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ABSTRACT Industrial Internet of Thing (IIoT) systems are considered attractive ransomware targets
because they operate critical services that affect human lives and have substantial operational costs. The
major concern is with brownfield IIoT systems since they have legacy edge systems that are not fully
prepared to integrate with IoT technologies. Various existing security solutions can detect and mitigate such
attacks but are often ineffective due to the heterogeneous and distributed nature of the IIoT systems and
their interoperability demands. Consequently, developing new detection solutions is essential. Therefore,
this paper proposes a novel targeted ransomware detection model tailored for IIoT edge systems. It uses
Asynchronous Peer-to-Peer Federated Learning (AP2PFL) and Deep Learning (DL) techniques as a targeted
ransomware detection algorithm. The proposed model consists of two modules: 1) Data Purifying Mod-
ule (DPM) aims to refine and reconstruct a valuable and robust representation of data based on Contractive
Denoising Auto-Encoder (CDAE), and 2) Diagnostic and Decision Module (DDM) is used to identify
targeted ransomware and its stages based on Deep Neural Network (DNN) and Batch Normalization (BN).
The main strengths of this proposed model include: 1) each edge gateway’s modules work cooperatively
with its neighbors in an asynchronous manner and without a third party, 2) it deals with both homogeneous
and heterogeneous data, and 3) it is robust against evasion attacks. An exhaustive set of experiments on three
datasets prove the high effectiveness of the proposed model in detecting targeted ransomware (known and

unknown attacks) in brownfield IIoT and the superiority over the state-of-the-art models.

INDEX TERMS Edge system, IIoT, federated learning, detection, targeted ransomware.

I. INTRODUCTION

With the emergence of the Internet of Things (IoT), digiti-
zation has increasingly become more prevalent in the indus-
trial space. With a major focus on Machine-to-Machine
(M2M) communications and Artificial Intelligence (AI)-
based data analytics while realising Quality of Service (QoS),
the Industrial IoT (IIoT) enables devices and machines of
different vendors and generations to communicate and be
highly efficient, productive and reliable [1]-[3]. Many IIoT
implementations have followed the brownfield approach
in which legacy systems co-exist with new IoT technolo-
gies [4]. To facilitate these systems’ interoperability and
convergence using IoT technologies, new devices such as
edge gateways are deployed as bridges between legacy
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Operational Technology (OT) and new IoT ones. How-
ever, this advance and the tight integration between OT and
IoT also comes with cyber-risks [1] as new entry points
have opened the way for more sophisticated attacks, such
as ransomware ones, that target these critical devices and
systems [4].

A recent trend observed in ransomware attacks is using
targeted and double-extortion ones [S] which behave sim-
ilarly to Advanced Persistent Threats (APTs) as they fol-
low multiple stages and cause as much damage as possible
through several harmful actions to increase the size of the
ransom payment [4]; for example, attackers can exfiltrate
and encrypt critical data, deny access to these systems and
damage their physical processes before demanding a ransom
fee [5]. One high-profile recent ransomware incident affected
Colonial Pipeline. It was the most significant cyber-attack
on an American power system, whereby attackers gained
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control of more than 100 Gigabytes of information which
led to the fuel distribution network being shut down for a
week [6]. Other ransomware events associated with industrial
systems are Ryuk, REvil, Ekans, LockerGoga and Snake
attacks which have proven their capabilities to spread from
Information Technology (IT) to OT networks [7]. Such inci-
dents demonstrate that IIoT systems are very likely to be the
most ongoing targets for ransomware actors [7], [8].

Industrial and cybersecurity agencies and vendors pay par-
ticular attention to ransomware attacks, with new intelligence
related to their attackers’ tactics, techniques and procedures
reported and awareness provided from time to time to prevent
them [8]. However, a prevention technique is not always the
appropriate solution as attackers can continuously develop
new strategies and find new ways of bypassing the perime-
ters of defences to achieve their goals. This has increased
the interest of researchers in addressing such advanced and
multi-stage attacks using Artificial Intelligence (AI)-based
detection models to provide an effective and robust security
posture [2], [9]. Although there are many Al-based ran-
somware detection models [8], [10]-[13] most cannot be
directly applied to a brownfield IIoT system, which has a
distributed, and heterogeneous nature and interoperability
demand, for the following main reasons: 1) As they were
designed for Windows and Linux Operating Systems (OSs),
they do not work for IIoT edge gateway devices operating
on proprietary hardware and software and connectivity pro-
tocols, 2) They focus on handling crypto-ransomware but not
the current trends of ransomware attacks and their activities,
3) They are isolated and can easily be bypassed by evasion
attacks or new attack tactics and techniques as they are not
capable of learning the ongoing ones faced by their peers,
4) Most existing IIoT intrusion detection models depend
on a cloud server which faces security and privacy issues
while moving data from edge devices, and 5) Brownfield
IIoT systems have many distributed edge gateways designed
to provide less communication with cloud servers to reduce
bandwidth and network latency, and encounter high levels of
cloud disconnection in reality.

Consequently, the development of a new Al-based detec-
tion model tailored for the edge gateways of brownfield IIoT
systems is essential. Motivated by this, we propose a new
model for detecting targeted ransomware attacks against the
edge gateways of brownfield [ToT systems. It is based on Fed-
erated Learning (FL) and Deep Learning (DL) techniques.
The former is a new learning paradigm that splits data col-
lection and model training via multi-party computation and
model aggregation. Considerable work recently conducted
in the field of FL [2], [14]-[16] shows a trend of shifting
from pooling or isolated detection models to client-server
cooperative ones using FL. However, as most FL-based
detection models follow client-server and synchronous com-
munication approaches, they are not suitable for the edge
gateways of brownfield IIoT systems. This is because these
gateways are designed to operate time-sensitive processes
and provide less communication with cloud servers to reduce
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bandwidth and network latency [17]-[20]. Furthermore, the
existing models are less robust against heterogeneous data
(i.e.,non-Identically Independent Distribution (non-I1ID) as
they highly depend on homogeneous training data (i.e., [ID).
Therefore, we propose a new FL model that depends on asyn-
chronous and Peer-to-Peer (P2P) communications among
connected edge gateways to build a comprehensive targeted
ransomware detection model in a privacy-preserving way.
The main contributions of this paper are as follows.

1) We propose the first-of-its-kind targeted ransomware
detection model tailored for IloT edge gateways.
It employes Asynchronous Peer-to-Peer Federated
Learning (AP2PFL) and Deep Learning (DL) tech-
niques as a targeted ransomware detection algorithm and
includes IID and non-IID learning models.

2) We propose and design new Deep Learning (DL)-based
model for revealing targeted ransomware in IloT edge
gateway. It consists of a Data Purifying Module (DPM)
and Diagnosis and Decision Module (DDM).

3) We design and develop a hybrid Auto-Encoder (AE)
algorithms to power a DPM. We present a Contrac-
tive Denoising Auto-Encoder (CDAE) for refining and
reconstructing a valuable and relevant representation of
the input data. DPM helps to build a robust decision pro-
cess and improve performances against evasion attacks.

4) We also present DDM to reveal targeted ransomware
attacks at edge gateways. It is based on Deep Neural
Network DNN) with a Batch Normalization technique.

5) We conduct an exhaustive set of experiments for vali-
dating the proposed model on the X-IIoTID, ISOT, and
NSL-KDD datasets.

6) Finally, we evaluate the robustness of the proposed
model using white- and black-box evasion attack tech-
niques, whereby targeted ransomware attacks change
their behavior to appear as legitimate ones.

The remainder of this paper is structured as follows.
Section II explains the existing ransomware detection and
Federated Learning (FL) models. In Section III, the system,
threat models and data representation are described. This is
followed by the proposed model in Section I'V and the perfor-
mance evaluation in Section V. Lastly, Section VI concludes
the paper.

Il. RELATED WORK

This section briefly highlights state-of-the-art studies that
focused on ransomware detection models based on network
traffic and FL intrusion detection models for an IIoT/IoT
system. A comparison of them is presented in Table 1.

A. RANSOMWARE DETECTION MODELS

The interest in developing ransomware detection models
has been increasing in recent years. Many studies focus
on network traffic to detect ransomware attacks; for exam-
ple, Almashhadani et al. [10] proposed a multi-classifier
model that depended on the features of the HTTP and DNS
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TABLE 1. Comparison of different intrusion detection models.

