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ABSTRACT The development of information technology has made it possible to replace traditional keys
and passwords with biometric recognition. Among the various human recognition technologies, contactless
palm-vein authentication is becoming increasingly popular because it is hygienic and safe. In the field of
deep learning (DL), system security and multispectral compatibility are crucial issues that require outright
solutions. One of the most widely investigated DL algorithms is the convolutional neural network (CNN),
which has been proven to have strong feature extraction capability. However, the training of CNN requires
large samples and thus entails a heavy computational load, resulting in high hardware and software costs.
Therefore, this paper proposes an adaptive Gabor filter with enhanced imaging features and triplet loss
function that captures sufficient palm-vein data. A multispectral palm database from the CASIA public
database was employed in this study to analyze the proposed system. The experimental results show that
the proposed method has a low recognition error rate of 0.0556% and uses only a few network parameters
in a multispectral environment.

INDEX TERMS Biometric, palm-vein recognition, convolutional neural networks, triplet loss function,
handcrafted features.

I. INTRODUCTION
Information security has advanced considerably with the
development of information technology. Methods and reg-
ulations have thus increasingly been designed to improve
the security of personal information. Traditional information
security systems include passwords, personal identification
cards, and smart cards, which can be forgotten or lost as
well as deciphered or stolen by individuals with an ulterior
motive. These systems fail to meet modern society’s demand
for security, reliability, and convenience. Therefore, a new
method that makes use of unique biological characteristics
would be the best means of protecting personal information.
Biological characteristics are suitable for use instead of
passwords for identity verification for four main reasons.
(1) Universality—everyone has their own unique biometric
information such as voice print, facial features, fingerprints,
finger vein, palm print, palm vein, and iris. (2) Permanence—
biological characteristics do not change greatly over time,
with any changes being slight and observed linearly. (3)
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Distinctiveness— each individual’s biological characteristics
are recognizable and different from those of others; not
only are a person’s right and left hands different, but the
palm-vein information of twins is also not identical [1].
(4) Collectability—biological information can be obtained
quickly and conveniently through special instrument.

Unique biological information on the human body is
considerably safer, more reliable, and more convenient than
a traditional identification card or password because the
information can be used to verify a person’s identity quickly
and accurately, is less likely to be stolen, and cannot be
forgotten. Biological characteristics can be broadly divided
into two types: external characteristics, which are found on
the surface of the human body and are directly visible such
as the face [2], [3], iris [4], and palm print, and internal
characteristics, which are inside the body and include the
finger vein [5], [6], [22], palm vein [7], [12], hand’s dorsal
vein [8], and wrist vein [9].

As shown in Table 1, facial features and fingerprints,
both external characteristics, can be easily stolen and used
by unauthorized individuals. Moreover, fingerprints are not
secure because they contain fewer characteristics than the
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TABLE 1. Comparison of commonly used biometric techniques.

face. Iris recognition becomes uncomfortable over time
because near-infrared (NIR) light is needed to capture
information. The COVID-19 pandemic has forced people
to reduce physical contact to prevent virus transmission.
Because fingerprint recognition requires people to touch the
surface of a sensor and facial recognition requires people
to remove the face mask, these two methods have become
inconvenient and unhygienic. The palm vein, an internal
characteristic, is more advantageous and relevant given the
current global situation. Because the palm ‘vein is inside the
human body, it is stable and difficult to imitate; moreover,
common stains and injuries do not affect recognition. The
vein also does not change greatly over time and is highly
unique even between twins. A palm-vein image shows a
network of veins under the human skin; this network is
unidentifiable under visible light and can only be captured
from a living person by using NIR light, which is absorbed
by hemoglobin in the blood. Reflection of light by muscles
results in an NIR spectrum ranging from 750 to 1050 nm [10].
Identification using the palm vein has been proven to
work more favorably than that using other biological
characteristics because its information cannot be obtained
maliciously through improper means [1], [11] and people do
not need to touch the sensor during recognition. We refer
to the related papers [1], [46]–[50] and summarize the
advantages and disadvantages of the various identify methods
in Table 1.

