative quality and ease to train with
a small amount of data, Local Binary Pattern (LBP) pro-
posed by Ojala et al. can get more favor on cable fix-
ture detection [7]. Moreover, feature extraction and texture
classification based on statistical learning of LBP are both
widely used in other fields [5], [6]. Such as fault detec-
tion [8], medical images analysis [9], face detection and
recognition [10], texture classification [11], and many oth-
ers. Cable fixture fault detection in this paper is just one
application of the related research that can make good use
of texture analysis by spatial distribution of gray level values.
The conventional method to improve detection performance
of LBP is conducting deep mining of texture informa-
tion or making multi-scale features fusion, which can deal
with external changes in the imaging conditions like rota-
tion [12], [13], scaling, illumination [14], and noise interfer-
ence based on threshold scheme [15]. Lots of variants have
been proposed after the emergence of LBP. Local Ternary
Pattern (LTP) quantizes local difference into three levels [16],
which responses sensitively to grey-scale changes and is also
easily affected by noise. Center-Symmetric Local Binary
Pattern (CS-LBP) as one representative variant of LBP, which
is proposed to enhance robustness, and its expansion of
central symmetric difference information make computation
complexity and feature dimensionality reduce greatly [17].
But CS-LBP ignores the role of central pixel and it is
very troublesome to parameters. Completed Local Binary
Pattern (CLBP) consisted of three complementary compo-
nents by introducing signal information, magnitude informa-
tion, and mean gray level [18]. CLBP operator takes both
local structure and textural magnitude into consideration to
achieve much better classification accuracy. Then Completed
Local Ternary Pattern (CLTP) has subdivided texture features
further, it also causes a serious limitation of excessively
large dimensions [19]. The operator called Attractive-
and-Repulsive Center-symmetric Local Binary Pattern

(ARCS-LBP) establishes the relations between central pixel
and center-symmetric pixels pairs to improve the quality
of descriptors [20]. To highlight the advantages of gradient
components, Local Derivative Pattern (LDP) computes over
derivative images in four directions and is coded by compar-
ing the edge and corner responses [21], but none of them is
able to achieve feature scaling transformation. Three-Patch
Local Binary Pattern (TPLBP) enlarges feature scaling by
extending extraction unit from pixel to block to calculate
the similarity difference between relevant blocks [22]. Local
Directional Ternary Pattern (LDTP) uses mask to expand
scaling, and combines the ternary mode and derivative trans-
formation to enhance the expression of edge features [23].
But it will also cause a lot of calculations, especially for the
small target in large image. In order to realize the automatic
detection of leaky cable fixture, the issues such as incomplete
expression, high dimensionality, complex calculation, and
other challenges need to be resolved.

In this paper, we propose an effective operator to achieve
cable fixture detection, and the main contributions are high-
lighted as follows:

• The bi-directional triplet (BDT) is presented to express
a more specific gradient direction in circle neighbor-
hood, which can also avoid complicated parameter
adjustments.

• An effective dimensionality reduction strategy is intro-
duced in the down-sampling process, we perform non-
maximum suppression according to the key gradient
frequency in Cell unit and obtain the following down-
sampling map, which can realize the scale transforma-
tion and further improve the computational efficiency of
extracting continuous gradient features.

• The continuous gradient feature is proposed to obtain the
edge and corner features of cable fixture contour, which
counts the combination of relevant continuous gradient
sequences in Block unit. By cascading continuous gra-
dient features from multiple down-sampling maps, the
final MCG-LBP descriptor is constructed.

Multiple sets of continuous gradient feature extracted from
multiple down-sampling maps of different scales are cas-
caded to obtain the final MCG-LBP descriptor. The outline
of this paper is organized as follows: In section II, there
is a briefly discuss about the related methods such as LBP,
some variant operators and non-LBP operators. Section III
describes BDT, dimensionality reduction strategy, and con-
tinuous gradient feature in detail. In section IV, extensive
experimental results compared with other LBP variant and
non-LBP operators are demonstrated. Conclusion is given in
Section V.

