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ABSTRACT Many complex systems in physics, biology and engineering are modeled as dynamical networks
and described using multivariate time series analysis. Recent developments have shown that the emergent
dynamics of a network system are significantly affected by interactions involving multiple network nodes
which cannot be described using pairwise links. While these higher-order interactions can be probed using
information-theoretic measures, a rigorous framework to describe them in the frequency domain is still
lacking. This work presents an approach for the spectral decomposition of multivariate information measures,
capable of identifying higher-order synergistic and redundant interactions between oscillatory processes.
We show theoretically that synergy and redundancy can coexist at different frequencies among the output
signals of a network system and can be detected only using the proposed spectral method. To demonstrate the
broad applicability of the framework, we provide parametric and non-parametric data-efficient estimators for
the spectral information measures, and employ them to describe multivariate interactions in three complex
systems producing rich oscillatory dynamics, namely the human brain, a ring of electronic oscillators,
and the global climate system. In these systems, we show that the use of our framework for the spectral
decomposition of information measures reveals multivariate and higher-order interactions not detectable in
the time domain. Our results are exemplary of how the frequency-specific analysis of multivariate dynamics
can aid the implementation of assessment and control strategies in real-world network systems.

INDEX TERMS Time series analysis, information theory, information dynamics, spectral analysis,
high-order interactions, EEG analysis, electronic oscillators, climate dynamics.

I. INTRODUCTION
The complexity of many physical, biological and technologi-
cal systems originates from the richness of the structural and
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functional interactions among their constituent units. Science
has nowadays abandoned the reductionist notion that the
collective behavior of a network system, i.e. a system com-
posed by several possibly interacting units, can be under-
stood and predicted by considering each individual unit
in isolation. Moreover, even the classical representation of
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a network system based on quantifying the interactions
between unit pairs through pairwise measures of coupling or
causality [1], [2] is being debated, as it is deemed as
insufficient to characterize exhaustively the emergent col-
lective dynamics of the system. In fact, as the exploration
of real-world systems intensifies, multidisciplinary scientists
realize the need to go beyond the framework of pairwise
interactions [3]. There is indeed mounting evidence that the
overall interplay among the several units of a network sys-
tem cannot be exhaustively described by combinations of
pairwise couplings, and that higher-order interactions —i.e.,
interactions involving more than two units— are present and
often play a crucial role for understanding the overall sys-
tem behavior [4], [S]. In this context, novel approaches are
under development to accommodate higher-order many body
interactions into generalized network representations [6].
Nevertheless, the implementation of these generalized net-
work structures remains difficult in systems where inter-
actions are not already identified but need to be inferred
from data, as is the case for biological networks and func-
tional networks mapping the dynamics of physical systems.
An approach increasingly employed to achieve a proper
description of dynamic networks is the use of information
theory.

Indeed, information-theoretic measures are being exploited
extensively to characterize multivariate dynamical systems
across very diverse areas such as neuroscience, finance,
physiology and climatology [7]-[9]. The framework of infor-
mation dynamics provides a unifying set of measures which
allow quantifying the amounts of information produced and
stored in a complex system, as well as those transferred from
a “source” to a “‘target” and modified as a consequence of
the interaction between multiple sources sending information
to the target [10], [11]. In particular, information modification
is related to the concepts of redundancy and synergy between
two source systems sharing information about a target sys-
tem. These concepts address the existence of shared informa-
tion about the target that can be recovered when the sources
are used separately (redundancy), or when they are used
jointly (synergy) [12]-[14]. Synergy and redundancy have
been successfully implemented in measures of interaction
information [11], implicitly providing a means to quantify
higher-order interactions from the dynamics of complex
systems. Interaction information measures were employed
to study, among others, cardiovascular and cardiorespiratory
interactions [15], electroencephalographic (EEG) brain con-
nectivity [13], and global financial markets [7]. While these
measures are generally defined in a model-free framework on
the basis of the probability densities of the various available
dynamic variables, it has been shown that for Gaussian
processes they are fully dependent on the parameters of a
linear Vector Autoregressive (VAR) model [11], [16].

Like the other measures of information dynamics, inter-
action information evaluates the overall dynamics of multi-
variate processes and, as such, operates in the time domain.
On the other hand, the signals measured at the nodes of
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real-world networks are often rich of oscillatory content, and
therefore naturally lend themselves to spectral representation.
The frequency domain analysis of pairwise coupling is usu-
ally performed through spectral measures such as coherence,
partial coherence, directed coherence, and partial directed
coherence [17], [18]. However, these measures do not provide
frequency-specific information about higher-order interac-
tions, like interaction information, redundancy and synergy.
To fill this gap, we recently introduced a spectral method,
relying on VAR models studied in the frequency domain,
to assess the information shared among triplets of scalar
processes [19]. The method decomposes across frequencies
the information shared between the processes, providing
spectral quantities that —when integrated over the whole
frequency axis— return well-known time domain measures
of linear dependence [20], [21]. This approach opens the way
to the evaluation of higher-order interactions in the frequency
domain, but is limited in the fact that it is designed only for
scalar source and target processes (therefore, for the exclusive
analysis of three time series), it performs only VAR paramet-
ric estimation of the proposed measures, and it is validated
experimentally only in the specific context of cardiovascular
variability analysis.

A. SCOPE AND STRUCTURE OF THIS STUDY
The present work aims at making the new framework for
the spectral quantification of higher-order interactions [19]
widely applicable in many contexts of science and engineer-
ing. To this end, we first extend the theoretical formulation
to fully multivariate processes, so as to allow the analysis
of networks composed by more than three nodes. More-
over, we consider a model-free estimator of the spectral and
information measures and we compare it with the parametric
estimator based on VAR models in simulations of multivariate
time series. Importantly, we also show the broad applicability
of the framework in different real-world scenarios: brain net-
works probed through electroencephalographic (EEG) sig-
nals recorded during motor execution [22]; a ring of chaotic
electronic oscillators producing non-trivial functional net-
works [23]; and climate system dynamics assessed from
global temperatures and carbon emissions [24]. Though
apparently rather diverse from each other, these network
systems are prime examples of dynamical systems producing
broadband signals with evident rhythmic behavior.

Moreover, emergent properties can arise in all these sys-
tems from non-trivial interactions within the network, pro-
ducing global behaviors that are rarely explainable focusing
on the activity of individual nodes or the coupling between
pairs of nodes. Our focus in these applications is assessing the
presence of higher-order interactions quantified by redundant
or synergistic behaviors among the system units, and to show
that these behaviors can be often elicited only looking at inter-
actions in the frequency domain and even be simultaneously
present when observed at different frequencies.

The remainder of this paper is organized as follows.
In Sec. II, the theoretical underpinnings of the framework
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are illustrated and explained. In Sec. III, the behavior of the
proposed measures is investigated through theoretical exam-
ples, and the performances of parametric and non-parametric
estimators for these measures are evaluated. In Sec. IV,
the practical applicability of the framework is explored by
considering the dynamics of three widely different complex
systems. Finally, in Sec. V, the main features of the pro-
posed interaction information decomposition are discussed
and compared with other known and widely employed mea-
sures and analyses.

The interaction measures, theoretical example,
simulation study, and physical scenario analysis are
collected in the fdlID MATLAB toolbox available at
https://github.com/YuriAntonacci/fdIID-toolbox. Codes can
be downloaded also from http://www.lucafaes.net/fdID.html.

Il. METHODS

In this section, we first introduce the measures used in the
literature to assess dependencies between blocks of stochas-
tic processes in the frequency domain, highlighting the
link between such measures and information-theoretic mea-
sures. These measures are subsequently exploited to define
frequency domain and information-theoretic measures of
redundancy/synergy. Then, we describe the procedures for
estimating all measures from multivariate time series data,
as well as to assess their statistical significance.

A. INFORMATION AND SPECTRAL MEASURES OF LINEAR
ASSOCIATION BETWEEN MULTIVARIATE GAUSSIAN
PROCESSES

This section aims to set the basic measures and relations
which establish the link between information-theoretic and
spectral measures of coupling in multivariate (vector) pro-
cesses. Specifically, we focus on the Mutual Information
Rate (MIR) and on its relation with frequency domain mea-
sures. Linear dependencies between multivariate processes
can be expressed with common statistical tools such as cor-
relation or higher moments measures [25]. The approach
described in the following relies of second-order statistical
measures and their spectral equivalents (e.g. coherence, block
coherence).

