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ABSTRACT In this paper, the adaptive super-twisting distributed formation control of multi-quadrotor in
the presence of external disturbances and uncertainties is studied. First, the quadrotor formation system is
separated into a position subsystem and an attitude subsystem which are represented by unit-quaternions.
And then a composite adaptive super-twisting control method is proposed for the position subsystem
and attitude subsystem respectively. For the position subsystem, an adaptive multivariable super-twisting
controller is designed such that the positions of formation converge to the desired formation configuration
and generate the desired attitude. And the adaptive fast super-twisting controller is designed for the attitude
subsystem to track the desired attitude in finite time. Based on Lyapunov-based stability analysis, finite time
convergence stability of the whole closed-loop system is proved. Finally, a numerical simulation result is
provided to illustrate the effectiveness of the proposed formation control scheme.

INDEX TERMS Formation control, finite time convergence, quadrotor, adaptive super-twisting control,
disturbance.

I. INTRODUCTION
In recent years, the quadrotor control problem has received
much interest from many researchers. The main reason is the
diversity of quadrotor applications, such as geographic sur-
vey, agricultural plant protection, military reconnaissance and
so on [1]–[5]. However, due to its characteristics including
that nonlinear, strong couplingmulti-variable, under-actuated
and so on, it puts forward high requirements for its control
ability. The quality of control performance greatly affects the
safety and stability of quadrotor.

Compared with a single quadrotor, the quadrotor forma-
tion may provide a better performance for the difficult tasks
[6]–[10]. Furthermore, system stability and reliability can
also be improved through the exchange of information
among multiple quadrotors. Meanwhile, formation control
of quadrotor formation is more challenging. And the main
issue of formation control is how to achieve and maintain
the desired configuration while tracking a desired trajectory.
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Hence, it is practical significance to study the formation
control problem for quadrotors [11].

For achieving the formation control, the typical control
strategies can be categorized as leader-follower [12]–[14],
behavior-based [15] and virtual [16], [17]. These strategies
all lack their own drawbacks [18]. However, for the rea-
son of simplicity and flexibility of leader-follower strategy,
this strategy is the most widely employed and most effi-
cient approach for quadrotor formation control. Meanwhile,
to avoid the formation falling caused by the failure of the
leader, leader-follower strategy is integrated with distributed
formation control approach, which is more suitable for a large
number of quadrotors to maintain the formation configures.
And a great deal of literature has been presented for the
formation control problem by this strategy.

For the leader-follower formation problem of quadrotors,
Jasim and Gu [19] developed a suboptimal H-infinity con-
troller. However, this paper is only expected to perform a
formation flight in the x-y plane and use a PID control law to
control the inner-loop, which may lead to a poor control per-
formance. Liu et al. [20] proposed a robust formation control
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based on backstepping approach for a group of quadrotors.
The convergence performance is not discussed in this paper.
A consensus formation control algorithm is also proposed and
utilized in [21], the inner-loop modeled by quaternion can be
stable in finite time, but the outer-loop is not. Du et al. [22]
presented a finite-time formation control algorithm in the
basis of backstepping approach and the finite time con-
vergence characteristic is proved in outer-loop and inner-
loop respectively, but the finite time convergence of closed
system is not discussed. In addition to the above methods,
the optimal control method is also used in the formation
control problem of quadrotor. In [23], a formation control
algorithm was proposed based on optimal control method,
which aims to achieve the desired formation behaviors of
multiple quadrotors in asymptotic stability with not finite
time stability. Although the above methods improve the con-
trol performance to a certain extent, the further improvement
performance is urgently needed, especially the convergence
rate.

Over the years, sliding mode control has been applied
into many nonlinear robust control systems because of its
insensitivity to matched disturbances and finite time conver-
gence [24]–[28]. However, many sliding mode controllers
have the problem of chattering, and then the second order
sliding mode control is developed. It can hide the switching
terms within the derivatives of the controllers themselves.
In addition, the super-twisting algorithm has been immensely
popular since its inception [29]–[32]. Recently, there has been
a lot of interest in adaptive versions of the super-twisting
algorithm [33], [34]. The adaptive law can change the control
gain. When a second order sliding surface is established,
the adaptive law stops and the gain remains constant. One
advantage of this adaptive method is that the boundary infor-
mation of the disturbance can be unknown. However, for
the characteristics of quadrotor formation system mentioned
above, there are so many problems that need to be considered
in the application of this algorithm, such as external inter-
ference, communication between quadrotors, the selection of
adaptive parameters and so on. These problems increase the
difficulty of applying this method to multi-quadrotors. And
this paper considers a multivariable adaptive super-twisting
sliding mode control method for the quadrotor formation
system.

Motivated on above analyses, to improve control perfor-
mance, this study focuses on the whole closed-loop stabil-
ity control algorithm for quadrotor formation modeled with
unknown bounded external disturbances and uncertainties.
For the characteristics of inner loop and outer loop of quater-
nion modeled, the different adaptive super twisting control
algorithms are designed to improve the convergence rate and
accuracy respectively. The finite time stability analysis of
whole closed-loop quadrotor formation is proved by a novel
Lyapunov function. The main contributions of this paper are
summarized as follows:

1) Based on the quaternion model, an super-twisting
distributed formation control is designed, which ensures

the stability of quadrotor formation under the condition of
unknown upper bound of external disturbance. And the sta-
bility of closed-loop finite time convergence is proved.

