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ABSTRACT Harmonics in electroencephalogram (EEG) caused by visual stimulation are the main basis
of classification of steady-state visual evoked potential (SSVEP). However, the correlation of various
harmonics, which could improve the classification performance especially when evoked EEG components
are much weaker than spontaneous EEG components, has not been take into consideration in the design of
classifier in previous studies. In this study, we proposed a filter bank convolutional neural network (FBCNN)
method to optimize SSVEP classification. Three filters with passbands covering each harmonic of SSVEP
signals are used to extract and separate the corresponding components, and the information from them are
transformed into frequency domain. Subsequently, we introduce a novel convolutional neural network (CNN)
architecture with three parallel CNN channels to extract and learn the harmonic features in passbands,
and conclusions on the correlation among harmonics can finally be made by pair-add-up operations and
dimension reductions to weigh the feature vectors. The proposed FBCNN is evaluated on two public
datasets (Dataset1: 12-class, 10 subjects; Dataset2: 40-class, 35 subjects) to compare with other methods.
The experimental results illustrate that FBCNN method improves the performance of CNN-based SSVEP
classification methods and has a great potential to be applied in SSVEP-based BCI.

INDEX TERMS Brain–computer interface, convolutional neural networks, electroencephalography, filter
bank, steady-state visual evoked potential.

I. INTRODUCTION
Brain-computer interface (BCI) based on electroencephalo-
gram (EEG) measures EEG signals in a noninvasive way,
extracts the specific features, subsequently, converts them
into the commands of the equipment [1]. BCI provides a
novel hand-free communication channel to control peripheral
devices by realizing the interaction between human brain
and machine, thus could facilitate lives of the disabled, help
training of stroke patients with rehabilitation and even con-
trol computer games [2]. Among different EEG-based BCIs,
e.g. motor imagery (MI) and event-related potentials etc.,
steady-state visual evoked potential (SSVEP) possesses the
advantage of high information transfer rate (ITR) and few
training times [3] and thus is widely used in the context of
human-machine interaction.

In SSVEP, the visual stimuli with different flicker frequen-
cies is applied and the consequent oscillations could occur
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in the visual cortex, which could be further detected in EEG
signals in the form of the strong amplitude of corresponding
frequency and harmonic. Based on the observed pattern of
the detected EEG signals, the recognition algorithm could be
used to find out target stimulus [3]. Generally, the perfor-
mance of SSVEP-based BCI is mainly determined by three
factors, namely, stimulus presentation, multiple target coding
and target identification algorithm [4].

Practically, the target identification algorithm of SSVEP-
based BCI can be divided into three categories: training-free
methods, user-specific or user-dependent training methods
and user-independent training methods [5]. Training-free
methods compute the relevance between the detected sig-
nals and the potential stimuli, and hence directly deter-
mine the classification results. These methods mainly include
power spectral density analysis (PSDA) [6], canonical corre-
lation analysis (CCA) [7] and minimum energy combination
(MEC) [8]. Among these methods, CCA, the most preva-
lent training-free method, is always treated as the baseline
algorithm for SSVEP detection [9]. It aims at finding the
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FIGURE 1. The diagram of user-dependent (UD) and user-independent
(UI) training strategies.

potential correlation between the detected EEG data and a
set of sinusoidal reference templates corresponding to the
stimulus frequency.

In contrast with the training free method, the trainingmeth-
ods, either user-dependent (UD) or user-independent (UI)
method, incorporate the features extracted from the trail data
to improve the classification accuracy [5]. The difference
between UD and UI training methods lies in the training and
testing strategy, which can be observed in Fig. 1. As for UD
trainingmethods, the trainedmodel is generated from the trail
data from one person, and is only suited for this individual
in the classification step. However for UI training methods,
a generalized model generated by the training data from
multiple participants is applied to extra users, i.e., arbitrary
new users have access to BCI equipment with no collec-
tion of their own training data. For example, Combination
method [10], Individual Template CCA (IT-CCA) [11] and
Multi-way CCA (MwayCCA) [12] are considered as the UD
methods and Filter Bank CCA (FBCCA) [13] is the typical UI
methods. The design strategies of filter bankwill be described
in the following paragraphes.

FIGURE 2. FFT spectrum of the first block and O1n EEG channel data of
S1 with stimulation frequency of 9Hz in Dataset2.

Recently, deep learning has developed rapidly in view of its
prominent capabilities of feature extraction and learning [14],
providing new insight to the classification and the detection
of EEG-based BCI. In fact, the deep learning based methods
tend to outperform traditional methods in most fields includ-
ing EEG signal detection [15], face recognition [16] and
cross-media retrieval [17]. The advantages of convolutional

FIGURE 3. (a-b) Two typical filter bank design schema and (c) the
proposed filter bank schema.

neural network (CNN) over standard deep neural network
(DNN) can be seen in prior researches [18], and the time
delays term in neural networks has also been explored in
depth [19]. In short, CNN structure plays the most popular
role in different deep learning-based BCI algorithms [20].

