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ABSTRACT In active sonar systems, detection always suffers from reverberation interference frommultiple
scatterers in oceanic environments; therefore, numerous studies have been conducted on reverberation sup-
pression. Recently, a non-negative matrix factorization (NMF)-based method was proposed and successfully
applied to reverberation suppression. However, the conventional NMF-based method makes convergence
challenging because the frequency basis matrix is initialized without considering reverberation characteristic
information from oceanic environments. To solve these problems, We propose an improved NMF-based
reverberation suppression method adopting a pre-trained reverberation basis matrix and modified sparse
update rule. The proposed method is evaluated by analyzing simulation and sea experiment data and the
study confirmed that the detection performance was improved compared to the conventional method under
various signal-to-reverberation ratio conditions. Several topics are also discussed to analyze the proposed
method in detail.

INDEX TERMS Active sonar, non-negative matrix factorization, reverberation suppression, pre-trained
basis matrix, sparseness.

I. INTRODUCTION
Active sonar is an underwater surveillance system to detect,
track, and localize targets. An active sonar system trans-
mits pulses to investigate underwater situations and ana-
lyze received signals. During propagation, both the target
as well as the unwanted scatterers reflect the transmitted
pulse. Therefore, interference signals, called reverberation,
corrupt the received signal due to unwanted scatters. Because
reverberation strongly correlates with the signal reflected
by the target, it deteriorates target detection performance.
Accordingly, research on how to suppress reverberation is
essential for active sonar systems [1]–[6].

Autoregressive (AR) prewhitener for continuous wave
(CW) reverberation is an early approach suppressing the
reverberation spectrum using inverse filters, designed by
estimated AR coefficients [7]. An AR prewhitener uses the
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adjacent signal with reverberation as a reference signal to
estimate the reverberation spectrum and design an inverse
filter. The designed inverse filter is used to suppress rever-
beration from the current signal with both the target and
reverberation.

Because a linear frequency modulated (LFM) pulse has a
wideband spectrum, the AR prewhitener for CW reverber-
ation works incorrectly. Therefore, Choi et al. [8] proposed
an AR prewhitener using dechirping transformation as pre-
processing. This pre-processing makes the received LFM sig-
nal tonal spectrum a CW case. Thus, like CW case, an inverse
filter can be designed using AR modeling.

Alternatively, the principal component inversion (PCI)
algorithm has been proposed [9]. It models the reverberation
signal as the sum of multiple reflected signals and estimates
a low-rank approximation of the forward signal matrix using
singular value decomposition. As a follow-up paper, the sig-
nal subspace extraction algorithm [10] modeling reverbera-
tion as the sum of the higher and lower part, and a PCI-support
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vector machine (SVM) algorithm [11] combining PCI and
SVM, were proposed.

Although AR and PCI-based reverberation suppression
methods have been widely used, pulse characteristics are
interpreted and used only from a time or frequency
domain perspective. Recently, Lee and Lim [12] proposed
a non-negative matrix factorization (NMF)-based CW rever-
beration suppression method that simultaneously uses pulse
time and frequency characteristics. The received signal is
transformed into the time-frequency domain, called a spectro-
gram, and the spectrogram is decomposedwith frequency and
time basis matrices. Because a CW target echo is represented
as a straight line in the spectrogram, ideally, only a few
frequency and time bases are needed to represent the target
component. If a new spectrogram is reconstructed using only
the target echo basis, the reverberation is removed, and only
the target echo signal appears. That is, the reverberation has
been suppressed.

As with the AR prewhitener, the NMF-based CW rever-
beration suppression method has been extended to be applied
to LFM reverberation [13]. The modified NMF-based rever-
beration suppression method adopted two pre-processing
techniques, namely, dechirping transformation and modulo
operation. The dechirping transformation presents the LFM
echo signal as a tonal-like spectrum, as with Choi’s method.
The modulo operation prevents the disconnected effect of
block signal processing.

Although the usefulness of the conventional NMF-based
reverberation suppression method has been verified, a prob-
lem exists that convergence might become challenging,
depending on environmental fluctuation because parts of the
W matrix are forced to be fixed, and others are randomly
initialized [12]. Scaling between the target and reverberation
frequency basis component also creates problems.

In this paper, we propose an improved NMF-based rever-
beration suppression method with a pre-trained reverberation
frequency basis matrix to solve the convergence problem
of the conventional NMF-based method. Pre-training the
reverberation frequency basis matrix is performed using adja-
cent signals considering the Itakura–Saito distance, which
measures the spectrum’s similarity. Because the proposed
method learned the frequency basis matrix in advance, its
NMF update process converges stably. To solve the scaling
problem, the power ratio parameter was adopted to balance
the imbalance between the target and reverberation basis.
A modified sparse update rule was also adopted to improve
the NMF update process.

The rest of this article is organized as follows. In Section II,
we present the problem statement, signal model, and con-
ventional NMF-based reverberation suppression method.
In Section III, we present the proposed NMF-based reverber-
ation suppression method. In Section IV, we present the com-
puter simulation and sea experiment analysis, respectively,
to evaluate the proposed method. In Section V, several topics
for the proposed method are discussed. Finally, in Section VI,
we conclude this study.

II. PRELIMINARIES
A. PROBLEM STATEMENT
The CW pulse used in active sonars can be expressed as

sp(t) = exp (j2π fct), 0 ≤ t ≤ T , (1)

where fc is the center frequency and T is the pulse length.