Model Ransomware | Asynchronous |P2P [IID | Non-IID |FL | Evasion | Accuracy% (binary-class) |Used for
Almashhadani et al.[10] v X X | X X X X > 98.50 1T
Almashhdani et al.[11] v X X | X X X X 97.82 1T
Piskozub et al.[21] v X X | X X X X 89.00 1T
Alhawi et al.[12] v X X | X X X X 97.10 IT
Morato et al.[22] v X X | X X X X 100 1T
Modi et al.[23] v X X | X X X X 98.00 1T
Kozik et al. [13] v X X | X X X X >91.00 IT
Modi et al.[9] X X X |V X X X - IT
Rey et al.[24] X X X |V X v X >99.00 IoT
Nguyen et al.[25] X X X |V v v X >95.00 IoT
Hei et al.[26] X X X |V X v X 90.80 IoT
Liu et al.[2] X X X |V X v X 97.25 IIoT
Mowla et al.[14] X X X |V X v X > 82.00 FANET
Li et al.[27] X X X |V X v X 99.20 IloT
Taheri et al.[28] X X X |V X v X > 89.00 IloT
Schneble and Thamilarasu [29] X X X |V X v X 99.00 CPS
Proposed model v v V|V v v v >97.03 IIoT

protocols to reveal crypto-ransomware attacks. Their exper-
iments showed that a Random Tree (RT) achieved better
accuracy (98.72%) than its peers (e.g., Random Forest (RF),
and Support Vector Machine (SVM)) at the packet level while
Naive Base (NB) (99.83%) was the best at the flow level.
In related work, Almashhdani et al. [11] used features from
a DNS request packet (i.e., domain-name characters) and the
randomness measure algorithm to reveal a malicious domain
using multi-detectors. Their proposed model achieved an
accuracy of 97.82%. These models assumed that domain
names with random characters are malicious and indicate
a ransomware attack. It is known that domains generated
by a dynamic generation algorithm have the highest lev-
els of randomness. Although these detection models could
significantly detect attacks, they failed to discover targeted
ransomware using a legal domain server or another
C&C technique. Piskozub et al. [21] proposed MalAlert,
a detection model based on the RF algorithm. It adopted
the number of transmitted bytes as the critical statistical
network feature for detecting crypto-ransomware. Their main
contribution was an approach for collecting and aggregat-
ing ransomware network traffic flows into several flow-sets
and then extracting features for each set. Also, to preserve
users’ privacy, these features were based on only the num-
ber of bytes transmitted and were IP address- and port-
agnostic. However, these features are insufficient to detect
ransomware attacks with legitimate network traffic or without
any network activity. Also, their proposed model’s gener-
ated high false alarms and had a low ransomware detection
rate.

Alhawi et al. [12] introduced NetConverse, a machine
learning-based model that depended greatly on conversa-
tions between crypto-ransomware and the features of a C&C
server network. A Decision Tree (DT) approach achieved
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better accuracy (97.10%) than peer techniques, such as the
SVM and RF. The key limitation of this work is that the
manual features selection process and the human interven-
tion make their model unsuitable for the real environment.
Morato et al. [22] developed an algorithm for inspecting
the traffic of an SMB protocol to extract statistical features
related to sharing files and then used a predefined thresh-
old to detect crypto-ransomware. The model achieved high
results (roughly 100%) due to the fact that it was specific
for SMB protocol’s activity and tested using few samples of
ransomware attacks. However, detecting ransomware using
a predefined threshold is a significant challenge. This is
because of the dynamic behavior and the evolving techniques
of ransomware attacks.

Moreover, Modi et al. [23] focused on HTTPS traffic and
machine learning (e.g., RF) to detect crypto-ransomware,
demonstrating the feasibility of using encrypted network
traffic to detect ransomware. However, the key issue is the
limited number of network traffic flows that were tested.
Akbanov et al. [9] concentrated on inspecting packets and
matching them with malicious IPs and ports. One short-
coming of their proposed models is that the new pattern of
ransomware attacks that rely on different protocols for lateral
movement and C&C might not be identified precisely. A time
windows embedding solution whereby network traffic flows
were grouped based on a specific time window to extract
features was proposed by Kozik et al. [13]. Their proposed
model relied on the transformer’s encoder followed by a fully
connected feed-forward neural network for classification.
Although their proposed model achieved better accuracy than
the classical machine learning algorithms, the customizing
process for the transformer’s parameters is a significant chal-
lenge that should be handled before deploying the model in
real-world environments.
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Although these existing models use network traffic to
detect ransomware, they rely on specific features extracted
from HTTPS and DNS packets. This makes them unsuitable
for a brownfield IIoT system with heterogeneous devices,
connectivity and messaging protocols and interoperability
demand. Also, as these models are isolated/centralized and
cannot learn about the ongoing attacks faced by their peers,
new ransomware versions and evasion attacks can easily
bypass them. Most existing ransomware-based detection
models use classical machine learning techniques with few
generalization capabilities and heavily depend on manual fea-
ture engineering. They often generate high false alarms, fail
to detect new attack patterns and deal with high-volume and
-speed IIoT network traffic. They are dependent on moving
data to the central server, exposing them to privacy and secu-
rity problems. Unlike them, the model proposed in this paper
addresses all these issues. It handles the targeted ransomware
attacks and their full stages. It also utilizes federated and deep
learning techniques to deal efficiently with IIoT network and
system activities and protect the distributed edge gateways
against known and unknown targeted ransomware attacks in
a privacy-preserving manner.

B. FEDERATED LEARNING (FL)-BASED INTRUSION
DETECTION MODELS

FL has emerged as a promising technique for collaboratively
learning a shared model while preserving data privacy. In par-
ticular, many researchers have recently used it to develop
intrusion detection models; for example, Rey et al. [24] pro-
posed a client-server FL. model using a DNN. The proposed
model obtained a high accuracy (99.00%), mainly because
of the used dataset, that is, N-BaloT, which is known as a
very easy and less complex dataset. However, the perfor-
mance significantly dropped under the adversarial attacks,
showing the need for more robust countermeasures. Also,
Nguyen et al. [25] used a Gated Recurrent Unit (GRU) for
detecting Mirai malware in an IoT network. Although this
model obtained a good performance in detecting IoT malware
(i.e., accuracy = 95%), its performance was significantly
reduced under adversarial examples due to the aggregation
function’s lack of resiliency and robustness.

Similarly, Li er al. [27] designed a client-server FL detec-
tion model based on a Convolutional Neural Network (CNN)
and GRU to produce new data, which it passed as new fea-
tures to a DNN. An attention CNN-Long Short-Term Mem-
ory (LSTM) model within an FL framework was presented
by Liu et al. [2] for detecting anomalies in I[IoT edge devices.
These models are complex and require much longer calcu-
lation and training times. Schneble and Thamilarasu [29]
presented a Multi-Layer Perceptron (MLP) as the critical
decision engine in an FL. model deployed in mobile clients.
The key limitation of this model is the need to perform
an extensive management process and the organization of
patients’ groups by the cloud server before starting the
FL technique. This is because each intrusion detection
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model was designed for patients with similar behaviors
(i.e., IID data), and it needed accurate patients’ clustering.

An FL detection model for revealing a jamming attack
in a Flying Ad-hoc Network (FANET) was proposed by
Mowla et al. [14]. They used the Dempster-Shafer theory
to choose the best Unmanned Aerial Vehicle (UAV) client
groups for calculating the global model update. Although
using Dempster-Shafer theory achieved promising perfor-
mance, the selection process caused a delay in the models’
updating. Also, the selection process’ performance was only
tested using a small number of clients (=6), which is insuffi-
cient to demonstrate its effectiveness. Hei et al. [26] presented
an FL detection model that focused on sharing features such
as information related to each of its alerts. Their proposed
model achieved promising results; however, it had challenges
with blockchain storage and further improvement on the
performance is also required. To create a robust detection
model, Taheri et al. [28] used a Generative Adversarial Net-
work (GAN) to detect Android malware in IIoT systems by
generating adversarial examples that poisoned the FL training
process. An anomaly-based threshold was used in their cloud
server to reject combining these examples. Their proposed
federated model with Byzantine Median (BM) and Byzantine
Krum (BK) adversarial attacks defence mechanisms obtained
an accuracy of 89.51% and 93.24% for the Gnome malware
dataset. However, selecting the appropriate threshold is chal-
lenging, and it could be ineffective due to the heterogeneous
nature of IIoT devices and network traffic.

Although these existing models offer promising FL solu-
tions (as described in Table 1, they depend strongly on the
client-server architecture in the particular cloud server, which
has some drawbacks. A cloud server may pose a single point
of failure, and these models use a synchronous protocol
whereby participating users/devices must send their parame-
ters simultaneously. In reality, synchronizing these devices is
a complicated task that may also affect industrial operations,
which are the most sensitive to time. Also, edge gateways
in brownfield IloT systems are designed to provide less
communication with cloud servers to reduce bandwidth and
network latency. However, as they encounter high levels of
cloud disconnection, existing models are unsuitable for them.
Furthermore, these models always assume that the collected
data is homogeneous (i.e., IID) and less robust against eva-
sion attacks. The proposed model considers all these aspects
by providing a robust asynchronous peer-to-peer federated
deep learning model for the edge gateways of brownfield
IIoT systems.

