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ABSTRACT Anomaly detection is an important problem for recent advances in machine learning. To this
end, many attempts have emerged to detect unknown anomalies of the images by learning representations
and designing score functions. In this paper, we propose a simple yet effective framework for unsupervised
anomaly detection using self-supervised learning. We extend conventional self-supervised learning for an
anomaly detection problem. In anomaly detection, anomalous patterns appear in the local regions of an
image, so we employ dynamic local augmentation to generate a negative pair of the images from the normal
training dataset. Specifically, in addition to learning the global representation of an image, our framework
contrasts a normal sample to a locally augmented sample. To effectively apply the local augmentations
regardless of a category or a random location of an image, we use dynamically weighted local augmentations
to generate more suitable negative samples. We also present a novel scoring function for detecting unseen
anomalous patterns. Our experiment demonstrates the effectiveness of our method, and we show that our
framework achieves competitive performance compared to state-of-the-art methods on MVTec Anomaly
Detection dataset.

INDEX TERMS Anomaly detection, computer vision, deep learning, machine learning, self-supervised
learning.

I. INTRODUCTION
Anomaly detection, referred to as novelty detection, outlier
detection, out-of-distribution (OOD), is a task that identi-
fies abnormal, novel, or unseen data. In general, one of the
assumptions in anomaly detection is that anomalies rarely
occur and anomaly patterns are not given in the training
dataset. Since anomaly data is not accessible during the train-
ing, many approaches have been proposed to detect anoma-
lies by the unsupervised method.

Recently, there have been many approaches for image-
level anomaly detection. For example, One-class
classifiers [1], [2] have shown competitive results on image-
level classification with high-level representations. However,
pixel-level anomaly detection is a task to be more practical
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and precise in many domains of computer vision. Compared
to image-level features, pixel-level features (dense features)
are difficult to train due to the preservation of spatial features
and the construction of dense outputs. By studying pixel-
level anomalies, we can improve the way to extract the dense
features in self-supervised learning. In practical use cases,
pixel-level anomaly detection can perform well on vision
inspection in industrial environments (e.g., CCTV) where
inspection is done by multiple objects not by a single object.
In that case, we expect that the pixel-level anomaly detection
algorithm can better detect than the image-level algorithm.

To this end, previous works have been proposed based
on Generative Adversarial Network (GAN) [3]–[5], Auto-
Encoder (AE) [6]–[8]. GAN-based models detect anomalies
when the confidence score is below a certain thresh-
old. AE-based models are trained to reconstruct the input
data which is normal, and determine anomalies when
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reconstruction error is high at test time. Since both meth-
ods consider pixel-wise reconstruction error, the meth-
ods lack to capture the high-level features and semantic
information [9], [10].

In recent years, self-supervised learning approaches using
contrastive learning have been successful in learning rep-
resentations. Contrastive learning [11]–[14] also showed a
strong ability to learn good representation in pixel-level rep-
resentation tasks (e.g., object detection, semantic segmen-
tation). A few works [15] have shown the effectiveness of
contrastive learning in image-level anomaly detection. How-
ever, not many works have been proposed for pixel-level
anomaly detection which requires accurate and reliable pixel-
level representation.

Our work tackles pixel-level anomaly detection which
segments anomaly pixels by self-supervised learning
approaches. Self-supervised learning with only positive
pairs [14], [16] has resulted in competitive performance
in comparison to contrastive learning which requires both
negative pairs and positive pairs [13], [17]. Since the training
dataset consists of only normal data, our work extends the
self-supervised learning using positive pairs with dynamic
local augmentation to disassociate anomaly pixels. We also
propose two novel scoring functions in terms of data and
the model’s layer: Regression error and Uncertainty per
pixel. For computing the score of a pixel, we measure the
difference of themaps (featuremap or variancemap) between
the train images and the test image for each layer. Also,
to generate the variance map for the uncertainty score, we use
Monte Carlo Dropout to measure the uncertainty of the pixel
representation.

The goal of the proposed method is to segment anomalies
by self-supervised learningwith dynamic local augmentation.
Our contributions are as follows:
• We propose a self-supervised learning framework for
anomaly detection with a novel augmentation method
called dynamic local augmentation that is adaptively
applied to each individual image locally to generate
more delicate anomalies.

• We introduce two scoring functions that discriminate the
anomalies from normal pixel-level features using regres-
sion errors and variance maps: The regression error is
the difference between the average feature map of train
images and the feature map of a test image. The other
is the difference between the average variance map of
train images and the variancemap of the test image using
Monte Carlo dropout for each layer (three last layers
from each residual stage on ResNet-18).