II. RELATED WORK
In this part, we mainly introduce the feature extraction algo-
rithms such as LBP, CS-LBP and ARCS-LBP. A review
of LBP variant and non-LBP descriptors is also given at
below.
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A. LBP AND CS-LBP
LBP is proposed by Ojala et al. originally, and it is likely
to capture the sharp difference between the gradation fine
texture [7]. A slight change on the encoding method can
make this operator have better orientation invariance and
rotation invariance, so it is widely used in face recognition
and texture classification field. The coding idea of LBP is to
compare grayscale difference value between center pixel and
P sampling pixels in the circle neighborhood where R is the
radius. Then use the Boolean function to calculate a string
of binary sequence that contains only 0 or 1. The calculation
formula of LBP is defined as follow:

LBPP,R(xc, yc) =
P−1∑
i=0

s(gi − gc)2
i (1)

s(x) =

{
1, x ≥ 0
0, x < 0

(2)

where (xc, yc) is the coordinate of the center pixel c, whereas
gc and gi (i = 0, 1, . . . ,P−1) denote the gray value of center
pixel c and sampling pixels in the neighborhood respectively,
P is the total number of involved sampling point, and R is the
radius of the circle neighborhood.

In order to enhance the performance of LBP descrip-
tor in the spatial direction, CS-LBP is mentioned by
Heikkila et al. [17]. Instead of LBP operator that encodes
the grayscale difference value between sampling points and
center pixel, CS-LBP codes the relationship between the gray
level difference of pixel pairs that is symmetrical around
the center pixel, and the threshold needs to be calculated
from experiment. The formula of CS-LBP is defined as
follow:

CS-LBPP,R,T (xc, yc) =
(P/2)−1∑
i=0

s(gi − gi+(P/2))2i (3)

s(x) =

{
1, x ≥ T
0, x < T

(4)

where gi(i = 0, 1, . . . , (P/2) − 1) and gi+(P/2) both cor-
respond to the gray value of peripheral pixels, and T is
the threshold that can be specified by the global average
gray value of input picture generally. Obviously, CS-LBP
is closely related to gradient operator, as it refers to the
gray level difference between pixel pair in a circle neighbor-
hood. The following three aspects are the main advantages
of CS-LBP operator: 1) As shown in Fig. 2, under the same
conditions of sampling number and sampling radius, the
feature vector of CS-LBP operator is more compact, lesser
number of comparisons is required, and the feature dimension
of the descriptor is also lower [17]. 2) CS-LBP inherits good
properties from both texture and gradient operators [24].
3) CS-LBP descriptor has higher stability on flat regions and
performs more robustly than those descriptors that only uses
texture or gradient [25].

FIGURE 2. Calculating the operators of LBP and CS-LBP under same
condition where the number of sampling pixels is 8 and the sampling
radius is 1.

B. ARCS-LBP
CS-LBP operator ignores the key role of the center point
in texture feature extraction, which leads to an incomplete
display of directional characteristics. ARCS-LBP proposed
by Y. El merabet is used to improve the incomplete perfor-
mance [20], which not only considers the center point, but
also expands pixel pairs into attractive group and repulsive
group in various directions in the neighborhood. The structure
model of ARCS-LBP has shown in Fig. 3, which has the same
number as four directions as CS-LBP. The two additional
constraint conditions of pixel pairs enhance the robustness
of this fusion operator on magnitude component in different
directions. However, ARCS-LBP has the same number of
dimensions as LBP, and both attractive part and repulsive part
need to repeatedly calculate the local pixel average values,
which results in a huge amount of calculation. When cal-
culating the magnitude difference of a pixel pair, it is also
quite difficult to adjust threshold, especially for the images
that have obvious brightness differences.

FIGURE 3. The structure of ARCS-LBP, there are vertical direction and
horizontal direction, and two diagonal directions.