FIGURE 4. The input structure of FBCNN including three band-pass filters
with different bandwidth and three FFT converters.

The CNN-based methods in SSVEP can be categorized in
many perspectives. For example, the input data of the algo-
rithms, which could impact the performance of the classifiers,
can generally be classified into two broad categories: time
domain data and frequency domain data. When time domain
signals used as input, wider and deeper convolution opera-
tions are generally required in feature extraction step, while
the neural networks with the input of frequency domain data
don’t need too many convolution operations [9], [15], [24].
Given that significant frequency and phase characteristics in
SSVEP signals usually remain stable during stimulation, Fast
Fourier Transform (FFT) [9], [21]–[23] is widely applied to
transform SSVEP signals into the frequency domain before
feeding into classifiers. According to the reported researches,
the methods using frequency domain data as input tend to
present better performance [9]. The other main difference
lays in the diverse training strategies for the CNN-based
methods. UD training procedure uses training and testing
data from the same participant, whereas data from different
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FIGURE 5. FBCNN network architecture including the subnets and the output structure.

participants are used for training and validating respectively
in UI training procedure. From the related studies, classifiers
based on UD training procedure perform better than that
based on UI training procedure due to the generalization
ability of classifiers [9]. On the other hand, results from
previous studies show that the deep learning based SSVEP
classification methods outperform traditional methods. For
example, PSDA andCCA can classify targets directly without
training, while methods based on deep learning need to be
trained in advance, leading to the increase in the complexity
of applications.

Although the CNN-based SSVEP classification algorithms
has been widely recognized for its end-to-end characteris-
tic, the prior knowledge for SSVEP, for example, the rele-
vance among different SSVEP harmonics, has not received
deserved attention. In some cases, as is shown in Fig. 2,
it is necessary to analyze the correlation among different
harmonic components of the evoked EEG signals to optimize
classification. Since the spontaneous EEG components of the
subjects are much stronger than the SSVEP evoked EEG
components in light of inattention, individual difference or
interference caused by environment etc, classifiers pay more
attention on spontaneous EEG signals while neglecting the
harmonics with weaker signal amplitude. Therefore, we put
forward a novel input structure of the classifier and a new
CNN architecture.

Our design strategy of the proposed filter bank differs
from previous studies. As is shown in Fig. 3, we compare
three different filter bank schema. Fig. 3(a) illustrates one
typical filter bank structure using plenty of narrow band-pass
filters with equally spaced bandwidths to extract independent
frequency components from SSVEP signals. Fig. 3(b) shows

another typical structure owing multiple filters with differ-
ent bandwidths to cover all harmonics [13]. These methods
aim to concentrate the feature analysis on each independent
frequency band, ignoring the correlation among harmonic
components. In our method, as is shown in Fig. 3(c) and
Fig. 4, three filters with passbands covering the 1st, 2nd and
residual harmonics of the input SSVEP signals respectively
are used to extract each harmonic component before FFT
operation. The 1st harmonic represents the stimulation fre-
quency range. The detailed example of filer bandwidth can
be found in the experiment section. Moreover, our neural
network utilizes three parallel CNN channels to extract and
learn the harmonic component information in each passband,
other than mixed harmonic components in the CNN structure
proposed in [9]. By means of pair-add-up operations and
dimension reductions on the output features of each CNN
channel, the feature vectors of each harmonic are weighted
to find the correlation among them. Finally, the classification
results are output through fully connected layer. By foregoing
operations, we learned not only the feature of harmonics but
also relevance among them, which receive less attentionwhen
single band used in CNN.

In order to compare with the method demonstrated in [9],
we also implement our method in both UD and UI train-
ing procedure. Additionally, to verify the feasibility of the
model and the fairness of the results, we test the proposed
model using two public datasets: 1) Dataset1: a publicly avail-
able twelve class SSVEP dataset with 10 participants [10];
2) Dataset2: a publicly available forty class SSVEP dataset
with 35 participants [25]. Since Dataset2 was not used in [9],
we reproduce the architecture proposed in the paper for
comparison.
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The paper is organized as follows. Section II outlines the
proposed SSVEP classificationmethod. Section III details the
information of two datasets and training parameters. The per-
formance of the proposed method is presented in Section IV.
Section V discusses the results of the comparison. Finally,
Section VI concludes the paper and prospects for the future
work.

II. METHODS
In view of strong correlation between harmonics [13], dif-
ferent SSVEP harmonic components are used in the classi-
fication of SSVEP. To extract various harmonics for feature
learning, filter bank is introduced to separate each harmonic
component. Considering the computational complexity and
classification accuracy [13], [26], three band-pass filters are
selected to preprocess the EEG signals before FFT opera-
tions, followed by a corresponding neural network to classify
the SSVEP targets, and Fig. 4 displays the input structure of
the proposed method. The whole algorithm structure is called
filter bank convolutional neural network (FBCNN). In the
proposedmethod, three independent CNN subnets are used to
extract features and weight contributions of different harmon-
ics, and the attentionmechanism offers an enhancement of the
weighted features. The follow-up pair-add-up operations and
the fully connected layers are used to fuse different harmonic
features and output the classification results.