FIGURE 1. The concept of receiving a signal in an active sonar
environment.

Fig. 1 shows the concept of receiving a signal in an active
sonar environment. The sonar platform moves forward with
speed v and the beam is steered to direction θ . The received
beam signal at target direction θ can be expressed as

x(t) = se(t) + sr (t) + n(t), (2)

where se(t) and sr (t) are the received target echo and rever-
beration signals, respectively, and n(t) is the noise signal,
modeled as a zero-mean Gaussian distribution.

The target echo signal can be expressed as

se(t) = aesp(t − τe) exp (j2π fet), (3)

where ae is the attenuation factor and τe is the time delay of
the target echo signal. The target signal’s frequency spectrum
can be expressed as

Se(f ) = aeSp(f − fe) exp (−j2π (f − fe)τe) (4)

where Sp(f ) is the Fourier transform of the CW pulse
in (1). The Doppler shift frequency of echo signal fe can be
expressed as

fe = fc

(
1+

2
c
(v cos θ + ve)

)
= fc

(
1+

2v
c
cos θ

)
+ fc

(
2ve
c

)
, (5)
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where v, θ , c, and ve are the platform speed, beam steering
angle, the speed of sound in underwater, and the relative
target speed with the platform, respectively. From (5), the
target spectrum is around fc

(
1+ 2v

c cos θ
)
, but decided by

its motion.
The reverberation signal can be modeled as the sum of

replica signals of the transmitted pulse from multiple scat-
ters [6], [14]. Because the beam pattern attenuates the rever-
beration effect from other directions, the reverberation signal
in the received beam signal at direction of θ can be expressed
as follows:

sr (t) =
∑
i

aisp(t − τi) exp
(
j2π fdi t

)
, (6)

where ai is the attenuation factor affected by the beam pattern.
τi is the time delay modeled as a uniform distribution over the
interval. The frequency spectrum of the reverberation signal
can be expressed as

Sr (f ) = ai
∑
i

Sp(f − fdi ) exp
(
−j2π (f − fdi )τi

)
. (7)

Typically, scatters are assumed immobile; therefore, the
Doppler shift frequency of ith scatter fdi is determined by
platform speed v and beam steering angle θ and can be
expressed as

fdi = fc

(
1+

2v
c
cos θi

)
, (8)

where θi is the scatter angle. From (8), the reverberation
spectrum is distributed in range of fc

(
1− 2v

c

)
≤ fdi ≤

fc
(
1+ 2v

c

)
in the frequency domain. Note that because the

beam pattern’s sidelobe attenuates the reverberation from
other directions, reverberation spectrum appears in the form
of spreading around fc

(
1+ 2v

c cos θ
)
. Fig. 2 shows the

concept of the frequency spectrum of the received beam
signal described (2) to (8). From this figure, the received
CW target echo signal will be buried in the reverberation
spectrum [1], [14].

FIGURE 2. Concept of frequency spectrum of received beam signal.

The goal of this study is extracting the target echo sig-
nal from the received signal corrupted by reverberation.

To accomplish this goal, the received signal’s spectrogram is
analyzed using NMF, and the components of the target echo
and reverberation are decomposed. Note that we focus on
CW reverberation suppression because it is easy to extend
the NMF-based CW reverberation suppression method to
the LFM reverberation case using the pre-processing method
proposed by Kim et al. [13].

B. NON-NEGATIVE TIME-FREQUENCY MODEL OF THE
RECEIVED SIGNAL
Lee and Seung originally developed the NMF method [15],
inspired by psychological and physiological evidence for
parts-based representations of the brain. The NMF method
limits data to non-negative leading to a parts-based represen-
tation because they allow only additive combinations. There-
fore, the NMF method has the advantage of representing the
sparse matrix.

To apply the NMF method to the received signal, it must
be expressed as a non-negative matrix. Therefore, the
time-frequency analysis method is applied to the received
signal and converted into spectrogram data by taking only the
magnitude component. For this purpose, a short-time Fourier
transform (STFT) is generally used and can be expressed
as [16]

[X](k,n) = STFT [x(m)]

=

∞∑
m=−∞

x(m)w(m− n1h)e−j2πkm/lw , (9)

where x(m) is the sampled received beam signal, w(m) is the
window function of lw samples,m is the index of each sample,
and1h is the hop size. k and n are the frequency bin and time
frame bin indices, respectively. The magnitude square of (9)
yields a spectrogram V as follows:

[V](k,n) = |[X](k,n)|2, (10)

where [V](k,n) is the (k, n) element of matrixV. Furthermore,
the phase information is defined as

6 X(k,n) = tan−1
(
Im([X](k,n))
Re([X](k,n))

)
, (11)

where Re(a) and Im(a) are the real and imaginary parts of a,
respectively.

C. CONVENTIONAL NMF-BASED REVERBERATION
SUPPRESSION METHOD AND ITS LIMITATIONS
From the non-negative spectrogram in (10), we could develop
the NMF method. NMF decomposes the non-negative matrix
into a multiplication of two non-negative matrices [15]. One
advantage of the NMF method is the ability of part-based
representation, meaning that NMF can analyze the sparse
components in the matrix. In the CW active sonar, the CW
echo signal is shown as a straight line, sparse components
in the spectrogram. NMF can extract the sparse component
by analyzing the frequency and time information simulta-
neously; therefore, NMF is suitable for sonar reverberation
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suppression. The NMF model is expressed as

V =WH+ E, (12)

where V ∈ R+K×N , W ∈ R+K×L , H ∈ R+L×N , and E ∈
R+K×N . The matrix V is the spectrogram of the input sig-
nals with K frequency bins and N time frames, and W and
H are the frequency and time basis matrices, respectively.
Further, L is the rank of NMF. The matrices W and H can
be estimated from the input spectrogram V using the mul-
tiplication update (MU) rule using a cost function with the
Kullback–Leibler (KL) divergence [17].