C. OTHER LBP VARIANT AND NON-LBP OPERATORS
The calculation process of LBP operator is very simple
and easy to modify, which make it more suitable to meet
different application requirements including texture classi-
fication, face recognition, scene classification, and medi-
cal image analysis, etc. Pan et al. proposed Local Vector
Quantization Pattern (LVQP) for texture classification [26].
Chakraborty et al. offered Local Directional Gradient Pat-
tern (LDGP) and Local Gradient Hexa Pattern (LGHP) to
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make facial image recognition and retrieval [27], [28]. Local
Maximum Edge Binary Pattern (LMEBP) and Local Tetra
Pattern (LTrP) are proposed to obtain the edge and corner
information for fault detection [29], [30]. These deep mining
operators aremainly used to extract texture features instead of
contour features. Another classic local operator, Histograms
of Oriented Gradients (HOG) mainly used to detect target
contour’s feature by analyzing the gradient magnitude dis-
tribution from different orientations statistically [31]. Hence
these fusion descriptors, like HOG-LBP and HOG-CLBP
descriptors are proposed [32], [33], Principal Component
Analysis (PCA) is also used to make further dimensional
space reduction on these fusion descriptors [34], such as
Linear Discriminant Analysis (LDA) [35], [36], Fisher’s
Linear Discriminant Analysis (FLD) [37], and Independent
Component Analysis (ICA) [38]. Li et al. performed the
two-dimensional histogram constituted by LBP to make
wood defect classification [39]. However, both of the deep
mining algorithms and feature fusion algorithms have the
limitations in scaling transformation, and it is also difficult
to reduce the feature dimension of descriptors. Although deep
learning hasmade outstanding contributions in fault detection
during recent years, just like using the enhanced network
based on SSD to deal with faulty cable fixtures [40]. There
are also many problems with computational complexity and
difficulty in parameter adjustment [41], especially when the
number of faulty fixture data set is not enough. This leads to
the fact that local features based on statistical learning seem
to be able to better achieve cable fixture detection [42].

III. PROPOSED METHOD
CS-LBP and ARCS-LBP operators only roughly explain that
there are gradient differences in some diameter directions
within the circle neighborhood, while none of them point out
the specific gradient direction of the pixel pairs. Therefore,
this paper proposes a bi-directional triplet model that is based
on the fundamental idea about calculating gray difference
value of center-symmetric pixel pair. The center-symmetric
pixel pair and its center pixel are combined into a triplet, and
the specific gradient direction is determined by calculating
the ratio of the difference between the center pixel and the
pixels on both sides of this triplet. Since the output of this step
is a binary sequence and no decimal conversion is performed,
the number of channels in resulting feature maps will be the
same as the number of sampling points. Then we will imple-
ment the scaling transformation of the multi-channel binary
feature maps. The final MCG-LBP descriptor is constructed
by extracting continuous gradient features from a series of
down-sampling maps on different scales, and Fig. 4 shows
the overall process of feature extraction. In this section, the
involved approaches will be described.

A. THE BI-DIRECTIONAL TRIPLET
For the purposes of convenient presentation, the same sam-
pling conditions as the mentioned LBP and CS-LBP above
are selected when calculating BDT value. In the circular

FIGURE 4. The flow chart of extracting MCG-LBP descriptor.

domain, the number of sampling pixels P is 8, and the sam-
pling radius R is 1. Firstly, the bilinear interpolation is used
to obtain the gray values of all sampling pixels in a circular
neighborhood. In the triplet, the grayscale difference between
the center pixel and the two center-symmetric sampling pix-
els are calculated respectively. Then the ratio of these two
differences is compared with the threshold to determine the
specific gradient direction. Finally, the gradient directions of
all triples in the circular domain are calculated, and the output
result of BDT is obtained. The complete calculation process
is shown in Fig. 5, and we will explain these four groups of
triples in detail.

The calculation of BDT always uses triplet as the basic
unit, and the values of u, v, w for each group need to be
calculated in advance. For Group0, the result of − u0

v0
is neg-

ative value, so the two count bits of 0 and 4 corresponding to
the gradient directions of 0◦ and 180◦ are both marked as 0,
which means the triplet does not output gradient direction.
For Group1, the value of − u1

v1
is 1.5 that is within the range

of threshold T , and the other constraint w1 is a positive value.
So, the count bit of 1 is marked as 1 and the count bit of 5 is
marked as 0, whichmeans the output gradient direction of this
triplet is 45◦. In order to express the calculation process more
conveniently, the value of T is specified, but it usually needs
to be obtained based on experiments. For Group2, although
the value of − u2

v2
is positive, it is out of the range of T , so the

two count bits of this triplet are both marked as 0, which
also means that the pixel pair has no gradient direction. For
Group3, the value of u3 is 0, so there is no gradient direction
for this pair, and the two count bits are also marked as 0.
In summary, the output value of this BDT is 00000010. The
complete formula of BDT is defined as follow:

BDT (xc, yc) = [b0(m), · · · bi(m), · · · , bi+(P/2)(m)