2) For the typical second-order dynamic model, the pro-
posed control law has the advantages of fast convergence
speed and high convergence accuracy, which satisfies the
speed requirements of quadrotor in fast maneuverability.

The remainder of this paper is organized as follows.
In Section II, notations and graph theory, some useful lem-
mas and problem formulation are given. In Section III, the
control laws and adaptive laws are proposed, and the stability
of the whole closed-loop system is proven via Lyapunov-
based analysis. In Section IV, simulation results are given to
demonstrate the effectiveness of the control laws proposed
above. Finally, the conclusions are given in Section V.

II. PRELIMINARIES AND PROBLEM STATEMENT
A. GRAPH THEORY
For the formation with n quadrotors, the interaction among
the n quadrotors is modelled by weight undirected graph G
which is (V ,E,F). In undirected graph G, V = {vj, j =
1, . . . , n} is the set of nodes, E ⊆ V × V is the set of edges.
F is the weighted adjacency matrix of the graph G. For K ,
we have aii = 0 and, aji = 1 if there is an edge between agent
j and agent i while aji = 0 otherwise. The set of neighbors of
node vi is denoted by (vj, vi) ∈ E . The out-degree of node

vi is defined as dj = degout (vj) =
n∑
j=1

aji. The degree matrix

of undirected graph G is D = diag{d1, d2, . . . dn} and the
Laplacian matrix of graph G is K = D−F . The path from vj
to vi is a series of different nodes, starting with vj and ending
with vi, so that the continuous node are adjacent. The physical
structure of the quadrotor is shown in Figure 1 [35].
Assumption 1: The communication topology for n agents

is connected at the initial time.

B. USEFUL LEMMAS
Lemma 1 [36]: Consider the following nonlinear system
ẋ(t) = f (x(t)) + g(x(t))u + ω with f (0) = 0. Suppose there
exists an open neighborhood 2 of the origin, a C1 positive-
definite function V :2 → � and real number α > 0, such
that V̇ + αV κ is negative semidefinite on 2. Then the origin
is a finite-time stable equilibrium of nonlinear system.
Lemma 2 [37]: Suppose that there exists a continuous

differential positive definite function V (t), and α > 0, β > 0,
0 < r < 1 are real numbers. If V (t) satisfies the differential
inequality Eq.(1). Then, V (t) will converge to the equilibrium
point in a finite time tf , where tf can be obtained by Eq.(2)

V̇ + αV + βV r
≤ 0 (1)

tf ≤ t0 +
1

α(1− r)
ln
αV 1−r (x0)+ β

β
(2)

C. SYSTEM MODEL
Considering that n is the total number of the formation
quadrotors, the jth quadrotor is denoted by the subscript j. The
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FIGURE 1. Physical structure of a quadrotor.

configuration of quadrotor is shown in Figure 1. To describe
the space motion state of the quadrotor, the inertial frame
E = {e1, e2, e3} with e1 = [1, 0, 0]T , e2 = [0, 1, 0]T and
e3 = [0, 0, 1]T the unit vectors in the directions x, y, z of
the frame E . F =

{
fj1, fj2, fj3

}
denotes the body-fixed frame

of the jth quadrotor, with fj1 = [1, 0, 0]T , fj2 = [0, 1, 0]T

and fj3 = [0, 0, 1]T the unit vectors in the directions x, y,
z of the frame Fj. ωj is the angular velocity and the orien-
tation is represented by unit-quaternions defined by Qj =[
qTj , ηj

]T
, which is composed of a vector component qj =[

qj1, qj2, qj3
]T and a scalar component ηj, satisfying

qTj qj + η
2
j = 1 (3)

The multiplication between two unit-quaternions Q1 =

[qT1 , η1]
T and Q2 = [qT2 , η2]

T are defined by

Q1 � Q2 =

(
η1q2 + η2q1 + S(q1)q2

η1η2 − qT2 q1

)
(4)

where� a non-commutative multiplication operator, S (×) is
the skew-symmetric matrix operator that is defined by

S(a) =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 (5)

where a = [a1, a2, a3]T . Let R(Q) ∈ R3×3 denote the
Rodriguez rotation matrix from the inertial frame to the body
frame, and R(Q) in terms of unit-quaternion can be obtained
through the Rodriguez Formula as

R(Q) = (η2 − ‖q‖2I3 + 2qqT − 2ηS(q)) (6)

where I3 is the 3-by-3 identity matrix, ‖·‖ is the Euclidean
norm of vectors.