• Lastly, our experiments demonstrate that the proposed
method which is trained from scratch achieves the com-
petitive performance on the public benchmark MVTec
Anomaly Detection dataset.

The remainder of this paper is as follows. Related works
on anomaly detection, self-supervised learning, uncertainty
are discussed in Section II. Section III introduces our self-
supervised learning framework on anomaly detection with

two scoring function regression error and variance map. In
Section IV, we discuss the pixel-level anomaly detection
experiment results on MVTec dataset. Finally, Section V
draws the conclusion and future work of our research.

II. RELATED WORKS
A. ANOMALY DETECTION
A wide range of literature on anomaly detection [18]–[26]
has appeared in machine learning. In most anomaly detec-
tion tasks, we assume that only the normal data is given
during the training and the model predicts whether a test
sample is normal or not during the test time. A vari-
ety of papers for anomaly detection based on Generative
models have been studied. These models such as Auto
Encoder (AE) [6]–[8], [27] and Generative Adversarial Net-
work (GAN) [3]–[5], [28], [29] are trained to generate nor-
mal data on the training dataset which includes only the
normal data. During the test time, the models determine
whether a test sample is normal or abnormal by detecting
outliers from the probability distribution of training data.
OCGAN [5] improves robustness using a denoising autoen-
coder and learns latent space that exclusively represents a
given class utilizing two discriminators. Contrary to existing
models where a discriminator learns good representations
guided by the generator, DGAD [30] makes the generator
learn better representations with the help of the discrimi-
nator. However, when detecting subtle defects, the anomaly
detection algorithms based on the generative models have
a limitation. These models learn mainly low-level repre-
sentations, so generate well-reconstructed features similar
to normal samples although the input test sample is abnor-
mal. For practical applications, recent works [31]–[34] that
utilize ImageNet pre-trained networks have been studied.
These algorithms do not have a training process and just
inference to compute the scores. Using pre-trained CNNs
with multi-scale feature pyramid pooling for feature extrac-
tion, SPADE [31] utilizes k-nearest neighbor for retrieving
normal images which are most similar to a test sample and
PaDim [33] uses Mahalanobis distance metric with mul-
tivariate Gaussian distribution for anomaly detection. The
recent success of self-supervised learning has been demon-
strated effective in anomaly detection. In self-supervised
learning based anomaly detection, the models have been
used to learn deep representations by predicting geometric
transformation (e.g., rotation, crop, resize) [2], [35], [36]
and appearance transformation. In one-class classification
settings [37], [15] using contrastive learning contrasts the
sample with distributionally-shifted augmentations of itself.
Otherwise, CutPaste [38] is to design an augmentation strat-
egy generating local irregular patterns unlike [15] to detect
irregular patterns of anomalies. Then [38] trains the model to
identify these local irregularities for generalization to unseen
real defects at test time. CutPaste generates anomalous pat-
terns by using augmentation such as CutOut [39] or CutPaste
which is extracting a rectangular patch from a random area of
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an image and pasting it on a random area of the image. Unlike
CutPaste, we proposed a general framework that leverages
dynamic local augmentations that are automatically deter-
mined to generate effective abnormal samples.

B. AUGMENTATION FOR SELF-SUPERVISED LEARNING
Many conventional self-supervised learning methods utilize
augmentation to learn the representation. Self-supervised
learning approach, e.g., Simsiam [16], BYOL [14],
MOCO [12], [13], SimCLR [17], inputs a positive pair of an
image by applying a different transformation to one image.
Existingworks transformed imageswithGeometric Augmen-
tations [40], Color Augmentation, Blurring Augmentation to
create positive pairs. Augmentation methods have been used
to generate positive pairs, but a few works [15], [35] used
augmentation as negative pair to tackle the image-level Out
Of Distribution task by choosing shifting transformation to
train the self-supervised learning model.

C. UNCERTAINTY
Our scoring function has been inspired by study of uncer-
tainty [41]–[43]. For practical application on industrial vision
inspection and medical diagnosis, uncertainty is a great risk
of applying machine learning. Reference [42] has proven that
Epistemic uncertainty and Aleatoric uncertainty improve the
performance and can measure uncertainty of data and model.
Monte Carlo Dropout [44] showed a simple way to measure
Epistemic uncertainty at test time.