Recently, Lee and Lim [12] proposed an NMF-based CW
reverberation suppression algorithm. To establish the frame
of the algorithm, they first divided the input spectrogram into
the target echo and reverberation parts and applied different
constraints to each basis. The frequency basis matrix W and
time basis matrix H are, respectively, expressed as

W =
[
WP

... WR

]
, (13)

H =

HP
· · ·

HR

 , (14)

where WP ∈ R+K×LP and WR ∈ R+K×LR are, respectively,
the target echo and reverberation parts of the frequency basis
matrix; HP ∈ R+LP×N and HR ∈ R+LR×N are, respectively, the
target echo and reverberation parts of the time basis matrix;
LP and LR are the basis numbers of the target echo and
reverberation, respectively, and L = LP+LR. Then, the NMF
model in (12) can be rearranged as

V =WPHP +WRHR + E. (15)

Because of the division, NMF could estimate information
on the target echo and reverberation separately. In (15), the
additivity assumption of the target echo partWPHP and rever-
beration part WRHR in the NMF model (15) is reasonable
because it agrees with the signal model (2).

The CW target echo components were shown as horizontal
lines in the spectrogram. In other words, the CW target echo
information is concentrated in a narrow or single frequency
bin and is continuous along several time bins. Fig. 3 shows
the meaning of this assumption. In the figure, matrix V
is decomposed as WP, WR, HP, and HR. As WP is fixed
in advance, after decomposition, information on the target
(green cell) in V appears in a form in which a specific region
of the HP matrix is activated on a specific frequency basis
in WP. Therefore, we can reconstruct the target echo signal
fromWP and HP, shown inside the red rectangles.
To use the CW pulse information, in the conventional

NMF-based method, WP is initialized with a set of one-hot
encoded vectors, which represent the specific Doppler target
echoes and are fixed during the update. The target echo
frequency basis matrixWP can be expressed as follows:

WP =
[
wP,1, · · · ,wP,l, · · · ,wP,LP

]
, (16)

FIGURE 3. NMF scheme of two parts, target echo (WP ,HP ) and
reverberation (WR ,HR ).

where wP,l ∈ R+K×1 is the l th target echo frequency basis.
wP,l is expressed as

wP,l = [0, 0, · · · , 1, · · · , 0, 0]T . (17)

The value one is placed at the frequency bin corresponding
to the target echo-Doppler shift. This structure is similar to the
Doppler replica of the matched filter, verifying all hypotheses
of the target Doppler to be detected. Then, other matrices
are updated using the MU rule with several constraints until
convergence is achieved. Finally, echo information is recon-
structed from target echo basis matrices.

Although the conventional NMF-based reverberation sup-
pression method has been well used [12], [13], room
for performance improvement exists. The conventional
NMF-based reverberation suppression method’s limitations
can be explained as follows. First, the NMF update process
of the conventional method is sensitive to environmental con-
ditions because parts of the W matrix are forced to be fixed,
and others are randomly initialized. Therefore, hyperparam-
eters must be set well for NMF updates to converge stably.
Second, the conventional method is sensitive to the imbalance
between the target and reverberation signals because the level
scaling between the target and reverberation frequency basis
components is excluded in the initial W matrix. Accord-
ingly, a problem might occur in that the time basis power
is unfairly estimated and can be concentrated on either the
target or reverberation. Consequently, convergence might not
be performed well, or even if convergence occurs, reverbera-
tion suppression might fail because non-target components
are emphasized. These problems are related to setting the
initial NMF value, and similar cases have been reported in
studies [18], [19].

III. THE PROPOSED NMF-BASED REVERBERATION
SUPPRESSION METHOD WITH THE PRE-TRAINED
FREQUENCY BASIS MATRIX
A. CONTRIBUTION OF THE PROPOSED METHOD
Wemodified the conventional NMF-based reverberation sup-
pression method to overcome its limitations. The main con-
tributions of this article are as follows. First, the reverberation
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FIGURE 4. Converged H matrix using conventional NMF method where parameter α was set to (a) 1 (b) 10 and (c) 50.

frequency basis matrix WR was initialized (pre-trained)
before NMF update to making it stable and robust with envi-
ronmental fluctuations. This concept is widely employed in
speech, audio, and acoustic signal processing [20]–[22], but
we apply it to the sonar reverberation suppression method
for the first time. Second, a power normalization scheme
was adopted to compensate for the imbalance between the
target echo and reverberation signal. The Frobenius norm
was employed to normalize the target echo frequency basis
matrixWP and reverberation frequency basis matrixWR, and
a power ratio parameter was adopted to tune their relation-
ship. Third, sophisticated sparse update rules adjusting the
update rate were proposed. The proposed sparse update rules
measure the sparseness of an updated matrix and applied it to
the step-size parameter of the NMF update.