The model differential equations of the jth quadrotor are
expressed as{

ṗj = vj
mjv̇j = mjge3 − TjR(Q̃j)e3 + dUj

(7)


q̇j =

1
2

[
ηjI3 + S

(
qj
)]
ωj

η̇j = −
1
2
qTj ωj

Ifjω̇j = 0j − S
(
ωj
)
Ifjωj + d0j

(8)

where mj is the mass of the jth quadrotor and g is the grav-
itational acceleration. pj and vj are the position and linear
velocity expressed in the inertial frame. Tj is the magnitude
of the control thrust and Tj ≥ 0. 0j = (0xj, 0yj, 0sj)T ∈ R3

represents the control torque applied on the system expressed
in the body frame F . dUj and d0j are composed of the
aerodynamic disturbances and parameter uncertainties. Ifj =
diag(Ixxj, Iyyj, Izzj) is the symmetric positive definite constant
inertia matrix of the jth quadrotor.
Assumption 2: For the formulation control of quadrotors,

the communication topology graph is undirected.
Assumption 3: The disturbance dUj and d0j are bounded

and we denote
∣∣dUj∣∣ ≤ DUj and

∣∣d0j∣∣ ≤ D0j, where DUj and
D0j are unknown upper bound.

D. PROBLEM FORMULATION
Assuming that pd = [pdx , pdy, pdz]T and vd = [vdx , vdy, vdz]T

denote the desired position and velocity of the quadrotor,
respectively, and the position and velocity tracking error of
the jth quadrotor is defined as

epj =
n∑
i=0

aji(pj − pi −1ji) (9)

evj =
n∑
i=0

aji(vj − vi) (10)

where 1ji = [1xji,1yji,1zji]T represents the relative dis-
tance between the ith quadrotor and jth quadrotor, which
determines the desired formation pattern. For the leader
quadrotor, the desired trajectory 1ji = 110 = [0, 0, 0]T ,
p0 = pd , v0 = vd . Let Qd = [qTd , ηd ]

T and qd =
[qd1, qd2, qd3]T denote the desired orientation expressed in
the desired frame, andωd denotes the desired angular velocity
expressed in the desired frame. Q̃ = [q̃T , η̃]T and q̃ =
[q̃1, q̃2, q̃3]T denote the relative orientation error from the
body frame to the desired frame, and Q̃ is defined by

Q̃ = Q−1d � Q =
(
ηdq− ηqd − S(qd )q

ηdη + qT qd

)
(11)

where the inverse of the unit-quaternion is defined by Q−1 =
[qT , η]T . Let ωd denote the desired angular velocity and the
angular velocity error from the body frame to the desired
frame ω̃ is described by

ω̃ = ω − R
(
Q̃
)
ωd (12)

E. CONTROL OBJECTIVES
In this paper, the main objective is to design a formation
control law for quadrotor formation to achieve the desired
formation pattern and track the desired formation trajectory
under parametric uncertainties and external disturbances.
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III. FORMATION CONTROL DESIGN
To facilitate the design of formation controller separately,
the quadrotor model is divided into the outer-loop subsys-
tem and the inner-loop subsystem. From Eq.(7), it’s clear
that by designing Tj cannot maintain the stability of jth
quadrotor(because it is under-actuated), so, another control
input Uj = TjRT (Q̃j)e3 is designed, which aims to solve
under-actuation of the position system. For the system (7) and
(8), the outer-loop subsystem and inner-loop subsystem can
be written as

Outer-loop subsystem:{
ṗj = vj
mjv̇j = mjge3 − Uj + dUj

(13)

Inner-loop subsystem:
q̇j =

1
2

[
ηjI3 + S

(
qj
)]
ωj

η̇j = −
1
2
qTj ωj

Ifjω̇j = 0sj − S
(
ωj
)
Ifjωj + d0j

(14)

The position formation control for out-loop subsystem and
the attitude tracking control for the inner-loop subsystem will
be designed respectively.

A. POSITION FORMATION CONTROL DESIGN
The error system can be written in a matrix form as

evj = ėpj (15)

Submitting Eq.(9) to Eq.(15) and it yields

ėvj =
n∑
i=0

aji(v̇j − v̇i)

=

n∑
i=0

ajige3 −
n∑
i=0

aji
Uj
mj
+

n∑
i=0

aji
dUj
mj
−

n∑
i=0

ajiv̇i

= G0j −

n∑
i=0

aji
Uj
mj
+ ρj (16)

where

G0j =

n∑
i=0

ajige3 (17)

ρj =

n∑
i=0

aji
dUj
mj
−

n∑
i=0

ajiv̇i (18)

The virtual displacement controller Uj is designed as fol-
lowing

Uj =
mj
n∑
i=0

aji

(G0j + b1(υ(epj)+ 0.5υ(evj))) (19)

where υ(x) =

{
x
||x||

x
||x||+ε0

x 6= 0
x = 0

is the ratio of x to the norm

of x, ε0 > 0 is a very small constant to avoid singularities.

b1 > 0 defined as

ḃ1 =


−

µ( 4
β1
)
3
4

2b1eTpjepj+‖epj‖e
T
vjevj

|b1−b∗1|
3 −

4
β1

∥∥epj∥∥ ≥ ε1
0

∥∥epj∥∥ < ε1

(20)

Let Uj = [uj1, uj2, uj3]T , so in order to get a unique set of
solutions, let qdj3 = 0, and then we get uj1uj2

uj3

 =
 2Tjηdjqdj2

−2Tjηdjqdj1
Tj[1− 2(q2dj1 + q

2
dj2)]

 (21)

where

uj3 =
√
T 2
j − u

2
j1 − u

2
j2 (22)

So, we can extract the thrust force Tj

Tj =
√
u2j1 + u

2
j2 + u

2
j3 (23)

And the jth ηdj exception is

ηdj =

√
1
2
+
uj3
2Tj

(24)

Then, using the first two equations of Eq.(21), extract qdj1
and qdj2 as

qdj =

 qdj1qdj2
qdj3

 = 1
2Tjηdj

−uj2uj1
0

 (25)

The required angular velocity ωdj can be obtained as

ωdj = 2
[
ηdjI3 + S(qdj)
−qTdj

]T
Q̇dj (26)

Theorem 1: Consider the outer-loop subsystem (7) with
the control strategy (19), the tracking error converges to the
region around zero within a finite time.

