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ABSTRACT Robotic-assisted microsurgeries provide several benefits to both patients and surgeons.
Nevertheless, there are still some limitations and challenges associated with their outcome, one of which
is a lack of force feedback. Without force information, the risk of delicate tissue damage from the excessive
force applied by surgeons would be increased. Since it is difficult to install force sensors on microsurgical
tools, a novel approach for estimating a force vector from the deformation of the surgical tool is proposed in
this paper. In the proposed approach, a surgical instrument that deforms according to the magnitude of the
tool-to-tissue force is designed, and a time series convolution neural network is used to make the nonlinear
relationship between the visual information of the deformation of the surgical tool and the applied forces
in such a way that the tool-to-tissue force can be estimated according to the deformation of the surgical
instrument in a real-time manner. The experimental results prove that the applied force can be successfully
estimated with high accuracy in three dimensions using the proposed method.

INDEX TERMS Force estimation, surgical tool, visual information, machine learning, microsurgery.

I. INTRODUCTION
Microsurgery is an operation for suturing vessels or nerves
under a microscope and is regarded as one of the most
technically demanding surgical disciplines because it requires
precise motion to manipulate delicate tissue in a small and
constrained workspace [1], [2]. Microsurgeries have also
been widely used in the areas of ophthalmology, otolaryngol-
ogy, and neurosurgery. However, the accuracy of the surgeries
is limited by the surgeons’ capabilities. The robotic-assisted
surgery system with a master-slave configuration brings sev-
eral potential advantages in the field of microsurgery, such
as enhancing the surgeons’ dexterity and allowing precise
manipulation by providing motion scaling and tremor filter-
ing [3]–[5].

Although microsurgical robotic systems have several ben-
efits to both surgeons and patients, there are still some limi-
tations and challenges associated with their outcome, one of
which is a lack of force feedback. Force feedback is a major
feature that can improve the microsurgical performance since
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it enables surgeons to control the interaction forces [6], and
thus, it helps in the proper execution of surgical procedures.
In addition, force feedback can also enable surgeons to feel
extremely small forces; as a result, surgeons can avoid exer-
tion of excessive force and reduce the risk of damage to
delicate tissues. Without force information, it is difficult for
surgeons to feel how much force is applied to delicate tis-
sues, and excessive force might result in irreversible dam-
age [7]–[9]. To address this problem, a method to measure the
interaction force between a surgical instrument and a tissue on
the slave side and a method to feedback the force to the sur-
geon on the master side should appropriately be considered in
robotic-assisted microsurgery. This paper proposes a method
to estimate the interaction force vector on the slave side.

To date, many researchers have studied force feedback for
robotic-assisted minimally invasive surgery (widely used in
endoscopic surgery such as laparoscopic surgery). Existing
force estimation methods in the surgery robot can be roughly
divided into two methods: direct force sensing and indirect
force estimation [10], [11]. In the direct force sensingmethod,
the tool-to-tissue force is measured by integrated sensors that
are installed on or close to the surgical tool. For example,
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several sensorized tools have been developed with force
sensors or strain gauges mounted on the shaft or the base
of the surgical tool [12], [13]. Other researchers [14], [15]
have measured the force using force sensors installed on the
tip of the surgical tool. Furthermore, a surgical forceps tool
with the capability of force sensing, including pull and grasp
forces has been developed using strain gauges attached to the
complaint hinge [16]. The main advantage of this method
is that the forces can be measured directly from the tool-
to-tissue interaction. Nonetheless, this approach still suffers
from many constraints, such as biocompatibility, steriliza-
tion, size, and cost [17], [18]. For these reasons, indirect
force estimation has been proposed as an alternative solution
to estimate the interaction forces. In contrast to the direct
force sensing method, the indirect force estimation method
involves estimating forces through driven system informa-
tion, such as the current, torque and displacement, or vision,
instead of direct force measuring. For example, force sensing
was conducted based on changes in driving cable tension
for a 3-DOF manipulator [19]. In [20], a dynamic model-
based estimator was proposed to estimate cable pretension
in cable-driven robots. However, the use of the driven system
information for force detection could affect its accuracy due
to its nonlinear characteristics.