A. DATA PROCESSING
To compare the performance of various classification algo-
rithms, different data preprocessing methods are employed
in two datasets. The data preprocessing method for Dataset1
and Dataset2 is based on [9], [10], [24], and [25] respectively
for comparison, and we reproduce the CNN [9] structure for
Dataset2. In detail, a 4th order Butterworth band-pass filter is
used to remove the artifacts which may exist in EEG signals
for CCA [7] and CNN [9]. In our case, the EEG data are
filtered by three 4th order Butterworth band-pass filters with
different frequency bands to separate the harmonics. Then,
the filtered EEG data of each SSVEP trail is divided into non-
overlapping segments with 1s time window (TW).

As in the previous studies, the results of FFT for each 1s
segment contain two parts: magnitude spectrum and complex
spectrum [9]. The output of FFT is shown as follows:

FFT (x) = Re{FFT (x)} + jIm{FFT (x)} (1)

where x indicates the input time domain segment. The mag-
nitude spectrum Xmag can be calculated by:

Xmag =
√
Re{FFT (x)}2 + Im{FFT (x)}2 (2)

And for complex spectrum Xcomp, the real part and imagi-
nary part of the FFT output components are concatenated into
a single vector as:

Xcomp = Re{FFT (x)}||Im{FFT (x)} (3)

The magnitude spectrum only takes the magnitude
information of the FFT results, without the phase

information [9]. However, previous studies have shown the
importance of phase related information presented in the
SSVEP-based BCIs [24], [28]–[30]. Hence, it is necessary to
use the complex spectrumwhich contains related information
of both magnitude and phase simultaneously. The magnitude
input Imag can be defined as:

Imag =


Xmag(O1)
Xmag(O2)

...

Xmag(On)

 (4)

where O1, O2 and On represent the different EEG data chan-
nels. The following computation defines the complex input:

Icomp =


Xcomp(O1)
Xcomp(O2)

...

Xcomp(On)

 (5)

FIGURE 6. The schema of the squeeze-and-excitation block.

B. FILTER BANK CONVOLUTIONAL NEURAL NETWORK
We propose a SSVEP classification method which combines
filter bank and CNN structure. As shown in Fig. 3, three
filters with different bandwidth are employed in order to
fulfill the fine-grained feature learning of the SSVEP data.
The bandwidth of Filter1 covers the first harmonic frequency
range of the SSVEP, and Filter2 is for the second harmonic,
Filter3 is for the rest. Three CNN-based subnets are intro-
duced to compose the network of FBCNN for extracting
and weighting features of different SSVEP harmonic compo-
nents. Fig. 5 shows the network architecture of FBCNN. Each
subnet contains 6 layers: an input layer, three convolutional
layers, a Squeeze-and-Excitation (SE) block and a flatten
layer. The output structure consists of three add layers and
fully connected layers followed by subnets. The complete
network has an additional concatenate layer and an output full
connected layer.
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The dimension of the input layer is (Nch+ 2)×Nfc, where
Nch represents the number of the EEG channels and Nfc is
the number of frequency components extracted from FFT
result. In FBCNN, the preprocessed data of the first two EEG
channels are repeated to achieve entirely convolution in the
Conv1 which uses the ‘‘valid’’ padding mode. The input layer
composition is shown as follows:

I =



X (O1)
X (O2)
...

X (On)
X (O1)
X (O2)


(6)

where O1, O2 and On are different EEG data channels. The
convolution kernel size of Conv1 is 3 × 3 which is used
to extract components of different EEG channels and fre-
quencies at the same time. Conv2 with kernel dimensions of
Nch × 1 is employed to learn the contribution of weighted
EEG channel features of Conv1. Conv3 extracts features of
various weighted continuous frequency components, and the
scale of the convolution kernel is set to 1×5/FFT resolution
empirically, which indicates the span of the frequency is
5Hz. The number of feature maps in the three convolutional
layers is 2 ∗ Nch for the sake of extracting features of the
previous layer completely and minimizing the amount of
calculation. The dimension of each feature map in Conv1
layer is Nch × (Nfc − 2), 1 × (Nfc − 2) for Conv2, and
1 × (Nfc − 2 − 5/FFT resolution + 1) for Conv3. A SE
block is followed with the aim of enhancing the representa-
tional power of the network. SE block explicitly models the
inner dependencies among channels of convolutional features
to acquire preferable representation [31]. Fig. 6 shows the
schema of the SE block, the input feature maps have the
dimension of H ×W × C which represent the height, width
and channels of the feature maps respectively. The param-
eter r is the reduction ratio of the dimensionality-reduction
layer, and the ratio is 8 in this study. The input feature maps
are firstly passed through a squeeze operation to produce
a channel descriptor by aggregating, then followed by an
excitation operation to produces a collection of per-channel
modulation weights [31]. The scale layer of the SE block
rescales the feature maps by:

Xs = ucsc (7)

where uc is the feature maps, and sc is the scalar. The flatten
layer of each subnet is used to compress the output feature
vectors of SE block to one-dimension.