III. METHOD
In this section, we describe our proposed method in detail.
For a given training datasetDtr = {xm}Mm=1 that are anomaly-
free images, the goal of our framework is to train the model
for detecting anomalies in test imagesDts. We first introduce
our framework based on self-supervised learning. Our model
is trained to learn the global and dense representations on
the training dataset which consists of the normal data only.
Unlike the self-supervised (especially ‘‘contrastive’’) learn-
ing methods, we define a negative sample as a sample with
dynamic local augmentation to effectively detect anomalies
in test images. We also present a novel scoring function to
detect the unpredictable abnormal data as well as the pre-
dictable abnormal data. In Figure 1, we present the overall
architecture. Our framework learns the global and dense rep-
resentations using self-supervised learning with only positive
pairs (t(x) and t ′(x)) and is also trained to detect anomalies
with negative pairs (x and tlocal(x)). To generate the negative
sample (tlocal(x)), we apply dynamic local augmentation to
the sample. To consider a category and a location of an
image, various hard local augmentations (e.g., rotation) are
adaptively applied. After the training, we measure the regres-
sion error score which is the difference between the average
feature map of training images and the feature map of a
test image. Also, we compute variance per pixel using MC
Dropout, and likewise, measure the difference between the
average variance map of the training images and the variance

map of the test image. The difference maps are computed
for each layer (yellow, orange, green squares in the scoring
function box), and we finally obtain the anomaly score map
for pixel-level anomaly detection.

A. PRELIMINARIES
Before discussing our method, we briefly introduce the self-
supervised learning frameworkwhich our framework is based
on.

1) TERMINOLOGY
Negative pair means the pair between a normal sample and
a pseudo abnormal sample generated by dynamic local aug-
mentation.Negative sample is a pseudo abnormal sample that
is the same as the locally augmented sample. Meanwhile,
positive pair means the pair between the normal samples
during the training. Hard augmentation, e.g., rotation, means
pushing the sample away from the original by the strongmag-
nitude of the augmentation to generate the negative sample
(pseudo abnormal sample). Predictable anomaly at test time
is an anomaly that has a similar feature representation to
a pseudo abnormal sample by dynamic local augmentation.
An unpredictable anomaly is the opposite of a predictable
anomaly which is not predictable by the negative samples.

2) PIPELINE
Given unlabeled data, many approaches for self-supervised
representation learning have emerged. MoCo [12], [13] and
SimCLR [17] employ contrastive learning where the features
of different images (negative pairs) are pulled away while
attracting those of the same image’s two views (positive
pairs). Unlike contrastive learning, BYOL [14] leverages
only positive pairs and uses a moving average network to
prevent collapsing. Otherwise, SimSiam [16] which is based
on simple Siamese networks uses neither negative pairs nor
the moving average network. Instead, SimSiam leverages a
stop-gradient operation to prevent collapsing solutions. In
the anomaly detection task, the training dataset consists of
only normal data, and we train/test a model separately for
each category. For this reason, the categories of the different
images are the same, so the negative pairs are not effective
to prevent collapsing solutions, unlike SimCLR. Since the
training data, e.g.,MVTecAD, is not a large-scale dataset, our
framework does not rely on large mini-batch training, unlike
BYOL. Consequently, we employ SimSiam architecture as
the pipeline of our framework.

3) LOSS FUNCTION
To learn the global feature of an image, our framework
first maximizes the cosine similarity of positive pairs like
SimSiam. Different from SimSiam, our framework sets two
randomly augmented views not only from the same image
but also different images as positive pair, since the training
data, e.g., MVTec AD, consists of the same category in an
anomaly detection task. Second, we observe that learning
local features of an image is important in anomaly detection.
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FIGURE 1. Overall architecture. Our framework learns the global and dense representations using self-supervised learning with
only positive pairs (t(x) and t ′(x)) and is also trained to detect anomalies with negative pairs (x and tlocal (x)). To generate
abnormal sample, we apply dynamic local augmentation. Finally, we measure the regression error score and the uncertainty
score using MC Dropout.

FIGURE 2. Results of effective (top row) / not effective (bottom row) examples for generating the negative samples. For
each type of local augmentation, we observe that the augmented location and the category of the image are important for
each local augmentation to generate anomaly effectively.

Recently, dense contrastive learning [11] is presented for self-
supervised learning method to directly optimize a pairwise
contrastive (dis)similarity loss at the pixel level. We leverage
the concept of DenseCL [11] using only positive pairs to
effectively detect anomalous regions of an image.