B. PRE-TRAINING THE FREQUENCY BASIS MATRIX WITH
POWER NORMALIZATION
In the conventional method, WR was randomly initialized
and updated using a simple MU rule. However, since the
target and reverberation are received complexly through
the oceanic environment, and the target is often buried
in the reverberation signal. Therefore, not only the target
component but also the unnecessary reverberation compo-
nent might be activated during the NMF update process.
Although the NMF method provides few constrained options
to enhance the convergence performance, it is sensitive to
the hyperparameter selection. Fig.4 (a), (b), and (c) show the

converged H matrix using the conventional method, where
parameter α was set to 1, 10, and 50, respectively. In the
figures, the red dashed line is the boundary between the
target and reverberation base (based on the boundary line,
the upper and lower parts mean the target and reverbera-
tion bases, respectively). For α = 10, the target component
appeared because NMF converged with ease. For α = 1,
however, unnecessary components besides the target compo-
nent appeared. For α = 50, the target base component was
inactivated.

To overcome the limitations of the conventional method,
we adopted a methodology of taking information from the
reference reverberation signal in research on AR prewhiten-
ers [7], [8] and combined it with the NMF method. This
scheme can be implemented by learning the reverberation
frequency basis matrixWR in advance. Notably, this scheme
of pre-trained basis matrix is widely used in speech, audio,
and acoustic signal processing [20]–[22].

The reverberation frequency basis matrix WR can be
trained with the adjacent time or beam signals under the
assumption that adjacent signals would have similar statis-
tical characteristics of reverberation in the current block sig-
nals. We used the simple MU rule to train theWR in advance
as follows:

WR←WR ◦
[VR/(WRH̃R)]H̃R

1K×N H̃T
R

, (18)

H̃R← H̃R ◦
WT

R [VR/(WRH̃R)]

WT
R1K×N

, (19)
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whereVR is the spectrogram reference signal, which contain-
ing reverberation components; H̃R is a dummy reverberation
time basis matrix, used temporarily to train WR. Notably,
we used the tilde symbol to distinguishHR, which is updated
in the main NMF process. There is a possibility that the
pre-trained and actual reverberation frequency bases might
mismatch. However, if the reference reverberation signal is
locally stationary, there is no problem using it [7], [8]. More-
over, a little mismatch can be compensated for during the
NMF update process. The detailed mismatch issue will be
discussed in Section V-B.

Through (16) to (19), we can initialize frequency basis
matrix W. However, the relationship between the level of
target echo and reverberation signals is excluded in this for-
mula. In this study, we devised a formula considering the
imbalance level. To complete the formula of frequency basis
matrix W, we normalized both target echo part WP and
reverberation partWR using the Frobenius norm and adopted
a new parameter as

W =

[
γ

WP

‖WP‖
2
F

... (1− γ )
WR

‖WR‖
2
F

]
, (20)

where γ is the power ratio parameter and ‖A‖2F is the Frobe-
nius norm of matrix A defined as adding the square of the
absolute value to all elements ofA. The power ratio parameter
γ should be adjusted appropriately to ensure the performance.
This issue will be discussed in Section V-A.

C. ESTIMATING THE TIME BASIS MATRIX WITH THE
MODIFIED SPARSE UPDATE RULE
To use the target echo information that has continuous fea-
tures in the time bin, HP is estimated using a cost function
expressed as [12], [13], [23]

C(WP,HP) = CRE (WP,HP)+ αCTC (HP)+ βCTLL(HP),

(21)

where CRE (WP,HP), CTC (HP), and CTLL(HP) are the
costs of reconstruction error, temporal continuity (TC),
and temporal length limitation (TLL), respectively. α
and β are the weighting parameters for TC and TLL,
respectively [12], [23].

The gradient of each cost is the weighted sum of the
gradients of each cost and expressed as

∇HPC = ∇HPCRE + α∇HPCTC + β∇HPCTLL . (22)

Notably, we omitted the parentheses for convenience. If we
split this gradient into positive and negative terms, (22) is
expressed as

∇HPC =
(
∇
+

HP
CRE −∇

−

HP
CRE

)
+α

(
∇
+

HP
CTC −∇

−

HP
CTC

)
+β

(
∇
+

HP
CTLL −∇

−

HP
CTLL

)
. (23)

Then, we can express the total gradient term as

∇HPC = ∇
+

HP
C −∇−HP

C, (24)

where the positive terms ∇+HP
C and the negative terms ∇−HP

C
are, respectively, given by

∇
+

HP
C = ∇+HP

CRE + α∇
+

HP
CTC + β∇

+

HP
CTLL , (25)

∇
−

HP
C = ∇−HP

CRE + α∇
−

HP
CTC + β∇

−

HP
CTLL . (26)

Consequently, HP can be estimated using [23]

HP← HP ◦
∇
−

HP
C

∇
+

HP
C
. (27)

See Appendix A for detailed definition of each cost and
derivation of each gradient term.

In reference paper [13], a sparse update rule for matrixHP
was proposed to improve NMF performance. Although the
proposed sparse update rules work well, the rapid update rate
due to sparse constraints causes a problem of highlighting
local non-target components and fail to find the target infor-
mation, even if the NMF algorithm converges. Therefore,
we modified sparse update rules for HP as follows

HP←

(
I− D̃

)
HP + D̃

∇
−

HP
C

∇
+

HP
C
HP, (28)

where I is an identity matrix. ∇+HP
C and ∇−HP

C are the
positive and negative total gradient terms in (25) and (26),
respectively. D̃ is a modified normalized basis power matrix
controlling the NMF update rate more sophisticated than
the conventional method. See Appendix B for the detailed
derivation process and Section V-C for a detailed discussion.