Let us consider two zero-mean stationary multivari-
ate (vector) stochastic processes X = {Xj,...,Xuy,} and
Y = {I1,..., Yu,} having dimension My and My. Let us
also define the present of the processes as the vector con-
taining the random variables which sample X and Y at time
noie Xy = [Xin Xyl and ¥, = [Yip-- Yoy nll.
An information-theoretic measure of the total degree of asso-
ciation between the two processes is MIR, defined as: [20]

I YY)
IX;Y = lim ——

n—o00 n

ey

where the quantity 7(X"; Y") represents the mutual informa-
tion between the random variables X" = [XlT . XnT ] and
Y" = [¥], ... Y]] which collect the entire history of X and
Y up to time n.
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In the frequency domain, the multivariate processes can
be described on the basis of the power spectral den-
sity (PSD) of each constituent scalar process, defined as
the Fourier Transform (FT) of the auto-correlation func-
tion of the process (e.g., Px,(w) = §irx,(k)}, rx, (k) =
E[X1.,X1,n—k], with k representing the time lag), and of the
cross-spectral density between two scalar processes, defined
as the FT of their cross-correlation function (e.g., Px, x,(w) =
S{rxx, ()}, rx,x, (k) = E[X1,,X2,n«]), where w € [—m, 7]
is the normalized sampling frequency (v = 2x }C—S with f €

—J%, %], fs sampling frequency). As customary, the spectral

densities are collected in the individual square PSD matrices
Px(w) = §{Rx(k)} and Py(w) = §{Ry(k)}, with Rx (k) =
E[X,X! ,1and Ry(k) = E[Y,Y[ ], and in the (Mx x My)-
dimensional cross-PSD matrix Pyy(w) = §{Rxy(k)}, with
Rxy(k) = ]E[X,,YnT_k]. These matrices can be combined
to form the (Mxy + My) x (Mx + My)-dimensional joint
PSD matrix of the overall multivariate process {X, Y}

Px(w) PXY(U))i|
Pyx(w) Py(w) |’

where Pyx(w) = Pyy(w) (* stands for Hermitian transpose).
The individual PSD matrices Px(w) and Py(w) and the joint
PSD matrix Pxyj(w) can be exploited to obtain the spectral
measure of total interdependence between X and Y defined
as [26]:

Pxy() & [ 2)

Fer(@) 2 log |PX(CU)||PY(CU)|, 3)
|Pxy)(w)]

where | - | stands for matrix determinant. The quantity
in (3) is a symmetric, non-normalized measure of coupling,
which takes its minimum value fy.y(w) = 0 when X
and Y are uncorrelated at the frequency o (|Pxyj(w)| =
|Px(w)||Py(w)]), and tends to infinity when X and Y are fully
dependent at the frequency w (|P|xy)(w)| = 0). Integration
of (3) over the whole frequency axis yields the measure

T
Frr= o [ i) do. o)

27 J_,
which quantifies the total interdependence between the two
processes in the time domain. Importantly, the measure (3)
has an information-theoretic interpretation, since it appears in
the spectral representation of the MIR defined in (1). Indeed,
a long-known result is that, for Gaussian processes, the

MIR can be expanded in the frequency domain as: [20]

1 o
By = - / Feor(@)do. 5)

which also shows that Fx.y = 2Ix.y. Given this interpre-
tation, and using the natural logarithm, the quantity Fy.y is
measured in natural units (nats), and the spectral quantity
fx.y(w) is measured in nats/rad.

In closing this section, we note that the methodological
approach used in this work follows the extension of the
classical coherence function to the multivariate case through
the concept of block coherence [27]. In fact, the spectral
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measure (3) and the block coherence C)((I?Y can be related via:
C}((b;)y (w) = 1 — e Tx:¥(@); the equation reduces to the spectral
coherence [28] if X and Y are scalar processes. This relation-
ship, together with (5) and considering also the link between
cross-correlation and coherence, contributes to relate time-
domain, frequency-domain and information-theoretic mea-
sures of linear association between stochastic processes [29].

B. SPECTRAL INFORMATION DECOMPOSITION FOR
MULTIVARIATE PROCESSES

Now, let us consider a multivariate process Z = [XY]T =
[X]XZY]T, where Y is taken as the “target” and X; and X,
are assumed as “‘sources”. We stress that both the target
and the source processes can be multivariate, so we study
the interactions between “‘blocks” of time-series considered
as realizations of these processes. Let M, My, M1, and M>
be the sizes of Z,Y,X; and Xo (M = My + M| + M>).
The interaction in the frequency domain can be studied by
considering the (M x M)-dimensional spectral density matrix

Px,(w)  Pxx,(w) Py y(w)
Pz(w)=| Px,x,(w) Px,(w) Pxyy(w)|=Pixx,r)(w)
Pxyx,(w)  Pyxy,(@)  Py(w)

(6)

In (6), Px, () is an (M x M)-dimensional matrix con-
taining the PSD of the scalar process Xi; as the i" diago-
nal element and the cross-PSD between Xi; and Xj; as the
(i, ) off-diagonal element, and Py, x,(®) is an (M) x M>)-
dimensional matrix containing the cross-PSD between Xj;
and Xj; as the (i, j) element; the same follows intuitively for
the matrices Px,(w), Py(w), Px,y(w) and Px,y(w), having
size My x M>, My x My, M1 x My and M, x My. Considering
the overall spectral matrix Pz(w) and its constituent blocks,
time- and frequency-domain measures of total dependence
between X; and Y, between X»> and Y, and between X =
[X1X>] and Y, can be defined as in (3) and (4):

FX.YZL ﬂlongw (7a)
" 2w J_x [Prx, v)(@)] '

1 T P P

Fryy = — |Px, (w)||Py(w)| do, (7b)
27 J_x [Pix,v1(@)]
1 T P, P

Py = — log| X1x21(@)| [Py (@) do. (70)

2 5 [P, x,v1(@)]

where the integrands correspond respectively to fy,.y(w),
JSx,;v(®) and fx, x,.y(w). Then, based upon the definition of
interaction information for random variables [30], we define
the following information-theoretic and spectral measures of
source interaction:

Fx,.y + Fx,.y — Fx,x,.v (8)
Sxiy (@) + fxo v (@) — fx 7 (@), (9)

Since interaction information can assume both positive
and negative values, the definitions given in (8) and (9)
put in evidence redundant and synergistic interactions in
the analyzed system. Specifically, when the two sources

Ix): X,y

> 1>

ix);X:y ()
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X1 and X, taken individually, are more strongly coupled
to the target Y than in the case in which they are taken
jointly (Fy,.y + Fx,.y > F¥x,x,;v), the time-domain source
interaction measure is positive (Ix,.x,.y > 0), indicating
redundancy. Conversely, when the two sources X; and X»
taken jointly exhibit a stronger coupling with the target Y
than in the case in which they are taken individually (Fy,.y +
Fx,.y < Fx,x,,y), the time-domain source interaction mea-
sure is negative (Ix,.x,.y < 0), indicating synergy. The same
relations hold for the frequency-domain interaction measure,
and are thus valid at each specific frequency. In addition,
the time- and frequency-domain interaction measures sat-
isfy the property of spectral integration, i.e. Ix,.x,.y =
% ffﬂ ix,;X,:y(w)dw. Importantly, we also note that the
time- and frequency-domain measures of interaction informa-
tion (8) and (9) are symmetric under the exchange of target
and source processes.

C. POWER SPECTRAL DENSITY (PSD) ESTIMATION
In the linear signal processing framework, the vector process

zZ ={Z,..., ZM}T can be represented as the output of a
multivariate linear shift-invariant filter [31]:
o0
Zy= Y MU, (10)
k=—00

where Z, = [Z1 - -ZM,,,]T is the vector sampling the pro-
cess Z atthe presenttime n, U, = [U} - - - UM,n]T is a vector
of M zero-mean input processes denoted as innovations, and
Hj, is the M x M filter impulse response. A very common
representation of (10) is the vector autoregressive (VAR)
representation:

P
Zn="7) AiZui + Un. (1)
k=1

where p is the model order, defining the maximum lag used
to quantify the interactions, and Ay are the M x M coefficient
matrices wherein each element a;; ;. describes the dependence
of ZijyonZ,  (i,j=1,...M;k = 1,..., p). The inno-
vation process U, contains white and uncorrelated noises,
so that it is fully described by its zero-lag covariance matrix
Yy = E[U,U, nT ]. A spectral representation can be obtained
by taking the discrete-time FT of the representations (10)
and (11), which yields Z(w) = H(w)U(w) and Z(w) =
A(w)Z(w) + U(w), where Z(w) and U (w) are the FTs of Z,
and U,, and the M x M transfer matrix and coefficient matrix
are defined in the frequency domain as:

Hw) = §(Hi} = ) Hie 7,

k=—00

(12a)

p
A@) = F(A) =) Age . (12b)
k=1

Comparing the two spectral representations, it is easy to
show that the coefficient and transfer matrices are linked
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by: H(w) = [I — A(w)]~". Then, by using the spectral
factorization theorem [32], it is possible to obtain the spectral
density matrix Pz(w) = H(w)XyH*(w) (where * stands
for complex conjugate). This matrix can be partitioned as
in (6) to obtain the frequency domain measures of coupling
and interaction, and the corresponding time domain measures
through integration over the whole frequency axis, as seen in
the previous subsection.