· · · , bp−1(m)] (5)

u = gc − gi (6)
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FIGURE 5. The calculation process of BDT.

v = gc − gi+(P/2) (7)

w = gi − gi+(P/2) (8)

If u 6= 0 and v 6= 0:

bi(m) =

{
1, −

u
v
∈ T and w ≥ 0

0, otherwise
(9)

bi+(P/2)(m) =

{
1, −

u
v
∈ T and w < 0

0, otherwise
(10)

Else u = 0 or v = 0:

bi(m) =
{
1,
0,

w > 0
otherwise

(11)

bi+(P/2)(m) =
{
1,
0,

w < 0
otherwise

(12)

where the result of BDT(xc, yc) is a one-dimensional
array whose number of elements is P, and xi(m) (i =
0, 1, · · · , (P/2) − 1) is the binary value of each bit in array.
Repeating above operations on the input image, we can
obtain a complete preliminary gradient featuremapwith eight
channels. The value of each pixel in the preliminary feature
map uniquely corresponds to a one-dimensional array that
is composed of eight binary digits. In short, there are four
groups of triplets in the circle neighborhood, and the output
of each triplet is only three cases, which means the binary
value of each one-dimensional array pixel has 81 (34) cases.

B. SCALE TRANSFORMATION AND
DIMENSIONALITY REDUCTION
If the continuous gradient feature is extracted directly from
a preliminary gradient feature map, the dimensions of the
obtained descriptor will be too large. Therefore, an effective
dimensionality reduction strategy is proposed to decrease the
total number of binary pixel value arrangements. At the same

time, this strategy can also realize the scale transformation
by calculating different down-sampling feature maps rather
than enlarging the radius of sampling circle or dividing the
input image into 2 × 2 or 4 × 4. The value range of a
single pixel is compressed, and the key gradient is used to
represent the trend of overall gradient direction in a Cell unit.
The relationship between gradient directions and count bits
is shown in Fig. 5, where the count bits distributed from 1 to
8 in a counterclockwise way correspond to eight gradient
directions respectively. In Cell unit, the values of all binary
array are accumulated one by one according to the same
count bit, so that the direction corresponding to the maxi-
mum count bit of the accumulated result is the key gradient
direction.

In Fig. 6, the Cell is composed of four binary array pixels
a, b, c, d whose values are calculated by BDT, and we take
the key gradient direction of this Cell as an example. It can
be seen from the cumulative result that the values in direc-
tion 45◦ and 90◦ are maximum, so the corresponding count
bits 1 and 2 are marked as 1, and other count bits are marked
as 0. The final output coding value of this Cell is 00000110.
The calculation formula is defined as follow:

Xij = [xi0, xi1, · · · xij · · · , xi(P−1)] (13)

Y =
n∑
i=0

Xi

= [
n∑
i=0

xi0,
n∑
i=0

xi1, · · ·
n∑
i=0

xij · · · ,
n∑
i=0

xi(P−1)] (14)

J = f (Y )

= f ([
n∑
i=0

xi0,
n∑
i=0

xi1, · · ·
n∑
i=0

xij · · · ,
n∑
i=0

xi(P−1)]) (15)

where Xi is the pixel value of binary array, i(i = 0, 1, · · · , n)
is the serial number of binary array in the Cell, n is the total
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FIGURE 6. Calculating the characteristics of the key gradient in a Cell, and
the output value is a one-dimensional array.

number of binary array in the Cell, and j(j = 0, . . . ,P− 1) is
the count bit which also represents the channel serial number
in preliminary gradient feature map and down-sampling fea-
turemaps. Y is the accumulation result of all one-dimensional
arrays in the Cell, and the function f (Y ) outputs the value J
that corresponds to the channel with the maximum accumu-
lation. Repeat all above operations on the entire preliminary
gradient featuremap to obtain the first down-sampling feature
map. Note that one Cell can output multiple key gradients,
which means that there may be not only one channel that
output digital 1. Then perform the same iteration on the first
down-sampling feature map to get the second down-sampling
feature map.