Estimating the reverberation basis is achieved using the
MU rule without additional constraints as follows

WR←WR ◦
[V/(WH)]HR

1K×NHT
R

, (29)

HR← HR ◦
WT

R [V/(WH)]

WT
R1K×N

. (30)

D. RECONSTRUCTING TARGET ECHO SIGNAL
The NMF method is applied iteratively using (28), (29),
and (30) until convergence is attained. After convergence, the
target echo information can be estimated by multiplying the
matricesWP and HP. The NMF results can be expressed as

V̂ =WPHP. (31)

Because (31) has only magnitude information, phase
information is needed to complete the target echo signal
spectrogram. It is easily achieved using the original phase
information in (11) [12]. The output time signal with rever-
beration removed is reconstructed by applying the inverse
STFT as follows

x̂(m) = ISTFT
[
V̂ exp (6 X)

]
(32)

where ISTFTmeans inverse STFT transformation, the inverse
process of (9).

VOLUME 9, 2021 148065



G. Kim, S. Lee: Reverberation Suppression Method for Active Sonar Systems Using NMF

TABLE 1. Summary of the proposed algorithm.

FIGURE 5. Time signal of simulated data.

We summarize the proposed reverberation suppression
method in Table 1.

IV. PERFORMANCE EVALUATION
A. SIMULATION ANALYSIS
We evaluated the proposed method using simulation. The
received beam signal was generated based on (2), (3), and (6)
with 0.4 s CW pulse. The number of point scatterers to syn-
thesize the reverberation signal was set to 1000. The arrival
time was set to have a uniform distribution of 3 s, and the
attenuation factor was set to a Gaussian distribution with a
mean of 1 and a standard deviation of 0.1. The platform speed
was set to 4 m/s such that 2v

c = 0.0053.
STFT was performed using a 0.5 s Hamming window and

a 75% overlap. The numbers of NMF target and reverberation
echo bases (LP and LR) were set to 33 and 330, respectively.
The TC weighting parameter α, TLL weighting parameter β,
power normalization factor γ , and expected echo length LT
were set to 10, 1, 0.75, and 0.52 s, respectively.

FIGURE 6. Spectrogram of target echo signal.

FIGURE 7. Spectrogram of generated signal (NMF input).

The NMF method’s matrices were initialized to perform
the update process. The time basis matrix H was initialized
with a non-negative value, and the target echo frequency
basis matrix WP was initialized with one-hot encoding (16)
and (17). For the conventional method, the reverberation fre-
quency basis matrix WR was initialized with a non-negative
value. However, for the proposed method, the MU rule
learnedWR using the reference reverberation signal.

Fig. 5 shows the time signal of the generated beam signal.
Fig.6 and Fig.7 show the spectrograms of the target echo
signal and generated beam signal, respectively. The target
echo signal was set to arrive at 1 s with a 1.0026 normalized
Doppler. The signal-to-reverberation ratio (SRR) was set to
−19 dB. In Fig.7, the target echo signal, highlighted with a
red ellipse, is buried in the reverberation; thus, challenging to
identify.

In Fig. 8, we present the estimated frequency and time
basis matrices (W and H, respectively) of the conventional
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FIGURE 8. W matrix and converged H matrix of (a) the conventional method and (b) the proposed method with simulated data. The red line
represents the boundary between the target and reverberation bases.

FIGURE 9. NMF output of (a) the conventional method and (b) the proposed method with simulated data.

and proposed methods, respectively. The figure shows that
each basis of the reverberation frequency basis matrix of the
conventional method does not occupy a specific frequency
bin. However, each basis of the reverberation frequency basis
matrix of the proposed method occupied a specific frequency
bin, and time bases were activated in specific regions. This
phenomenon occurred because the reverberation basis matrix
of the proposed method acquired reverberation information
from the reference reverberation signal; therefore, it could
accurately estimate the reverberation components.

Fig. 9 (a) and (b) depict the NMF output of conventional
and proposed methods, respectively. From Fig. 9 (a), energy
occurred in components other than the target, but the result
of the proposed method in Fig. 9 (b) showed only the target
component; most reverberation components were removed.
Notably, near the normalized frequency 1, components were

strongly suppressed because the NMF algorithm accurately
estimated the reverberation components.

We used a normalized matched filter to compare the pro-
posed method’s detection performance when the reverber-
ation suppression algorithm was and was not applied. The
normalized matched filter is defined as follows [24]

χ (t, η) =

∫
x(t)s∗p(t, η)dt√∫

x2(t) dt
∫
s2p(t, η)dt

, (33)

where sp(t, η) is the Doppler replica of the transmitted CW
pulse in (1), and x(t) is the received target echo signal in (2).
In the simulation, the normalized Doppler range was set to
−0.9947 to 1.0053.

Fig. 10 shows the normalized matched filter results at
an SRR of −19 dB. The normalized matched filter results
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FIGURE 10. Comparison of matched filter results using (a) received signal, (b) output signal of the conventional method, and (c) output signal of the
proposed method with simulated data.