Ill. SYSTEM, THREAT MODELS AND DATA
REPRESENTATION

A. PROPOSED SYSTEM'S ARCHITECTURE

The proposed system architecture is illustrated in Figure 1.
A brownfield IIoT system, in which many edge gateways are
distributed in the one edge tier, is considered. These gate-
ways connect with legacy field devices and SCADA on the
OT sides and a cloud broker, mobile and enterprise devices
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FIGURE 1. Proposed system’s architecture.

on the others. They also act as master industrial devices in the
system, each of which can communicate with its neighbors
(i.e., other connected edge gateways) in a Peer-to-Peer (P2P)
manner. The main goal of the detection model (i.e., DL-based
model) in each edge gateway is to discover any targeted
ransomware attacks, identify their activities and send an alert
to the security team to respond appropriately. The main objec-
tive of the proposed model is to make all the detection models
(i.e., DL-based models) in the distributed edge gateways
identical and perform approximately the same irrespective of
their personalized data using AP2PFL technique.

This proposed system consists of a group of IIoT edge

gateways, each of which has the following two roles.

« Training its local detection model- each IloT edge
gateway monitors its connected devices in all its inter-
faces, collects data related to network and system activ-
ities and builds a local detection model (i.e., DL-based
model) based on its own collected data. Then, it trains
this model and updates its variables to identify targeted
ransomware attacks in a brownfield IIoT system.

o Aggregating and stacking its neighbor detection
models- each IIoT edge gateway is responsible for
building a comprehensive detection model by aggregat-
ing and stacking the variables of its locally learned mod-
els’ at its neighboring devices using AP2PFL. Multiple
rounds of communications between each edge gateway
and its neighboring devices can obtain the final best
detection model (i.e., DL-based model) which is approx-
imately identical for all connected IToT edge gateways.

It is worth noting that edge gateway has only one detec-
tion model whereby its variables are updated locally using
incoming local observations. Also, the same model’s
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variables are updated using its neighboring devices at a ran-
dom time.

B. ASSUMPTIONS AND THREAT MODEL
We focus on the full life-cycle of targeted ransomware attacks
against brownfield IIoT systems. It includes, for example,
reconnaissance (e.g., scanning vulnerabilities, discovering
CoAP resources, and WebSocket fuzzing), weaponization
(e.g., brute force and malicious insider), and exploitation
(e.g., reverse shell and Man-in-the-Middle (MitM)). In addi-
tion to the lateral movement (e.g., Modbus register reading,
MQTT cloud broker subscription, and TCP relay attacks),
C&C, data exfiltration, tampering (e.g., false notifications
and false data injection), Ransom Denial of Service (RDoS)
and Crypto-Ransomware attacks. Since the proposed model
has no third party (e.g., cloud server) included in its train-
ing and transformation processes, its framework has fewer
security and privacy issues than a client-server FL one as its
P2P communication eliminates the threat of its data being
leaked, or privacy violated. Furthermore, as each edge gate-
way knows its neighbors in advance, it is protected against
receiving a malicious model’s variables. We assume that these
connected edge gateways are honest and strictly follow the
designed protocol in the updating model as well as exchange
their parameters using encryption. Therefore, we focus on
only evasion attacks as APT attackers are always keen to
avoid being detected by converting ransomware observations
to legitimate ones [30]. The following attacks are common
evasion techniques that could be used by attackers to evade
detection by machine and deep learning-based models.
« Fast Gradient Sign Method (FGSM)- in it, an attacker
generates targeted adversarial examples that cause
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targeted ransomware observations or instances to be
classified as normal using the gradient of the loss func-
tion concerning the inputs. The gradient step is com-
puted in the direction of the negative gradient with
respect to the target class [31]. In this paper, we perform
FGSM attack in a white-box approach in which the
attacker has complete access to the DL-based model.

o Brute Force (BF)- in it, an attacker generates targeted
adversarial examples that cause targeted ransomware
observations or instances to be classified as normal using
Gaussian noise instead of optimization or gradients.
We execute the BF attacks in a black-box approach
whereby the attacker does not have complete access to
the model [32].

C. DATA REPRESENTATION

The collected data is partitioned based on class and con-
sidered in two distributions or learning models. The first
data distribution is IID data, which is evenly distributed
among the connected edge gateways. The second one is
non-IID data, whereby each edge gateway has different data
(e.g., different classes). The IID data in this work also has
two cases. In the first, the binary-class’s data is distributed
evenly among edge gateways. Each edge gateway ((i), i =
1,2,...n) has its own dataset (D; = (a;, c¢;)), where (a;)
denotes the normal (i.e.,legitimate) and ransomware obser-
vations for edge gateway (i) and (c;) = {0, 1} is the class
of observation. In the second, the multiple-classes’ data
is distributed evenly among edge gateways, whereby it is
assumed that each edge gateway ((i), i = 1,2,...n) has
its own dataset (D; = (a;, ¢;)) with many classes repre-
sent normal and targeted ransomware activities or stages
(ci) = {0,1,2,3,4,5,C (C = #classes)}. In the non-1ID
data, we assume that each edge gateway (i) faces different
stages of targeted ransomware (i.e., non-I1ID). Therefore, each
has different number of classes and observations (q;) related
to different classes (c;), where (¢;) C {0,1,2,3,4...C}.
However, as we design an intrusion detection model, the
normal observations are distributed among IloT edge gateway
devices (without overlapping).

IV. PROPOSED MODEL

In this section, the proposed model is elaborated on by firstly
defining its workflow and then introducing the DL-based
model designed for detecting targeted ransomware in each
edge gateway.

A. WORKFLOW OF PROPOSED MODEL

The basic idea behind this proposed model is networking
multiple IIoT edge gateways to collectively build identical
targeted ransomware detection models (i.e., DL-based mod-
els) in all of them based on AP2PFL, as illustrated in Figure 1.
A Primal-Dual Method of Multiplier-Stochastic Gradient
Descent (PDDM SGD) is employed as an optimization and
learning algorithm [33] which updates the models’ variables
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in asynchronous P2P communications, as described in the
following paragraphs and Algorithm 1.

« Model initialization- in this phase, each edge gateway
selects an array of initial random weights for local
DL-based model and values for some other parameters
relevant to the AP2PFL training such as (i) edge gateway
neighbors (N;) = {j}, a dual variable (Z;;) to facili-
tate the asynchronous communications and encourage
the detection models’ variables to be identical among
edge gateways, a matrix (A(y;)) contains entries of 1 (i
> j) or —1 (j > 1) to enforce consistency and equal-
ity over the edge between the node or edge gateway
(i) and its neighbor (j), a model gradient VFi(wﬁ) at
iteration () which is calculated by back-propagation,
(mu) which constructs the learning rate (1/mu), as well
as penalty coefficient momentum (I") and discounting
factor (p) for providing stable convergence. Also, a loss
function (L), the data assigned to each edge gateway
(D; = (aj, c;j)), number of epochs (m), number of iter-
ations (¢), and batch size (B) are determined. A prede-
fined edge gateway-activation strategy for asynchronous
P2P communication is used, where each edge gateway
pair (i, j) randomly communicates once per approx-
imately every (k) number of updates for each edge
gateway.

« Local model training by edge gateways- after receiv-
ing the initial model parameters, each edge gateway
trains a DL-based model using their own private data

(Di = (ai, ci)). Details of the training proce-
dure are provided in the following subsection and
Algorithm 2.

« Updating variables for each edge gateway- each edge
gateway (i) updates its model variables (( w§ + 1) and
yﬁ;l) based on the provided parameters and batch size.
Suppose that an edge gateway (i) has initial weight
values ( wf-‘ ), neighbor(s) (j), and number of neighbors
(N;), it updates its weights based on Eq.1 and the dual
variable value based on Eq.2.

Wit = (muw! — VF(wh) + ( Z (fivAlTﬁu

JEN()
+pw) @ (mu+ Y diag(zi)) + pIN() |)
JEN()
(0
Tl = @y +24qwtH )

« Exchanging and updating variables- each pair of edge
gateways exchanges (using a pull protocol) and updates
its variables per around (k) updates for each edge gate-
way. These variables include weights (w}“) and dual

variable (Efl]“ = };;1).