Proof: Choose the following Lyapunov function
candidate:

V =
∥∥epj∥∥ sTAs+ 1

4
(eTvjevj)

2
+

1
β1

(b1 − b∗1)
4

=
∥∥epj∥∥ [ δ(epj) evj

] [ b21 γ
2

γ
2 b1

] [
δ(epj) evj

]T
+

1
4
(eTvjevj)

2
+

1
β1

(b1 − b∗1)
4

= b21e
T
pjepj + γ

∥∥epj∥∥ 1
2 eTpjevj + b1

∥∥epj∥∥ eTvjevj
+

1
4
(eTvjevj)

2
+

1
β1

(b1 − b∗1)
4 (27)

where s =
[
δ(epj), eTvj

]T
, let γ < 2b

3
2
1 , b
∗

1 > 0, β1 >

0, A =

[
b21

γ
2

γ
2 b1

]
is a positive definite symmetric matrix,
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δ(x) =


xT

||x||
1
2

x 6= 0

xT

||x||
1
2+ε0

x = 0
is the ratio of x inverse to the square

root of the norm of x.
Consider the Lyapunov function has a number of variables,

for the sake of brevity, it is proved in two parts below.

V = V1 +
1
β1

(
b1 − b∗1

)4 (28)

where

V1 = V11 + V12 + V13 + V14 (29)

where

V11 = b21e
T
pjepj (30)

V12 = γ
∥∥epj∥∥ 1

2 eTpjevj (31)

V13 = b1
∥∥epj∥∥ eTvjevj (32)

V14 =
1
4
(eTvjevj)

2 (33)

The time derivative of Eqs.(29)-(33) are given as follows:

V̇11 = b21e
T
pjėpj (34)

V̇12 =
3
2
γ
∥∥epj∥∥ 1

2 eTvjevj + γ
∥∥epj∥∥ 1

2 eTpjėvj (35)

V̇13 = b1eTvjevj
eTpj∥∥epj∥∥ ėpj + 2b1

∥∥epj∥∥ eTvjėvj (36)

V̇14 = eTvjevje
T
vjėvj (37)

Substituting Eq.(16) to Eq.(29), together with Eq.(29)-(33)
yields

V̇1 = V̇11 + V̇12 + V̇13 + V̇14

= −γ (b1 +
1
2
b1υ(evj)θ (epj)− θ (epj)ρj)

∥∥epj∥∥ 3
2

−
∥∥evj∥∥ (−3

2
γ
∥∥epj∥∥ 1

2
∥∥evj∥∥

+ (
1
2
b1 − θ (evj)ρj)

∥∥evj∥∥2
+ b1(b1 − 2θ (evj)ρ)

∥∥epj∥∥) (38)

θ (x) =


xT
||x|| x 6= 0

xT
||x||+ε0

x = 0
is the ratio of x inverse to the norm

of x.
Assuming that b1 > 2C and

∥∥ρj∥∥ ≤ C , then
b1 + 0.5× b1

eTpjevj∥∥epj∥∥ ∥∥evj∥∥ − eTpj∥∥epj∥∥ρj ≥ 0.5b1 − C

0.5b1 −
eTvj∥∥evj∥∥ρ ≥ 0.5b1 − C

(39)

therefore

V̇1 ≤ −γ (0.5b1 − C)
∥∥epj∥∥ 3

2

−
∥∥evj∥∥ (−3

2
γ
∥∥epj∥∥ 1

2
∥∥evj∥∥+ (0.5b1 − C)

∥∥evj∥∥2

+ 2b1
∥∥epj∥∥ (0.5b1 − C)) (40)

Let

χ =
[ ∥∥epj∥∥ 1

2
∥∥evj∥∥ ]T

P =
[
2b1(0.5b1 − C) −

3
4γ

−
3
4γ 0.5b1 − C

]
.