The vision-based approach, which is called vision-based
force measurement (VBFM) [21], was proposed to esti-
mate the interaction forces from the observable displace-
ments of the deformable object. To prove the feasibility and
effectiveness of the VBFM, researchers have made a large
amount of effort. In the study in [22], a method based on
image processing techniques and a continuum mechanics
model was proposed to estimate the force, which can be
used in both micro- and macroscale environments. A virtual-
template-based approach that estimates the tool-organ force
interaction from monocular camera images was presented
in [23]. The authors in [24] built a biomechanical model
from the organ shape using 3D reconstruction and meshing
techniques to estimate the contact forces. These research
showed that the vision-based approach is stable, robust,
and effective in estimating the applied forces according
to the object deformation, whether in macro or microsys-
tems. Thus, although the accuracy provided by the VBFM
method is limited, it is still a potential solution to estimate
the force.

In addition, some researchers have used artificial neural
networks to improve the accuracy of vision-based force esti-
mation. In [25], two different neuro-fuzzy inference systems
were proposed to identify the tool-tissue force and the maxi-
mum local stress in laparoscopic surgery. A recurrent neural
network (RNN) approach for 3D vision-based force estima-
tion was proposed in [26]. In their work, the force is esti-
mated through the RNN, which uses kinematic variables and
deformation mapping as the input. To increase the accuracy
of the learning system, a modification method was presented
by the same authors in [27]. The solution extracts the geom-
etry of motion of the tissue’s surface first, and then, a deep

network based on an LSTM-RNN architecture is used to find
the accurate mapping between the extracted visual-geometric
information and the applied force. This vision-based neural
networkmethodmainly relies on tissue deformation observed
bymonocular or stereo vision systems as the input of the deep
learning models.

As described in the aforementioned literature, most exist-
ing methods have been proposed for laparoscopic surgical
robots. Since microsurgery involves suturing blood vessels
or nerves under an optical microscope, the size of the surgi-
cal instruments is smaller than that in laparoscopic surgery,
which makes installing force sensors on microsurgical tools
difficult. Moreover, the view of the region of interest in
microsurgery is limited, which makes it difficult to observe
the deformation of delicate tissues. Therefore, to date, there
have been few studies on force feedback in robotic-assisted
microsurgery. A 3-DOF force-sensing micro-forceps for
robot-assisted vitreoretinal surgery has been developed based
on fiber Bragg grating (FBG) strain sensors [28]–[30]. How-
ever, this direct detection method also has some shortcom-
ings, such as temperature sensitivity, sterilization, and high
cost.

Due to the reasons mentioned above, a novel vision-based
sensorless force estimation approach for robotic-assisted
microsurgery with the capability of multiaxis force sensing is
proposed in this paper. In the proposed approach, a surgical
instrument that easily deforms according to the magnitude of
the applied force is designed, and a time series convolution
neural network (CNN) model is proposed to determine the
relationship between the deformation of the surgical tool and
the applied forces in such a way that the tool-to-tissue forces
can be estimated according to the deformation of the surgical
instrument in real time.

Deep neural networks, such as CNNs, have achieved
dramatic progress on image recognition tasks, and a
number of extensions to process video have also been pro-
posed [31]–[33]. Some of the most popular CNN architec-
tures used today are AlexNet [34], VGG16 [35], ResNet [36]
and GoogLeNet [37]. Among them, VGG16 is currently a
widely used choice for extracting features from images and
has excellent performance. For example, transfer learning
using CNNs has been proven to be an effective method that
has the benefit of decreasing the training time and can result
in lower generalization error [38]. In transfer learning, a neu-
ral network model is first trained on a base dataset and task
and then repurposes the learned features or transfers them
to a second target network to be trained on a target dataset
and task [39]. Shin et al. [40] accomplished two specific
computer-aided detection problems in medical images by
fine-tuning CNN models pretrained from a natural image
dataset. Esteva et al. [41] demonstrated that a pretrained CNN
model in the ImageNet dataset can be used in the classifica-
tion of images that concern skin cancer lesions. Therefore,
in the current work, the VGG16 model is used as an example
of the pretrained model, and the transfer learning technique
is exploited.
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FIGURE 1. Flowchart of the senseless force estimation approach in a microsurgical robotic system. We first designed a surgical tool that deforms
according to the magnitude of the applied force, and then, visual information from the deformation of the surgical tool is used in a deep learning
system that can estimate the applied force.