B. PROPOSED DEEP LEARNING (DL)-BASED MODEL
In this section, a newly designed DL-based model for reveal-
ing targeted ransomware is described.
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Algorithm 1 Asynchronous Peer-to-Peer Federated Learning
Procedure

Input: T, i, D;, A(iU)’ Ni,j
Output: Comprehensive DL detection model

1:
2:
3:
4:
5:

6

7T:
8:
9:
10:
11:
12:
13:

14:
15:

Initialization
zij = 0, mu, T,p, AiTU, L, m,B
fort < T do
for each i in n do
Compute the t-the iteration model weights wﬁ“ as per algorithm 2
and based on Eq.1 with input parameters N;, z;); = 0, mu,
rp, Al?[,., L m
end for
for eachiin ndo
update_count +=1
if (update_count > k) then
update_count =0
Select randomly j € N (i)
Tarnsmit (th ~t+l
end if
end for
end for

)fromj— toi

CDAE

'
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FIGURE 2. The structure of proposed DL-based model.

D,

STRUCTURE AND COMPONENTS OF THE MODEL

The designed detection model (illustrated in Figure 2) is
composed mainly of Data Purifying Module (DPM) using
Contractive Denoising Auto-Encoder (CDAE), and Diagno-
sis and Decision Module (DDM) constructed by a Deep
Neural Network and Batch Normalization (BN), details of
which are provided in the following paragraphs.

« Data Purifying Module (DPM)- to obtain good capa-
bilities for identifying ransomware attacks, even eva-
sion ones, this module aims to refine and reconstruct a
valuable, relevant and robust representation of the input
data before passing it to the next module. A hybrid
Auto-Encoder algorithm is designed and used as a base
for the DPM. We combine Contractive Auto-Encoder
(CAE) and Denoising Auto-Encoder (DAE), that is,
CDAE, to develop this module. This hybrid approach
is advantageous as it improves accuracy and robustness
of model. The DAE helps to create a robust recon-
struction of the input data stochastically by deliberately
corrupting versions of the training data while the CAE
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to develop an analytically robust feature representation
by making some neurons in its network less active [34].
Thus, in CDAE network, an input data observation
(a) is corrupted (@) using Gaussian distribution noise
with a certain destruction rate during training to hide
some of the information from the original data. The
CDAE can learn an approximation of identity function
(@— (a)) and train the hidden layers to extract the robust
representation and reconstruct the full input data (a)
from the partial information of the original data ().

We assume that a simple CDAE network architecture
consists of one input layer (encoder), one bottleneck
layer and one output layer (decoder). Each corrupted
input data observation (a) has a feature vector with
a dimension (d) that is passed to the bottleneck layer
which maps it to an h-dimensional hidden representa-
tion (h), where (h < d). Then, the output from the
bottleneck layer/hidden layer (%) is used as input to the
decoder layer to reconstruct the original data (a) from
the corrupted and noisy data (). The CDAE attempts
to make the bottleneck layer’s output (%) in a localized
space contracted or robust. This is a useful property
as it indicates that the mapping is not very sensitive
and supports generalizations beyond the training data.
The transformation function for the bottleneck layer is
calculated using an activation function (relu) to speed
up the training process and then (h) is passed to and
proceeded by the output layer (g).

The CDAE aims to reduce the distance between (a) and
(g), argminL(a, g) and obtain a robust representation by

findingethe optimal variables. L/ is the loss function that
measures the distance between the original input data (a)
and output (g) (reconstructed data) for a batch of data or
observations (B) and is calculated using Eq.(3). It con-
sists of the reconstruction error (the first part) for DAE,
i.e., the Mean Square Error (MSE) in this paper, and
the penalty term which is measured by Frobenius norm
of the Jacobean (||J,(a)| |12p) of the learned information
in the hidden layers to give the effect of contraction or
robustness. In Eq.(3), the (1) is the weight of the penalty
term. The Frobenius norm of the Jacobean formula can
be calculated using Eq.(4) and is the sum of the squares
of all the partial derivatives of the learned information
or features through the hidden layer # with respect to
the input.

L1

B
1/BY ((a— g+ M@l7) (3)
b

1 ho (@)1

Z(ahg(a)/aa) “

By increasing the Frobenius norm of the Jacobian, the
CDAE can prevent large changes in the hidden lay-
ers. In its differential form, the Jacobian matrix reacts
to a set’s sensitivity caused by small changes in the
original space. Therefore, the penalty term ensures that
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representation of the learned features is locally invariant
and avoids any specific preferential direction [35]. Once
it is combined with the reconstruction error, the invari-
ance of the directions can be achieved. In this way, any
variation in the data can be captured in the learned repre-
sentation and other directions contracted. Consequently,
the CDAE in the DPM can learn a meaningful, robust
and relevant representation of the input data and remove
any noise and irrelevant information.

« Diagnosis and Decision Module (DDM)- this is a
DL-based module that identifies a targeted ransomware
attack at an edge gateway and its stages using the output
from the previous module (i.e., DPM). A DNN, which
is a network with an input layer, two or more hidden
ones and an output one, is used as a basis for the DDM.
It uses the output from the CDAE as input to train the
network by propagating it to the hidden layer(s), and
the output from the non-linear transformation of the
input data is passed to the output layer to identify the
appropriate class. The DNN receives an observation (g)
from the DPM and passes it to the hidden layers, the
output from which is calculated using the Relu (activa-
tion function). This is then passed to the output layer
(i.e., the soft-max layer in multi-classes) to determine
the probability that a particular observation (g) belongs
to either the normal or specific targeted ransomware
stage (c is a C-dimensional vector) as in

pE=clg)=ef/> e (C=1,23,...0 (5)
C

The cross-entropy is used to measure the loss error in the
DNN and can be calculated over a batch of observations
by Equation.6.

L2@.c) ==Y c*.log(p( = clg) (6)
B C

where the DNN updates its variables for each batch of
observations based on the assumption that the previous
layer’s output values are within a given distribution. In a
non-IID data, updating variables increases the possibil-
ity of encountering the problem of vanishing gradients
and slows the training process. To handle this issue,
BN layers are used [33] to standardize the input for the
layers of each batch by obtaining a zero-mean and unit
variance distribution of them. Therefore, the BN can
handle the sensitivity problem, increase regularization
capabilities and provide a stable training process. Fur-
thermore, the dropout layers are used to prevent over-
fitting.

2) TRAINING OF LOCAL MODEL

Each edge gateway (i) trains the proposed DL-based
model locally on its own data (D; = (a; c;))
(Algorithm 2). Specifically, each time a new data
(i.e., batch) arrives, the edge gateway updates its local
model’s variables. In the k — #h round of updates, the
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TABLE 2. Parameters of proposed model.

Federated (Z 315y =0), (mu) =1000, (T =3), (p =0.5),

Learning (t= 657074), epoch (50), (B=500), (k = 6)

DPM-CDAE Number of hidden layer neurons
(128,64,42,64, 128), activation Function
(ReLU), loss functions (Mean Square error
and Frobenius norm of the Jacobian), noise
=0.05

DDM-DNN- Number of hidden layer neurons (256, 256,

BN 256), activation Function (ReLLU), loss func-
tion (Cross-Entropy), dropout(0.25), number
of BN layers’ neurons (256,256,256)

edge gateway (i) communicates and exchanges its vari-
ables with its neighbors and updates its model weights
w T and dual variables yi.‘TH based on the updated

models’ given variables.

Algorithm 2 Training of Local Model

Input: Dj, N;. j, zjjj = 0, mu, l",p,AiTU, LI, L2,m

Output: wf“ s yﬁ;r !

1: Initialization
Split D; into batches with equal size B B;
Set the initial model parameters W; and yil;j.
for each b in B do

d, c < get_input(b)

g < forward a to CDAE

¢ < forward g to DNN-BN

Compute L1 for CDAE

Compute L2 for DNN-BN
10: Compute gradient ¥ Fi(w') for LI and L2
11: Update the model’s parameters based on eq.1 and eq.2
12: end for

13: return wf“,yﬁ/+1

ORIANNR LN

V. PERFORMANCE EVALUATION

A. EXPERIMENT SETTINGS

1) ENVIRONMENTAL SETUP AND PARAMETERS

The proposed model was simulated and implemented using
the Pytorch framework on an Ubuntu platform (NVIDIA
Tesla K80 Accelerator, 4 GPU), with all its edge gateways run
in one node. The parameters used for FL, the DPM based on
the CDAE and the DDM based on the DNN-BN are described
in Table 2.