Because the palm vein can only be visualized by irradiating
the hand with NIR light, the collection of samples for deep
learning (DL) model training is difficult. Compared with
traditional algorithms, DL finds the best features through
superposition, which is more effective when the dataset
is large. The computing speed of hardware has improved
continually over the past years, and many embedded
devices already contain a CUDA parallel computing module,
enabling lightweight neural network computing. As the
cost of equipment continues to decrease, the popularity of
edge computing devices is expected to increase greatly.
Traditional recognition systems have mainly been verified
using public databases with a simple database background
to enable the hand contour to be completely segmented.
However, some interference may occur, and hand rotation,
shifting, or zooming could influence recognition; evidently,
these problems must be resolved (Fig. 1). Finally, different
devices are expected to capture different spectra of vein
images, and their system adaptability will differ. Thus,
a model that is adaptive to different spectra must be
developed.

FIGURE 1. Palm image interference: (a) The public dataset without
interference. (b) Actual image with interference.

II. LITERATURE REVIEW
In recent years, vein-based biometric methods, including
palm-vein [1], [4], [7], finger-vein [5], [6], [12], dorsal hand-
vein [8], wrist-vein [9], and forearm vein [14] have attracted
a lot of attention. Among these, palm-vein is considered the
most convenient as it is easy-to-capture and has a variety
of features; thus, palm-vein recognition was chosen as the
research object in this paper. In Fig. 2, the standard palm-
vein recognition system acquires images mainly through
NIR cameras; then, locations and features of the region
of interest (ROI) are extracted, and the resulting images
are compared to those found in the database. However,
the method of feature extraction directly affects the system
performance. The current palm-vein recognition system is
divided into handcrafted features and CNN-based features.
There are three methods to extract handcrafted features:

FIGURE 2. The flow of palm-vein recognition system.

1) Geometry-based method [7], [15], which mainly uses
vein texture to show a continuous linear structure on the
image, captures the information on each line, curve, and point
that are close to the vein texture and shape. This method needs
to be rectified through ROI first, and the features extracted are
often fuzzy or sparse, which makes it difficult to deal with
those rotating, scaling, or displaced samples.

2) Statistical-based method [16], uses statistical informa-
tion to identify image characteristics, such as local binary
histogram and image invariant moments. The latter can be
classified as local statistics, which includes local derivative
patterns (LDP) and local binary patterns (LBP) [17]; or it
can also be classified as full-ranged statistics which includes
image invariance [18]. These methods are also unstable when
dealing with rotating, scaling, and displaced hands of users.

3) Local invariant-based method [19], which is inspired
by the classical computer vision (CV) algorithm of scale-
invariant feature transform (SIFT), can directly extract
local invariant palm-vein characteristics. Although it can
counteract the effect of feature displacement and hand
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rotation, it is susceptible to changes caused by the light
source in the equipment or environment, thus fewer consistent
features can be extracted, and it becomes less useful as a
recognition system.

With the decrease in hardware cost and the improvement
of computing power, DL has been widely used in various
fields. Previous studies proposed that the use of PVSNet [20]
and handcrafted features was employed as the training target
through a well-designed autoencoder CNN, then the encoded
characteristics are sent into fully-connected layers and users’
authentication are verified through a classification network.
With handcrafted features, the ability of DL to find the
best solution on its own is removed. Babalola et al. [13]
proposed a combines binarized statistical image features
descriptor method and CNN approaches using a decision-
level fusion strategy for palm-vein recognition system that the
experimental analysis for identification only. Das et al. [21]
proposed a CNN framework for finger-vein to obtain images
with the same quality and carried out extensive experiments
to prove its effectiveness. However, this method directly
output classification results, so, whenever a user registered,
the network had to be retrained again, requiring a large
number of parameters. Fang et al. [22] proposed a lightweight
network collocation to analyze the entropy and multiple ROI
of finger-vein images and they combined it with a two-
stream network for classification verification. However, the
training and testing data came from images acquired at the
same time, which is unacceptable in practice because there
is a chance that real data will be slightly changed in an
unpredictable manner during each test. It is important to
ensure that the training and testing data are collected during
different time periods, as a way to demonstrate the robustness
of the algorithm.

Most of the current palm-vein recognition systems still
have some drawbacks. For instance, traditional algorithms
have multiple adjustable parameters, but this takes a lot of
time to achieve better accuracy based on the experience of
user’s [44]. Further, some algorithms use only a part of the
data in the experiment, and the error rate tends to increase as
the number of users increase [7]. Moreover, many problems
can still be encountered by the current DL-based algorithms,
such as CNN’s large demand for data and the overfitting
datasets. In addition, the public palm-vein database is smaller
than the finger-vein database, and the number of photos
that can be captured for each user is not enough. As a
result, the development of DL lags behind the finger-vein
database. Nevertheless, this paper focuses on the palm-vein,
which has more characteristics and is safer than finger-vein
recognition.