In down-sampling process, the stride is always 2, and the
Cell size is 2 × 2. The size of down-sampling feature map
in each layer corresponds to the size of sub-image segmented
by traditional methods like 2 × 2, 4 × 4, and 8 × 8. Non-
maximum value suppression is performed according to the
frequency of key gradients in a Cell, which is also differ-
ent from the maximum pooling in deep learning. Fig. 7 is
a schematic diagram of the output result for each down-
sampling layer. Except that the input image has only one
channel, other down-sampling feature maps and the prelimi-
nary gradient feature map have eight channels. Through scale
transformation, typical contour features such as edges and
corners will be preserved, and some isolated noise points or
wall cracks will be removed during down-sampling process.

C. THE EXTRACTION PROCESS OF CONTINUOUS
GRADIENT FEATURE
Deep mining operators and fusion feature operators of LBP
almost only perform texture analysis based on the gray level
difference by local sampling points, but ignore the similarity

FIGURE 7. The output feature map of each layer during down sampling
process.

FIGURE 8. Calculate the characteristics of the continuous gradient in a
Block and the channel is a loop from 1 to 8.

difference between adjacent gradients. Therefore, we propose
continuous gradient feature, which can excellently respond to
the relevant information between key gradients and related
adjacent gradients that appear on multiple down-sampling
feature maps. In order to distinguish from the Cell unit in
above down-sampling process, a 3 × 3 window is defined
in extraction process, and the unit is named as Block. The
number of channels in a Block is also eight, and the stride is
set to 1 for feature extraction.

The specific calculation process of extracting continuous
gradient features is shown in Fig. 8. Firstly, the reference
channels whose central point value is 1 need to be determined
in this Block unit. If there is no central point with value 1 in all
channels, the Block does not output continuous gradient fea-
ture. It can be seen that only channel 2 and channel 4 meet the
condition, so these two channels will be used as a reference
to extract continuous gradient features independently. The

VOLUME 9, 2021 147107



Y. Zhang et al.: MCG-LBP for Leaky Cable Fixture Detection in High-Speed Railway Tunnel

maximum continuous sequence length composed of eight
neighborhood sampling points in reference channel 2 is four,
and the maximum continuous sequence length of adjacent
channel 1 and channel 3 is one and two respectively. Then
the coding number 2412 belonging to reference channel 2 is
obtained. In the same way, the coding number of reference
channel 4 is 4222. Notice that the maximum continuous
sequence length of reference channel 4 is less than three,
which means that the reference channel 4 does not output
value, so the final output of this block is only 2413. The con-
straints of calculating continuous gradient features are sum-
marized as the following three points: 1) At least one channel
has a center value with 1 in a Block with eight channels.
If not, then this Block does not output continuous gradient
feature. 2) The maximum continuous sequence length must
not be less than three in reference channel, which can ensure
the dominance of reference gradient feature. 3) Since the
reference channel and the adjacent channel can be converted
mutually in different Blocks where the gradient character-
istics can be complemented with each other, so when the
maximum continuous sequence length of adjacent channels
is over three, the length is still marked as 3. The specific
sequence information of adjacent channels does not affect its
performance when used as reference channel information in
other Blocks. Therefore, there are 768(768= 8× 6× 4× 4)
encoding typies that can meet the above conditions.

IV. EXPERIMENT AND DISCUSSION
The performance of MCG-LBP operator is validated by a
comprehensive comparison with a large number of state-
of-the-art variant methods based on LBP and non-LBP
operators. The superior quality of our proposed method is
verified by quantitative and qualitative evaluations using
leaky cable fixture data sets. In order to obtain the best
MCG-LBP descriptor, the extraction efficiency and the clas-
sification accuracy of each single-layer feature are also com-
pared. Furthermore, all experiments are implemented by
using PYTHON 3.7, the CPU used in experimental running
environment is Intel(R) i5-4210H, the running memory is
8GB, and the GPU is NVIDIA GTX 850.

A. EXPERIMENTAL SETUP
1) LEAKY CABLE FIXTURE DATA SET
In this section, the leaky cable fixture data set is introduced
in detail. As is shown in Fig. 9 (a), a CMOS dual-line camera
is used to take the entire picture during the whole train
journey, and the size of obtained picture is 2048× 512. Since
the camera has its own light source and is open on during
the entire working time, the influence of illumination on the
image is reduced. It can be found clearly that the brightness of
different backgrounds varies largely even in the same tunnel
section, just like Fig. 9 (b) and (c), which causes the threshold
setting to be quite troublesome. Fig. 10 (a), (b), and (c) show
that the shapes of normal cable fixtures are relatively simple,
especially for their contour characteristics are tend to be the

FIGURE 9. (a) is the COMS dual-line camera. (b) and (c) are the
backgrounds of leaky cable captured by high-speed camera in tunnel.