The identification procedure of the VAR model (11)
is typically performed through the multivariate version of
the ordinary least-squares (OLS) method [33]. In brief,
defining the past history truncated at p time-steps as the
pM-dimensional vector Zl = [Z_1, ..., Z,,,p]T and con-
sidering N consecutive time steps, a compact representation
of the VAR model (11) can be defined as z = Az’ + U,

where A = [Ay, ..., Ap]is the M x pM matrix of unknown
coefficients, z = [Zpy1,...,Zy]l and U = [Up4q, ..., Uy]
are the M x (N — p) matrices and 2/ = [ZlfH, ...,Z,’\’,]

is a pM x (N — p) matrix collecting the regressor terms.
The method estimates the coefficient matrices through the
well-known OLS formula, A = z(z")T [2/(z%)T]; then, the
innovation process is estimated as the residual time-series
U= z — AZ’, whose covariance matrix fU is an estimate of
the innovation covariance. Finally, the spectral density matrix
is estimated as P, (w) = ﬁ(w)fyﬁ*(w), where the transfer
matrix is H(w) = [I — A(w)] L.

An alternative to the parametric estimation of the PSD is
the weighted covariance (WC) method, which represents a
non-parametric approach to deriving the PSD through the
FT of the sample autocorrelation and cross-correlation func-
tions of the data [34]. Specifically, following the nota-
tion introduced for the parametric approach, correlation and
power spectral density can be defined for the multivariate
process Z as Rz(k) = IE[Z,,ZnT_k] and Rz(w) = F{Rz(k)},
respectively. These are matrices of size M x M that contain
the correlation between two scalar processes, RZiZj (k), and
its FT, as i —jelements (i,j = 1, ..., M). The WC estimator
of the PSD matrix computes the cross-PSD between the two
generic processes Z; and Z; as

Pzz(@) =Y wlk)Rzz/(k)e (13)
k=—1

note that the autocorrelation of Z; and the corresponding
PSD are obtained when i = j. In (13), 7 < N — 1 is the
maximum lag for which the correlation is estimated (with
N being the number of data samples available), and w is a
lag window of width 2t (w(k) = O for |k| > t) which
is normalized (0 < w(k) < w(0) = 1) and symmetric
(w(—k) = w(k)) [31].

Window selection is usually performed by looking at
the spectral leakage introduced by the profile of the win-
dow [35]. In this work, we used a biased estimator for
both cross-correlation and autocorrelation functions which
guarantees semi-definite sequences and thus does not lead
to negative spectral estimates. A biased estimator of the

149490

cross-correlation function can be defined as
| N—1—k
Rzz0 = > ZhZink. (14)
n=0

where the latter holds for kK = 0,...,N — 1; if k =
T(N — 1), ..., —1, the auto-covariance matrix is defined as
Rz (k) = Ry (k).

D. TESTING THE SIGNIFICANCE OF INTERACTION
INFORMATION IN THE TIME AND
FREQUENCY DOMAINS
Since interaction information is a measure of coupling
between the sources (Xi,X>) and the target (Y), it is of
interest to establish its zero-level confidence bounds in order
to assess the existence of statistically significant synergistic
or redundant contributions in the analyzed network. In this
work, the significance of interaction information in the time
and frequency domains was tested generating sets of sur-
rogate time-series for two multivariate sources X; and X,
while leaving the multivariate target process Y untouched.
Specifically, surrogates of the two sources were obtained
through the phase randomization procedure, preserving not
only each individual spectrum but also the magnitude of the
cross-spectrum between each pair of series belonging to X
and X3 [36], [37]. This is accomplished by adding the same
random number to the Fourier phases of the two groups
of time-series, so as to maintain autocorrelation and linear
coupling between the two groups of sources, and to destroy
any coupling between each source and the target process.
The procedure was repeated 100 times, estimating for each
repetition the interaction information in the time and fre-
quency domains. The value of interaction information com-
puted on the original data was then compared to the surrogate
data, taking as thresholds the 2.5™ and 97.5" percentiles of
the surrogate distributions. The original value was deemed
as indicating statistically significant redundant information
when it was positive and above the superior threshold. On the
other hand, statistically significant synergistic information
was inferred when the value of interaction information com-
puted on the experimental data was negative and below the
inferior threshold.

Ill. SIMULATION STUDY

This section reports the theoretical design and the prac-
tical implementation of a simulation of multiple interact-
ing stochastic processes, which is used as a benchmark to
illustrate the properties of the spectral information measures
defined in this work. Using this simulation, we show the-
oretically that the proposed framework can elicit patterns
of redundancy and synergy which coexist at different fre-
quencies in the spectral domain but may be hidden if only
the integrated measures in the time domain are computed.
We also address the estimation of these measures, showing
that both the parametric approach based on VAR models
and the non-parametric method based on cross-covariance
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estimation can provide accurate estimates, with perfor-
mance depending on the setting of the method-specific free
parameters.

A. THEORETICAL EXAMPLE

To study the behavior of the presented measures, we design a
four-variate VAR process configured to reproduce coexisting
redundant and synergistic interactions between source pro-
cesses sharing information with a target [8], [38]. We consider
a theoretical example of four Gaussian systems whose asso-
ciated processes are described by the VAR with model order
equal to 3 (VAR(3)) defined by the following equations:

Zin=cly1+A—0)Z3 2+ Uy, (15a)

1
Zan = 202 c0SQRuf2) 2001 — P3Zon—2 + §Z4,n—1 + Uz,

(15b)
1

Z3n = 2030527 f3)Z3 51 — p3Z3n—2 + §Z4,n—3 + Uz,

(15¢)

Zay = 24 cOSQAf)Z4n-1 — P3Za.n—2 + Usn. (15d)

where U, = [Uy,,--- U4,n]T is a vector of zero-mean white
Gaussian noises with unit variance and uncorrelated with
each other (Xy = I). The parameter design in (15) is
chosen to allow autonomous oscillations in the processes
Z;i,i = 2,3,4, obtained placing complex-conjugate poles
with modulus pp = p3 = 0.85 and p4 = 0.95 and normalized
frequencies f> /f; = 0.05, f3/f; = 0.05 and f1/f; = 0.35 in the
complex plane; assuming a sampling frequency f; = 100 Hz,
the poles determine oscillations at 5 Hz and 35 Hz. Moreover,
interactions between different processes are set to obtain a
common driver effect Z, < Z4; — Z3 and unidirectional
couplings Z3 — Z; and Z, — Z;, with weights indicated
in Fig. 1(a).

Given (15), we take X| = Z, and X, = [Z3, Z4] as source
processes, and Y = Z; as target process. The VAR(3) model
described above can be studied in the frequency domain by
deriving the 4 x 4 spectral density matrix Pz(w) directly
from the AR coefficients as described in the previous section.
This leads to computing the exact values of all the time-
and frequency-domain information measures for the theo-
retical process. Varying the parameter ¢ allows controlling
the strength of the connection between the sources X and
X, and the target Y. The simulation design showing the
causal connections is reported in Fig. 1(a) alongside an exam-
ple of the spectral content of each of the four processes
when ¢ = 1 (b).

The results of interaction information decomposition per-
formed in the time and frequency domains for the VAR
process (15) are shown in Fig. 2 (a, b-e, respectively). When
the coupling parameter c is increased from O to 1, the cou-
pling between the first source X and the target Y increases,
and the time-domain measure Fy,.y (red line, Fig. 2 (a))
also increases as a direct consequence; an opposite trend is
obtained for Fy,.y (blue line, Fig. 2(a)) which decreases for
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FIGURE 1. (a) Graphical representation of the four-variate VAR process
generated according to (15), where the network nodes represent the
simulated scalar processes and the arrows represent the imposed causal
interactions (self-loops depict the influences from the past to the present
sample of a process). (b) Power spectral density of the four processes
obtained with ¢ = 1, revealing a prominent activity of both sources and
target at 5 Hz and 35 Hz.