2) DATA RESOURCES AND DESCRIPTION

We use three datasets to evaluate our proposed model,
namely, X-IIoTID [36], ISoT [37] and NSL-KDD dataset [38].
X-IIoTID is connectivity- and device-agnostic features col-
lected and generated from multiple data sources, includ-
ing network traffic, system and application logs, system
resources and commercial IDSs. It includes the normal
behaviors of brownfield IIoT systems and multi-stage tar-
geted ransomware attacks against edge gateways, with
its final version having 421,417 normal observations and
399,417 attack ones. The ISoT dataset, a commonly used
and publicly available ransomware one, was also used in
the experiments. It includes data related to the most popular
ransomware families and Windows users’ software applica-
tions. Although it does not represent the realistic behaviors of
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TABLE 3. Results for IID-binary class (X-11oTID dataset) with various numbers of connected edge gateways.

Metric Proposed Model AP2PFL-DNN AP2PFL-MLP

2 3 4 5 2 3 4 5 2 3 4 5
Accuracy | 98.23 | 98.22 | 98.16 | 98.13 | 98.17 | 9834 | 98.54 | 97.95 | 9598 | 97.50 | 97.57 | 97.21
Recall 98.22 | 98.20 | 98.15 | 98.10 | 98.14 | 98.31 | 98.51 | 97.90 | 9591 | 97.45 | 97.53 | 97.16
Precision | 98.25 | 98.25 | 98.16 | 98.20 | 98.21 | 98.39 | 98.58 | 98.03 | 96.14 | 97.61 | 97.65 97.3
F1-Score | 98.24 | 98.23 | 98.16 | 98.15 | 98.18 | 98.35 | 98.55 | 97.97 | 96.03 | 97.53 | 97.59 | 97.23

TABLE 4. Results for IID-binary class (ISoT dataset) with various numbers of connected edge gateways.

Metric Proposed Model AP2PFL-DNN AP2PFL-MLP

2 3 4 5 2 3 4 5 2 3 4 5
Accuracy | 98.23 | 98.33 | 98.26 | 98.33 | 98.17 | 98.58 | 98.64 | 98.15 | 87.49 87.1 89.55 | 90.09
Recall 97.88 | 98.13 | 98.01 | 97.78 | 97.89 | 98.49 | 98.49 | 98.18 | 90.55 | 89.21 | 92.51 | 91.94
Precision | 97.57 | 97.61 | 97.54 | 97.93 | 97.44 | 97.9 98.03 | 97.15 | 83.67 | 83.07 | 85.76 | 85.24
F1-Score | 97.73 | 97.87 | 97.77 | 97.86 | 97.67 | 98.19 | 98.26 | 97.66 | 86.97 | 86.03 | 89.01 | 88.46

IIoT systems and the potential targeted ransomware stages in
them, it shows a network’s lateral movements and the C&C
stages of popular ransomware-affected OT such as Petya
and Wannacry. The final ISoT dataset included 7392 normal
and 20,508 attack observations (i.e., normal and ransomware
classes).

The final dataset that was used in the experiments is the
NSL-KDD dataset. Although it is obsolete and does not
represent the new generation of traffic and system behavior in
IToT systemes, it is the most common benchmark dataset in the
intrusion detection field, and researchers extensively use it to
date. Therefore, it can be used to evaluate the proposed model
compared with other existing models. NSL-KDD has features
collected from network and host and includes various attacks
representing the early stages of targeted attacks. It consists
of 77,054 normal and 71460 attack observations, including
probing, DoS, User to Root (U2R), and Remote to Local
(R2L) attacks. These attacks can be classified under recon-
naissance, DoS, weaponization, and exploitation, respec-
tively. These datasets were normalized using a min-max
scaler to restrict the data within a specific range [0, 1] while
maintaining the original data’s distribution. The contents or
observations of each dataset were split into 80% for training
and 20% for testing.

3) BASELINE STUDIES

The performance of the proposed model was compared
with those of two state-of-the-art ones, the MLP and DNN
algorithms used by Schneble and Thamilarasu [29] and
Rey et al. [24], respectively, as FL models to detect malware
in edge devices. They were fully reproduced (using the same
parameters) and used with the AP2PFL (i.e., AP2PFL-DNN
and AP2PFL-MLP). They were also run in a centralized
mode (where all the data was placed in one server) to eval-
uate their performances for detecting targeted ransomware
attacks in brownfield IIoT systems (i.e., Cent-MLP, Cent-
DNN, and Cent-proposed DL-based model). To evaluate the
performance of the detection models, the common metrics
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used were the accuracy, recall or detection rate, precision and
F1-score [39], [40].

B. EXPERIMENTAL RESULTS AND DISCUSSION
1) MODELS' PERFORMANCE IN IID DATA
The performance of the proposed model was first compared

with those in the baseline studies mentioned above on the
XIIoT-ID, ISoT and NSL-KDD datasets in an IID data.

a: IID DATA-BINARY CLASS

As previously discussed, in IID data, normal and ransomware
observations were divided evenly between connected edge
gateways (i.e., the binary class). Four groups of experiments
were conducted using different numbers of these gateways
(i.e., n = 2, 3, 4, 5) for each dataset. As can be seen in
Tables 3, 4 and 10, the proposed model achieved good per-
formances overall and, when five gateways (i.e., n = 5) were
connected, outperformed the other baseline models trained on
the X-1IoTID, ISoT, and NSL-KDD datasets. It achieved the
highest values of the accuracy, recall, precision and F1-score
for the X-IIoTID dataset of 98.13%, 98.10%, 98.20% and
98.15%, respectively, and those of 98.33%, 97.78%, 97.93%
and 97.86% for the ISOT one (as presented in Table 4).
It also obtained of the accuracy, precision, recall and F-score
of 97.03% for NSL-KDD dataset.

Figures 3, 4 and 5 present the values of the loss, accuracy
and Fl1-score of all the centralized (i.e., Cent-DNN, Cent-
MLP, Cent-proposed DL-based model) and federated models
(i.e., AP2PFL-DNN, AP2PFL-MLP, and proposed model)
with different numbers of epochs (when n = 5) for the
X-IIoTID, ISoT, and NSL-KDD datasets. It is clear that they
all tended to converge after a sufficient number of epochs
which meant that there were sufficient numbers of exchanges
and updates of parameters. Importantly, the proposed model
and cent-proposed DL-based model were approximately
equivalent in their performance and generally performed
better than the others, particularly for the NSL-KDD
dataset.
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TABLE 5. Results for IID-binary class (NSL-KDD dataset) with various numbers of connected edge gateways.

Metric Proposed Model AP2PFL-DNN AP2PFL-MLP
2 3 4 5 2 4 5 2 3 4 5
Accuracy | 97.18 | 97.13 | 97.06 | 97.03 | 96.83 | 96.73 | 96.77 | 96.34 | 94.56 | 94.95 | 95.52 | 94.90
Recall 97.18 | 97.13 | 97.06 | 97.03 | 96.83 | 96.73 | 96.77 | 96.34 | 94.56 | 94.95 | 9552 | 94.91
Precision | 97.19 | 97.13 | 97.07 | 97.03 | 96.84 | 96.73 | 96.77 | 96.34 | 94.59 | 94.98 | 95.56 | 94.98
F1-Score | 97.18 | 97.13 | 97.00 | 97.03 | 96.83 | 96.73 | 96.77 | 96.34 | 94.56 | 94.95 | 95.52 | 94.90
AP2PFL-DNN — Cent-DNN Cent-proposed DL-based Model
AP2PFL-MLP —+ Cent-MLP Proposed Model
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FIGURE 3. Comparison of loss, accuracy and F1-score values of detection models with various numbers of epochs for X-11oTID dataset where n = 5.
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FIGURE 4. Comparison of loss, accuracy and F1-score values of detection models with various numbers of epochs for 1SoT dataset where n = 5.

b: IID DATA-MULTIPLE CLASSES

In the multiple classes of IID data, observations in the normal
and ransomware stages (multiple attack classes) were divided
evenly between connected edge gateways. Four groups of
experiments were conducted with different numbers of edge
gateways (i.e., n = 2, 3, 4, 5) used for the X-IIoTID dataset
(with one normal class and nine attacks) and NSL-KDD
dataset (one normal and 4 attacks). The ISoT dataset was
not used in these experiments as it contains two classes only
(normal and attack). As can be seen in Tables 6 and 7,
the proposed model performed better than the others for
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the four different groups (i.e., n = 2, 3, 4, 5) and for
X-IIoTID and NSL-KDD datasets. It is also worth noting
that it obtained accuracy, precision, recall and F1-score val-
ues of 97.21%, 97.78%, 97.21%, and 97.41%, respectively,
for the X-IIoTID dataset, and those of 93.10%, 96.10%,
93.10%, and 94.30% for the NSL-KDD dataset (as presented
in Table 7) with n 5 connected edge gateways. It is
clear that the three tested models obtained less performance
in IID data-multiple classes than IID data-binary class for
NSL-KDD datasets. This is because NSL-KDD has very
minor classes that are not sufficient to train multiple models.
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FIGURE 5. Comparison of loss, accuracy and F1-score values of detection models with various numbers of epochs for NSL-KDD dataset

where n = 5.