The remainder of this paper is organized as follows:
Section II details the proposed approaches. Sections III and
IV present experimental evaluations to demonstrate the fea-
sibility and effectiveness of the proposed approach. Section V
presents the conclusions of this paper.

II. VISION-BASED SENSORLESS FORCE ESTIMATION
APPROACH WITH A TIME SERIES CNN MODEL
In the proposed approach, deep neural networks are
applied together with time series visual information from
a deformable surgical tool to estimate the applied force.
The force estimation approach is a part of the robot-assisted
microsurgical system based on a master-slave configuration,
as shown in Fig. 1. The surgeonwatches themotion of the sur-
gical tool in the slave hand on a display and controls the mas-
ter hand to performmicrosurgery. The operation of the master
hand can be scaled down with a motion-scaling ratio by the
controller and transmitted to the slave hand; then, the slave
hand directly acts on the patient with the deformable surgical
tool. In this way, the slave hand can replicate the surgeon’s
motion with greater precision. A high-definition (HD) micro-
scope is used to provide stereoscopic visualization of the
surgical area, allowing the surgeon to perform operationswith
three-dimensional (3D) perception. To provide the surgeon
with a sense of touch, the system integrates a force feedback
function using the proposed approach, i.e., the interaction
forces between the surgical tool and the tissue on the slave
hand can be fed back to the surgeon.

In the force estimation approach, visual information on
the displacements of the deformable surgical tool is provided
to the proposed deep neural networks. In the proposed deep
neural networks, a time series CNN model is trained to ana-
lyze the visual information and generate an accurate force
estimation. Then, the estimated forces are transmitted to the
surgeon’s hand by the master hand.

FIGURE 2. 3D model of the deformable surgical tool. It deforms
according to the applied forces on the tip of the surgical tool.

A. THE DEFORMABLE SURGICAL TOOL
The proposed method in this paper enables the system to
estimate the tool-to-tissue forces based on the deformation
of the surgical tool. The first part of our approach is to design
the deformable surgical tool. Figure 2 shows a 3D model
of the surgical tool that is deformable according to applied
forces.

The five parts (V0 - V4) in the middle of the surgical
tool are marked with different colors, and each adjacent part
is designed to be perpendicular to each other part to make
it clearer to observe its deformation. During the operation,
interaction forces (Fx , Fy and Fz) are generated between
the tip of the surgical tool and the delicate tissue; as a
result, the position of the five parts will change according to
the deformation. Then, the relationship between the applied
forces on the tip of the surgical tool and the deformation of
the surgical instrument is established through the time series
CNNmodel, which is detailed later in Section B. Thismethod
makes it possible to estimate the tool-to-tissue forces from the
deformation of the surgical tool while in actual use.
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FIGURE 3. (a) A novel time series CNN model consists of three VGG16 architectures. First, a sequence of the current and
previous 2 timestep frames (Xt , Xt−1 and Xt−2) is used as the input data of the neural network mode. Then, each timestep of
the sequence is trained by the fine-tuned VGG16 network model, and the feature vector is extracted from the penultimate
layer. Afterward, the extracted feature vectors of 3 timestep frames are concatenated as a new feature vector. In addition,
finally, the new feature vector is followed by a fully connected layer with linear activation to estimate the force vector (Yt ) at
the current timestep. (b) The fine-tuned VGG16 network model. After the fine-tuning process, the feature vectors can be
extracted from the penultimate fully connected layer FC7.