Submitting it to Eq.(40),then we have

V̇1 ≤ −γ (0.5b1 − C)
∥∥epj∥∥ 3

2 −
∥∥evj∥∥χTPχ (41)

Moving forward a single step we can obtain

V̇1 ≤ −γ
∥∥epj∥∥ 3

2 (0.5b1 − C)−
∥∥evj∥∥3λmin(P)

≤ −M (
∥∥epj∥∥ 3

2 +
∥∥evj∥∥3)

≤
−M

2
2
3

(
∥∥epj∥∥ 1

2 +
∥∥evj∥∥)3 (42)

where

χTPχ ≥ λmin(P)(
∥∥epj∥∥+ ∥∥evj∥∥2)

≥ λmin(P)
∥∥evj∥∥2 (43)

(
∥∥epj∥∥a + ∥∥evj∥∥a) 1a ≤ 2

1
a−

1
b (
∥∥epj∥∥b + ∥∥evj∥∥b) 1b , (a ≤ b)

(44)

M = min {γ (0.5b1 − C), λmin(P)} (45)

By analyzing the Eq.(43) with Eq.(44), there is

λmax(Q)(
∥∥epj∥∥ 1

2 +
∥∥evj∥∥)4 ≥ V1 (epj, evj) (46)

so it follows that

λ
3
4
max(Q)(

∥∥epj∥∥ 1
2 +

∥∥evj∥∥)3 ≥ V
3
4
1

(
epj, evj

)
(47)

V̇1 ≤ −
M

2
2
3 λ

3
4
max(Q)

V
3
4
1 (48)

From Eq.(28) and Eq.(48), there is

V̇ = V̇1 + (2b1eTpjepj +
∥∥epj∥∥ eTvjevj)ḃ1

+
4
β1

(b1 − b∗1)
3ḃ1

≤ −
M

2
2
3 λ

3
4
max(P)

V̇
3
4
1

(
epj, evj

)
+ (2b1eTpjepj +

∥∥epj∥∥ eTvjevj)ḃ1 + 4
β1

(b1 − b∗1)
3ḃ1 (49)

where ε1is a constant greater than 0.
Formulation when

∥∥epj∥∥ ≥ ε1, ḃ1 = 0, getting

V̇ = V̇1 ≤ −
M

2
2
3 λ

3
4
max(P)

V̇
3
4
1

(
epj, evj

)
(50)

Formulation when
∥∥evj∥∥ < ε1, getting

ḃ1 = −
µ( 4

β1
)
3
4

2b1eTpjepj+‖epj‖e
T
vjevj

|b1−b∗1|
3 −

4
β1

(51)
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V̇ ≤ −NV
3
4
1 + (2b1eTpjepj +

∥∥epj∥∥ eTvjevj)ḃ1
+

4
β1

(b1 − b∗1)
3ḃ1 − µ(

4
β1

)
3
4
∣∣b1 − b∗1∣∣3

+µ(
4
β1

)
3
4
∣∣b1 − b∗1∣∣3 (52)

where N = M

2
2
3 λ

3
4
max(P)

.

Note that

(V1 +
4
β1

(b1 − b∗1)
4)

3
4 ≤ V

3
4
1 + µ(

4
β1

)
3
4 (b1 − b∗1)

3 (53)

and

−NV
3
4
1 −µ(

4
β1

)
3
4
∣∣b1 − b∗1∣∣3 ≤ −$ (V

3
4
1 +(

4
β1

)
3
4
∣∣b1 − b∗1∣∣3)

(54)

where$ = min {N , µ}
Then we have

−$V
3
4 ≥ −$V

3
4
1 − µ(

4
β1

)
3
4
∣∣b1 − b∗1∣∣3 (55)

then

V̇ ≤ −$V
3
4 + (2b1eTpjepj +

∥∥epj∥∥ eTvjevj)ḃ1
+µ(

4
β1

)
3
4
∣∣b1 − b∗1∣∣3 (56)

It follows that

V̇ ≤ −$V
3
4

+
∣∣b1 − b∗1∣∣3(ḃ1(2b1eTpjepj +

∥∥epj∥∥ eTvjevj∣∣b1 − b∗1∣∣3 −
4
β1

)

+µ(
4
β1

)
3
4 ) (57)

Submitting ḃ1 = −
µ( 4

β1
)
3
4

2b1e
T
pjepj+‖epj‖e

T
vjevj

|b1−b
∗
1|

3 −
4
β1

to Eq.(57), it can

be concluded that

V̇ ≤ −$V
3
4 (58)

Thus the outer-loop proof is completed.
Remark 1: The parameter ε1 affects the convergence rate

of position error. In order to accelerate the convergence rate,
it should be given a smaller value. The parameter ε0 is to avoid
singularity in the system, it should be as small as possible in
its range of values. The parameter b1 determines the band-
width of the sliding mode dynamics. A larger b1 leads to a
larger bandwidth indicating a faster response rate and higher
tracking accuracy but it will cause larger measurement noises.

B. ATTITUDE CONTROLLER DESIGN
Consider the Inner-loop subsystem (14) and Assumption1-3,
let the virtual attitude controller 0j be designed as below.