B. SELF-SUPERVISED LEARNING FOR ANOMALY
DETECTION
The idea of self-supervised learning is to learn the represen-
tations from two randomly augmented views for unlabeled
data. To train a model from scratch, our framework optimizes

the losses for the global feature and the dense feature using
only positive pairs, mentioned in Section III-A.
Given a batch of samplesB = {xk}Bk=1 and a distribution of

image augmentations T , our framework takes two randomly
augmented views vi , t(xi) and v′j , t ′(xj) as inputs where
the image augmentations t ∼ T , t ′ ∼ T and an index of
the samples i, j ∈ {1, . . . ,B}. Note that the category of the
training data is the same in the anomaly detection task, so we
set vi and v′j as positive pairs although they are transformed
from either the same image or different images. We set an
encoder network f which is comprised of a backbone and a
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projection MLP head and shares the parameters between two
views.We denote a predictionMLP head as h and the two out-
put vectors as z′j , f (v′j) and pi , h(f (vi)). When calculating
the similarity between two outputs, cosine similarity which
has been justified to be effective in many self-supervised
learning frameworks [12], [13], [16], [17] is used. The neg-
ative cosine similarity between them is as follows:

D
(
pi, z′j

)
= −

pi
||pi||2

z′j
||z′j||2

. (1)

Following [16], we symmetrize (1) and define the global
self-supervised loss considering stop-gradient (SG) operation
to treat z′j and zi as a constant during the training as:

Lglobal =
1
2
D
(
pi, SG(z′j)

)
+

1
2
D
(
SG(zi), p′j

)
. (2)

In anomaly detection, the dense features are also learned
to detect anomalous regions at the pixel-level. We employ
the loss function for dense features in [11], but our frame-
work uses only positive pairs to learn dense features. Unlike
Lglobal using all pairs of images within mini-batch as input
(vi, v′j), only two different views of the same image (vi, v′i)
are used to calculate the dense self-supervised loss Ldense.
For dense self-supervised loss, we set an encoder net-
work fd which consists of the same backbone as f and
a projection convolution layer head. hd (·) is denoted as
a prediction convolution layer head and Dd is the neg-
ative cosine similarity between the corresponding dense
feature vectors from the two views following [11]. Since
the spatial size of the feature map, e.g., hd (fd (vi)) and
fd (v′i), is S × S, we compute the negative cosine simi-
larity matrix 1 ∈ RS2×S2 , i.e., Dd

(
hd (fd (vi)) , fd (v′i)

)
,

Dd
(
fd (vi), hd

(
fd (v′i)

))
. The dense self-supervised loss is as

follows:

Ldense =
1
2
Dd

(
hd (fd (vi)) , SG

(
fd (v′i)

))
+
1
2
Dd

(
SG (fd (vi)) , hd

(
fd (v′i)

))
. (3)

C. DYNAMIC LOCAL AUGMENTATION
Next, we present a novel dynamic local augmentation to
generate negative pairs of the images on the normal training
dataset in anomaly detection. The goal of anomaly detection
is detecting anomalies in the local regions of an image.
Self-supervised learning on only normal training data has
limitations, since the model has never been trained with
abnormal data. While we train the model to learn the rep-
resentations of the images by optimizing Lglobal and Ldense,
we additionally apply dynamic local augmentation to the
samples for effectively detecting anomalous regions of the
images. Previous works observed that ‘‘hard’’ augmentations,
e.g., rotation, is harmful and unused for standard contrastive
learning. So we define the hard augmentation at a random
location of an image as Tlocal .

1) LOCAL AUGMENTATION
We use various local augmentations, i.e., {T (k)

local}
K
k=1, to gen-

erate delicate anomalous images. In our method, we use the
combination of the following local augmentations to train the
model. These augmentations are known for hard augmenta-
tion that is useful to generate pseudo abnormal images.

llFirst, we set Rotation transformation as one of the hard
local augmentations. Rotation transformation is known to be
harmful to conventional contrastive learning, because of the
hardness of the augmentation. Second, we employColorJitter
transformation to change the color of the local region. We
observe that the defects are often revealed as the locally
changed color. Third, we considerPerm transformationwhich
randomly permutes each part of the evenly partitioned image.
Fourth, we add Grayscale transformation to easily detect a
defect, e.g., hole, crack, and gray stroke, which is usually
gray.

Besides these augmentations, we can apply more effective
hard augmentation as dynamic local augmentation if the aug-
mentation is hard to transform an image.