B. THE TIMESERIES CNN MODEL
The approach presented in this paper is used to predict inter-
action forces using the image information of the deformable
tool. Because of the long duration of the surgical image
information, the neural network model for force estimation
should be established as a function that maps an input image
sequence to an output force sequence. Moreover, due to the
dynamic characteristics of the sequence, the speed and accel-
eration of the surgical tool deformation must be accounted
for. Therefore, with the aim of performing the force estima-
tion task, a time series CNN model is proposed in this paper,
i.e., a sequence of 3 time series frames is used as input to
the model, rather than utilizing only a single frame. It can be

represented by the following equation:

Y t = f
((
X t ,X t−1,X t−2

)
,W

)
(1)

where X t , X t−1 and X t−2 ∈ Rh×d×c (h, d represent the
height and width of the pixel images, and c is the number of
RGB channels) are the sequence of the current and previous
2 timestep frames. The nonlinear model f (·) with weight
vector parametersW maps the sequence into estimated force
vector Y t = [f xt f yt f zt ] in the current timestep. The pro-
posed time series CNN model is depicted in Fig. 3(a). First,
a sequence of the current and previous 2 timestep frames (X t ,
X t−1 and X t−2) is used as the input data of the time series
CNN model. Subsequently, each frame of the sequence is
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FIGURE 4. (a) Experimental setup, used to acquire the dataset. (b) The
3-axis force sensor is used to obtain the actual force values.

trained by a fine-tuned VGG16 network model. Afterward,
features of size 4096 are extracted from the penultimate
layer (FC7 shown in Fig. 3(b)) of the VGG16 architecture.
Finally, the extracted feature vector of 3 timestep frames is
concatenated as new feature vectors, which are followed by
a fully connected layer with linear activation to estimate the
force vector (Y t) at the current timestep.
The VGG16 network is fine-tuned on our task to extract

feature vectors from image information that can be used in the
time seriesmodel (3 timesteps). Tomatch the force estimation
task, after fine-tuning, the feature vectors can be extracted
from the penultimate fully connected layer FC7. After the fea-
tures are concatenated, a nonlinear activation function Tanh
is used in the FC layers. By applying tanh, the output results
are compressed between −1 and +1. A linear activation is
used in the output layer for networks that estimate interaction
forces.

The loss function plays an important role in machine learn-
ing to evaluate how well a learning system can predict the
expected results. In this study, the mean square error (MSE)
loss function is utilized for the regression task that predicts
force vectors. The MSE loss function is given as:

LMSE =
1

n

∑n

i=1

(
yi − ŷi

)2 (2)

where yi represents the actual force vector, ŷi stands for the
predicted force vector, and the index i (1, 2, . . . , n) represents
the samples in the dataset.

III. EXPERIMENTAL EVALUATION
In this section, experiments to verify the accuracy of the
proposed approach are described in detail. In the proposed
solution, the established time series CNN model must first
be trained using the image information and real forces. Once
the model is trained, it can be used to estimate the applied
interaction forces. Then, the estimated forces are validated
against the real forces to verify the feasibility of the proposed
approach.

TABLE 1. Hyperparameters used for the timeseries CNN model.

A. DATASET ACQUISITION
The experimental setup is composed of a camera, a 3D printed
model of the surgical tool and a 3-axis force sensor (NITTA
PD-3–32–05), as shown in Fig. 4. This setup was designed
to acquire a dataset of image information of the proposed
deformable surgical tool and the actual applied interaction
forces. The dataset samples are used as the training and test
sets of the model. The video sequence of the deformation
of the surgical tool is obtained with a resolution of 1920 ×
1080 pixels at 120 frames per second in RGB color space.
At the same time, the applied force on the tip of the surgical
tool was measured with the 3-axis force sensor to prepare
the training dataset and validation dataset. The surgical tool
deforms according to the magnitude of the applied forces,
as shown in Fig. 5.