0j = −Ifj81j − Ifj(bq1jξ1j + s1j) (59)

where

81j =
1
2
(η̃jI3 + S(q̃j))ω̃j − I

−1
fj S(ωj)Ifjωj

+ S(ω̃j)R(Q̃j)ωdj − R(Q̃j)ω̇dj (60)

ṡ1j = bq2jξ2j (61)

where

ξ1j =
eqj∥∥eqj∥∥ 1

2

+ bq3j
∣∣eqj∣∣rsgn(eqj) (62)

ξ2j =
dξ1j
deqj

ξ1j =
1
2
υ(eqj)+

3
2
bq3j

∣∣eqj∣∣r∥∥eqj∥∥ 1
2

sgn(eqj)

+ rb2q3j
∣∣eqj∣∣2r−1sgn(eqj) (63)

bq1j > 0, bq2j > 0, bq3j > 0 and

ḃq1j =

 k

√
γ1

2
eqj 6= 0

0 eqj = 0
(64)

bq2j = σbq1j (65)

where eqj is the error of q̃j and ω̃j, σ is a constant greater than
0.

eqj = q̃j + ω̃j (66)

Take its first time derivative

ėqj = ˙̃qj + ˙̃ωj

=
1
2
(η̃jI3 + S(q̃j))ω̃j + I

−1
fj 0j − I

−1
fj S(ωj)Ifjωj

+ I−1fj d0j + S(ω̃j)R(Q̃j)ωdj − R(Q̃j)ω̇dj
= rjuj +81j +82j (67)

where rj = I−1fj , uj = 0j,82j = I−1fj d0j and satisfies
∥∥8̇2j

∥∥ ≤
L.
Submitting Eq.(59) and Eq.(61) to the Eq.(67),we can have

ėqj = −bq1jξ1j + sqj (68)

ṡqj = −bq2jξ2 + 8̇2j (69)

Theorem 2:Consider the inner-loop subsystem (8) with the
control strategy (59), the attitude error converges to the region
around zero within a finite time.

Proof: Choose the following Lyapunov function
candidate:

V2 = ςTj Pςj +
1
2γ1

(bq1j − b∗q1j)
2
+

1
2γ2

(bq2j − b∗q2j)
2 (70)

where ςj =
[
ξ1 sqj

]T , P = [
λ2 + 4ε −λ
−λ 1

]
is a positive

definite matrix. and b∗q1j > 0, b∗q2j > 0, λ > 0, ε > 0

V̇2 = 2ςTj Pς̇j +
1
γ1

(bq1j − b∗q1j)ḃq1j +
1
γ2

(bq2j − b∗q2j)ḃq2j

(71)

V̇20 = 2ςTj Pς̇j = −2
dξ1j
deqj

ςTj Q1ςj (72)
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where Q1 =

[
Q11 Q12
Q21 λ

]
is a symmetric matrix.

in which

Q11 = bq1jλ2 + 4bq1jε − λb2

Q11 = Q21 =
1
2
(−λ2 − 4ε − λbq1j + b2)

If V̇20 is negative definite, then it needs Q1 is positive
definite, only needing to det(Q1) > 0. Then it satisfies that

−
1
4
a21 +

1
2
λbq1ja1 +

1
2
b2a1 − λ2b2 −

1
4
λ2b2q1j

+
1
2
λbq1jbq2j −

1
4
b22 > 0 (73)

where

a1 = λ2 + 4ε (74)

So we can get the discriminant λb2(bq1j−λ) > 0. Because∣∣82j
∣∣ ≤ L,

∥∥∥ 1
ξ2j

∥∥∥ ≤ ϑ , we can get bq2j > ϑL, bq1j > λ and

b2 ∈
[
bq2j − ϑL, bq2j + ϑL

]
Let det(Q1) = 0, we can get

b+1j = λbq1j + b2 + 2
√
λb2(bq1j − λ)

b−1j = λbq1j + b2 − 2
√
λb2(bq1j − λ) (75)

It’s obvious that b+1j > b−1j, if a1 ∈
[
b−1j, b

+

1j

]
, then we can

get that the matrix Q1 is positive defined.
Taking into account a well-known inequality λmin(Q1)
‖ςj‖

2
≤ ςTj Qςj with Eq.(72), there is

V̇20 ≤ −
dξ1j
deqj
‖ς‖2λmin {Q1}

≤ −
dξ1j
deqj

V20λmin {Q1}

λmax {P1}

≤ −

(
κ

2
∥∥eqj∥∥ + κbq3j

)
V20λmin {Q1}

λmax {Q1}

≤ −
κ

2 ‖ς‖
V20λmin {Q1}

λmax {Q1}
− κbq3j

V20λmin {Q1}

λmax {Q1}

≤ −
κλmin {Q1} λ

1
2
min {Q1}

λmax {Q1}
V

1
2
20 −

κbq3jλmin {Q1}

λmax {Q1}
V20

≤ −N1V
1
2
20 (76)

where N1 =
κλmin{Q1}λ

1
2
min{P1}

λmax{P1}
, κ is a constant and κ ≤

1+rbq3j|w|r−1

1+bq3j
Substituting (76) to (71), there is

V̇2 = V̇20 +
1
γ1

(bq1j − b∗q1j)ḃq1j +
1
γ2

(bq2j − b∗q2j)ḃq2j

≤ −N1V
1
2
20 +

1
γ1

(bq1j − b∗q1j)ḃq1j +
1
γ2

(bq2j − b∗q2j)ḃq2j

= −N1V
1
2
20 −

N2
√
2γ1

∣∣∣bq1j − b∗q1j∣∣∣− N3
√
2γ2

∣∣∣bq2j − b∗q2j∣∣∣

FIGURE 2. The communication graph.