2) DEFINITION OF POSITIVE/NEGATIVE PAIR
For our training objective, we use both negative pair and
positive pair. Following terminology in Section III-A, the
positive/negative pair can be described as the notations: Pos-
itive pair is the pair between t(xi) and t ′(xj), where t ∼ T ,
t ′ ∼ T , and i, j ∈ {1, . . . ,B} is an index of the image.
Likewise, negative pair is the pair between xi and tlocal(xj),
where tlocal(xj) is the weighted sum of the t (k)local(xj), t

(k)
local ∼

T (k)
local , and k is an index of the hard local augmentation.
Since the hard augmentation is applied at a random loca-

tion, we observe that some hard local augmentations have no
effect at all in certain locations as shown in the bottom row of
Figure 2. For example, if rotation is applied at a local region
that is without shape (e.g., the center of metal nut and bottle
classes, the smooth surface of capsule and leather classes),
we observe that there is little change (e.g., the bottom row of
the ‘‘Rotate’’ column in Figure 2).

For this reason, we define hard local augmentations as
{T (1)
local, . . . , T

(K )
local} where K is the number of hard local aug-

mentations, and adaptively apply them considering a category
and a random location of an image. Our intuition is that
the category and the random location of the image affect
the effectiveness of the local augmentations to generate the
negative sample. To adaptively apply the local augmentations
to the image, we propose dynamic local augmentation for
a delicate negative sample. We also present the concept of
‘‘strong/weak’’ augmentation for dynamic local augmenta-
tion. Strong/weak augmentation is the strength of the aug-
mentation applied to an image. At a certain region of the
image, if our framework determines that a local augmentation
is useful/useless to generate anomalies, the local augmenta-
tion is strongly/weakly applied to the image. To determine
whether a local augmentation is strongly or weakly applied,
wemeasure the difference between the original image and the
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local augmented image as follows:

d (k)(xi) = MSE
(
t (k)local(xi), xi

)
, (4)

where t (k)local ∼ T (l)
local , MSE(·, ·) is mean squared error, and

k is an index of the hard local augmentation. To generate
the weights of local augmentations, we define the weights as
follows:

w(k)
=

d (k)(xi)∑K
k=1 d

(k)(xi)
, (5)

where w(k)
∈ [0, 1] means the strength for each local aug-

mentation. Next, we define dynamic local augmentation for
an input image xi as follows:

tlocal(xi) =
K∑
k=1

w(k)t (k)local(xi), (6)

where w(k)t (k)local(xi) is element-wise multiplication between
locally augmented image and the corresponding weight.

In Figure 3, we show the example of dynamic local aug-
mentation. We denote w as the weight of the local augmen-
tation. Our dynamic local augmentation is the adaptively
weighted sum of the local augmentations. It considers the cat-
egory and the location of the image to generate a more effec-
tive negative sample. In the top row of the figure, we observe
that the local augmentation is applied to the top location
of the bottle image (red line) and ‘‘Rotate’’ and ‘‘Perm’’
are more effective than other augmentations (w = 0.29,
w = 0.35). On the contrary, ‘‘ColorJitter’’ is the most effec-
tive augmentation for the center of wood class (w = 0.36) as
shown in the bottom row of the figure. ColorJitter is twice as
strong as the weakest one (Perm) in the example.

We finally present the loss for the negative pair as follows:

Lneg =
1
2
D
(
pi, SG(zj)

)
+

1
2
D
(
SG(zi), pj

)
, (7)

where zi , f (xi), pi , h(zi), zj , f
(
tlocal(xj)

)
, pj , h(zj),

and i, j ∈ {1, 2, . . . ,B}. Our framework learns detecting the
anomalies of the images by dynamic local augmentation as
well as the representations of the images by self-supervised
loss. Final loss function is as follows:

L = λ1Lglobal + λ2Ldense − λ3Lneg, (8)

where λ1, λ2, λ3 ∈ [0, 1] are hyperparameters and more
details are in Section IV.

D. SCORE FUNCTIONS FOR ANOMALY DETECTION
We define the score functions for detecting anomalies upon
the model learned by our proposed training objective. We
propose two score functions: 1) regression error between the
feature map from training data and the feature map from test
data, 2) the predictive uncertainty using MC dropout.

1) REGRESSION ERROR FOR SCORING
In anomaly detection, the training data consists of only nor-
mal data, e.g., MVTec AD. So the intuition is that the feature
maps of training images from each layer differs from the
featuremaps of abnormal images on test data. Following [45],
the feature maps from each layer have different character-
istics, so we compute the regression errors for each layer
and average the error values per pixels after upsampling the
difference maps for each layer to the same size (224× 224).
We employ ResNet-18 [46] as backbone network and denote
the feature maps from the last layer of each stage as h(l) where
l ∈ {1, 2, 3} is an index of the stage. We denote the feature
maps from the last layer of each stage on the test dataset as
h(l)ts . At test time, the regression score is the mean difference
between the feature map from the test image and the average
featuremap from all training images for each layer as follows:

e(r,c) =
1
L

L∑
l=1

||µ
(l)
(r,c) − h

(l)
ts,(r,c)||

2
2, (9)

where (r, c) is a pixel of the image, L is the number of
stages, µ(l)

(r,c) is the average feature value of all training data

at the pixel (r, c), i.e., µ(l)
(r,c) =

1
M

∑M
i=1 h

(l)
i,(r,c), and M is

the number of training data. Note that after computing the
differences for each layer, we upsample each difference map
to 224×224 and average them per pixel. Also, we do not use
the first stage of ResNet-18 because of the resolution size,
so three stages (2nd, 3rd, 4th stage) of ResNet-18 are used
in (9), i.e., L = 3.