TABLE 6. Results for detection rates of attacks in 11D data-multiple classes (X-11oTID dataset).

Metric Proposed Model AP2PFL-DNN AP2PFL-MLP
2 3 4 5 2 3 4 5 2 3 4 5
Accuracy | 96.38 | 96.79 | 96.87 | 97.21 | 94.65 | 92.82 | 95.61 | 96.00 | 91.95 | 92.06 | 91.89 91.13
Recall 96.38 | 96.79 | 96.87 | 97.21 | 94.65 | 92.82 | 95.61 | 96.00 | 91.95 | 92.06 | 91.89 91.13
Precision | 97.27 | 97.61 | 97.70 | 97.78 | 96.27 | 9539 | 96.99 | 97.13 | 94.57 | 94.65 | 94.78 93.99
F1-Score | 96.38 | 96.79 | 97.19 | 9741 | 9523 | 93.73 | 96.14 | 96.42 | 92.83 | 9293 | 92.87 | 92.061
TABLE 7. Results for detection rates of attacks in 11D data-multiple classes (NSL-KDD dataset).
Metric Proposed Model AP2PFL-DNN AP2PFL-MLP
2 3 4 5 2 3 4 5 2 3 4 5
Accuracy | 93.24 | 92.70 | 92.24 | 93.10 | 91.46 | 90.87 | 91.90 | 91.29 | 89.16 | 87.59 | 87.43 | 87.94
Recall 93.24 | 92.70 | 92.24 | 93.10 | 91.46 | 90.87 | 91.90 | 91.29 | 89.16 | 87.59 | 87.43 | 87.94
Precision | 96.03 | 96.01 | 95.85 | 96.10 | 95.60 | 95.63 | 95.99 | 95.60 | 93.45 | 9337 | 9322 | 9341
F1-Score | 94.30 | 93.99 | 93.57 | 94.30 | 93.06 | 92.69 | 93.58 | 92.97 | 90.63 | 89.45 | 89.33 | 89.93

However, the proposed model was able to maintain its good
performance.

Figures 6 and 7 illustrate the loss, accuracy and F1-score
values of all the centralized and federated models with vari-
ous numbers of epochs (when n = 5) for the X-IIoTID and
NSL-KDD datasets (multiple classes). As shown, the pro-
posed model and cent-proposed DL-based model performed
best. Mainly, Figure 7 shows a clear difference in loss, accu-
racy and F1-score between the proposed model and others for
the NSL-KDD dataset.

Tables 8 and 9 show the performance of models in identify-
ing targeted ransomware stages in X-IIoTID and NSL-KDD
datasets. Overall, the proposed model had the best per-
formance. It achieved values of 94.15%, 99.94%, 95.69%,
99.10%, 98.91%, 99.98%, 99.81%, 99.95% and 100% for
detecting reconnaissance, weaponization, exploitation, lat-
eral movement, C& C, exfiltration, tampering, RDoS and
crypto-ransomware, respectively, in the X-IIoTID dataset.
The cent-DNN had the best performance for detecting C&C
and tampering. It achieved values of 99.64% and 99.91
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respectively. As presented in Table 9, the cent-proposed
DL-based model achieved the best performance for detecting
weaponization and exploitation in the NSL-KDD dataset,
whereby it obtained values of 98.69% and 94.17% respec-
tively. The proposed model achieved a value of 89.57% for
detecting reconnaissance, and the AP2PFL-DNN obtained
the highest detection rate (i.e., 83.72%) for Denial of Ser-
vice (DoS) in the NSL-KDD dataset.

Discussion results of IID data: The capabilities of the
proposed model to handle targeted ransomware attacks were
tested using the X-IIoTID, ISoT and NSL-KDD datasets. The
proposed model proved its good capability for dealing with
homogeneous data (i.e., IID-binary class and IID-multiple
classes) distributed evenly among connected edge gateways,
each of which had the same number of classes. In IID
data-binary class and using different numbers of connected
edge gateways (i.e., 2, 3, 4, 5), the proposed model per-
formed well and was better in terms of the accuracy,
recall, precision and Fl-score values than the other base-
line models (i.e., AP2PFL-DNN and AP2PFL-MLP) for
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FIGURE 6. Comparison of loss, accuracy and F1-score values of detection models with various numbers of epochs for X-110TID dataset (multiple

classes) where n = 5.
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FIGURE 7. Comparison of loss, accuracy and F1-score values of detection models with various numbers of epochs for NSL-KDD dataset (multiple

classes) where n = 5.

TABLE 8. Detection rate’s results for targeted ransomware stages in 11D data-multiple classes (X-11oTID dataset).

Attack Cent-MLP Cent-DNN|Cent-Proposed DL-based Model AP2PFL-MLP/AP2PFL-DNN|proposed model
Reconnaissance 88.68 92.20 92.70 88.75 93.74 94.15
Weaponization 99.79 99.67 99.65 99.73 99.76 99.94
Exploitation 91.81 95.69 93.53 87.07 95.26 95.69
Lateral Movement 95.77 98.56 98.89 94.11 98.80 99.10
C&C 99.45 99.64 99.45 98.36 99.45 98.91
Exfiltration 99.95 99.95 99.93 99.95 99.98 99.98
Tampering 99.53 99.91 99.81 99.34 99.81 99.81
RDoS 99.78 99.86 99.89 99.78 99.86 99.95
Crypto-ransomware 100 100 100 100 100 100

five connected edge gateways and three tested datasets.
The same conclusion can be obtained for IID data-multiple
classes. The proposed model achieved the best perfor-
mance compared with the baselines models for X-IIoTID
and NSL-KDD datasets. Furthermore, these results clearly
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indicate that the performance of the proposed model (i.e.,
AP2PFL with DL) was as good as that of the cent-proposed
DL-based model. This was remarkable because the central-
ized model was easier to optimize than the federated one, but
both models obtained approximately the same performance.
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TABLE 9. Detection rate’s results for targeted ransomware stages in 11D data-multiple classes (NSL-KDD dataset).

Attack Cent-MLP|Cent-DNN|Cent-Proposed DL-based Model AP2PFL-MLP AP2PFL-DNN proposed model
Reconnaissance 78.18 84.48 88.00 81.33 86.52 89.57
‘Weaponization 74.42 76.74 81.40 81.40 83.72 79.07
Exploitation 90.52 91.48 94.17 89.65 91.47 91.98
Denial of Service (DoS)| 95.17 97.29 98.69 95.17 97.83 98.23
TABLE 10. Results for non-IID data (X-11o0TID dataset) with various numbers of connected edge gateways.
Metric Proposed Model AP2PFL-DNN AP2PFL-MLP
2 3 4 5 2 4 5 2 3 4 5
Accuracy | 95.14 | 9574 | 96.14 | 96.42 | 94.70 | 9520 | 9521 | 95.82 | 9296 | 92.39 | 93.36 | 92.85
Recall 95.14 | 95.74 | 96.14 | 96.42 | 94.70 | 95.20 | 95.21 | 95.82 | 92.96 | 92.39 | 93.36 | 92.85
Precision | 96.43 | 96.67 | 97.00 | 97.20 | 97.02 | 95.51 | 9538 | 96.05 | 93.41 | 93.48 | 94.55 | 94.08
F1-Score | 95.61 | 96.06 | 96.25 | 96.72 | 9543 | 9527 | 95.01 | 95.87 | 93.10 | 92.67 | 93.73 | 93.24
TABLE 11. Results for non-1ID data (NSL-KDD dataset) with various numbers of connected edge gateways.
Metric Proposed Model AP2PFL-DNN AP2PFL-MLP
2 3 4 5 2 4 5 2 3 4 5
Accuracy | 91.19 | 9223 | 93.39 | 9439 | 88.79 | 91.70 | 89.72 | 88.72 | 8691 | 87.74 | 83.58 | 89.13
Recall 91.19 | 92.23 | 93.39 | 94.39 | 83.79 | 91.70 | 89.72 | 88.72 | 86.91 | 87.74 | 88.58 | 89.13
Precision | 93.96 | 9535 | 95.60 | 95.02 | 92.85 | 92.08 | 92.72 | 93.34 | 91.49 | 90.25 | 92.36 | 89.84
F1-Score | 92.17 | 93.39 | 9430 | 94.59 | 89.93 | 91.78 | 91.00 | 90.77 | 88.02 | 88.35 | 89.60 | 89.13
AP2PFL-DNN —™ Cent-DNN Cent-proposed DL-based Model
APZ2PFL-MLP -+ Cent-MLP Proposed Model
100 1001
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FIGURE 8. Comparison of values of loss, accuracy and F1-score of detection models with various epochs for non-11D data (X-110TID dataset).