Subnets follow by layers to perform pair-add-up operations
and fully connected layers to reduce dimension for weighting
the feature vectors of each harmonic. And the number of
units 6 ∗ Nclass output from fully connected layers equipped
with the rectified linear unit (ReLu) activation function is in
line with that of SSVEP classes. Then, the outputs of three
CNNs are connected by a concatenate layer, and finally a fully

connected layer possessed with the softmax function is used
to output Nclass units corresponding to the probability of each
SSVEP class. Batch normalization, ReLu activation function
and Dropout are performed on Conv1, Conv2 and Conv3
layers of each CNN channel of the FBCNN network. For
neural networks, Batch normalization and Dropout are com-
monly applied to enhance the generalization performance and
calculation speed [23], [32], [33].

C. CONVOLUTIONAL NEURAL NETWORK
The architecture of CNN is shown in Fig. 7, which was
proposed in the earlier study of SSVEP classification [9].
The CNN is composed of four main layers, an input layer
with the dimension of Nch × Nfc, two convolutional lay-
ers and a output fully connected layer with the unit num-
ber of Nclass. Nch, Nfc and Nclass stand for the number of
the EEG channels, the number of frequency components
extracted from FFT result, and the number of SSVEP classes
respectively. The first convolutional layer Conv1 performs
1D convolutions across the channel dimension with kernel
dimension of Nch × 1,and the number of feature maps in the
first convolutional layer is 2∗Nch and each feature map has
dimensions 1 × Nfc. For Conv2, the scale of convolutional
kernel is 1 × 3/FFT resolution.Thus, for Dataset1 the scale
is 1 × 10 [9], and for Dataset2 the scale is 1 × 15. The
scale, a fixed value of 1 × 10 in the earlier study [9], did
not function effectively compared to 1 × 15 on account of
different sampling frequency and FFT resolution when we
reproduce the CNN structure on Dataset2. Furthermore, the
kernel size of Conv2 has been changed into 1 × 15 in order
to ensure fairness.

FIGURE 7. Convolutional neural network architecture for SSVEP
classification.

Batch normalization and ReLu activation function are per-
formed on the outputs of Conv1 and Conv2, and Dropout is
used to avoid overfitting.

D. CANONICAL CORRELATION ANALYSIS
The training-free method CCA is introduced as a baseline to
perform on the same EEG datasets. CCA, a multivariate sta-
tistical analysis method, reflects the underlying correlations
between two groups of indicators. In previous SSVEP-based
BCIs studies, CCA was used to calculate the correlations
between EEG signals and reference signals corresponding to
SSVEP classes [9], [10], [24], [25]. The canonical correlation
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coefficient ρ(x, y) of CCA is defined as:

ρ(x, y) = maxwx ,wy
E
[
wTx X Y Twy

]√
E
[
wTx X XTwx

]
E
[
wTy Y Y Twy

] (8)

where X and Y are input EEG signals matrices and reference
signals matrices respectively, and x, y stand for the linear
representation of X , Y respectively. wx and wy indicate the
linear coefficient vectors. In this paper, sinusoidal signals are
used as the reference signals Y to perform the classification
in an unsupervised way. The reference signals Y is defined
as:

Y =


sin(2π ft)
cos(2π ft)

...

sin(2πNhft)
cos(2πNhft)

 (9)

where f corresponds to the target frequency of the SSVEP,
and Nh is the number of harmonics.

E. ALGORITHM EVALUATION
One-way repeated measures analysis of variance (ANOVA)
is applied to evaluate the results of CAA, CNN and FBCNN
classification methods on both datasets, and the classification
accuracy of each method is input as the response variable.
The statistical significance level is 0.05 for analysis and
comparison. The CNN and FBCNN are compared on every
subject in the two datasets using both UI and UD training
approaches. Moreover, the information transfer rate (ITR) of
each method is calculated as follows:

ITR =
60
T
(log2 N + P log2 P+ (1− P) log2[

1− P
N − 1

])

(10)

whereN and T are the number of SSVEP classes and the aver-
age time for a selection, and P is the classification accuracy.