increasing values of the coupling parameter c¢. The measure
of source interaction (Ix,.x,.y, black line, Fig. 2(a)) is almost
null when ¢ = 0, while it highlights negative interaction
information (denoting synergy) when ¢ = 0.5, and finally
becomes slightly positive (denoting redundancy) when ¢ = 1.
The frequency domain expansion of the information mea-
sures reveals interaction mechanisms which are specific for
the oscillations simulated at 5 Hz and 35 Hz. Specifically,
when c is low, there is a transmission of the oscillations from
X5 to the target through the link Z3 — Y, with peaks at 5 Hz
and 35 Hz in f,.y and fx, x,.y (blue line, Fig. 2(b,d); the blue
line in panel (b) is not visible as it is fully overlapped with
the red line); the interaction information ix,.x,.y is greater
than O particularly at 35 Hz, denoting redundancy (Fig. 2(e)).
When ¢ = 1, there is a direct transmission of the oscillations
at 5 Hz through the link X; — Y revealed by the peaks in
fx,;v and fx,x,.y (red line, Fig. 2(b,c)); moreover, there is
also a less prominent peak at 35 Hz due to the indirect causal
link from Z4 € X, to the target, mediated by X, which is
characterized by a fully redundant interaction between the
two sources (see the peak in ix,.x,.y at 35 Hz, Fig. 2(e)).
When 0 < ¢ < 1, the coexistence of redundancy, occur-
ring at 35 Hz due to the cascade Z4 — X; — Y, and
synergy, occurring at 5 Hz due to the links X; — Y and
Z3 — Y, is made evident by analysing the spectral profile of
the interaction information, but is not detectable employing
the time-domain measure which indicates only a synergistic
effect. In particular, when ¢ = 0.5 (spectral profiles high-
lighted in green) the information shared individually between
one source and the target (fx,.y, fx,.y; Fig. 2(c,d)) shows
comparable trends for the two sources, with a higher contri-
bution at 35 Hz related with the oscillations of the common
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FIGURE 2. Time- and frequency-domain multivariate information measures computed for the simulated VAR process of Fig. 1. (a) time-domain measure
of information shared jointly and individually between the two sources and the target (Fx, x57 and Fxysv Fxysx) and of the interaction information
(lx1 Xy y) plotted as a function of the coupling parameter c. (b-e) spectral profiles for the four measures plotted as a function of the frequency (f (Hz))

for different values of coupling parameter (c = 0, blue lines; ¢ = 0.5, green lines; ¢ = 1, red lines).

driver process Z4. On the other hand, the information shared
jointly by the two sources and the target (fx, x,.y, Fig. 2(b))
still exhibits a higher contribution due to the autonomous
oscillations at 5 Hz of Z, and Z3; as a result, the interaction
information (ix,.x,.y, Fig. 2(e)) reveals greater synergistic
contribution at 5 Hz if compared to the redundant contribution
at 35 Hz. Importantly, the integrated measures in the time
domain (Fig. 2(a)) suggest the impossibility of discriminating
the coexistence of synergistic and redundant contribution
with a theoretical value that is negative, indicating instead
only a synergistic contribution (Ix,.x,;y < 0, Fig. 2(h)).

B. ESTIMATION

This section reports the practical estimation of the inter-
action measures defined in Sect. II.A,B, performed using
the parametric and non-parametric approaches described in
Sect. II.C, on simulated multivariate time series generated as
realizations of the VAR(3) process (equations (15)). In this
analysis we set the coupling parameter ¢ = 0.5; this scenario,
as previously seen with the theoretical example, guarantees
the coexistence of redundant and synergistic information
in two separate frequency bands. One hundred realizations
of the processes were generated with a time-series length
N = 1000, thus simulating a duration of 10 s with a sampling
frequency of 100 Hz.

All the measures appearing in the interaction information
decomposition were computed first identifying the VAR(3)
model through the OLS method, followed by the computation
of the Spectral Density matrix (ﬁz, Eq. 6) from which all the
time and frequency domain measures were extracted. With
this approach, for each realization, the model order p was
estimated through the minimum description length (MDL)
criterion [39]. The second approach consisted of the direct
computation of all the terms of the Spectral Density matrix
by using the WC method. Specifically, following [35],
we choose the window suggested by Parzen, also known as
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the de la Vallee-Poussin window, that shows a significantly
lower side-lobe level compared to Hanning and Hamming
windows; furthermore, it is non-negative for all frequencies,
and produces non-negative spectral estimates [28]. For the
Parzen window, the relationship between the bandwidth (B,,)
of the spectral window and the lag t at which correlation
estimates are truncated is B,, = 1.273f;/t. To resolve the
corresponding peaks in the spectrum, we set the window
bandwidth equal to 2.5 Hz, which brings to &~ 51 using
fs = 100 Hz.

To appraise the performance of parametric and non-
parametric approaches, all the time and frequency domain
measures included in the Interaction Information Decom-
position of Egs. (8,9) were computed as defined in
Egs. (7a,7b,7¢,8,9) for each realization and method. Results
of this computation are reported in Fig. 3, showing the distri-
butions across the 100 realizations of all measures, compared
with the exact values obtained from the true model param-
eters. The interaction information decomposition in the fre-
quency domain highlights interaction mechanisms which are
specific of the oscillations simulated at 5 Hz and 35 Hz, as in
the previous subsection. The main spectral peaks displayed
by all measures, whose theoretical profiles are shown by the
red lines in Fig. 3, are well-resolved by both parametric and
non-parametric estimation approaches. The bias and the vari-
ance of the spectral estimates are higher for the WC approach
compared to a VAR model. This finding is confirmed when
the measures are integrated over the whole frequency axis,
as the non-parametric approach tends to overestimate all time
domain measures, with a difference that is statistically signifi-
cant for Fx,.y, Fx,.y and Ix, .x,.y (Wilcoxon test, p < 0.001).

To investigate the effects of an incorrect selection of
the VAR model order in parametric estimation, the spectral
profiles of the interaction information measure were com-
puted for different values of the order in the range p €
{1,2, 3,10, 50}. In a similar way, the effects of windowing
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FIGURE 3. Comparison between parametric and non-parametric approaches for the estimation of time and frequency domain information measures
computed over realizations of the four-node system (Egs. 15) simulated with coupling parameter ¢ = 0.5. The figure depicts the distribution

over 100 realizations (median and 5 — 95'" percentiles) of spectral profiles (a-d) and time-domain values (e-h) of the information shared by the two
sources and the target jointly (fxI Xy ¥+ Fx xp3v (8, €) and individually (fx SYr fxz,y, Fxysyo Fxysyo (b.c.f.g), and of the interaction information (ixy ;X577
Ixysxysve (d.h)) estimated through parametric (PAR, blue lines) and non- parametrlc (No-PAR, orange lines) approaches. In each plot, the true values
computed from the original model parameters are depicted as red lines (theoretical values for time domain analysis: Fx,xy;y = 1.11, Fx, .y = 0.35,
Fx,,y =0.37,Iy .x .y = —0.38). Distributions are depicted as median and 5th _ 95t percentiles of the frequency profiles, and as violin plots with
probability densities estimated using the kernel density estimator (with dots representing outliers) for the time domain measures. Results of Wilcoxon

test comparing PAR and No-PAR: *p < 0.005.

in non-parametric estimation was investigated changing the
spectral bandwidth in the range B,, € {30, 10, 5, 2.5, 0.5} Hz,
which corresponds to truncating the correlation estimates at
the lags T € {5, 15, 25, 55, 500}. The interaction informa-
tion was computed for frequencies ranging from O to the
Nyquist frequency (f;/2 = 50 Hz), and values indicative
of the overall information shared among the processes in
the low frequency (LF, 0.05 — 6.5 Hz), high frequency
(HF, 34 — 36 Hz) bands, as well as over the entire frequency
range (TOT, 0 — 50 Hz) were obtained. The LF and HF bands
were centered around the two frequency peaks of the target
process (5 Hz, 35 Hz), with bounds defined at the frequencies
corresponding to —3 dB attenuation of the power spectrum.
The average values of the interaction information within these
bands, depicted as distribution of values over 100 realiza-
tions of the simulation, are depicted in Fig. 4. Looking at
the estimates within the LF and HF bands (Fig. 4(a,b,d,e)),
in the case of parametric estimation (blue violin plots) the
interaction information exhibits the lowest bias when p = 3,
which represents the true model order. The bias becomes
very strong for model order p = 1, while it is much less
evident when the model order close to the true value (p = 2)
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or is overestimated (p = 10, p = 50); the variance of the
estimates tends to increase with higher model orders. In the
case of the non-parametric approach (orange violin plots)
the median value of the interaction information is quite far
from the theoretical value when the number of lags con-
sidered for the estimation is low (r = 5), and decreases
progressively when the maximum lag used increases up to
T = 500; on the contrary, the variance of the estimates shows
a clear tendency to increase with the truncation lag 7.

The distribution of the interaction information ix,.x,.y (f)
integrated over the whole frequency axis, corresponding to
the time domain measure Ix,.x,.y, is depicted in Fig. 4(c,f),
and the corresponding estimates of bias and variance are
reported in Table 1. The results confirm the opposite trends of
the bias and the variance of the estimates as, for both estima-
tion methods the bias increases when the variance decreases,
and vice versa.