2) UNCERTAINTY FOR SCORING
We compute the predictive uncertainty for each pixel using
MC Dropout. Upon MC Dropout [44], we apply dropout at
test time to compute the model’s uncertainty. The intuition
is that since the model is trained on only normal data, the
model’s uncertainty will be high when the input is abnormal
test data. We also compute the model’s uncertainty for each
layer like Regression Error mentioned above. During MC
Dropout, T forward passes proceed and we compute the
uncertainty at each pixel for each layer as follows:

var (l)(r,c) =
1
T

T∑
t=1

(
ĥ(l)t,(r,c)

)2
−

(
1
T

T∑
t=1

ĥ(l)t,(r,c)

)2

, (10)

where ĥ(l)t,(r,c) is the tth output out of T times at the pixel (r, c)
for the lth layer on an image. After upsampling the feature
maps consisting of var (l)(r,c) for the lth layer, called variance
map, to the resolution (224×224), we compute the difference
between the average variance map of the training images and
the variance map of the test image for each layer like (9),
and we use the difference of uncertainties at each pixel as the
score. The equation of the score is as follows:

u(r,c) =
1
L

L∑
l=1

||var (l)tr,(r,c) − var
(l)
ts,(r,c)||

2
2, (11)
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FIGURE 3. Local augmentations (e.g., Rotate, ColorJitter, Perm, Gray) and our dynamic local augmentation.

where var (l)tr,(r,c) is the average variance value at pixel (r, c) of

all the train images and var (l)ts,(r,c) is a variance value on a test
image. Finally, the total scoring function at the pixel (r, c) is
as follows:

s(r,c) = α1e(r,c) + α2u(r,c), (12)

where α1, α2 ∈ [0, 1] is the coefficients for each score.
Consequently, we use the final score to detect anomalies in
the following experiments.

E. IMPLEMENTATION DETAILS
1) UPSAMPLING FEATURE MAPS FOR COMBINING
INFORMATION FROM EACH LAYER
For the score of a pixel, we compute the difference of feature
values (i.e., regression error) and the difference of variances
in the pixel. We upsampled each difference map to 224×224
and average them per pixel after computing the differences
for each layer. We employ ResNet-18 [46] and use three
feature maps from the last layers of each stage. Since we
leverage only the feature maps from the last layers of the
second, third, and fourth stages, we denote these feature maps
as C2, C3, and C4. To average three difference maps from
each layer (C2, C3, and C4), we upsample the difference
maps generated from C2 (56 × 56), C3 (28 × 28), and C4
(14× 14) to the same size (224× 224).

2) LOSS FOR DENSE REPRESENTATIONS
Our model adopted Dense Contrastive Learning [11] with
positive pair of the feature maps from two views of an image.
For each view vi and v′i where i is an index of the image,
the backbone network extracts the feature maps Fi,F ′i ∈
RSh×Sw×C . The feature maps Fi and F ′i are from the last layer
of the third stage in ResNet [46], and we defined these feature
maps as C3 as mentioned above. From the feature maps, each
vector’s corresponding index is retrieved:

ci = argmax
s′

sim(Fi,s,F ′i,s′ ), (13)

where Fi,s ∈ R1×1×C is the sth vector of the feature map Fi,
and ci is an index which is the index of the vector correspond-
ing to the vector whose index is s. Dense loss is computed
with the corresponding vector from two different output fea-
ture maps of the projection layer fd and prediction layer hd
as mentioned in Section III-B. Dense loss is formulated with
corresponding index pair from the backbone feature map:

Ldense =
1

2ShSw

Sh×Sw∑
s=1

Dd
(
hd (fd (vi))s , SG

(
fd (v′i)ci

))
+

1
2ShSw

Sh×Sw∑
s=1

Dd
(
SG

(
fd (vi)ci

)
, hd

(
fd (v′i)

)
s

)
,

(14)

where the index pair (ci, s) is derived from (13), and fd (vi)ci ,
hd (fd (vi))s are the cthi , s

th feature vector of the feature maps
fd (vi), hd (fd (vi)) ∈ RSh×Sw×C respectively.