III. PROPOSED METHODOLOGY
The palm-vein recognition system shown in Fig. 3 was
developed based on previous studies and CNN. It consists of
two parts, training, and testing. First, the ROI method was
used to locate the area to be identified, and the ROI image
and Gabor filter were used for convolution calculation to

FIGURE 3. Proposed architecture.

extract the characteristics. In the deep network training phase,
input fusion was performed between the raw ROI image
and Gabor features. When the next batch of deep network
training was performed, triplet loss and cross entropy will
be calculated to optimize the deep network weight through
backpropagation (BP).

A. SYSTEM FLOWCHART
This study proposed a weight selection mechanism to choose
the best image in a dual spectrum. The selected sample
was given a larger weight in the subsequent validation
process where the Euclidean distance was used. When
the distance between the testing and registered data was
below the threshold, the user’s information was considered
correct; otherwise, the user’s information was rendered
invalid.

B. ROI POSITIONING
Except for the selected information (veins), all other infor-
mation is deemed unimportant; thus, a good background
subtraction algorithm is needed to effectively improve
the system’s performance. Biometric information can be
obtained through either contact or contactless devices.
Although the displacement of contact devices can be avoided
to some extent by physical setting, contactless devices is
viewed as the mainstream device in the future since users
do not need to touch the devices, which makes it more
hygienic [1]. However, contactless devices generate more
invalid results because the images captured at different
times may have significant changes according to palm
proportions, hand displacement, and rotation. Therefore,
several algorithms were used to ensure that the captured
palm-vein information was not affected by these problems in
this study.

In Fig. 4, considering the reality, semantic image segmen-
tation (DeepLab V3+) was used for background subtraction
before palm image acquisition. Next, the radial distance
function (RDF) was utilized to locate the finger-tip and
finger-valley on the basis of the distance between the
reference point and the outline point. Then, the fore-
ground information was selected from the captured hand
size and rotation correction angle. The detailed steps are
as follows:
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FIGURE 4. ROI position for palm-vein acquisition: (a) Original vein image.
(b) Binarized image. (c) Defined reference and barycenter points. (d) RDF.
(e) Defined finger-tips and valleys. (f) Calculated rotation angle θ .
(g) Normalized image. (h) ROI image.

1) PALM CONTOURING
The traditional method extracts accurate ROI images, and
then uses gray scale images to contour the palms. However,
it cannot extract valid background and foreground informa-
tion due to the changeable ambient light. In this research,
DeepLabV3+ [23], [49] was used to segment the palm image
in front of the background, and the trained network effectively
distinguished the foreground palm from the background
interference light source, as shown in Fig. 4(b). Based on the
actual samples obtained, users often wear accessories such as
watches and bracelets which are usually attached to the palm
and cannot be removed during the contouring segmentation.
Thus, the authors calculated the position of the barycenter in
the image, estimated the horizontal distanceL (The distanceL
is a variable parameter, and the L is composed of the center of
gravity of the hand image and the position of about 0.8 palm
width from left to right), and deleted the part that exceeds
the length L, as shown in Fig. 4(c). This method effectively
removed the wrist interference and improved the stability of
the system.

2) LOCATING THE FINGER-TIPS AND VALLEYS
The position of the fingertips and valleys were acquired next.
First, the barycenter (Pref ) of hand contour was set as the
reference point, and the European distance between the hand
contour andmass center was calculated to obtain the RDF(see
Fig. 4(c)). Five areas of maximum value and four areas of
minimum value were obtained, which corresponded to the
position of the finger-tips (Ppeak1 to Ppeak5) and the valleys
(Pvalley1 to Pvalley4) in the hand contour image respectively
(see Fig. 4(d)).