IV. APPLICATION TO PHYSICAL SCENARIOS

This section reports the application of the framework
developed for the analysis of interaction between blocks
of multivariate processes in the frequency domain.
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FIGURE 4. Effect of estimation parameters on spectral estimates of the interaction information of simulated time-series. Violin plots depict the
distributions across 100 realizations of the interaction information Iy, Xp3¥ obtained integrating the frequency domain measure iy .x_ .y (f) computed
using the parametric (blue box plot) and the non-parametric approacl1 (orange box plot) over the low-frequency range (LF, 0.05-6.5 Hz; (a,d)), over the
high-frequency range (HF 34-36 Hz, (b,e)) and over the whole frequency range (TOT, 0-50 Hz; (c,f)). The probability densities of the violin plots are
estimated with the kernel density estimator; dots represent outliers, true values are indicated by the red dotted lines.

TABLE 1. Values of bias and variance (average over 100 realizations of
the simulation) of the time domain measure of interaction information
obtained using parametric (PAR) and non-parametric (No-PAR) estimation
approaches for different value of VAR model order p and truncation lag =
for the estimation of spectral and cross-spectral densities.

Par | BIAS | Variance | NoPar | BIAS | Variance |

p=1 017 | 2x1073 =5 0.16 | 2x1073
p=2 | 0025 | 3x1073 | t=15 | 023 1x1073
p=3 | 0026 | 3x10™* | £=25 | 0.15 9x 10~
p=10 | 0.027 | 3.8x107* | 7=55 0.07 8x 1074
p=50 | 0033 | 7x107* | =500 | 0.12 | 25x1073

Three analyses were performed considering rather diverse
complex systems which, perhaps counter-intuitively, present
some notable common features. While brain units, electronic
oscillators and climate systems exhibit oscillations in very
different frequency ranges, a common thread throughout
these systems is the fact that their subsystems are often syn-
chronized across multiple time scales. In the brain, there are
some dominant rhythms in different frequency bands which
synchronize across spatial regions, often reflecting functional
tasks such as memory, cognition and attention [40]. Coupled
electronic oscillators display common dynamics in time and
space, which occur at different frequencies as a result of
direct structural links but also non-trivial phenomena such as
remote synchronization [41]. Climate systems are influenced
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not only by land temperatures, but also by storage of heat
and carbon dioxide in the oceans, which depends on physi-
cal and biological processes occurring across multiple time
scales [42].

In the first application we analyzed the human brain,
which provides a rich and important terrain to study the syn-
chronization of neuronal populations and circuits endowed
with higher-order interactions. In neuroscience, for example,
a ubiquitous challenge consists of trying to infer functional
brain networks from recorded EEG signals. However, this
task, known as “network inference”, is highly non-trivial
and often reduced to the study of pairwise interactions [3].
In this context, our first application concerns the analysis
of high-order interactions as indexed by the EEG signals
of 109 healthy subjects during the execution of a motor
task [22]. It is well-established that adults present §-12 Hz
(i.e. n) and 16-26 Hz (i.e. B) rhythms in the EEG recorded
from the scalp over the primary sensorimotor cortex. These
rhythms show amplitude fluctuations that are synchronized
to movement initiation or imagery [43]. Besides specific
oscillations in the frequency domain, a recent meta-analysis
of functional MRI studies found contralateral primary motor
cortex, contralateral somatosensory regions, and pre-motor
regions activated during motor task execution [44]. Given

VOLUME 9, 2021



Y. Antonacci et al.: Measuring High-Order Interactions in Rhythmic Processes

IEEE Access

their clearly defined occurrence, the information derived from
these oscillations and their localization on the scalp has also
been used for developing brain-computer interfaces [45].

Subsequently, we considered a dataset of multiple
time-series recorded from a unidirectionally-coupled ring
wherein each unit consists of an electronic non-linear chaotic
oscillator [46]. These oscillators exhibit very rich dynam-
ics that have previously been studied by considering pair-
wise interactions, estimating Granger causality and transfer
entropy in their bivariate form [46], [47], however without
considering higher-order interactions. Previous analyses have
established a form of “‘remote synchronization” which takes
place in this network of electronic oscillators, manifested as
a dip and subsequent recovery of synchronization measures
computed varying the distance between nodes in the ring [23],
and have elucidated in detail the underlying mechanisms,
consisting in amplitude modulation and interference phenom-
ena between the higher and lower sidebands of a predominant
oscillation in the system [46]. The study of chaotic oscillators
over the last years has raised considerable interest owing
to the ability to replicate emergent properties characteris-
tic of biological, particularly neural systems. For instance,
the amplitude modulation and interference effects previously
unveiled in the dataset analyzed here [46] have been previ-
ously observed in patterns of local field potentials of neuronal
populations [48]. Notably, an electronic circuit provides a
system of drastically reduced scale and complexity compared
to a physiological one, yielding full access to the activity of
each node. This is akin to considering a micro-scale system
and description, as opposed to a macro-scale one.

Finally, we applied interaction information decomposition
in the frequency domain to discover higher-order interactions
between time-series representative of the climate system.
Knowingly, the Earth’s climate system hosts a myriad of
nested and coupled sub-systems, operating at diverse tem-
poral and spatial scales [49]. The climate system provided
the initial inspirations for developing fundamental theories in
chaos and complexity; moreover, it has been demonstrated
that the climate dynamics are chaotic at specific scales while
being stochastic or even regular at others [50]. For example,
different studies have proved the existence of cause-effect
relationships between temperature and carbon dioxide con-
centration and how the latter can Granger-cause temperature
increase [24], [38]. For these reasons, higher-order measures
in the frequency domain can be used to study the units of
this system, showing how their oscillatory components can
cooperate, when taken together or individually, in exchanging
information.

A. EEG RECORDINGS

The analyzed dataset refers to EEG signals recorded, in
109 healthy participants, from 64 electrodes referenced
to both mastoids as per the international 10-20 system
with a sampling frequency of f; = 160 Hz [22].
All data were drawn from a publicly-available dataset
(https://physionet.org/content/eegmmidb/1.0.0/) and no new
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experiments were performed as a part of this work. The
conditions analyzed in this work include two two-minute runs
of a motor execution task performed as follows. First, a target
was visualized on the right side of the screen (RIGHT condi-
tion), and the participants were asked to open and close the
right fist cyclically until the target disappeared; afterwards,
the participants relaxed (REST condition). The raw signals
were firstly detrended, then filtered with two second-order
Butterworth filters (band-pass, 2-35 Hz; notch, 59-61 Hz),
and finally epoched to extract ~23 trials for each condition
and participant with a duration of 4 s each. For our analysis,
we selected as sources X| and X3 the groups of EEG channels
[FCs, FCy, FCs], [Ca, C4, Cg] and as a target Y the group
composed by [Cy, C3, Cs] (Fig. 5 (a)). The data in each
trial were tested for a restricted form of weak-sense sta-
tionarity [51] and, subsequently, parametric estimates of the
spectral information measures were obtained for each subject,
experimental condition and trial. A VAR model was identified
from the nine selected time-series setting the model order
according to the MDL criterion. The Durbin-Watson test for
whiteness of the innovations, testing the absence of serial
correlations in the VAR residuals, was performed [33]; then,
the estimated VAR parameters (VAR coefficients and input
covariance matrix) were used to compute the PSD matrix
for the three multivariate processes according to (6), and
the frequency-domain functions measuring the information
shared between the target and the two sources and the inter-
action information were obtained as described in Section II.
Moreover, to assess the statistical significance of interac-
tion information in the frequency domain, the surrogate data
analysis described in Sect. II-D was applied separately for
each trial, participant and condition. Finally, values indica-
tive of the overall information shared within the o and 8
bands were obtained by integrating the measures over the
appropriate frequency ranges; e.g., for the interaction infor-
mation, Ix,.x,.y(@) = %]812 ix;;: X v (F) dfs Ixyixpv (B) =
2 [ ixxr () df.

Fig. 5(b,c,d,e) reports the grand-average over participants
and trials of the frequency profiles for each information
measure, computed separately for the REST and RIGHT
conditions and depicted over the frequency range under con-
sideration (1-40 Hz). For each frequency-domain measure,
the spectral profiles feature a prominent peak around 10 Hz
(o band), almost unchanged between the two conditions, and
a reduction of the average value in the 8 band (16-26 Hz)
during the RIGHT compared to the REST condition.