FIGURE 10. Images from (a) to (c) are the samples of normal cable
fixture. Images from (d) to (l) are the samples of faulty cable fixture.

same basically. While the shapes of faulty cable fixtures
shown in Fig. 10 from (g) to (o) are relatively complicated,
it is difficult to define the standard of damage, especially
the number of faulty cable fixtures is not large. Therefore,
as long as there is a certain difference between the appearance
of normal fixture, we regard it as a faulty one. MCG-LBP
operator does not require lots of faulty cable fixtures to train
the model. In the experiment, there are 900 images of normal
fixtures and 195 faulty fixtures. We have selected 70% of the
normal fixtures and fault fixtures respectively as the training
set, and the remaining 30% of the normal fixtures and fault
fixtures are as the test set.

2) THRESHOLD OF BDT
In order to obtain the most suitable threshold of BDT, a total
of 50 images with global average grayscale distributed in dif-
ferent intervals are selected. Then the specific corresponding
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relationship between the global average grayscale and thresh-
old is analyzed through the imaging effect of leaky cable
fixture contour. Gaussian filtering is performed on the input
image, and the imaging effects of their respective prelimi-
nary gradient direction feature maps under different threshold
conditions are compared. To make the process as intuitive as
possible, the one-dimensional binary array is converted into
a decimal gray value. Although the range of threshold should
be as small as possible, it still needs to meet the following
two requirements: 1) It must be ensured that the preliminary
gradient direction feature map can show the outline of the
leaky cable fixture completely and clearly. 2) It can filter the
background noise of the tunnel wall to a certain extent.

For the convenience of display, the cable fixture part is
cut from entire image. It can be seen from Tab. 1 that the
larger range of threshold, the better display effect in low
brightness images, while more interference will appear in
high brightness images. Although a small range of threshold
can effectively remove background noise, its expression of
contour features will also be weakened. Therefore, it is nec-
essary to set the adaptive threshold according to the global
gray average value, which is defined as follows:

T (x) =



0.1˜10, x < 80
0.125˜8, 80 ≤ x < 120
0.2˜5, 120 ≤ x < 160
0.25˜4, 160 ≤ x < 200
0.4˜2.5, x ≥ 200

(16)

where x is the global grayscale average value of input image.
From Tab. 1, it can be seen that the ratio of gray-scale differ-
ence is basicallymaintained at around 1. For imageswith high
brightness, the imaging effect of different threshold ranges is
generally better, so the threshold range can be smaller, which

TABLE 1. Analysis of different gray-threshold.

can filter out more noise. For images with low brightness,
the imaging effect with a smaller threshold range will cause
the loss of contour feature. To ensure that the contour feature
can be displayed completely, the threshold range needs to be
larger at this time. Then, the threshold range is set to five
different levels, and different average gray levels correspond
to different thresholds.

B. EXPERIMENTAL COMPARISON RESULTS
The following two aspects of experimental research are car-
ried out. The first experimental study is to compare between
different down-sampling layers to obtain the best fusion
descriptor of MCG-LBP, and the other is to compare with
LBP variant and non-LBP operators to verify the superiority
of MCG-LBP.

1) COMPARISON BETWEEN DIFFERENT
DOWN-SAMPLING LAYERS
The down-sampling process will iterate out many feature
maps, even if their size will decrease gradually, but compared
with directly dividing the feature maps into 4× 4 or 2× 2, the
process still has a certain amount of calculation. Therefore,
it is necessary to comprehensively consider computational
efficiency and detection accuracy to extract the most cost-
effective descriptor. In the experiment, a total of four iter-
ations are performed, then continuous gradient features are
extracted from the four down-sampling feature maps respec-
tively. Their histogram features are displayed in Fig. 11,
it can be seen that the proportions of dominant features
remain unchanged basically, but other features have changed
considerably. The subsequent sampling map contains fewer
continuous gradient features than previous layer, which is
the main reason why only four iterations are performed.
In down-sampling progress, the stride of Cell is 2, and in
continuous gradient feature extraction process, the stride of
Block is 1. Therefore, it can be inferred that the relationship of
occupancy time between down-sampling process and feature
extraction process is as follow:

Time(sampling) ≤
1
4
Time(extraction) (17)

Due to the different strides of these two processes, the
feature extraction process takes more time than the down-
sampling process, so it is critical to select appropriate sam-
pling maps to extract continuous gradient features.