3) NORMALIZATION AND ROI EXTRACTION
The authors used Pvalley1 and Pvalley3 as reference points,
defined d to represent the shortest distance between two
reference points and used θ to represent the angle between
the straight-line d and the perpendicular line as shown in
Fig. 4(e) and in Equations1 and 2 in which xPvalley1 and
xPvalley4 represented corresponding coordinates. Further,
the palm angle was corrected by using bilinear interpolation.
As shown in Fig. 4(f), the square palm-vein image was
captured after correcting the two reference points shown in
Fig. 4(g).

d =
√
(xPvalley1 − xPvalley3)2 − (yPvalley1 − yPvalley3)2 (1)

θ = tan−1(xPvalley1 − xPvalley3)/(yPvalley1 − yPvalley3) (2)

C. ADAPTIVE GABOR FILTERS
The Gabor filter is a common feature extraction method,
which is capable of analyzing specific frequencies and
has been applied to various fields because of its excellent
performance in frequency analysis and feature extraction
which can be shown in Eq. 3. Gabor filters are fine-tuned
by using five different parameters which allow a high degree
of freedom to adapt to a variety of samples; different
arrangements need to be tested in order to determine the best
parameters. This research employed a two-dimensional (2-
D) Gabor filter with self-adapted parameters to improve the
adaptability of the filter.

Gλ,θ,ψ,σ,γ (x, y) = exp
(
−x ′2 + γ 2y′2

2σ 2

)
· exp

(
i
(
2π

x ′

λ
+ ψ

))
(3)

The 2D Gabor filter was simplified by using only the
parameters that have significant impacts on the retained vein
sample. The improved equation is shown as follows:

Gσ,µ,θ (x, y) = gσ (x, y) · exp (2π jµ (x cos θ + y sin θ)) (4)

In Eq. 4, j denotes the imaginary unit and gσ (x, y) is further
expanded in Eq. 5.

gσ (x, y) = 1/2πσ 2
· exp

(
−

(
x2 + y2

)
/2σ 2

)
(5)

where σ denotes the standard deviation (SD), µ denotes the
central frequency of the sample, and θ denotes themain angle.

The 2D Gabor filter in Eq. 4 was further divided into real-
and imaginary part functions. The real part function was used
for saddle detection of vein, while the imaginary part function
was used for edge detection. The Euler’s formula was used to
decompose Gσ,µ,θ into the real part Rσ,µ,θ and the imaginary
part Iσ,µ,θ .

Rσ,µ,θ = gσ (x, y) · cos [2πµ (x cos θ + y sin θ)] (6)

Iσ,µ,θ = gσ (x, y) · sin [2πµ (x cos θ + y sin θ)] (7)

The best performance can be obtained when the parameters
σ ,µ, and θ of the 2DGabor filter are matched [24]. However,
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applying fixed parameters to the palm-vein recognition is
difficult because the results are not the same in every
acquisition due to the equipment and the complicated human
vein structure. To address this situation, this research utilized
an adaptive parameter that divided the original palm-vein
image into multiple sub regions, and then, the best parameter
for each sub region was obtained.

1) FILTER STANDARD DEVIATION
In this study, the SD of Gaussian distribution was represented
by σ . This parameter adjusted the width of the envelop in
the filter. A large value of σ makes the filter more resilient
to interference; on the contrary, a small value of σ acquires
more texture information [25]. In this research, we referred to
the [27] to find the filter parameters suitable for the palm-vein
image in the experiment. The SD of the sub region was
obtained via Eqs. 8 and 9, and the best sigma parameter was
obtained in Eq. 10.

E (I (i, j)) =
∑

m
i=1

∑
n
j=1I (i, j)/m× n (8)

D (I (i, j)) =

√∑ m
i=1

∑ n
j=1 (I (i, j)− E (I (i, j)))

2

m× n
(9)

where E(I(i,j)) denotes the mean value of the sub-region, and
D(I(i,j)) denotes the SD of the subregion.

The four variables in Eq. 10 represent the stable zone, slow
zone, moderate zone, and rapidly changing zone respectively,
which better fit most of the samples.

σ =


1, if D(I(i,j)) ≤ 1
√
2, if 1<D(I(i,j)) ≤ 1.4

2
√
2, if 1.4<D(I(i,j)) ≤ 2.8

4
√
2, if D(I (i, j)) > 2.8

(10)

2) FILTER CENTER FREQUENCY
The gray scale change in the main direction can be treated
as a sinusoidal waveform in order to calculate the distance
T between the lowest or highest values of the two regions,
and the center frequency µ can be calculated by µ = 1/T.
However, the contrast between veins and muscle tissue of the
samples in this experiment was not as clear as that in natural
image, so it was hard to distinguish the border areas [26].
In order to make a better system performance, other methods
were needed to obtain a representative value µ. In this study,
we proposed to divide µ into four different ranges, which
corresponded to the four different SDs. After experimental
observation, it was found that a lower value of T on the
vein indicated that the image contained more complex texture
features, and the value of SD was higher. Therefore, we can
use SD to estimate the required µ.