The raw video frames were preprocessed to effectively
train and validate the proposed deep learning network. In pre-
processing operations, the video is converted into an image
frame by frame, and then, a resize method is used to extract
a region of interest with a size of 256 × 256 pixels from
1920× 1080 pixels. Exactly from this environment, a dataset
with 5400 images and the corresponding force information
labels was established, and this dataset was used to train and
evaluate our proposed time series CNN model network.

B. TRAINING APPROACH
To fit and evaluate the learning model, the stages of machine
learning are divided into two phases: a training phase and a
test phase. Here, 67% of the dataset was used for training,
and 33% was used for testing, which is a common practice
in data science. In the training phase, the 3 timestep CNN
learning model is trained using the training dataset to obtain
an accurate mapping function of the given information and
applied forces. In the test phase, the trained model uses the
image information in the test dataset to estimate the applied
force and then compares the estimated force with the actual
force in the test dataset to validate the accuracy of the network
model.

Hyperparameters are the variables that determine how the
network is trained, and a proper choice of hyperparameters
can enable neural networks to learn faster and achieve higher
performance. The hyperparameters used for the training of
the proposed time series CNN model are listed in Table 1,
such as the batch size, epochs and learning rate. The number
of epochs in this paper is defined as 30 to maintain the
generalization capacity of the neural network. During the
training stage, the error backpropagation method is used to
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FIGURE 5. Deformation of surgical that result from applying a force at different time instants.

FIGURE 6. The figures show the real force measures in the X, Y, and Z
directions, and those estimated by our approach.

update the weights of the model. In addition, the root mean
squared error propagation (RMSProp) optimizer [42] is used
as the learning rate optimization method. After the training
process, the test dataset is used to assess the performance of
the proposed model by evaluating the difference between the
estimated forces and the real forces.

IV. RESULTS AND DISCUSSION
In this section, the experimental results and discussion are
presented. To demonstrate the benefits of the proposed
approach, the learning results of the proposed time series
CNN network were compared with those of the other two
comparison networks (described later in subsection B).

A. RESULTS OF THE PROPOSED METHOD
The results of the experiment are shown in Fig. 6. The accu-
racy of the proposed approach is verified by the plots shown
in the figure inwhich the estimated force against the real force
is compared in the X, Y, and Z directions. The figure shows
that the estimated values in the three directions (X, Y and Z)
are very close to the real values.

The R2_score accuracy function is used to evaluate the
consistency between the estimated value and the actual value
in the proposed model. The accuracy function is described as

follows:

R2
= 1−

SSres
SStot

(3)

SSres =
∑n

i=1

(
yi − ŷi

)2 (4)

SStot =
∑n

i=1

(
yi − ȳ

)2 (5)

where yi represents the actual force vector, ŷi stands for the
predicted force vector, ȳ is the mean value of the actual force
vector, SSres is the sum of squares of the residual errors, and
SStot is the total sum of the errors. The value of R2 varies
between 0 and 1. A higher R2 value indicates that the effect
of the model is better.

The R2 value results of three directions (X, Y and Z) are
also shown in Fig. 6. R2

x is 0.9740, R2
y is 0.9635 and R2

z
is 0.9259. During the test, the proposed networks estimated
the interaction force accurately at every 30ms. The calcula-
tion time of estimated forces can be shortened by using a
faster processor. The maximum absolute error between the
estimated forces and the real forces are 0.1435N, 0.1531N
and 0.2284N in the X, Y, and Z directions, respectively.
The experimental results prove that the proposed method can
successfully estimate the applied force with high accuracy in
three dimensions. The root mean square errors (RMSE) of the
proposed force estimation method were less than 0.066N in
all directions whereas that of another indirect force detection
method was 0.07N [23]. Consequently, the precision of the
proposed force estimation is acceptable level.