The spectral measures quantified statistically significant
amounts of information shared between the processes at
each frequency. In particular, in Fig. 5(f,g) the grand-average
profiles of ix,.x,.y(f) computed in the two conditions are
compared with the 97.5™ percentile of the distribution of the
measure computed for the surrogate time series, showing a
statistically significant redundant contribution in the network
with a prominent peak in the o band, which tends to decrease
towards 30 Hz.
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FIGURE 5. (a) Overview of the EEG electrode montage highlighting the positions of the target process Y covering the he contralateral motor area
(channels [C,, C5, C5]) and of the two source processes X; and X,, covering the ipsilateral premotor areas (channels [FC,, FC4, FCg] and ([C;, C4, Cg))-
(b-e) Spectral profiles (mean (bold line) and 25" — 75! percentiles (shades) over 109 participants) of the information shared between the two sources
and the target jointly (fy 1Xg3Y) and individually (f,(l Ly fxz; y). and of the interaction information (ix,3x557) obtained during relaxation (REST, green lines)

and while closing the right fist (RIGHT, orange lines). (f-g) Distribution of the spectral profiles of the interaction information computed separately for
REST and RIGHT conditions, compared with surrogate distributions (gray lines). (h-i-I) Violin plots depicting the distribution across participants of the
information measures obtained by integrating the corresponding spectral measures over the whole spectrum (h), within the « band (8-12 Hz, (i)) and
within g8 band (16-26 Hz, (I)), computed during relaxation (REST) and closing the right fist (RIGHT). Wilcoxon test comparing REST and RIGHT conditions:

*, p < 0.05, corrected for multiple comparison across four measures.

Fig. 5(h,i,]) depicts the violin plots for the distribu-
tions across participants of all spectral information measures
integrated over the whole frequency spectrum, « and 8 bands,
computed separately for the REST and RIGHT conditions.
By analyzing the distributions obtained for each measure, the
information shared by the two sources taken together and
the target (Fx,x,;y) assumes the highest values, generally
between 1 and 3 nats, the amounts of information shared by
the target and a single source are comparable (with a slight
prevalence of Fy,.y over Fy,.y), and the lower values are
attained by the interaction information Ix,.x,.y. A tendency
towards a decrease of all information measures is noticeable
during motor task execution (RIGHT, orange violin plots)
compared to the resting condition (REST, green violin plots).
Such a decrease is not significant for any measure in the
whole spectrum and in the « band, while it is statistically
significant (Wilcoxon test, p < 0.05) for the measures Fy,.y
and F, x,.y computed in the B band.

Thus, the application of our framework to real EEG signals
recorded during the motor execution task showed a statis-
tically significant reduction of the information exchanged
in the B frequency range (16-26 Hz) associated with
the execution of the movement of the right hand. This
result can be related with the physiological phenomenon
of event-related desynchronization [52]. Importantly, the
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time-domain measures and the measures computed in the
frequency range where the EEG activity is prominent (« band,
8-12 Hz) did not vary significantly during the task. These
findings highlight the importance of analyzing multivariate
EEG interactions within specific frequency bands to obtain
markers of motor execution potentially useful for the design
of brain-computer interfaces.

B. ELECTRONIC CHAOTIC OSCILLATORS

The second application is relevant to a ring of coupled elec-
tronic oscillators, for which the structural diagram of the
oscillator circuit is visible in Fig. 6(a). The circuit consists of
four summing stages associated with low-pass filters. Three
of such stages with negative gains G| = —3.6, G, = —3.12,
G4 = —3.08 and filter frequency F; = F, = F3 = 2 kHz
are arranged as a ring oscillator. Two Integrator stages with
integration constants K1 = 3.67, K> = 0.11 Ms_l and mixing
gains G3 = —0.5 and Gs = —0.71 are overlapped to this
structure. The ring is completed by the fourth summing stage
having F4 = 100 kHz > F; with one input (gain G¢ =
0.132) which is necessary to close the internal ring itself and
another input (gain G; = —1.44) connected to the previous
oscillator in the ring network (Fig. 6(b)). To limit the voltage
swing, an inverter with gain Go = —0.4 is provisioned. The
recorded time-series have a length [ = 65536 points, are
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FIGURE 6. (a) Diagram of the oscillator circuit instanced at each network
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comprising 32 oscillators. (c) Graphical representation of the
three-variate system analyzed for each target system S;,i =1, ..., 32.

sampled with a sampling frequency f; = 100 kHz and are
freely available [53].

The frequency spectrum of each node presents three dis-
tinct peaks: the most prominent (central one) at f, ~ 2.8 kHz,
and two weaker ones (sidebands) at f; = f./2 =~ 1.4 kHz and
fn = fi +fc = 4.2 kHz. The higher sideband represents the
mirror frequency of the lower one. Due to the presence of
the integrators and their associated saturation non-linearity,
another oscillatory component is generated in the frequency
range of the lower sideband, caused by the demodulation
action of the system. Depending on the phase relationship
between the low-frequency component of the input signal and
such demodulated signal, constructive or destructive inter-
ference can arise [46]. These phenomena, taken together,
lead to spatial fluctuations of the lower sideband amplitude,
which engender a pattern with features closely related to the
remote synchronization effect [41]. In this system, remote
synchronization manifests as a non-monotonic decay of syn-
chronization along the ring, wherein the average synchroniza-
tion drops with increasing distance from a given node, then
increases transitorily, and finally vanishes [46].
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As said, it is known that in this system, moving away
from a node, synchronization initially decays, then gradu-
ally increases up until a distance ~8 nodes, and eventually
vanishes [46], [47]. However, the structural couplings on the
ring are only between first neighbors as indicated by the
master-slave configuration in Fig. 6(a). For these reasons,
we choose the target and sources to be analyzed with multi-
variate information measures as reported in Fig. 6(c); specif-
ically, denoting {Si}?il the set of voltage signals recorded
from each oscillator in the ring, the target process is varied
alongside the ring structure (Y = S;), the first source is
kept at a distance of two nodes from the target (X = Siy2),
and the second source is varied keeping a distance from the
target of at least four nodes (X, = Si14,d > 4). Before the
analysis, for each network node i, the three time-series mea-
sured as voltage output by the two sources and the target were
sub-sampled by a factor of 10 (yielding a sampling frequency
of fy = 10 kHz) and normalized to zero mean. Then, for each
node, the spectral measures and their integrated versions in
the time domain were obtained as follows. First, the data were
tested for a restricted form of weak-sense stationarity [51];
Then, a VAR model was identified on the three time-series
using the OLS method to estimate the model coefficients
and setting the model order according to the MDL criterion.
Afterwards, the Durbin-Watson test for whiteness of the VAR
residuals was performed [33], the estimated model parame-
ters were used to compute the PSD matrix and the informa-
tion measures for frequencies ranging from 0 to the Nyquist
frequency f;/2 = 5 kHz, and the overall information shared
among the processes was determined by integrating the mea-
sures over the entire frequency range. Furthermore, to assess
the statistical significance of interaction information in the
frequency domain, the analysis of surrogates as described
in II-D was performed. The entire analysis was then repeated
considering, for any given targetnode S;,i =1, ..., 32, each
of the 25 possible triplets {S;, Sit+2, Si+q}, d > 4.

The results of the interaction information decomposition
in the frequency domain are reported in Fig. 7(a-d). The
profile of each measure is evaluated for each target and each
distance d, and then averaged over all targets in the ring.
In general, all analyzed measures reveal information shared
among the processes at frequencies corresponding to the
central peak (f = 2.8 kHz) and to the two side-bands (lower,
f = 1.4 kHz and higher, f = 4.2 kHz). The information
shared between the source X; and the target Y (distance
from the target equal to 2) reported in Fig. 7(a) shows com-
pletely overlapped trends regardless of the distance between
X, and Y. This is not the case for the information shared
between X, and Y and the information shared jointly between
{X1,X>} and Y, which show a reduction of the correspond-
ing information measures as the distance between X, and
the target increases (Fig. 7(b,c)); this is particularly evi-
dent in the frequency ranges corresponding to the lower and
higher side-bands. The analysis of interaction information
reported in Fig. 7(d) reveals a strong redundant contribution
at ~3 kHz corresponding to the central peak, as well as
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ring. The profiles are reported for four different distances of the source X, from the target, with d = 4 (blue line), d = 8 (black line), d = 12 (green
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profiles of interaction information integrated over the entire frequency range for different distances between the considered target i and the source X,.

a synergistic contribution of both the lower and higher
side-bands for a distance equal to 4, which gradually vanishes
with the increasing of the distance (Fig. 7(d)). All these
interactions, including the synergistic ones found in the two
sidebands for d = 4, resulted as statistically significant
according to the surrogate data analysis (Fig. 7(e)).

The analysis of the integrated measures (Fig. 7(f)) high-
lights that the information shared between the source X; and
the target Y is independent of the distance d between the target
and the second source X, (red line), while both the informa-
tion shared between X, and Y (blue line) and the information
shared between {X1, X»} and Y (green line) decrease with the
distance, reaching a minimum for d = 16 (farthest point
from the target). Moreover, the interaction information (black
line) shows the prevalence of redundancy between the three
processes for all distances, with a maximum value at d ~ 8
and a minimum at d ~ 16.