µ =


0, if σ= 1
0.12, if σ =

√
2

0.8, if σ= 2
√
2

2, if σ= 4
√
2

(11)

3) FILTER MAIN ANGLE
After dividing the vein image into several sub regions,
the texture features of each sub region were analyzed to
determine the main direction of this segment. First, the
gradient variations of the input sub regions in the vertical and
horizontal directions were identified, and the maximum angle
of each pixel was obtained in Eq. (12).

Iθ (i, j) = tan−1
dy(i, j)
dx(i, j)

(12)

In order to reduce the computational effort, the angles were
divided into six main angles in determining the angle of each
pixel. According to [27], a balance between performance and
computation can be achieved by six main angles. A linear
difference was used in the process of angular segmentation to
maintain the best resolution for each angle. The max major
angle in the subregion was obtained in Eq. 13.

θ = argϕ max
(∑

n
x0=1

∑
m
y0=1Iθ (i, j)

)
(13)

By using the angular order ϕ ∈ {0◦, 30◦, 60◦, 90◦,
120◦, 150◦}, the optimal filter parameters σ , µ, and θ were
obtained for each sub region, which were further decomposed
into real part CRσ,µ,θ (i, j) and imaginary part CIσ,µ,θ (i, j).
Lastly, each sub region was convolved with its corresponding
real- and imaginary part of Gabor filters. The image after
the convolution was binarized with eigenvalue, as shown in
Eq. 14.

FR(i, j) =

{
1, if CRσ,µ,θ (i, j) ≥ 0
0, if CRσ,µ,θ (i, j) < 0

FI (i, j) =

{
1, if CIσ,µ,θ (i, j) ≥ 0
0, if CIσ,µ,θ (i, j) < 0

(14)

D. MODIFIED CONVOLUTION NEURAL NETWORK
After the palm-vein images were pre-processed and normal-
ized, the results were recorded into the improved CNN. The
input data were transformed into an embedding feature via
CNN for user validation in the next step. The contributions
of this study in comparison with the recent DL-based palm-
vein recognition are as follows:

(1) Image feature derecognition: Most of the existing
palm-vein recognition systems combined with DL use
multiple classifications [21], which can make a quick
recognition. To increase the number of users, that the
network must be optimized again, which is of little value
for practical applications [37]. The proposed method avoided
this drawback by transferring the input image into embedding
features, when verifying, comparing the feature distance
between the test data and the register data. However, it can
delay the training cycle, that the threshold value can be set
for retained according to practical applications. Therefore,
it is necessary to avoid the situation where new users must
be trained immediately.

(2) Solving the problem of insufficient data due to small
sample sizes: Although DL can be very effective for natural
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images recognition, it requires a large number of images to
train a robust weight, which is very disadvantageous for small
databases. The palm-vein database is so insufficient that it
only allows three samples of each type for training. In view of
this, this study enhanced the filter features, and added triplet
loss and its special data structure to solve this problem.
(3) Network design for lightweight network in vein images:

For the DL method, a large network framework requires
a lot of computation time to train the network properly.
In CNN framework, convolutional layer and fully-connected
layer account for a large proportion of the parameters
and computation time. For the biometric system commonly
seen in low-end embedding devices that cannot handle
huge computation volume, Sandler et al. [29] proposed a
depthwise separable convolution layer to replace the general
convolutional layer. The procedure of flattening feature
images and of connecting them with neurons were performed
by the global average pooling (GAP), as a way to lighten the
weight of the network framework.

FIGURE 5. The proposed modified CNN framework.

1) DESIGN OF NETWORK FRAMEWORK
As shown in Fig. 5, the proposed modified CNN framework
consisted of 27 convolutional layers, which were divided
into eight modules. Except for the input and output modules,
the rest of the modules used residuals to pass information
between each other. In this work, a batch of normaliza-
tion (BN) layer behind the convolutional layer and a dropout
layer before the output were added to avoid the common
problems of overfitting and internal covariate shift in DL.
This yielded three main layers namely, the input layer,
intermediate layer, and output layer.

a: INPUT LAYER
The scale conversion could limit the amount of texture
information of the palm vein, so the size of the input layer was
modified into 160× 160× 4. This also allowed input fusion,
improving the feature fusion effect. The first module of the
input layer was a normal convolution layer with a large filter
to capture more useful feature information which was then

passed to the subsequent network. Finally, every module in
the input layer reduced the dimension through a sub-sampling
layer, converting the 160 × 160× 4 original image into a
20× 20× 96 feature map.