III. EXPERIMENTS
A. DATASET1 DESCRIPTION
The twelve stimuli are arranged on a 27-inch LCD monitor
flashing at frequencies step of 0.5Hz ranging from 9.25Hz to
14.75Hz, with the corresponding phases ranging from 0π to
1.5π in steps of 0.5π [10].
EEG data are recorded from ten healthy subjects (9 males

and 1 female, mean age: 28 years) with normal or corrected-
to-normal vision using a BioSemi ActiveTwo EEG system
(Biosemi, Inc.) with the sampling rate of 2048Hz. All subjects
are seated in a comfortable chair in a dim room, 60 cm in front
of the LCDmonitor. The experiment consists of 15 blocks for
each subject, and a block contains 12 trails corresponding to
all 12 targets in a random order. A red square appears for 1s
at the position of the target stimulus at the beginning of each
trial. Participants are asked to shift their gaze to the target

FIGURE 8. (a) Comparisons of the average classification accuracies and
(b) the average ITR on Dataset1 for different methods with 1s data length.
Error bar in each method indicates the standard deviation among all
subjects.

within the 1s duration. All stimuli start to flicker simulta-
neously for 4s after the red square disappears. Participants
are instructed to avoid eye blinks during the 4s stimulation
process.

B. DATASET2 DESCRIPTION
An open 40-target dataset for SSVEP-based BCIs conducts a
cue-guided target selecting task. 40 characters are presented
on a 23.6-in LCD monitor and the viewing distance to the
LCD monitor is 0.7 meters [25]. The frequencies of 40 char-
acters rang from 8Hz to 15.8Hz with the step of 0.2Hz, and
the phase step is 0.5π . 40 targets are coded using a joint
frequency and phase modulation (JFPM) approach [27]. EEG
data are acquired using the Synamps2 EEG system (Neu-
roscan, Inc.) from Thirty-five healthy subjects (17 females,
aged 17–34 years, mean age: 22 years) with normal or
corrected-to-normal vision. The sampling rate is 1000 Hz.
Each trial lasts 6s in total. At the beginning of each trail,
subjects are asked to shift their gaze to a red square at the
target location during 0.5s cue duration as soon as possi-
ble. Then, all stimuli start to flicker on the LCD monitor
simultaneously for 5s after the cue. The blank in the LCD
monitor lasts for 0.5s following the stimulation. The experi-
ment includes 6 blocks for each participant, with one block
containing 40 trials corresponding to all 40 targets indicated
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FIGURE 9. (a) Comparisons of the average classification accuracies and
(b) the average ITR on Dataset2 for different methods with 1s data length.
Error bar in each method indicates the standard deviation among all
subjects.

in a random order. A total of 240 trials are conducted on each
participant.

FIGURE 10. Comparisons of the average classification precision and
recall on Dataset2 for different methods in this study 1s data length.

C. DATA PREPROCESSING PARAMETERS
In Dataset1, the data of all the 8 channels are filtered by
a 4th order Butterworth band-pass filter between 6Hz and
80H for CCA [7], while by three 4th order Butterworth
band-pass filter in our proposed method FBCNN. The band-
width of three filters are 6Hz-16Hz, 16Hz-32Hz and 32-64Hz
respectively. Then, each 4s trail is divided into 1s non-
overlapping segments. Considering the visual latency, a time
delay of 135ms is added in the extraction [10], and the
frequency components converted by FFT with a resolution

FIGURE 11. Comparison of the classification accuracies on Dataset1 for
different methods in this study and other reported methods with 1s data
length.

of 0.25Hz are extracted between 5Hz and 55Hz for FBCNN
methods.

In Dataset2, O1, Oz, O2, PO3, POz, PO4, Pz, PO5 and PO6
are used as the input channels for all methods. For CCA [7]
and CNN [9], the bandwidth is between 6Hz and 64Hz; for
FBCNN, three band-pass filter are used to filter the data,
and the bandwidth of three filters are 6Hz-18Hz, 14Hz-36Hz
and 28 Hz-64Hz respectively. The first 140 milliseconds
of data are removed because of the visual latency [25].
Finally, the filtered 5s EEG data of each trail is divided
into 1s non-overlapping segments. The frequency domain
signals transformed by FFT with a resolution of 0.2Hz are
extracted between 5Hz and 55Hz for both CNN [9] and
FBCNN.

TABLE 1. The details of hardware platform.

D. TRAINING PROCESS
A normal distribution with a mean of 0 and a standard devi-
ation of 0.01 is used to initialize the convolutional layers
and fully connected layers of the FBCNN and CNN net-
work. Both networks are trained by the stochastic gradient
descent (SGD) optimization algorithmwith themomentum of
0.9, and the categorical cross-entropy loss functionwith back-
propagation technique is introduced to achieve the difference
between predicted value and real value. The hyper parameters
are obtained according to the best performance of networks
on every participant during the training and testing process.
Notably, the training process of CNN architecture has not
been reproduced for Dataset1, since the average accuracies
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TABLE 2. Classification accuracy (%) on Dataset1 for each subject with 1s data length.

results are directly from [9]. The FBCNN code on Dataset1
and the CNN and FBCNN codes on Dataset2 are avail-
able in https://github.com/tianwangchn/SSVEP_FBCNN_12
class and https://github.com/tianwangchn/SSVEP_FBCNN_
40class, respectively.