FIGURE 11. Analysis of receiver operating characteristics (ROC) curve. This analysis was conducted at signal-to-reverberation ratio (SRR) of
(a–f) −27, −25, −23, −21, and −19, −17 dB, respectively.

using the original signal could not show a clear target echo
peak. However, the normalized matched filter results using
the output signal of the proposed method showed a clear
target echo peak because reverberation was effectively sup-
pressed. Although the normalized matched filter results using
the output signal of the conventional method also showed a
target echo peak, its performance was inferior to the proposed
method.

We quantitatively analyzed the detection performance by
calculating the receiver operating characteristics (ROC) curve
performing 300Monte–Carlo simulations per SRR in Fig. 11.
In this figure, four cases are compared corresponding to with-
out pre-processing, random initializing with the conventional

sparse update rule, random initializing with the proposed
sparse update rule, and pre-trained initializing with the pro-
posed sparse update rule. From these figures, the proposed
sparse update rule is superior to the conventional sparse
update rule, andwhen combinedwith the pre-trained initializ-
ing method proposed in this paper, the proposed NMF-based
reverberation suppression method performs better than the
conventional method in all conditions.

B. SEA EXPERIMENTS ANALYSIS
To further evaluate the proposed NMF-based reverberation
suppression method, data of sea experiments conducted at the
Eastern Sea of Pohang, Republic of Korea, were analyzed.
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FIGURE 12. Time signal of sea experiment data.

FIGURE 13. Spectrogram of target echo signal of sea experiment data.

A 1.0 s CW pulse and an echo repeater were used to imitate
the target echo signal.

Fig. 12 shows the received beam signal of sea experiment
data. A direct blast signal arrived at 4 s, and reverbera-
tion was subsequently received. Unfortunately, the received
echo repeater signal arrived far from the direct blast arrival,
approximately 17 s. Consequently, it was in the noise-limited
region. Therefore, we must cut out the echo repeater signal
and relocate it to the reverberation-limited region to reason-
ably evaluate the reverberation suppression methods.

Fig. 13 shows the spectrogram of the echo repeater signal,
and Fig. 14 shows the signal synthesized by cutting the
target echo repeater signal. The target echo signal was set
to arrive at the 10th time bin, and Doppler was estimated
to be 1.003.

Figs. 15 (a) and (b) show the NMF output of the conven-
tional and proposed methods, respectively. When the conven-
tional method was used, reverberation components remained,

FIGURE 14. Spectrogram of received signal of the sea experiment data
(NMF input).

whereas they were effectively removed when the proposed
method was used and target echo was emphasized. From
Fig. 15 (b), the component around normalized frequency
1.002 was significantly attenuated because the component
corresponding to the pre-trained reverberation basis compo-
nent was effectively removed. This phenomenon was pre-
dicted in the simulation results.

Fig. 16 shows the normalized matched filter results of sea
experiment data. Fig. 16 (a) shows the normalized matched
filter results using original sea experiment data, and no tar-
get echo peak appeared because the reverberation remained
strong. It masked the target echo signal. Figs. 16 (b) and (c)
show the normalized matched filter results using the output
signal of the conventional and proposed methods, respec-
tively. Although the conventional method suppressed the
reverberation components, superior reverberation suppres-
sion performance was seen when using the proposed method.
Therefore, the proposed method outperforms the conven-
tional method, even in the actual sea environment.

V. FURTHER DISCUSSIONS
A. DISCUSSION FOR HYPERPARAMETER SETTINGS
In the proposed NMF method, three major hyperparameters
α, β and γ affect the NMF performance results. To evaluate
the performance according to hyperparameters, we conducted
100 Monte–Carlo simulations and calculated ROC curves at
SRR −25 dB.

Fig. 17 (a), (b), and (c) shows the ROC curves with various
α, β and γ , respectively. While analyzing certain param-
eters, other parameters are the same Sec. IV. From these
figures, the value of α and β does not significantly affect
the performance. Therefore, the proposed method converges
stably, regardless of hyperparameter tuning, unlike the con-
ventional method. This robustness is because the frequency
basis matrix is trained in advance using a reference signal. For
the hyperparameter γ case, ranges of 0.7 to 0.9 show good
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FIGURE 15. NMF output of (a) the conventional method and (b) the proposed method with sea experiment data.

FIGURE 16. Comparison of matched filter results using (a) the received signal, (b) the output signal of the conventional method, and (c) the output signal
of the proposed method with sea experiment data.

FIGURE 17. Analysis of the ROC curve according to parameter (a) α, (b) β and (c) γ .

performance. With our further investigations, the optimal
value for γ depends on the reverberation level. Therefore,
it can be fine-tuned if we know the reverberation level in

advance. Such hyperparameter tuning typically occurs in the
other reverberation suppression method, like the PCI algo-
rithm [9], [10].
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FIGURE 18. Comparison of matched filter results. (a) Without pre-processing. (b) With conventional NMF. (c) With proposed NMF according to the
Itakura-Saito distance of (c) 0.00, (d) 0.27, (e) 0.58, and (f) 0.78.

FIGURE 19. ROC curve according to various Itakura-Saito distances.

B. DISCUSSION FOR MISMATCH ISSUE OF PRE-TRAINED
REVERBERATION BASIS MATRIX
In this paper, we proposed a pre-trained reverberation basis
matrix using a reference signal. Therefore, the spectrum simi-
larity between the reverberation signals in the target beam and
reference signals directly affects the performance. To analyze
the reference mismatch issue, we simulated some reference

FIGURE 20. Measured Itakura-Saito distance in sea experimental data
according to the time difference.

reverberations, which have various spectrum similarity con-
ditions. Note that spectrum similarity is measured using the
Itakura–Saito distance [25].