Average Recall rate, average Precision rate and average
Accuracy are used as the evaluation indicators of classifica-
tion result. Recall refers to the proportion of these fixtures that
are judged correctly as faulty in all faulty fixtures, Precision
refers to the proportion of these fixtures that are judged
correctly as faulty in all fixtures that are judged as faulty, and
Accuracy refers to the proportion of these fixtures that are
judged correctly in all fixtures. The specific definitions are
as follows:

Recall =
TP

TP+ FN
(18)
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FIGURE 11. The histogram features of different down-sampling layer.
(a) The first sampling map. (b) The second sampling map. (c) The third
sampling map. (d) The fourth sampling map.

Precision =
TP

TP+ FP
(19)

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(20)

where TP represents the number of faulty fixtures identi-
fied as faulty actually, TN represents the number of normal
fixtures identified as normal, FP represents the number of
normal fixtures identified as faulty, and FN represents the
number of faulty fixtures identified as normal. As we can
see from Tab. 2, the time occupancy of extracting each layer
feature conforms to (17). It also shows the performance
of extracting continuous gradient features from each single
down-sampling map, including the evaluation indicators of
Recall and Precision. The performance of identifying faulty
cable fixtures is more in line with actual needs, so Recall
is the primary factor. Although it will take less time to
extract continuous gradient features from subsequent down-
sampling maps, the performance of classification is reduced
to a certain extent.

TABLE 2. Comparison of occupied time, recall, and precision for the
different single down-sampling map.

There are a total of six cascading types to combine these
four single-layer features in pairs, and the detection results
are shown in Tab. 3. Among that, 1-2 means to connect the
first layer descriptor and the second layer descriptor together,
and others are the same. There is not only a big gap between
Recall and Precision of these fusion features, but also the time
taken by different cascading types is very different, especially
for these descriptors including the first layer. In addition,
the three-level connections such as 1-2-3 that require more

TABLE 3. Comparison of recall and precision for the fusion feature from
different down-sampling map.

time and its feature dimensions will also increase. The Recall
of 2-3 reaches 92.3% which is the highest compared to
other descriptors. Finally, considering the classification per-
formance and time cost, the fusion type of 2-3 is defined as
MCG-LBP, which will be applied in comparison with other
variant operators.

2) COMPARISON WITH LBP VARIANT AND NON-LBP
OPERATORS
The fusion descriptor of MCG-LBP is compared with the up-
to-data methods on cable fixture data set. Some supplemen-
tary instructions of these LBP variant and non-LBP operators
are as follows:

1) CLBP_Sriu21,8 /_M
riu2
1,8 /C is combined into hybrid distri-

bution where sign component (S), magnitude com-
ponent (M), and average grayscale threshold (C) are
cascaded in sampling neighborhood. The encoding
method follows locally rotation invariant uniform pat-
tern (LBPriu21,8 ), and the feature dimension of each
sub-image is 200 (200 = (2(8 + 2)2) [7]. So the
final feature dimension of output descriptor is 3200
(3200 = 200 × 4 × 4). For the convenience of expres-
sion, CLBP is referred to this method specifically, and
the calculation of CLTP is the same.

2) As for CS-LBP operator, the input images are divided
into 8 × 8, and the resolution of sub-image is 256 ×
64. Since the feature dimension of each sub-image of
CS-LBP is 16, the final feature dimension is expanded
to 1024 (1024 = 16 × 8 × 8).

3) As for HOG operator, the bins of each gradient com-
ponent are 9, and each Block size is 128 × 32,
which is very similar to dividing image into 16 × 16.
There are 256 windows on the whole input image to
count the histogram features, so the dimension is 2304
(2304 = 256 × 9).

4) The length of LDP for a reference pixel is 32 bit which
is too large. So, we just calculate it to second order, and
the uniform pattern is used to code in derivative space
of different directions. The input images are divided
into 4 × 4, and the feature dimension is 3776 (3776 =
16 × 4 × 59).