FIGURE 12. Comparison of the classification accuracies on Dataset2 for
different methods in this study and the reported FBCCA with 1s data
length.

For UD training method, the leave-one-session-out strat-
egy is performed on each participant’s dataset. To be specific,
the network is trained and validated on the same partici-
pant’s data, and 10-fold cross-validation method is used to
divide the data. The sum of 1s non-overlapping segments
for Dataset1 are: 648 (training) and 72 (testing), and for
Dataset2 are: 1080 (training) and 120 (testing). UD-mag-
FBCNN and UD-mag-CNN are used to instead of the train-
ing of the methods using magnitude spectrum features as
input. And, the methods using complex spectrum features are
referred to as UD-comp-FBCNN and UD-comp-CNN. For
FBCNN method, the final parameters are chosen as: Learn
rate (0.001), Dropout ratio (0.25), L2 Regularization (0.001),
Number of Epochs (120, Dataset1), Batch size (16, Dataset1)
and Epochs (150, Dataset2), Batch size (32, Dataset2). For

CNNmethod on Dataset2, the final parameters are chosen as:
Learn rate (0.001), Dropout ratio (0.25), L2 Regularization
(0.0001), Number of Epochs (150), Batch size (128).

For UI trainingmethod, the leave-one-participant-out strat-
egy is introduced to carry out the training and testing proce-
dure. In UI method, a subject is leave out of the all subjects
for testing process, and the remains are used to training the
classifier. The total number of 1s non-overlapping segments
for Dataset1 are: 6480 (training) and 720 (testing), and for
Dataset2 are: 40800 (training) and 1200 (testing). UI-mag-
FBCNN and UI-mag-CNN are used to instead of the train-
ing of the methods using magnitude spectrum features as
input. And, the methods using complex spectrum features
are referred to as UI-comp-FBCNN and UI-comp-CNN. For
FBCNN method, the final parameters are chosen as: Learn
rate (0.001), Dropout ratio (0.25), L2 Regularization (0.001),
Number of Epochs (50, Dataset1), Batch size (128, Dataset1)
and Epochs (50, Dataset2), Batch size (256, Dataset2). For
CNNmethod on Dataset2, the final parameters are chosen as:
Learn rate (0.001), Dropout ratio (0.25), L2 Regularization
(0.0001), Number of Epochs (50), Batch size (512). Both
CNN and FBCNN networks are trained and validated on the
hardware platform listed in Table 1.

IV. RESULTS
A. RESULTS OF DATASET1
Fig. 8(a) shows the average classification accuracies of all
classification methods across 10 participants on Dataset1.
Table 2 lists the classification accuracies for all the 10 sub-
jects on Dataset1 with 1s data length. Among all the meth-
ods, UD-comp-FBCNN achieves the highest accuracy of
93.19±12.4%. The methods of UD strategy: UD-mag-
FBCNN, UD-comp-FBCNN, UD-mag-CNN and UD-comp-
CNN all perform better than the methods of UI strategy:
CCA, UI-mag-FBCNN, UI-comp-FBCNN, UI-mag-CNN
and UI-comp-CNN. The average accuracies of all the
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TABLE 3. Classification accuracy (%) on Dataset2 for each subject with 1s data length.

methods for data length of 1s are: CCA: 63.22±21.7%, UD-
mag-CNN: 82.77±16.7%, UD-mag-FBCNN: 85.97±15.9%,
UD-comp-CNN: 92.33±11.1%, UD-comp-FBCNN: 93.19±
12.4%, UI-mag-CNN: 70.5±22%, UI-mag-FBCNN: 73.91±
21.7%, UI-comp-CNN: 81.6±18%, UI-comp-FBCNN:
83.46± 19.5%. For UD approach, the average accuracies of
FBCNN methods corresponding to inputting magnitude and

complex feature respectively are 3.2% and 0.86%, higher than
that of CNN methods. For UI approach, the average accura-
cies of FBCNN methods corresponding to inputting magni-
tude and complex feature respectively are 3.41% and 1.86%,
higher than that of CNN methods. Fig. 8(b) summarizes the
average ITR(bits/min) for all methods with 1s data length and
0.5s of gaze-shifting as: CCA: 59.5 bits/min, UD-mag-CNN:
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FIGURE 13. (a) Output feature clusters of the Conv2_Flatten layer (second
to last layer) of UI-mag-CNN and (b) output feature clusters of the
concatenate layer (second to last layer) of UI-mag-FBCNN on Dataset2.