Fig. 18 shows a comparison of matched filter results with
various conditions at SRR−19 dB. Figs. 18 (a) and (b) show
matching filter results without pre-processing and with
conventional NMF, respectively. These results are depicted
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FIGURE 21. Comparison of sparseness of diagonal components of
normalized power vector d in (50).

for comparison. Figs. 18 (c), (d), (e), and (f) show thematched
filter results when the proposed NMF uses reference signals
with Itakura–Saito distances of 0.00, 0.27, 0.58, and 0.78.
From these figures, no significant difference occurs until
the Itakura–Saito distance is 0.58, but when it is increased
to about 0.78, the performance deteriorates noticeably. This
phenomenon is interpreted that the reference signal should
have similar spectral characteristics as the reverberation sig-
nal of the target beam signal.

Fig. 19 shows the ROC curve calculated using 100
Monte–Carlo simulations at SRR−25 dB using Itakura–Saito
distances of 0, 0.5, and 1. In this figure, the performance
decreases as the Itakura–Saito distance increases, but a value
of 0.5 guarantees better performance than the conventional
method.

Fig. 20 shows the Itakura–Saito distance according to the
time difference measured from sea experimental data. In the
figure, as the time difference increases, the Itakura–Saito
distance gradually increases. However, the signal within 1 s
has an Itakura–Saito distance as low as 0.2 to 0.4, and most
signals within 3 s have an Itakura–Saito distance lower than
0.6. From the ROC analysis in Figs. 18 and 19, it is desirable
to use a reference signal with an Itakura–Saito distance of
0.6 or less. Therefore, it is desirable to use a signal close to
the target signal within roughly 3 s as a reference signal.

C. DISCUSSION FOR THE NEW SPARSE UPDATE RULE
In this subsection, the update process and results of the algo-
rithm were analyzed to verify that the proposed sparse update
rule mechanism is valid. Fig. 21 compares the sparseness
of the normalized power vector d, whose elements are the
power of each time basis vector. Therefore, d being sparse
means that only a certain time basis vector is being strongly
activated. In this figure, the sparseness continuously increases
in the conventional case and decreases at some point in
the proposed case. This phenomenon can be interpreted as
appearing because the step-size is adjusted to a lower level
when the sparseness becomes too large in the proposed case.

Figs. 22 (a) and (b) show the l2-norm of each row vector
of HP when using the conventional and proposed cases,
respectively. In this figure, only one specific basis power
continues to increase in the conventional case because, if it
initially converges erroneously, excessive sparsity continu-
ously emphasizes the corresponding component. However,
in the proposed case, the power of multiple bases converges to
a lower level as the update is repeated, reducing the problem
of excessive sparsity.

Figs. 23 (a) and (b) show NMF results using the conven-
tional and proposed cases, respectively. While the conven-
tional method emphasized only one non-target component,

FIGURE 22. l2-norm of each row of HP when using (a) conventional and (b) proposed methods, respectively.

148072 VOLUME 9, 2021



G. Kim, S. Lee: Reverberation Suppression Method for Active Sonar Systems Using NMF

FIGURE 23. NMF output when using (a) conventional and (b) proposed methods, respectively.

the proposedmethod successfully emphasized the target com-
ponent because, as analyzed in Figs. 21 and 22, the proposed
method adjusts the step-size according to sparseness.

VI. CONCLUSION
An NMF-based reverberation suppression method with a
pre-trained frequency basis matrix was proposed. The pro-
posed method improved the initialization problem of the con-
ventional method and the sparse update rule. The proposed
method was verified by evaluating it using simulation and sea
experiment data. In the simulation, the comparative analyses
of spectrogram, normalized matched filter, and ROC curve
are conducted and the proposed method showed superior
detection performance than the conventional method when
it converges in valid SRR conditions. In the spectrogram
and normalized matching filter analysis using sea experimen-
tal data, the proposed method showed superior performance
as expected in the simulation. Hyperparameter setting, pre-
trained reverberation basis mismatch issue, and new sparse
update rule were discussed to analyze the proposed method
from various viewpoints.

APPENDIX A
REVIEW OF COST FUNCTION AND GRADIENT TERMS IN
THE NMF METHOD
The cost function comprises three parts. The reconstruction
error (RE) CRE is defined by the KL divergence, which is
generally used in the NMF method as [17]

CRE (WP,HP) =
K∑
k=1

N∑
n=1

(
[V](k,n) log

V(k,n)

[WH](k,n)

)
− [V](k,n) + [WH](k,n) , (34)

and its gradient terms are given as

∇
+

HP
CRE = WT

P1K×N , (35)

∇
−

HP
CRE = WT

P
V

WH
. (36)

The temporal continuity (TC) is measured by assigning the
cost of large changes between adjacent frames for each row
component in HP. The TC cost function is defined as [23]

CTC (HP) =
K∑
k=1

(∑N
n=2

(
h(k,n) − h(k,n−1)

)2
1
N

∑N
n=1 h

2
(k,n)

)
, (37)

and its gradient terms are given as

∇
+

HP
CTC =

4NHP

H2
P1N×N

, (38)

∇
−

HP
CTC = 2N

HP→1 −HP←1

H2
P1N×N

+
2NHP ◦

[
(HP −HP→1)

2 1N×N
](

H2
P1N×N

)2 , (39)

whereHP←1,HP←1 are variants ofHP shifted one column to
the left and right, respectively, and 1N×N is an N ×N matrix
whose elements are all ones. Furthermore, A2 indicates an
element-wise square of matrix A.