IV. EXPERIMENTS
We demonstrate the effectiveness of our method for detecting
anomalies in the images. The experiments are conducted on
MVTec Anomaly Detection dataset [47] that is designed
for the segmentation of anomalous regions, since it pro-
vides pixel-level annotations on test images. The dataset con-
sists of 5 texture and 10 object categories and is composed
of only normal images for training and both normal and
abnormal images for testing. MVTec AD dataset provides
over 5000 high-resolution images where the input images are
resized to 256 × 256 images. We compare our method with
various anomaly detection methods (e.g., generative model,
teacher-student model) on the dataset.
Setup: In all experiments, we use ResNet-18 [46] as the

backbone of our self-supervised learning framework. For a
projection and a prediction, we use MLP for global repre-
sentation and dynamic local augmentation, and convolution
layer for dense representation. Our framework is trained from
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TABLE 1. AUROC (%) on MVTec anomaly detection dataset [47]. For each category, it measures pixel-wise localization AUC. Our framework that is trained
from scratch achieves the best performance on average. We highlight the best performance in boldface.

scratch on MVTec AD dataset in the experiments. We set
that batch size is 200, the optimizer is SGD with momen-
tum 0.9, weight decay is 5 × 10−4, the number of training
epochs is 200, a base learning rate lr is 0.02. The size of
the random local region for dynamic local augmentation is
ranged from 50 to 128, andwe can detect anomalies at various
scales. Also, the height and the width of the region for the
local augmentation can be different within the range. The
coefficients λ1, λ2, and λ3 in (8) are respectively 1, 0.1, 0.5
in our experiments. For scoring in (12), we set α1 = 1 and
α2 = 0.1. When choosing the hyper-parameters, we fixed
the learning rate, weight decay, and epochs which are the
same as the backbone model [16]. The hyper-parameters
that we chose are λ1, λ2, and λ3 in (8) and α1 and α2
in (12). In anomaly detection, the training set consists of
only normal samples, so the hyper-parameter tuning using
the validation set is difficult in the anomaly detection task.
In contrast to other baselines, our framework can generate the
pseudo abnormal samples using local augmentations, so we
did hyper-parameter tuning on the validation set using normal
samples and pseudo abnormal samples. In (8), we fixed λ1
as 1 and tuned λ2, λ3 in the range of 0.1∼0.5. In (12),
we tuned α1, α2 in the range of 0.1∼1.0 and chose the final
coefficient value using the validation set.

A. MAIN RESULTS
In Table 1, we evaluate the anomaly detection performance on
MVTec Anomaly Detection (MVTec AD) dataset. We report

the average AUROC (%) of three independent runs with
different random seeds in Table 1. The average AUROCs for
texture, object, and all categories are reported.

We compare our proposed method with the baselines
presented by [47]. These baselines include AESSIM [27],
AEL2 [27], VAE [48], AnoGAN [3], and we also com-
pare with U-Student [49] that is based on student-teacher
framework.

In Table 1, we show that our method achieves the best
performance for most categories as well as the average of
all categories. Our method outperforms the second-highest
baseline by 12.66% in texture category, by 2.53% in object
category. Our framework especially outperforms the second-
highest method for wood in texture category by 16.4% and
for zipper in object category by 7.5%. The average AUROCs
of the baselines in wood and zipper classes are 68.52% and
80.92% respectively, however the performance of our method
is 89.4% and 95.5% respectively. Overall, our method consis-
tently achieves high AUROC (%) for all the categories.

B. DISCUSSION
In this section, we conducted ablation study to discuss
the contribution of our framework. We first provide the
experimental result to validate the effectiveness of dynamic
local augmentation and then analyze each component of our
method in Table 2.
Our framework is the self-supervised learning framework

with dynamic local augmentation. In Table 2, we observed
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FIGURE 4. Results of defect localization on capsule, hazelnut, carpet, leather, pill, cable, and toothbrush classes. From the first row to the last
row, input images, ground truth mask in white, predicted mask in white, and predicted anomalous images.