In summary, this section sought clarity on the mechanisms
underlying the constructive or destructive interference in the
ring that is mostly related with the interaction between lower
and higher sidebands. This has been performed in both time
and frequency domains by analyzing the presence of redun-
dancy or synergy in the system. By doing so, we found
that the highest value of redundancy is related to the most
prominent peak of activity (f = 2.8 kHz), but also that
synergy can arise depending on the distance between X, and
the target. In particular, significant synergistic effects emerge
for d = 4, reflecting coupling mechanisms between oscilla-
tors not directly connected via physical links. These findings
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elucidate the complex nature of the interactions between the
analyzed oscillators, and suggest that the linear analysis of
high-order interactions confined to frequency bands related
to known demodulation effects [46] can disclose constructive
synchronization phenomena in nonlinear systems.

C. CLIMATE DYNAMICS

In the third application we considered the interaction
information decomposition of time-series representing the
dynamic activity of three environmental variables: global
land temperature (TL), global temperature of the ocean (TO),
and carbon dioxide volume (CO;). These three variables are
strictly interconnected with the carbon cycle. In particular,
the latter is consumed mainly through photosynthesis on
land and by absorption in cold ocean waters, while it is
released from warm ocean waters; furthermore, the circu-
lation of ocean waters from warm to cold zones, and vice
versa, promotes both consumption and production of CO»,
with rates that are strictly dependent on temperature and gas
concentration [54]. The TL and TO time-series used in this
study were downloaded from the NOAA National Center for
Environmental Information [55], providing global tempera-
tures in terms of the average land and ocean temperature
measured over the 20" century. The CO, time-series was
collected by the Mauna Loa Observatory, Hawaii [56] and
consists of the monthly average mole fraction of CO; in the
atmosphere, i.e., the number of molecules of CO; in every
one million molecules of dry air. Dates starting from Jan-
uary 1980 to April 2019 (maximum overlap between the CO,
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and temperature datasets) were selected, so that the resulting
dataset includes 3 time-series comprising 492 points each.
Each time-series was first detrended by applying an /;-norm
filter to fulfill stationarity requirements, and then normalized
to zero mean and unit variance. Subsequently, the seasonal
oscillatory component was removed by calculating the indi-
vidual monthly temperatures and subtracting them from the
time-course temperatures for that month. The resulting time
series are shown in Fig. 8(a-c). The data were then tested for
a restricted form of weak-sense stationarity [51]

In this case, we performed non-parametric estimation of
the measures of information decomposition computed in both
time and frequency domains. Specifically, given that data
have a sampling period of 1 month, we selected a Parzen
window with bandwidth B,, = 0.025 month™~!, which cor-
responds to a number of truncation points of the correlation
functions t = 51 (see Eq.13). The information measures
were derived selecting the global land temperature as target
process (Y =TL), and the temperature of the ocean and the
carbon dioxide volume as sources (X; = TO X, = CO5). The
statistical significance of the interaction information measure
computed in the frequency domain was performed via the
method described in II-D, setting the same t for each of
the 200 surrogate triplets.

Fig. 8 shows the spectral profiles of information shared by
the TL (target, Y) and the two sources (X; = T0, X, =
CO,) (Fig. 8(d)) and of the interaction information among
the three processes (Fig. 8(e)); the latter is depicted together
which its distribution over 200 surrogate triplets. The inter-
action information show a significant redundant contribution
(ix,;x,;y > 0) at low frequencies (corresponding to a time
scale of about 32 months) that is mostly due to the similar
trends of fy,.y (red line) and fx,x,.y (green line). On the
other hand, the measure computed at high frequencies (time
scale of about 4 months) reveals a statistically significant
synergistic contribution (ix,.x,;y < 0), indicating that the
two sources provide additional information about the target
when they are considered jointly rather than separately. The
time domain analysis returns instead the following integrated
measures: Fy,.y = 0.13, Fx,.y = 0.06, Fx,x,.y = 0.16
and Ix,.x,;y = 0.02. Interestingly, the integrated interaction
measure (Ix,.x,.y) takes a small positive value suggesting the
presence of net redundancy, thus preventing the detection of
coexisting redundancy and synergy which is instead revealed
at different time scales looking at the spectral measure.

In summary, the results of our analysis of climate data
highlight again the importance of measuring higher-order
interactions in the frequency domain. Indeed, while the
time-domain analysis of high-order interactions indicates
only a small amount of redundancy, and while pairwise inter-
actions in the frequency domain merely reflect the coupling
between TL and TO and between TL and CO; at ~4 and
~32 months, the spectral measure of interaction information
reveals non-trivial mechanisms at the shorter time scales. The
main property disclosed by this measure is the emergence of
synergy at ~32 months, suggesting that the land temperature
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is linked to ocean temperature and carbon dioxide volume
through different mechanisms at this time scale.

V. DISCUSSION

The present work extends the framework recently proposed
for the frequency-domain evaluation of high-order interac-
tions among stochastic processes [19] to the analysis of net-
work systems formed by an arbitrarily large number of nodes.
Moreover, the framework is endowed with a model-free esti-
mation approach that is compared with the parametric estima-
tor in simulated data. Finally, it is validated experimentally
in three real-world scenarios relevant to network systems that
produce output signals oscillating in very different frequency
ranges and displaying signatures of pairwise coupling as well
as higher-order effects.
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A. THEORETICAL EXAMPLE AND SIMULATION

The theoretical example was designed to show how redundant
and synergistic interactions between oscillations manifested
with the same frequency in different signals can arise from the
interplay between direct and indirect coupling mechanisms,
and can be elicited from the spectral profiles of the infor-
mation measures better than from their time domain values.
We showed that redundancy may arise as a consequence of
indirect interaction effects, such as the coupling between a
source and the target mediated by another source, synergy
may arise from interactions occurring independently between
each source and the target at nearby frequencies, and that
synergy and redundancy may coexist being simultaneously
present in different frequency bands (Fig. 2(e)). Importantly,
these frequency-specific interaction mechanisms may be
hidden if one looks at the standard time-domain represen-
tation of information, as a result of the integration between
positive and negative interaction information values pro-
duced at different frequencies (Fig. 2(e) vs. Fig. 2(a)). The
results obtained here in terms of the time-domain inter-
action information are in agreement with the observation
of synergy and redundancy at different time scales made
in Ref. [38] by employing a more sophisticated approach
based on state-space models and partial information
decomposition [14].

The following simulation study was conducted to assess
the performance of parametric and non-parametric estima-
tion approaches. First, we focused on quantifying the bias
and variance of the two estimators in both time and fre-
quency domains. The results shown in Fig. 3 highlight better
performance, in terms of lower bias and variance, of the
parametric approach compared with the non-parametric one.
This is not surprising as the time series were generated
from a VAR process with known model order; at any rate,
the non-parametric estimator displayed a good capability to
replicate the theoretical profiles of the information measures.
The second analysis aimed to show the dependence of the
interaction information measure on the estimation parame-
ters. The results reported in Fig. 4 indicate that both the para-
metric and the non-parametric approach exhibit considerable
variability of the interaction information with the estimation
parameters (respectively, the model order p and the length
of the window used to compute correlation sequences). Both
approaches are subject to the bias-variance trade-off [31]:
in parametric estimation, underestimation and overestima-
tion of the order p lead respectively to increased bias and
increased variance; in non-parametric estimation large values
of t allow the spectral window to behave as an impulse
function, leading to smaller bias and higher variance. Fur-
thermore, a non-parametric approach requires proper selec-
tion of the window type and bandwidth (inversely related
to 7) in order to obtain the desired trade-off between accu-
racy and spectral resolution. Both methodologies have merits
and drawbacks: non-parametric estimates are more generally
applicable, as the WC estimator does not make assumptions
about the data except broad-sense stationarity; parametric
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estimates, being based on a rational transfer function model
of the data, are more restrictive in this sense, but yield more
accurate spectral estimates (and thus information estimates)
when the model fits appropriately the data. On the other hand,
when the model is incorrect, non-parametric approaches out-
perform the parametric ones [31]. As a practical hint, we rec-
ommend testing the model assumptions (i.e., whiteness and
uncorrelation of the model residuals) after model identifica-
tion, and evaluate the utilization of classical spectral estimates
when such assumptions are not verified.

B. EEG RECORDINGS

The study of human brain activity during motor imagery or
motor execution plays an important role in clinical neurology
and neuroscience. Any motor action results from a dynamic
interplay between separate brain regions and involves diverse
processes underlying movement preparation and execution.
A well-established body of literature indicates an intrinsic
balance between excitatory and inhibitory couplings among
brain regions and between the hemispheres [57]. According
to this knowledge, in our multivariate analysis we selected
the three EEG signals recorded from channels located on
the hemisphere contralateral to the right-hand motor execu-
tion (Y = [Cy, C3, Cs]) as vector target process, and two
different groups of EEGs from the ipsilateral hemisphere
as sources (X1 = [FCy, FCy,FCgl, X = [Ca, C4, Cs)).
With this choice, the activity of the target could be related
to the primary motor cortex (M1) of the contralateral (left)
hemisphere, and that of the sources to the prefrontal motor
cortex (PMC) and the supplementary motor area (SMA) of
the ipsilateral (right) hemisphere [58].