b: INTERMEDIATE LAYER
After feature extraction and sub-sampling in the input
layer, the resulting size of the input features was
20 × 20× 96. This study used smaller convolutional cores
for multiple convolutions since multiple small volume layers
are functionally equivalent to one large volume layer but
with reduced parameter usage [30]. The intermediate module
was subdivided into three small blocks; each block was
connecting with a residual. The modules were connected by
a dense block to preserve the best feature information and to
emphasize feature reuse; in this way, the problem of gradient
disappearance was resolved. After module connection, the
size of the output feature map was 20 × 20× 384. after the
module connection.

c: OUTPUT LAYER
A feature extraction module was first connected to integrate
the features from the intermediate process and optimize the
resulting output in this layer. This module enlarged the size
of the feature map from 20 × 20× 384 to 20 × 20× 512,
and then compressed the data via a 1 × 1 volume layer.
Among them, the shield number n was the output neural cell
and its amount was scaled according to the different sizes of
the database, with the smallest amount being larger than the
minimum number of users. Next, the GAP layer was used
to compute the feature map from a size of 20 × 20× n to
neurons of n. Then, L2-Normalization was performed on the
n neurons. The BN layer was not used because it can smooth
out the differences among the features, producing undesirable
image features as the output.

2) TRIPLET LOSS FUNCTION
In the palm-vein recognition system, it is important that the
network learning can quantify similarities among the input
images on its own. This study employed a triplet loss function
that could calculate the inter-sample similarity in real-time
during network training and send feedbacks to the neural
network for weight update. For deep networks, the main goal
is to train models that can distinguish similarities between
images. The most important characteristic of the triplet loss
function is its ability to shorten the distance between the
anchor and the positive sample, and to move the anchor away
from the negative sample. In Fig. 6, an image of a user is
selected as the anchor and other images of the same user
are selected as the positive sample; then, an image from one
of the remaining users is selected as the negative sample.
The data are generated in this order until every sample in
the database is input as an anchor. After passing through the
layers, the palm-vein image will transform into embedding
features. First, we defined two palm-vein images P, Q and we
hire the squared Euclidean distance to confirm the similarity
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between two embedded features.

D (f (P) , f (Q)) = ‖f (P)− f (Q)‖22 (15)

where f denotes the function for mapping the image to
the embedding layer, and D (., .) denotes the square of the
Euclidean distance in space.

FIGURE 6. The learning process of the triplet loss function.

The closer the distance of D(P,Q) is, the greater the
similarity between the original image P and Q will be. Based
on the data from the anchor, the positive and negative samples
were defined as a set of triplets bi = (pi, pi+, pi−). Where pi,
pi+ denote the same user but different pictures, pi- denotes
the image of different users and randomly selected until each
image has sorted as an anchor. After combining the triplet
with the squared Euclidean distance and referring to other
types of loss functions [31], the triplet loss function was
calculated by Eq. 16 in which g represents the gap param-
eter that normalizes the two comparison images (pi, pi+)
and (pi, pi−).

loss(pi, pi+, pi−) = max
{
0, g+ D

(
f (pi), f (pi+)

)
−D

(
f (pi), f (pi−)

)}
(16)

Based on the aforesaid loss function, DL was used to learn
from the sample itself to determine the important features
for similarity judgement, which is different from traditional
methods that use handcrafted features. During the training
of CNN, a batch of images extracted by the CNN were
inputted, as shown in Fig. 7. At the same time, images pi,
pi+, pi- were converted from 2D images into embedding
features. Equation 16 was used to obtain the average of
the loss function after calculation. The average loss value
was used to prevent extreme samples from affecting network
learning, and the loss value obtained from per batch was used
to optimize the weight of the CNN with the method of BP.

E. DUAL IMAGE WEIGHT SELECTION MECHANISM
Previous studies have shown that oxygenated hemoglobin and
deoxygenated hemoglobin in human blood absorb light with
wavelengths in the range of 750nm to 1050nm, while water
absorbs those at 965nm [6], [7], [10]. In actual vein data,
not all vein images perform better under the light at 850nm
which is an ideal wavelength for absorption rate. Moreover,
usersmay be affected by several factors such as the equipment
in use or their physical condition at the time of capturing
images, which may result in inconsistent data under the
same spectrum. To solve this problem, this paper employed a
weight selection mechanism to analyze multispectral images

FIGURE 7. Training of triplet loss function network.

taken by users, and to automatically find the best spectrum
for each one.