101.5 bits/min, UD-mag-FBCNN: 109.7 bits/min, UD-comp-
CNN: 127.8 bits/min, UD-comp-FBCNN: 130.5 bits/min,
UI-mag-CNN: 73.7 bits/min, UI-mag-FBCNN: 80.9 bits/min,
UI-comp-CNN: 98.6 bits/min, UI-comp-FBCNN: 103.2 bits/
min. These results demonstrated the strength of FBCNN
methods in Dataset1. And, the UD-based training methods
obtained higher performance than the UI-based training
methods and CCA. The one-way repeated measures ANOVA
revealed a significant difference in the classification accuracy
among these methods (p < 0.02)

B. RESULTS OF DATASET2
Fig. 9(a) illustrates the average classification accuracies of all
the methods for Dataset1 across 35 participants. Table 3 lists
the classification accuracies for all the 35 subjects for
Dataset1 with 1s data length. The one-way repeated measures
ANOVA disclosed that the classification accuracy among
these methods differ significantly (p < 0.01). Similar to the
results on Dataset1, UD-comp-FBCNN achieves the highest
accuracy of 79.05±15.6%. All of the CNN and FBCNN
methods outperformed CCA. Among the UD-based methods
and UI-based methods, the UD FBCNN and CNN methods
outperformed the UI FBCNN andCNNmethods respectively.
However, the UI-comp-FBCNN acquired the accuracy
of 73.52±16.5%, superior to that of UD-mag-CNN and
UD-mag-FBCNN. The average accuracies of all the methods
for data length of 1s are: CCA: 53.3±21.3%, UD-mag-CNN:
67.45±17.4%, UD-mag-FBCNN: 70.17±16.9%, UD-comp-
CNN: 75.26±16.2%, UD-comp-FBCNN: 79.05±15.6%,
UI-mag-CNN: 59.62±17.9%,UI-mag-FBCNN: 63.27±18%,
UI-comp-CNN: 70.15±16.7%, UI-comp-FBCNN: 73.52±
16.5%. As for UD approach, the average accuracies of
FBCNN methods corresponding to inputting magnitude
and complex feature respectively are 2.72% and 3.79%,
higher than that of CNN methods. As for UI approach,
the average accuracies of FBCNN methods corresponding
to inputting magnitude and complex feature respectively
are 3.66% and 3.37%, higher than that of CNN methods.
As is shown in Fig. 9(b), the average ITR(bits/min) for
all methods with 1s data length and 0.55s of gaze-shifting

FIGURE 14. (a) Classification result clusters of UI-mag-CNN and
(b) classification result clusters of UI-mag-FBCNN on Dataset2.

are: CCA: 85 bits/min, UD-mag-CNN: 123.3 bits/min,
UD-mag-FBCNN: 131.3 bits/min, UD-comp-CNN:
146.9 bits/min, UD-comp-FBCNN: 159.1 bits/min, UI-mag-
CNN: 101.4 bits/min, UI-mag-FBCNN: 111.4 bits/min,
UI-comp-CNN: 131.2 bits/min, UI-comp-FBCNN: 141.5 bits/
min. Fig.10 shows the average classification precision and
recall of CCA, CNN methods and FBCNN methods on
Dataset2. The average classification precision and recall of
all methods are: CCA: 54.2% and 43%, UD-mag-CNN:
71.8% and 62.5%, UD-mag-FBCNN: 73.8% and 68%,
UD-comp-CNN: 79.6% and 70%,UD-comp-FBCNN: 82.4%
and 76.3%, UI-mag-CNN: 72.6% and 47%, UI-mag-
FBCNN: 74.6% and 52.5%, UI-comp-CNN: 78.1% and
62.2%, UI-comp-FBCNN: 80.2% and 67.9%. The compar-
ative results indicate that FBCNN methods are obviously
superior to CNN methods.

C. COMPUTATIONAL COMPLEXITY
The total parameters are 647.3K (Dataset1) and 297.9K
(Dataset2) for UD/UI-mag-FBCNN, and 134.2K (Dataset1)
and 623.2K (Dataset2) for UD/UI-comp-FBCNN. For
Dataset1, the overall training time of one epoch are:
UD-mag-FBCNN: 10 milliseconds, UD-mag-comp: 10 mil-
liseconds, UD-comp-FBCNN: 1013 milliseconds and
UI-comp-FBCNN: 1016 milliseconds. For Dataset2, the
overall training time of one epoch are: UD-mag-FBCNN:
11milliseconds, UD-mag-comp: 12milliseconds, UD-comp-
FBCNN: 4023milliseconds andUI-comp-FBCNN: 6039mil-
liseconds. The number of floating point operations (FLOPs)
are introduced for the purpose of evaluating the com-
putational complexity of all CNN and FBCNN methods.
The FLOPs of each layer are added to calculate the total
FLOPs of the network. The FLOPs of CNN methods are:
0.00274G (mag) and 0.00564G (comp), and the FLOPs
of FBCNN methods are: 0.0237G (mag) and 0.0493G
(comp).