The temporal length limiting (TLL) is used to penalize
activated components longer than the expected length of the
target echo signal. The TLL cost function is defined as [12]

CTLL(HP) =
K∑
k=1

(
1−

n+lT−1∑
m=n

ĥ(k,n)

)
, (40)

and its gradient terms are given as[
∇
+

HP
CTLL

]
(k,n)
=

n+lT−1∑
m=n

(
e
[
H̄P
]
(k,m)∑N

i=1 e
[
H̄P
]
(k,i)

)2

, (41)
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[
∇
−

HP
CTLL

]
(k,n)
=

n+lT−1∑
m=n

(
e
[
H̄P
]
(k,m)∑N

i=1 e
[
H̄P
]
(k,i)

)
, (42)

where [A](k,n) is the (k, n) element of matrix A, and lT is the
expected target echo length.

[
H̄P
]
(k,n) is calculated using the

moving sum of each target echo time basis, i.e., the rows of
HP. It is expressed as[

H̄P
]
(k,n) =

n∑
m=n−lT+1

[HP](k,m). (43)

APPENDIX B
DERIVATION OF SPARSE UPDATE RULE WITH ADJUSTING
UPDATE RATE USING SPARSENESS
The original MU rule in (27) is a modified element-wise
gradient descent algorithm, expressed as follows:

[HP](k,n)← [HP](k,n) − η(k,n)
(
∇
+

[HP](k,n)
C −∇−[HP](k,n)

C
)
,

(44)

where η(k,n) is the step-size parameter for updates.∇+[HP](k,n)
C

and ∇−[HP](k,n)
C are the element-wise positive and negative

parts of the gradient, which have non-negative values. Typ-
ically, η(k,n) is set to a small positive scalar value; however,
if we replace it as η(k,n) = [HP](k,n) /∇

+

[HP](k,n)
C , we can

obtain (27). Using this process, if we appropriately control
the step-size, we can reflect our intention.

Recently, Kim et al. [13] proposed a sparse constraint
update rule. They implemented sparse constraints by setting
the step-size parameter proportional to the power of each
basis vector as

η(k,n) = dr
[HP](k,n)
∇
+

[HP](k,n)
C
, (45)

where dr is the normalized power of each basis vector. It is
expressed as

dr =
‖ [HP]r ‖2

max
(
‖ [HP]1 ‖2, · · · , ‖ [HP]LP ‖2

) , (46)

where [HP]r is the r th row vector ofHP and ‖·‖2 indicates the
l2-norm. Notably, we constrain each power of the echo time
basis, not each element ofHP. If we substitute (44) into (45),
it yields the new element-wise update rule as

[HP](k,n)← (1− dr ) [HP](k,n) + dr
∇
−

[HP](k,n)
C

∇
+

[HP](k,n)
C

[HP](k,n) .

(47)

We can formulate these element-wise update rules in a
matrix form as follows:

HP← (I− D)HP + D
∇
−

HP
C

∇
+

HP
C
HP, (48)

where I is an identity matrix, ∇+HP
C and ∇−HP

C are positive
and negative total gradient terms in (25) and (26), respec-
tively. D is a diagonal matrix, comprising the normalized

power of each basis vector. It can be expressed as

D = diag (d) , (49)

d =
[
d1, · · · , dLP

]T
, (50)

where d is the normalized power vector and diag( · ) indicates
a diagonal matrix.

The problem of the conventional sparse update rule in (48)
is that it can highlight local non-target components that
appeared during the NMF update because of too much
emphasis on sparseness. This phenomenon might cause an
inability to find the target information, even if the NMF
algorithm converges. Therefore, we proposed a new step-size
parameter, which is the weighted sum of the original and
sparse step-size parameters. The weighting ratio was deter-
mined by measuring the sparseness that appeared according
to the NMF update.

The proposed step-size parameter is expressed as

η(k,n) = (1− S(d)) dr
[HP](k,n)
∇
+

[HP](k,n)
C
+ S(d)

[HP](k,n)
∇
+

[HP](k,n)
C

(51)

where S(d) is the sparseness of the updated matrix. From
this equation, the original and sparse step-size parameters
are combined via a sparsity term. As sparsity increases, the
preceding weights become smaller; consequently, the sparse
step-size has a smaller impact and vice versa.

The sparseness of basis power vector d can be measured as
follows [26]:

S(d) =

√
LP −

(∑
r |dr |

)
/
(∑

r

√
d2r
)

√
LP − 1

, (52)

d =
[
d1, · · · , dLP

]
, (53)

where LP is the number of elements in vector d, and | · | is the
absolute value.

For convenience, we reformulate (51) as

η(k,n) = (dr + S(d)(1− dr ))
[HP](k,n)
∇
+

[HP](k,n)
C
. (54)

The modified step-size parameter shows that dr in (45)
appears in a modified form (dr + S(d)(1− dr )). Therefore,
the proposed sparse update rule can be written as follows,
with the new normalized power matrix D̃:

HP←

(
I− D̃

)
HP + D̃

∇
−

HP
C

∇
+

HP
C
HP, (55)

where

D̃ = diag
(
d̃1, · · · , d̃LP

)
, (56)

and

d̃r = dr + S(d)(1− dr ). (57)
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