+
1
γ1

(bq1j − b∗q1j)ḃq1j +
1
γ2

(bq2j − b∗q2j)ḃq2j

+
N2
√
2γ1

∣∣∣bq1j − b∗q1j∣∣∣+ N3
√
2γ2

∣∣∣bq2j − b∗q2j∣∣∣
≤ −$2V

1
2
2 +

1
γ1

(bq1j − b∗q1j)ḃq1j +
1
γ2

(bq2j − b∗q2j)ḃq2j

+
N2
√
2γ1

∣∣∣bq1j − b∗q1j∣∣∣+ N3
√
2γ2

∣∣∣bq2j − b∗q2j∣∣∣ (77)

where bq1j, bq2j are both bounded, by selecting b∗q1j, b
∗

q2j there
is bq1j − b∗q1j < 0, bq2j − b∗q2j < 0. N2 > 0 and N3 > 0 are
both constants,$2 = min {N1,N2,N3}

The Eq.(77) can be rewritten as

V̇2 ≤ −$2V
1
2
2 −

∣∣∣bq1j − b∗q1j∣∣∣ ( 1
γ1
ḃq1j −

N2
√
2γ1

)
−

∣∣∣bq2j − b∗q2j∣∣∣ ( 1
γ2
ḃq2j −

N3
√
2γ2

)
= −$2V

1
2
2 + τ (78)

where

τ = −

∣∣∣bq1j − b∗q1j∣∣∣ ( 1
γ1
ḃq1j −

N2
√
2γ1

)
−

∣∣∣bq2j − b∗q2j∣∣∣ ( 1
γ2
ḃq2j −

N3
√
2γ2

)
(79)

If eqj 6= 0, there is ḃq1j = k
√
γ1
2 and

τ = −

∣∣∣bq2j − b∗q2j∣∣∣ ( 1
γ2
ḃq2j −

N3
√
2γ2

)
(80)

By selecting σ = N3
2N2

√
γ2
γ1
, we can get that

ḃq2j = 2σ ḃq1j→ ḃq2j

= σN2
√
2γ1→ ḃq2j = N2

√
γ2

2
(81)

So there is τ = 0, substitute it to (78), then there is

V̇2 ≤ −$2V
1
2
2 (82)

Thus the inner-loop proof is completed.
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TABLE 1. Initial values of the control.

FIGURE 3. Formation tracking trajectory of five quadrotors.

FIGURE 4. Control forces of the ASTDFC.

Remark 2: The parameter k in Eq.(64) will affect the
convergence of attitude error of quadrotor. A larger k leads
to faster convergence but at the cost of introducing more
measurement noises. The parameter λ also affects the con-
vergence of attitude error of quadrotor and it is suggested to
be in the range of 1 < λ < 3.

C. CONVERGENCE ANALYSIS OF THE CLOSE-LOOP
SYSTEM
In section III.A and III.B, the stability analysis of the
outer-loop and inner-loop have been proved. In this section,
we will prove the stability analysis and convergence charac-
teristic for the closed-loop of quadrotor formation.

Theorem 3: For the whole closed-loop system given by
outer-loop subsystem (13) controller by (19) with adaptive
law (20) and inner-loop subsystem (14) controller by (59)
with adaptive law (64) under the upper bounded disturbances
and uncertainties. The whole closed-loop system is input-
state stable in finite convergence time. To this end, the control
objectives can be established.

Proof: Consider the Lyapunov function candidate of
whole closed-loop system as follows:

Vwhole = Vouter + Vinner (83)

where Vouter and Vinner are the Lyapunov function of
outer-loop system and inner-loop system. AsVouter andVinner
are positive definite, the whole closed-loop system Lyapunov
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FIGURE 5. Control torques of the ASTDFC.

FIGURE 6. ASTDFC and FTC comparison of position errors for quadrotor 1.

function is positive definite. Differentiating the Lyapunov
function Vwhole along the trajectory of the system, we can
derive that

V̇whole = V̇outer + V̇inner

≤ −min {N , µ}V
3
4
outer −min {N1,N2,N3}V

1
2
inner

(84)

For the convenience of the proof, divide the space
[Vouter ,Vinner ]T ∈ <+2 into two different areas, O and R,
area R further divided into two areas R1 and R2, which are
defined as follows:

O = {(Vouter ,Vinner ) : Vouter ≥ 1} (85)

R = R1 ∪ R2 (86)

R1 = {(Vouter ,Vinner ) : Vouter < 1&Vinner < 1} (87)

R2 = {(Vouter ,Vinner ) : Vouter < 1&Vinner ≥ 1} (88)

When [Vouter ,Vinner ] is in the area O, Eq.(84) can be
rewritten as:

V̇whole ≤ −min {min {N , µ} ,min {N1,N2,N3}}

FIGURE 7. ASTDFC and FTC comparison of position errors for quadrotor 2.(
V

1
2
outer + V

1
2
inner

)
≤ −min {min {N , µ} ,min {N1,N2,N3}}V

1
2
whole

(89)

When [Vouter ,Vinner ] is in the area R. First, in the area R1,
Eq.(89) can be rewritten as:

V̇whole ≤ −min {min {N , µ} ,min {N1,N2,N3}}(
V

3
4
outer + V

3
4
inner

)
≤ −min {min {N , µ} ,min {N1,N2,N3}}V

3
4
whole

(90)

From Theorem 1, the space can be satisfied to be stable in
finite time as shown in Eq.(89) and Eq.(90). And it is hard to
determine the convergence characteristic in the area, because
the outer-loop and inner-loop Lyapunov function cannot be
easily replaced to satisfy the finite time convergence theorem.
However, it does not affect the proof.