V. DISCUSSIONS
During recent years, the deep learning-based methods
have been widely applied in SSVEP classification, fully
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FIGURE 15. (a-c) Output feature clusters of the three Conv3_Dropout layers of UI-mag-FBCNN and (d-f) output feature
clusters of the three add layers of UI-mag-FBCNN.

revealling the significant advantages over traditional meth-
ods in terms of classification accuracy and generalization
ability [9], [21]–[24]. However, in the design of neural net-
works, formerly published studies failed to take into account
some prior knowledge which could help to improve the
performance of a classification algorithm. Also, we verify
the new network on a small dataset (Dataset1 used in this
paper, 146MB) and a big dataset (Dataset2 used in this paper,
3.45GB). Fig. 11 and Fig. 12 list accuracy comparisons on
the same datasets between methods in this study and previ-
ous studies. The UD training methods Combination method
(92.78±10.22%) [10], IT-CCA (81.17±18.84%) [10] and
the UI training methods Combined-tCCA (75±24%) [34],
Compact-CNN (79±15%) [24] are introduced to compare on
Dataset1 with 1s data length. The FBCCA (67±18%) [25]
is cited to compare on Dataset2 with 1s data length. Com-
pared the proposed FBCNN methods with methods [9], the
average accuracies of FBCNN methods are higher than CNN
between 0.86% and 3.79% on both datasets. Additionally,
comparing each participant in the two datasets one by one,
we find that FBCNNmethods owns a distinct advantage. The
average classification precisions and recalls of CNNmethods
and FBCNN methods vary significantly on Dataset2. Both
average classification precisions and recalls of FBCNNmeth-
ods are higher than CNN methods. Especially, the recalls of
all FBCNN methods are 5.7% higher than CNN methods

in average. The above results prove it feasible to improve
the classification performance by analyzing the correlation
between harmonics. In some cases, the spontaneous EEG
signals are much stronger than the SSVEP evoked EEG
signals, thus the CNN using single band pay more attention
on spontaneous EEG signals while neglecting the harmonics
with weaker signal amplitude. We split whole single band
into three sub-bands and feed them into parallel subnets of
FBCNN to learn the feature of harmonics using each sub-
net. The contribution of the subnet to the final classification
results, i.e. weight of each subnet, can be learned by full
connected layers. In spite of an increase in the FLOPs of
FBCNN methods comparing with CNN methods, FBCNN
still remain a lightweight neural network with low compu-
tational complexity.

To intuitively visualize the difference between CNN and
FBCNN, the t-Stochastic Neighborhood Embedding (t-SNE)
approach is introduced to demonstrate the feature repre-
sentations of CNN and FBCNN methods. The nonlinear
dimensionality reduction algorithm t-SNE offers an access
to visualize the high-dimensional features in lower dimen-
sions [35]. UI-mag-CNN and UI-mag-FBCNN validated on
S1 and trained on other subjects of Dataset2 are used to
extract and demonstrate the patterns. Different colors of the
clusters in Fig. 13, Fig. 14 and Fig. 15 stand for different
SSVEP target labels. Fig. 13(a) presents the output feature
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clusters of the Conv2_Flatten layer (second to last layer)
of UI-mag-CNN, and Fig. 13(b) shows the output feature
clusters of the concatenate layer (second to last layer) of
UI-mag-FBCNN. Fig.14 (a) and Fig. 14(b) illustrates the
classification result clusters of UI-mag-CNN and UI-mag-
FBCNN respectively. To compare the impact after SE and
the pair-add-up operation, the output feature clusters of three
Conv3_Dropout layers in UI-mag-FBCNN are presented in
Fig. 15(a-c), and the output feature clusters of the three add
layers of UI-mag-FBCNN are exhibited in Fig. 15(d-f). It can
be observed that the output features become more clustered
after SE and pair-add-up operation. The results acquired on
both public datasets and the feature representations exhibit
the effectiveness of FBCNN. The direct feature extraction
and learning in CNN method [9], which rely on sole channel
CNN structure from SSVEP frequency domain data with-
out prior knowledge-based operation, may not be the most
appropriate approach owing to incomplete feature extraction.
More information in SSVEP data can be extracted with the
help of the filter bank, and the attention mechanism enhances
the distinguishability of features. The bandwidth and number
of filters are set empirically in this paper, but work on the
performance of FBCNN in different number and bandwidth
of filters is still ongoing to further implement online SSVEP-
based BCI applications.

VI. CONCLUSION
In summary, we propose a novel harmonic-based feature
learning method for SSVEP classification, which is based
on filer bank and a new CNN architecture. Two public
datasets with sufficient stimulus frequencies and participants
are introduced to verify the performance of all the methods
for comparison. The experimental results demonstrate that
UD-comp-FBCNN obtains the best performance among the
compared methods and that FBCNN methods perform better
than other CNN-based methods on the two datasets.
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