2) MODELS' PERFORMANCES IN NON-IID DATA

Tables 10 and 11 show the results of the four metrics for
the tested models with different numbers of connected edge
gateways (i.e., n = 2, 3, 4, 5) in the non-IID data and
for X-IIoTID and NSL-KDD datasets. As can be seen, the
proposed model achieved better results than the others in
terms of the accuracy, recall, precision and F1-score val-
ues. It performed best with five connected edge gateways
(i.e., n = 5), obtaining accuracy, precision, recall and
F1-score values of 96.42%, 97.20%, 96.42% and 96.72%,
respectively for the X-IIoTID dataset. It also achieved
accuracy, precision, recall and Fl-score values of 94.39%,
95.02%, 94.39%, and 94.59%, respectively, for the
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NSL-KDD dataset. Also, the loss, accuracy and Fl-score
values for all the centralized and federated models with
different numbers of epochs and five connected edge gate-
ways for X-IIoTID and NSL-KDD datasets are shown in
Figures 8 and 9. It can be noted that the proposed model
performed satisfactorily, better than the others for both
datasets. As the number of epochs increased from 1 to 50,
its performance generally improved and was better when the
number of epochs was sufficiently large.

The detection rates for the different stages of a targeted
ransomware attack are shown in Tables 12 and 13. As can
be seen, the centralized models achieved slightly better per-
formance than the federated ones for the X-IIoTID dataset.
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FIGURE 9. Comparison of values of loss, accuracy and F1-score of detection models with various epochs for non-IID data (NSL-KDD dataset).

TABLE 12. Detection rate’s results for targeted ransomware stages based on Non-1ID (X-110TID).

Attack Cent-MLP|Cent-DNN|Cent-Proposed DL-based Model| AP2PFL-MLP | AP2PFL-DNN proposed model
Reconnaissance 88.68 92.20 92.70 86.74 93.96 93.00
Weaponisation 99.79 99.67 99.65 99.30 98.89 99.76
Exploitation 91.81 95.69 93.53 70.26 62.93 64.66
Lateral Movement 95.77 98.56 98.89 92.58 86.18 91.48
C&C 99.45 99.64 99.45 94.73 71.09 99.27
Exfiltration 99.95 99.95 99.93 99.98 98.28 99.98
Tampering 99.53 99.91 99.81 96.62 97.46 99.72
RDoS 99.78 99.86 99.89 99.72 98.47 99.94
Crypto-ransomware 100 100 100 94.44 46.67 100

TABLE 13. Detection rate’s results for targeted ransomware stages based on Non-1ID (NSL-KDD dataset).

Attack Cent-MLP|Cent-DNN| Cent-Proposed DL-based Model AP2PFL-MLP|AP2PFL-DNN |proposed model
Reconnaissance 78.18 84.48 88.00 87.80 85.72 96.02
Weaponisation 74.42 76.74 81.40 25.66 97.67 55.81
Exploitation 90.52 91.48 94.17 41.86 54.01 86.73
Denial of Service (DoS)| 95.17 97.29 98.69 96.86 93.32 87.58

The cent-proposed DL-based model achieved the best value
of 98.89% for detecting lateral movement, and the Cent-MLP
obtained 99.79% for detecting weaponization. Also, the
Cent-DNN was better for detecting exploitation, C&C,
and tampering, obtaining 95.69%, 99.64%, and 99.91%,
respectively. However, the proposed model achieved the best
values of 99.98%, 99.94%, and 100% for detecting exfiltra-
tion, RDoS, and crypto-ransomware, and AP2PFL-DNN was
better for identifying reconnaissance. Overall, the proposed
model performed satisfactorily compared with the others and
would improve by increasing the training data size for minor
classes. For the NSL-KDD dataset, the centralized mod-
els performed best. This is because the NSL-KDD dataset
has minor classes distributed among connected edge gate-
ways and are not sufficient for training. However, as can
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be seen, the cent-proposed DL-based model was better than
other models, achieving 94.17%, and 98.69% for detecting
exploitation and DoS.

Discussion results of Non-IID data: The proposed model
demonstrated a significant performance for detecting targeted
ransomware attacks against IIoT edge gateways using the
heterogeneous data (i.e., non-1ID data). The X-IIoTID and
NSL-KDD datasets were used to evaluate the model’s per-
formances for identifying the various activities and stages of
targeted ransomware attacks. However, the proposed model
using non-IID data achieved better accuracy, recall and
F1-score than IID data for the NSL-KDD dataset. This was
mainly because each edge gateway was trained using the
full data of minor classes, and the class’s data was not
divided between edge gateways. This allowed these edge
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TABLE 14. Comparison between different models under evasion attacks (X-11oTID dataset).

Model Non-evasion FGSM BF

11D Non-IID 1ID Non-IID 11D Non-IID
AP2PFL-MLP 95.77 94.80 93.23 91.11 93.83 92.58
AP2PFL-DNN 97.80 95.76 93.68 85.54 96.07 89.54
Proposed model | 98.02 96.92 97.00 94.84 97.61 96.44

TABLE 15. Comparison between different models under evasion attacks (NSL-KDD dataset).

Model Non-evasion FGSM BF

11D Non-IID 11D Non-IID 1D Non-IID
AP2PFL-MLP 83.99 85.54 81.33 81.26 80.55 76.40
AP2PFL-DNN 88.58 85.05 82.40 78.82 84.86 81.13
Proposed model | 91.05 94.08 87.26 92.26 89.23 93.05

gateway to be well trained. The proposed model performed
much better overall than the others, noting the role of the
DPM in improving its generalization capabilities and refining
and reconstructing a robust representation of the input data.
This was also because of the well-structured and developed
DDM using a DNN and BN. The proposed model per-
formed approximately the same as cent-proposed DL-based
model in terms of accuracy, loss, and Fl-score. This sig-
nificant achievement proved that the proposed model would
be eminently usable in real brownfield IIoT systems in
which distributed edge gateways with heterogeneous data
(i.e., non-IID) work collaboratively and efficiently in an asyn-
chronous P2P manner.

3) MODELS' ROBUSTNESS AGAINST EVASION ATTACKS

Table 14 and 15 show the detection rate for targeted ran-
somware evasion attacks (i.e., unknown targeted ransomware
ones) with epsilon = 5% in the IID (multiple classes) and
non-IID data for the X-IIoTID and NSL-KDD datasets. All
the targeted ransomware observations were modified to be
similar to normal or legitimate ones using FGSM and BF
attack techniques (i.e., white- and black-box techniques,
respectively). As can be seen, all the models performed well
for detecting targeted ransomware attacks in the X-IIoTID
dataset when there were non-evasion ones. However, their
performances significantly decreased under FGSM attacks,
particularly those in the non-IID data. Nevertheless, over-
all, the proposed model was more robust than the others
against evasion attacks in both the IID and non-IID data for
the X-IIoTID dataset. In the IID data, it achieved values of
98.02 %, 97.00% and 97.61% for non-evasion and FGSM
and BF attacks, respectively, for the AP2PFL-DNN, 97.80%,
93.68% and 96.07%, respectively, and for the AP2PFL-MLP
95.77%, 93.23% and 93.83%, respectively. As can be noted,
the attack detection rate of the proposed model was approx-
imately 1.02% and 0.41% less than the non-evasion one,
4.12% and 1.73% for the AP2PFL-DNN one and 2.54%
and 1.94% for the AP2PFL-MLP one. In the non-IID data,
the proposed model achieved values of 96.92%, 94.84% and
96.44%, results that were 2.08% and 0.48% less than those of
the non-evasion one. The AP2PFL-DNN and AP2PFL-MLP
models’ performances decreased by approximately 10.22%
and 6.22%, and 3.69% and 2.22%, respectively. These results

148752

proved that the proposed model was more robust than the oth-
ers against targeted ransomware evasion attacks (i.e., FGSM
and BF attacks). The same conclusion could be reached for
the proposed model for the NSL-KDD dataset (as shown in
Table 15) as its performances decreased by approximately
3.79% and 1.82% in the IID data and 1.82% and 1.03% in
the non-IID one under FGSM and BF attacks, respectively.

The robustness of the proposed model against white-box
FGSM and black-box BF evasion attacks was another strong
point in its favour which strongly reinforced the proposed
model’s superiority and suitability for real-world brownfield
IIoT deployments. Most importantly, it is clear that the pro-
posed model performed better than the others and achieved a
balance between targeted ransomware detection and robust-
ness against evasion attacks. Therefore, it is worth noting that
it would be a suitable and efficient solution for protecting the
edge gateways of brownfield IIoT systems against targeted
ransomware attacks because of its superior performance on
homogeneous and heterogeneous datasets and its robustness
against evasion attacks.