In order to define the distance relation between the images,
we cross-check the training data to obtain the relative distance
relation between the samples. Compare 850nm and 940nm in
pairs and use Eq. 17 to build a train label. Finally, the weight
of the neural network is selected through the same neural
network structure as the input layer.

distance 850nm = distance 940nm, α = 1,β = 1
distance 850nm > distance 940nm-gap, α = 1, β = 0
distance 850nm < distance 940nm-gap, α = 0.65,

β = 0.35
distance 940nm > distance 850nm-gap, α = 0,β = 1
distance 940nm < distance 850nm-gap, α = 0.35,

β = 0.65
(17)

The parameter of α and β represent the label values
assigned to the different wavelength.

IV. RESULTS AND ANALYSIS
A. ENVIRONMENTAL
To evaluate the technical objectivity presented in this work,
the multispectral palm database CASIA [32] and PUT [38]
were used. First, a CASIA database provided 7,200 images
captured by a contactless device. Right- and left-hand images
from 100 users in total were acquired. The samples were
collected in two sessions, with an interval of one-month.
Three images were collected each time, and six samples
under different wavelengths (460, 630, 700, 850, 940nm, and
white) were simultaneously captured. The authors analyzed
the data of the vein captured under the spectrum of 850nm
and 940nm. In order to do more comparison between the
different samples, the left-hand image and right-hand image
of the same person were considered as images from different
users, expanding the subjects to 200 users with 12 images per
user. The session 1 for testing data and session 2 for training
data. Second, a PUT vein database provided 1,200 images
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TABLE 2. System specification.

captured by a contact device. Right- and left-hand images
from 50 users in total were acquired. The samples were
collected in three sessions, with an interval of one-week. Four
images were collected each time, and 880nm samples under
fixed wavelength were simultaneously captured. In order
to do more comparison between the different samples, the
left-hand image and right-hand image of the same person
were considered as images from different users, expanding
the subjects to 100 users with 12 images per user. The
sessions 1 and 2 for training and session 3 for testing data.

In this work, Keras and OpenCV were used for algorithm
development. The detailed specifications are shown in
Table 2. The triple data structure for training was constructed,
and then the anchor was taken up by all the samples. A single
anchor was paired with 4 positive samples and 18 negative
samples, thus a total of 86,400 triplet loss datasets were
obtained. These were then fed into the network for an epoch
before a new round of triplet loss dataset construction. The
optimizer used Adam with its learning rate set at 0.001 and
its batch size at six triplet loss datasets.

The security assessment of the biometric system was
verified by the equal error rate (EER). The system encounters
two possible error patterns: the false reject rate (FRR), which
means that the tester should have passed the verification; and
the false acceptance rate (FAR), which means that the fake
tester should have not passed the test. Adjust the threshold of
the system, so that when the security is gradually adjusted
from high to low level FAR will gradually approach 1
from 0, and FRR will gradually approaches 0 from 1.
In this process, the two data will eventually converge on
the same point, which is called EER. This is the moment
when optimal balance of the system performance shows.
Therefore, the verification system used the EER as the
system safety indicator. The definitions of FAR and FRR are
shown in Eq. 18. In addition to EER, the receiver operating
characteristic curve (ROC) was also used. The FAR was set
as the x-axis, and the FRR was reversed to obtain the genuine
acceptance rate (GAR) which was set as the y-axis. At the
same time, a straight line was set with a slope of 1. When the
curve drawn by FAR and FRR intersected on a line segment
with a slope of 1, their intersecting point was the EER point
of the algorithm.

FAR = FP/(FP+ TN )

FRR = FN/(TP+ FN )

GAR = 1− FRR (18)

B. GABOR FILTERS
In this work, the features captured by an adaptable Gabor
filter were recorded andmergedwith the original vein images.
The features, regarded as one of the channels in the image,
were inputted into the network for training and verification.
Gabor features were added because DL requires a large
number of samples to train a robust weight after many
repetitions; however, for the CASIA vein database, only 1200
(200 persons × 3 sheets × 2 frequency spectra) images
can be used for training under a fair distribution of data.
Since the amount of data was inadequate compared to other
fields, theGabor features were utilized to enhance the original
image features without disturbing the balance of the data
set. ROC curves were then drawn for comparison. In Fig. 9,
the red and blue lines represent the recognition rate under
850nm and 940nm light with Gabor features added, while the
brown and yellow lines represent the recognition rate under
850nm and 940nm light without Gabor features. It can be
observed that the recognition rate under 940nm light was
higher than that under 850nm light, and the recognition rate
of the two frequency bands was significantly improved after
the Gabor feature was added.