B. COMPARISON RESULTS
To verify the effectiveness of the proposed approach, the
results of the proposed approach were compared with those
of the other two models, as shown in Fig. 7. Comparison
Model 1 is based on the CNN architecture and uses only a
single image as input to predict the force vectors, while com-
parison Model 2 is composed of CNN and LSTM networks
and estimates the force vectors through the sequence image
information. The comparison models were trained using the
same dataset. Figure 8 shows the comparison graphs between
the actual forces and the estimated forces with each method,
and Table 2 shows the results of the comparison in terms of
R2 values.
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FIGURE 7. Comparison architecture: (a) our proposed model, (b) comparison Model 1 with single frame CNN model, (c) comparison
Model 2 with a combined of CNN and LSTM network.

FIGURE 8. Comparison graphs between the actual forces and the estimated forces of comparison Model 1 and comparison Model 2.

TABLE 2. The comparison results of the three models.

Comparing the three architectures, the proposed time series
CNNmodel showed the best result. Although the R2 value of
comparison Model 2 is close to that of the proposed method,
the model structure of the proposed method is simpler. Fur-
thermore, using the same training data, the same learning
completion condition (as detailed in Section III) and the same
computer for training, the training time of the proposed
method is approximately 30% less than that of comparison
Model 2. This outcome occurs because the tool dynamics are
effectively trained with the time series input in the proposed

CNN, while LSTMs are trained by looping through the input
time sequences. These experimental results show the effec-
tiveness of the proposed force estimation method.

The movement of the surgical tool during the operation
is dynamic and continuous, and thus, a major challenge in
force estimation is to understand the dynamic information
of the surgical tool. The time series CNN network proposed
in this work considers the dynamic characteristics of real
surgical scenarios, using a sequence of 3 timestep images
as data input instead of using a single frame. Among them,
a conventional CNN processes spatial information in a single
image, while time series CNNs can handle dynamic infor-
mation such as velocity and acceleration using 3 time series
images. By applying this proposed model, a dynamic map-
ping of a nonlinear system can be effectively constructed,
and the output can be calculated through the past and current
frames to provide better force estimation performance. Other
studies have also proven the effectiveness of neural net-
works for the learning of uncertain dynamics using dynamic
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information. Time series input data were also applied with
damping neurons in the adaptive neuron network controller
for force control of robotic manipulators in unknown envi-
ronments to consider the velocity and acceleration terms and
effectively compensate for the unknown dynamics of the
environment [43]. In addition, a time-delay feature matrix
is used to provide inputs for neural networks and support
vector machine-based classifiers, which collect the dynamic
characteristics of EEG signals for motion intention prediction
in [44]. Furthermore, the authors in [45] confirmed that the
convolutive architecture with dynamic information as input
is more accurate and robust than recurrent networks in lon-
gitudinal vehicle dynamics modeling. In summary, the time
series CNN model in this study is effective for practical
dynamic systems in constructing dynamic mapping of non-
linear systems.

V. CONCLUSION
In robotic-assisted microsurgeries, the surgeons perform
microsurgery through a master-slave configuration instead
of directly contacting the patients. Therefore, in the absence
of force feedback, this approach can affect the accuracy of
the operation procedure and cause irreversible tissue damage.
Therefore, this paper considers a method of estimating the
interaction force vector between a surgical instrument and
tissue on the slave side. Because the size of the surgical
tool in microsurgery is smaller than that in laparoscopic
surgery, which makes it difficult to install force sensors on
microsurgical tools, a novel vision-based sensorless force
estimation approach for robotic-assisted microsurgery with
the capability of multiaxis force sensing is proposed.

In this paper, a method to estimate the amount of force
(using a time series CNNmodel) from the deformation of the
surgical tool, which is designed to easily deform according
to the applied force, was proposed. The approach presented
in this work offers a feasible alternative that overcomes the
limitations of integrating sensors into surgical tools. The
accuracy of the approach is validated by the experimental
results. In particular, the evaluation of the other two compari-
son models further proves the effectiveness of this method.
Future work could extend our approach to estimating the
force vectors in real surgical scenarios.
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