4) TIME COMPLEXITY OF PROPOSED MODEL

The proposed model’s processing times, which were col-
lected during the experiments to analyze the amount
each edge gateway required in each epoch, are shown in
Figures 10 and 11. These times include those for training,
transfers and exchanges (communications with neighbors)
and updates. Figure 10 shows that the average processing
times (seconds) per epoch and edge gateway in the IID
and non-IID data for IIX-IIoTID dataset varied, increas-
ing with increasing numbers of connected edge gateways
(i.e., n = 2, 3, 4, 5) and ranging between 30 and 36. It is
worth noting that each edge gateway performed approx-
imately 220 communication rounds in each epoch which
meant it exchanged its variables with its neighbors, on aver-
age, approximately 220 times in each epoch. As the total
number of epochs in the experiments was 50, each edge gate-
way had, on average, approximately 11,000 communication
rounds during the entire training process. Figure 11 shows
average processing times (seconds) per epoch and edge gate-
way in the IID and non-IID data for the NSL-KDD dataset.
The proposed model took less processing time in this dataset,
ranging between 7-9 seconds. Each edge gateway exchanged
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FIGURE 10. Average processing time per epoch/edge gateway with a
varying number of connected edge gateways for X-11oTID dataset.
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FIGURE 11. Average processing time per epoch/edge gateway with a
varying number of connected edge gateways for NSL-KDD dataset.

its variables with its neighbors approximately 49 times in
each epoch and 2450 communication rounds during the
entire training process. NSL-KDD has less processing time
and communication rounds since it has fewer observations,
classes, and features than the X-IIoTID dataset. Given that the
proposed model consisted of two modules built based on DL
algorithms and dealt with IID and non-IID data and the com-
munication among neighbours was asynchronous, its average
processing time was reasonable and totally acceptable for
both datasets and edge gateways in the real environment.

VI. COMPARATIVE STUDY WITH OTHER FL MODELS

To illustrate the effectiveness of our proposed model, the
proposed model’s performance is compared with those of
three recently developed FL-based intrusion detection mod-
els tested on the NSL-KDD dataset, namely, the Multi
Criteria Client Selection in FL (FedMCCS) [41], Hierar-
chical FL(HFL) [16], and Probabilistic Hybrid Ensemble
Classifier (PHEC) [42]. Table 16 demonstrates the result
achieved by the proposed model for both IID (binary- and
multiple-classes) and non-IID data compared with other mod-
els. It is clear that the proposed model obtained the best
accuracy for homogeneous (i.e., IID) and heterogeneous
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TABLE 16. Comparison with other FL-based intrusion detection models.

Model Accuracy (%)
FedMCCS [41] 81.00
Fed-PHEC [42] 88.42
HFL [16] 77.50
Proposed Model (IID-binary) 97.03
Proposed Model (IID-multiple classes) 93.10
Proposed Model (Non-IID) 94.39

(i.e., Non-IID) data with 97.03%, 93.10% and 94.39%,
respectively. The three models achieved a good performance
in terms of accuracy based on the client-server FL approach.
FedMCCS adopted a client-server FL. approach with DNN.
Clients or edge gateways participate in the global model’s
update based on their resources (CPU, memory, and energy)
and ability to successfully train and send the needed updates.
Therefore, FedMCCS achieved 81% and maximized the num-
ber of participated clients/edge gateways while reducing the
number of communications with the cloud server. Neverthe-
less, this model still needs to optimize the client selection
approach to improve the efficiency of the intrusion detec-
tion model. HFL model used DNN based on client-server
FedAvg but with edge layer between [oT devices (clients) and
cloud. It relied on trained two global models at the two edge
gateways, whereby each edge gateway has its own clients.
The edge gateways acted as clients for the cloud server to
build another higher-level global model. This Hierarchical
approach has many problems related to delay caused by
each layer and the energy constraints of clients (i.e., IoT
devices). It also obtained less accuracy than other models
(i.e., 77.50%).

The Fed-PHEC model used many MLP networks that share
their parameters with a central server where they are aggre-
gated to construct a global model. For each data sample, the
global model (or aggregated mode) yields a set of probabil-
ities, where each probability represents the probability of a
specific local training model. This model is the best out of
the three models, whereby it achieved a value of 88.42%
for accuracy. However, further analysis and experiments are
needed to improve the performance.

However, our proposed model performs better than the
above models as it relies on AP2PFL and DL techniques.
It used CDAE to refine and reconstruct the input data, improv-
ing the generalization and robustness of models against noise
data. Therefore, it can learn a good and relevant representa-
tion for input data in an unsupervised manner before passing
it to the DDM. Also, it used DNN with BN to facilitate
the detection process, whereby the constructed network archi-
tecture can identify the attack and normal behavior pat-
terns and classify them efficiently to the appropriate class.
The proposed model is different from the previous intrusion
detection models as it depends on AP2PFL, whereby each
client connects only with its neighbors in a P2P manner.
This eliminates the need to have a critical selection method
to choose the best participants in updating process and the
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need to have a global model. It also guarantees that all con-
nected clients participate in the updating process in direct
and indirect ways. Each client has only one model, which is
updated based on its neighbors’ models. It also relied on an
asynchronous algorithm, whereby each client does not have
to wait for all its neighbors to complete aggregating models.
Given that the devices of IloT edge gateways are designed to
operate time-sensitive processes, provide fewer communica-
tions with cloud servers and reduce bandwidth and network
latency, the proposed model is more suitable than existing
client-server ones for edge gateways in brownfield IIoT sys-
tems. It proved a superior performance on homogeneous and
heterogeneous datasets and maintained its robustness against
evasion attacks. Therefore, these traits ensure that our pro-
posed model is appropriate for deployment in a real IIoT and
protecting edge systems against targeted ransomware.

Nevertheless, the proposed detection model has many lim-
itations. For example, the DL-based model faces significant
challenges in choosing the best network structures and archi-
tectures to guarantee stable and good detection accuracy. This
is not a simple task as it requires numerous empirical exper-
iments. This limitation can be exposed using optimization
techniques such as Particle swarm optimization [43]. Another
limitation is that DL-based models deal with only numerical
data, and this issue is solved using pre-processing in the pro-
posed model. Furthermore, although the proposed model uses
asynchronous and P2P communication, is fully decentralized
and does not have a central server, it still faces security and
privacy challenges, such as poisoning training attacks. This
limitation could be mitigated to some extent by the developed
DPM, which, as stated previously, refines and reconstructs
the representation of the input data, which improves the
model’s robustness. Also, the proposed detection model uses
a novel FL algorithm, that is, a PDDM-SGD [33]. Although
the model designed based on this algorithm displayed good
performances for detecting targeted ransomware and deal-
ing with both homogeneous (i.e., IID) and heterogeneous
(i.e., non-1ID) data, in its current form, this algorithm has
limitations in terms of its stability and performance, and more
research is required to improve it.

VIl. CONCLUSION AND FUTURE WORK

This paper proposed the first-of-its-kind targeted ransomware
detection model tailored for IIoT edge gateways. It used an
Asynchronous Peer-to-Peer Federated Learning (AP2PFL)
and Deep Learning (DL) as a targeted ransomware detec-
tion algorithm and included IID and non-IID learning
models. The detection model (i.e., DL-based model) con-
sists of two modules: DPM and DDM modules. The
DPM refines and reconstructs a valuable and robust rep-
resentation for the input data before passing it to the
DDM module to identify targeted ransomware attacks. These
modules in each edge gateway work collaboratively with
its neighbors and share their knowledge about targeted ran-
somware stages using AP2PFL. A comprehensive set of
experiments proved that the proposed model outperforms
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the baseline models in terms of performance metrics. It has
high capabilities to deal with homogeneous (i.e., IID) and
heterogeneous (i.e., Non-IID) data and protect brownfield
IIoT systems’ edge gateways. The performance of the pro-
posed model under evasion attacks (i.e., unknown targeted
ransomware) was also evaluated and tested, demonstrating
significant robustness against these evasion attacks.

In future works, we will test the proposed model’s per-
formance in a real IIoT environment. We also will explore
the privacy and security of federated and deep learning tech-
niques. In particular, we plan to test the proposed model
against poison training attacks and consider other robust
methods to improve its security and privacy, such as the
null-class technique and anomaly detectors. Furthermore,
we plan to implement different P2P network architecture
and improve the performance of the proposed model for the
non-IID data.
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