FIGURE 8. Weighting of weight selection mechanism.

FIGURE 9. ROC curve with Gabor features added.

C. WEIGHT SELECTION MECHANISM
In the CASIA database used in this study, users’ vein
information captured only under wavelengths of 850nm and
940nm was provided. In order to verify that the proposed
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weight selection mechanism can effectively distinguish the
most suitable wavelength for users, this study used a score
fusion mechanism to analyze the images of the 850nm and
940nm frequency bands, and to give higher weight to the
better-quality band. It can be seen in Fig. 10 that the weight
selection mechanism effectively integrated the information
of the two frequency bands and provided a more robust
verification system.

FIGURE 10. ROC curve with weight selection mechanism.

D. COMPARISON WITH RELATED WORKS
This paper compared the proposed techniques with those in
recent works under the same test conditions as shown in
Table 3. It is divided into two approaches: traditional CV
and DL-based methods. The EER of the CV-based algorithm
was lower than that of the DL-based algorithm because
CV can be fine-tuned with fixed parameters to reduce the
EER under specific equipment and spectrum. However, it is
more difficult to achieve the same performance on different
devices or in different environments. Some of the CV-based
algorithms used incomplete databases for comparison, and
the error rate may be higher than that of the data tested
in this paper because of the increasing number of users.
Furthermore, few studies have used DL in the study of
palm-vein recognition; thus, studies that used DL in finger-
vein recognition with the same sample characteristics were
included for comparison.

This work also developed a lightweight DL network
framework for palm-vein recognition. Compared with other
frameworks used in the vein field, our design has fewer
parameters than others, including MobileNetV2 [29], which
is mainly used in embedding devices. This also allowed
the work to conduct future real-world applications without
equipment limitations encountered in handheld devices and
edge computing platforms, as shown in Fig. 11.

Table 4 shows the results obtained using the PUT Vein
Dataset [9], which contains 1200 images of size 1280 × 960
pixels with a wavelength of 880 nm. The FYO dataset
contains only one image for training and one for testing, but
the present work proposes a triplet loss method in which

TABLE 3. Comparison between EER validation rates of methods.

FIGURE 11. Comparison between the number of network parameters.

TABLE 4. Comparison the EER of methods in PUT vein dataset.

at least two images are required for effective training; thus,
we use the PUT dataset. The experimental results reveal that
the proposed method has advantage compared with the other
methods. Comparedwith the three formermethods [40]–[45],
the proposed method and wave atom transform [43] perform
more strongly. To further examine the practical performance
between the method presented in [43] and the proposed
method, semantic image segmentation is used to remove the
complex background, as shown in Fig. 1(b). In addition,
in the PUT Vein Dataset, we adjusted the input image size to
320× 320× 4, which considers the GPU’s ability to training
and the impact of distortion caused by image resizing is
reduced. This study adds two convolution layers to the CNN,
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with depths 32 and 64 and both with the ReLU activation
function. The first convolution layer has a 2 × 2 stride.

V. CONCLUSION
The Vein-based identity recognition has been actively devel-
oped in recent years and has been proven to be an effective
and reliable recognition method. However, many problems
still need to be overcome in the DL-based algorithm. In view
of this, this study proposed a complete lightweight system
that effectively solved most of the problems encountered
in previously developed systems. The ROI positioning after
palm image input was able to resist a certain degree of
rotation and displacement, which reduced the system errors
caused by the user while maintaining its hygienic contactless
acquisition. In addition, a lightweight network for palm-vein
was employed with fewer parameters than those used in
recent studies. In the network training, a triplet loss function
and Gabor features were utilized to fuse the input layer
and to allow the CNN network to learn to distinguish the
similar features between images. It is able to effectively
train the CNN network even when the data in the public
database is insufficient. The weight selection mechanism
also selected a better sample automatically to improve the
system’s adaptability for dual spectrum. The results show that
the proposed network framework required fewer parameters
and had a better error rate of 0.0556%.
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