TABLE 2. AUROC (%) for ablation study on MVTec AD dataset [47]. The
first∼second row shows the performance using only self-supervised
learning without negative pairs. We denote using fixed local
augmentation (not dynamic) as LA and using dynamic local augmentation
as DLA. Last row is our method and shows the best performance on
pixel-wise localization.

that the model trained with self-supervised learning using
only global and dense loss (the first∼second row in Table 2)
tends to have poor detecting anomalies at test time. Since
the model has never learned to detect anomalies on the train-
ing dataset, self-supervised learning without dynamic local
augmentation has difficulty detecting the abnormal patterns.
We denote a fixed local augmentation (not dynamic) and a
dynamic local augmentation as LA and DLA respectively.
The fourth row and the last row (Ours) in Table 2 show that
the model with DLA (the last row) performs an average of
9.90% higher than with LA. We observe that the model with
LA underperforms the other models, and it shows that the
local augmentation is effective as a negative sample when
dynamically applied. In the third row and the last row of
Table 2, we observe that dense loss Ldense is an important
component, especially in the object category.

Our intuition is that a model achieved competitive perfor-
mance when using a negative sample generated by a proper
hard local augmentation that is neither too weak nor too

strong at a random location. If we use the negative sample
with weak augmentation, e.g., ‘‘not effective’’ in Figure 2,
our framework cannot learn the representation of an anomaly.
On the contrary, if we leverage the negative sample with too
strong augmentation, e.g., w(k)

= 1, where k ∈ {1, 2, 3, 4} in
Equation 5, our framework is difficult to detect the abnormal
region which includes imperceptible anomaly, although the
ground truth of the region is abnormal at test time. We define
‘‘too strong augmentation’’ as applying all hard local aug-
mentations (e.g., Rotate, ColorJitter, Perm, and Gray) to a
sample without considering the weight of each augmentation
(i.e., the weight w(k)

= 1). In Table 2, we observed that our
framework with dynamic local augmentation (the last row in
Table 2) achieved the best performance. If we train the model
using the negative sample with static (fixed) local augmenta-
tion (LA), i.e., too strong augmentation, the model achieved
poor performance as seen in the second row of Table 2.
Furthermore, training without local augmentation is more
effective than training using static local augmentation (LA)
as shown in the second and forth row in Table 2. The main
intuition from Table 2 is that self-supervised learning method
is sensitive to abnormal samples.When static augmentation is
randomly applied as shown in Figure 2 of the main paper, not-
effective pseudo-abnormal samples can be generated causing
a huge drop of performance from 93.04 to 82.92.

In Table 3, we showed the performance of all categories
comparing dynamic local augmentation (DLA) with static
local augmentation (LA). Overall, our framework (DLA) out-
performs LA, and the performance gap between them is espe-
cially large on some categories such as grid, tile, bottle, and
metal nut. The average performance gap on these categories
is 25.4%, and the performance gap between our framework
and LA on texture category (14.02%) is averagely larger than
the gap on object category (8.17%). The ablation study on
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TABLE 3. The comparison of all categories between LA (static local
augmentation) and DLA (dynamic local augmentation) on MVTec AD
dataset [47].

dynamic local augmentation shows that to learn tight decision
boundaries of normal pixels, the effective pseudo abnormal
sample needs to be generated. The performance drop on the
texture category is bigger than the object class, since static
local augmentation is not effective in the texture category
causing the wrong decision boundary. Figure 4 shows the
result images for some categories.

V. CONCLUSION
We proposed a simple yet effective framework by self-
supervised learning with dynamic local augmentation in
anomaly detection. For unsupervised anomaly detection, our
method learns the global and dense representations using only
normal image data. We present a novel augmentation method
called dynamic local augmentation to generate pseudo abnor-
mal images and effectively detect the anomalies at test time.
Dynamic local augmentation applies suitable augmentations
to the local region of the image, considering the category
and the location of the image. We also propose two scoring
functions using regression error and variance map.

Our method achieved competitive performance for pixel-
wise anomaly segmentation. We experiment our model
with pixel level anomaly dataset MVTec AD from scratch.
In Table 2, we show that a variety of combinations of four
losses affect the performance and dynamic local augmenta-
tion is helpful but conventional local augmentation interferes
with the performance. In Table 3, we show the effectiveness
of pseudo abnormal sample by each category. Andwe observe
the performance with comparison between LA (not dynamic)
and DLA (Ours) by each category.
We have studied generating an abnormal sample by

dynamic local augmentation. From the experiment results,

we have shown the importance of an effective anomaly
sample and dense features. Also, we have first explored
uncertainty scores for pixel-level anomaly detection with
self-supervised learning. For our future works, we will extend
our work to wide-scene anomaly detection where many
objects appear in one image or video where uncertainty is
high. In future works, we will study how to generate the
abnormal sample. The shape and the size of dynamic local
augmentation will affect the quality of the abnormal samples,
and the variety of abnormal patterns are important to make
the negative pairs. The proposedmethod can guide interesting
future directions for anomaly detection.
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