Functional MRI studies have demonstrated that M1, SMA,
and PMC are strongly involved in the planning and execution
of hand motor tasks [59], and identified a well-defined brain
network supporting the execution of right-hand motor execu-
tion tasks [60], [61]. Specifically, a positive coupling param-
eter has been inferred between M1, SMA, and PMC of the
contralateral hemisphere, accompanied by cross-inhibition
of neural activity between the two M1 areas during task
execution. Our results show a reduction of the measure
of information shared between the EEG activity recorded
from the electrodes associated with M1 and PMC (Fy,.y),
as well as with M1 and {PMC,SMA} (Fx,x,:y), during
motor execution compared to the REST condition (Fig. 5).
Notably, the reduction turns out to be statistically signifi-
cant only when the information measures were integrated
within the B frequency range (16-26 Hz). This modifi-
cation of the information shared between groups of EEG
signals could be related to event-related desynchronization
effects [52].

Our findings are supported by other studies performing
brain connectivity estimation in both time and frequency
domains, which documented a decreasing degree of connec-
tivity associated with motor task execution in the contralat-
eral hemisphere [8], [62], [63]. Nevertheless, while in this
application we demonstrated the usefulness of evaluating

VOLUME 9, 2021



Y. Antonacci et al.: Measuring High-Order Interactions in Rhythmic Processes

IEEE Access

information measures within specific frequency bands,
we did not find distinctive patterns of high-order interac-
tions showing the potential to improve the performance
of BCI systems beyond the use of classical event-related
measures [52]. The dominant redundancy detected in all
experimental conditions is likely related to effects of vol-
ume conduction that blur connectivity patterns identified at
the level of scalp EEG sensors [64]. For more informative
analyses also allowing a more precise biological interpreta-
tion of the inferred connectivity patterns, we recommend the
computation of spectral information measures at the level of
the cortical sources identified applying source reconstruction
techniques [65].

C. ELECTRONIC CHAOTIC OSCILLATORS

The time-series considered in the second application index
the dynamic activity of a ring of thirty-two chaotic oscil-
lators, for which the master-slave unidirectional structure
guarantees a higher level of stationarity and more elementary
dynamics with an a-priori well-known topological structure
compared to physiological systems. The literature pointed out
how systems like this replicate the spontaneous formation
of multi-scale community structure as a function of cou-
pling strength, with similarities to the modular organization
observed of brain networks [66], [67]. For this reason, it is
reasonable to assume that chaotic oscillators could be taken
as a benchmark for testing in physical scenarios new methods
developed to study the interactions between more intricate
dynamical systems.

In this context, the application was devised to test the
proposed framework in a system where the emergence of
complex behaviors was previously rigorously explained, and
could support the interpretation of the patterns of multivariate
information assessed in the frequency domain. In particular,
in this specific system the non-linearity of the oscillators
enables substantial energy exchange between the lower and
higher side-bands (1.4 kHz and 4.2 kHz) through demodu-
lation and interference phenomena [46]. The initial exper-
imental investigations of this system [67] have identified
that the point of maximally-destructive interference between
the lower side-band and the demodulated signal occurs at a
distance between nodes around six steps [46]. These complex
nonlinear interaction and demodulation effects manifested as
an interplay among the three different peaks are reflected in
our frequency specific analysis of interaction information by
the co-occurrence of redundant and synergistic information
exchange. According to our results (Fig. 7), redundancy is
naturally related to the information carried by the main oscil-
lation at 2.8 kHz, while synergy is revealed for the lower
side-bands mirroring the interference phenomena observed
in [46]. Also, the distance between nodes is in agreement
with the detection of remote synchronization, as the statis-
tically significant synergistic behaviors are associated with
the lower side-band when d < 6 and become entirely
redundant for d > 6. Contrary to the insights provided
by frequency-specific analysis, the time domain measure
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obtained integrating the interaction information across all fre-
quencies depicts purely redundant contributions (Fig. 7(f)).
This finding, though being far less informative about the
coupling mechanisms arising in the system, is in agreement
with previous investigations [41], [66]. In fact, the peak of the
interaction information detected at a distance d = 8§ between
the second source and the target is consistent with a maximum
of the cross-correlation coefficient at a distance d & 8§ over
the ring between node pairs not directly connected with a
physical link but connected with a group of intermediary
nodes weakly synchronized with them [66].

D. CLIMATE DYNAMICS

As a third application, we studied the interactions between
three time-series representative of the behavior of the global
climate system: the global temperature of the land, the global
ocean temperature and the carbon dioxide concentration.
These time-series have been widely studied using bivariate
analysis, documenting a strong correlation between global
sea surface temperature variability and land surface temper-
ature [68] as well as between the rise of CO; and global
warming [69]. Previous analyses based on linear modelling
have focused on the inference of directed links, demonstrat-
ing that the level of CO; in the atmosphere causes the global
land temperature [24], [70], but also showing that higher
global temperatures promote a rise of greenhouse gas levels,
thus establishing a positive feedback [71]; the direction of
interaction between land temperature and CO; appears to be
dependent on the time-scale [38].

The observation of coupling patterns dependent on the time
scale motivates our frequency-specific analysis of interac-
tion effects. Specifically, we found that the circuit formed
by global land and ocean temperatures and CO; emissions
is significantly redundant at low frequencies (time scale
~32 months), and significantly synergistic at higher frequen-
cies (time scale ~4 months). The redundancy measured at
the longer time scales can be related with the positive feed-
back between CO, concentration and the average tempera-
ture [54], documenting common mechanisms underlying the
variations of land or ocean temperature and the dynamics of
CO3. On the other hand, the synergistic effects observed at
the faster scale (~4 months) can be related with the turning of
the seasons, which seems to involve separate mechanisms in
driving the coupling between land and ocean temperatures on
the one side, and land temperatures and CO» on the other side.
The fact that the synergistic mode is found to be faster than
the redundant mode, in this example, is also worth of further
investigation to check whether it corresponds to a general
feature of these systems and if the same phenomenon holds
in other data sets.

VI. CONCLUSION AND IMPLICATIONS

Collective phenomena in complex network systems often
emerge from multiple links among many elementary sub-
systems that may occur through different mechanisms and
can be detected only going beyond the framework of
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pairwise interactions. This work demonstrates that higher-
order interactions in a multivariate set of dynamic processes
can remain hidden if they are investigated exclusively in the
time domain, and that such processes may display redun-
dancy in a certain frequency range and synergy in another
range. This implies that in some applications of network
measures to real-world systems the frequency decomposition
of information-theoretic measures is mandatory. We docu-
mented this aspect in three rather diverse systems endowed
with rich oscillatory dynamics, obtaining results that can fos-
ter the implementation of practical applications in the relevant
field of study.

In the study of collective brain dynamics where informa-
tion is typically retrieved within specific frequency bands,
we showed the importance of focusing on the § EEG waves
while analyzing multivariate interactions during motor exe-
cution and imagery tasks. While our results provide a dis-
criminative parameter that can serve as an additional feature
to be employed in brain-computer interfaces, the identifica-
tion of non-pairwise interactions at the level of individual
brain rhythms may also aid in the recognition of pathologi-
cally altered brain states such as schizophrenia, epilepsy, or
dementia [38], [72].

In the study of coupled chaotic oscillators, the inference of
pairwise and high-order interactions typically resorts to non-
linear methods [73]. However, the results relevant to the ring
of chaotic electronic oscillators analyzed in our second appli-
cation showed that the effect of remote synchronization [23]
can be described also using linear spectral analysis, which
is more easily applicable on short and noisy experimental
time series. This opens up new possibilities for extracting
measurements from collective activity in distributed sensing
applications.

Finally, in the analysis of climate dynamics, the classi-
cal modeling approaches [74], [75] are nowadays comple-
mented by approaches relying solely on observations [76],
which provide evidence for a statistically meaningful relation
among anthropogenic emissions, natural cycles, and global
temperatures.

To our knowledge, this is the first time that higher order
statistical effects are analyzed in the coupled system of
temperature and greenhouse gases; we showed that a given
set of variables derived from the climate system may dis-
play redundancy and synergy over widely separate frequency
ranges. Though preliminary, these results may bring addi-
tional knowledge useful to elucidate the mechanisms related
to the large-scale drivers of regional climate change, and may
possibly contribute to categorize the effects of human activity
on global climate and, in perspective, to plan strategies to
counteract such effects.
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