5) As for LDGP operator, we just calculate it to second
order, and divided the input image into 4 × 4. The
feature dimension is 4096 (4096 = 16 × 4 × 26).
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6) The masks of LDTP are the same as [23]. To prevent
too many dimensions, we divide the image into 2 × 2,
and the dimension is 4096 (4096 = 4 × 2 × 29).

7) HOG_LBP, HOG_CS-LBP, and HOG_CLBP fusion
features refer to concatenating the descriptor obtained
at before, and their dimensions need to accumulate
directly.

8) For other variant patterns, we perform a 4 × 4 division
with non-overlapping, the resolution of sub-image is
512 × 128, the sampling radius is 1, and the sampling
point is 8.

The volumes of normal fixture set and faulty fixture set
are obviously unbalanced, so another evaluation index AUC
needs to be added. It is widely used in machine learning two-
class classification, which has a greater tolerance for samples
unbalance. In order to explain specifically, the following
formula needs to be explained firstly:

FPR =
FP

FP+ TN
(21)

where TN represents the number of normal fixtures identified
as normal actually. The curve drawn with FPR as abscissa
and Recall as ordinate is ROC, and the area enclosed by ROC
curve and coordinate axis from 0 to 1 is AUC value.

From the comparison results in Tab. 4, it can be seen that
theMCG-LBP operator proposed in this paper has significant
advantages in faulty cable fixtures classification. Recall and
Precision reached 92.3% and 85.7% respectively, and the
AUC value is also the highest in the ROC curve shown in
Fig. 12. Even though the fusion feature of HOG_LBP can
make Recall reach 85.4%, while Precision is only 65.4%,
which means that a large number of normal cable fixtures
are misjudged as faulty fixtures. As for HOG operator, it is
still a problem of low Recall only 64.5%, even if its Precision
rate reaches 75.7%, which means that a large number of
faulty cable fixtures are misjudged as normal fixtures. On the
other hand, from the perspective of feature dimensions, the
dimension of MCG-LBP is only slightly higher than that of

TABLE 4. Comparison of recall and precision with other LBP variant and
non-LBP operators.

FIGURE 12. The performance of ROC curve with different methods.

CS-LBP, and is far lower than other LBP variant and non-
LBP operators, however the detection performance is greatly
improved. The size of second down-sampling map is 512 ×
128, and the size of third down-sampling map is 256 × 64.
If we divide input image by 4 × 4 directly, there are sixteen
sub-images with the size of 512× 128. Compared with image
segmentation, extracting features from the down-sampling
image can obviously reduce the computational cost. Themain
reason is that our dimensionality reduction strategy shrinks
the area of extracting features by down-sampling iterations,
instead of extracting from sub-images one by one directly,
which also shortens the length of final descriptor effectively.
It is not difficult to find that even the continuous gradient
features obtained from each single layer, and their classifi-
cation results also have high Recall and Precision rates such
as 92.3% and 94.1%. The second and third down-sampling
maps not only realize the scale transformation of feature map
through iteration, but also contain the key gradient infor-
mation of cable fixture contour. Therefore, the MCG-LBP
descriptor proposed in this paper has obvious advantages.

V. CONCLUSION
This paper proposes MCG-LBP operator for leaky cable fix-
ture detection in the railway tunnel. In order to extract more
specific gradient information in the circle neighborhood, the
model of bi-directional triplet is introduced. Then, a dimen-
sionality reduction strategy is adopted to implement succes-
sive down-sampling iterations, which not only realizes the
scale transformation of cable fixture features, but also reduces
the calculation for extracting continuous gradient features
and greatly increases the computational efficiency. Finally,
to further enhance the single layer descriptor, the continuous
gradient features extracted from different downs-sampling
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maps are cascaded to promote classification performance.
MCG-LBP has a great improvement in both detection per-
formance and feature dimension, especially decreasing the
dependence on the faulty data set, which has superiority in
leaky cable fixture detection. The proposed algorithm also
provides a reference for the detection of small targets in large
images such as airports and subway security inspections, and
remote sensing image detection. In further research, combin-
ing MCG-LBP with deep learning is a topic worthy of study.
Especially to realize a real-time detection system for leaky
cable fixtures.
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