As shown in theorem 2, the independent inner-loop system
can be stable within finite time. The inner-loop Lyapunov
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FIGURE 8. ASTDFC and FTC comparison of position errors for quadrotor 3.

FIGURE 9. ASTDFC and FTC comparison of position errors for quadrotor 4.

FIGURE 10. ASTDFC and FTC comparison of position errors for
quadrotor 5.

function also will convergence to zero. Hence, the space
[Vouter ,Vinner ]T ∈ <+2 will not stay in R2 forever, but cross
from R2 to R1 within the finite time. Once the space enter
R1. Therefore, the finite time stability of whole closed-loop
system can be guaranteed.

Thus the proofs are completed.

FIGURE 11. Quaternion tracking errors of quadrotor 1.

FIGURE 12. Quaternion tracking errors of quadrotor2.

FIGURE 13. Quaternion tracking errors of quadrotor 3.

IV. SIMULATION
To prove the effectiveness of the proposed control laws and
adaptive laws for the formation modeled on quaternion, sev-
eral simulations are carried out in this section. In this section,
we suppose a quadrotor formation including five quadrotors.
Quadrotor communicates with other quadrotor within the
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FIGURE 14. Quaternion tracking errors of quadrotor 4.

FIGURE 15. Quaternion tracking errors of quadrotor 5.

TABLE 2. The parameters setting of the five quadrotors.

FIGURE 16. Curves of adaptive gains b1 and
b1
2 .

range of communication, and the communication graph is
presented in Figure 2. Five quadrotors have different initial

FIGURE 17. Real white Gaussian noises of power on position subsystem.

FIGURE 18. Real white Gaussian noises of power on attitude subsystem.

position and attitude. The simulation will verify that quadro-
tors can form and maintain the formation with high perfor-
mance by using the proposed control method. For further
prove the superiority of proposed algorithm, it is compared
with the finite time convergence control algorithm in [20]
with quaternion-based system.

A. SIMULATION I
B. PARAMETERS SETTING
Assuming that the leader quadrotor flies along the predeter-
mined trajectory: the reference trajectory of the leader used
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FIGURE 19. Position tracking on x, y, and z axis.

FIGURE 20. Quaternion tracking errors of quadrotor 1.

FIGURE 21. Quaternion tracking errors of quadrotor 2.

in the simulation can be expressed as:

Pd =
[
−2 sin

t
2
, 3 cos

t
3
,−

t
2

]T
To verify the validity of the adaptive law equation

(19) and (59), the disturbances of outer-loop and the
inner-loop are given by dUj = [sin t, sin t, sin t]T ,
d0j = [sinπ t, sinπ t, sinπ t]T , for j= 1, 2, 3, 4, 5. The initial
values and desired trajectory of each quadrotor are given
in Table 1, and the parameters of the controllers and proof
process are shown in Table 2.

FIGURE 22. Quaternion tracking errors of quadrotor 3.

C. SIMULATION RESULTS
In this part, we compare the proposed algorithm with finite
time control(FTC) algorithm [20], and the purpose of this
comparison is to explain which method can form and main-
tain the formation configuration with higher precision and
faster convergence speed.

The simulation results are provided in Figure 3-Figure 16.
Figure 3 shows the x-coordination, y-coordination and
z-coordination trajectories of five quadrotors with proposed
algorithm. Figure 4 and Figure 5 show the control forces and
torques of the ASTDFC. And Figures 6-15 show the compar-
ison results between the two algorithms. From Figure 16, the
curve changes of the adaptive law and disturbance are clearly
presented.

Figure 3 shows the control strategy designed in this paper
can form and maintain formation quickly in the x y z plane.
From Figure 4 and Figure 5, it can be observed that the
control forces and torques can converge in short time. Fig-
ures 6-9 illustrate that the method proposed in this paper
converge to 0 within 2s, which is faster than that by finite time
convergence method. Moreover, the errors convergences to
0 with higher convergence precision and faster convergence
rate by the proposed algorithm. From Figures 10-15, it can be
observed that convergence of ASTDFC is faster than FTC.
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FIGURE 23. Quaternion tracking errors of quadrotor 4.

FIGURE 24. Quaternion tracking errors of quadrotor 5.

In Figure 16, it’s clear that both the adaptive b1 and b1
2 are

larger than the disturbance
∥∥dUj∥∥, and finite-time stability can

be established.

D. SIMULATION II
In this section, we test the convergence performance of
quadrotor formation under irregular disturbances. The Real
white Gaussian noises are considered as the irregular distur-
bances. We design a new trajectory for the quadrotor forma-
tion, and the other parameters are the same as in Simulation I.
The reference linear velocity is

vd =
[
sin(0.1t) 0.5 cos(0.1t) 1

]
The simulation results are shown in Figure 17 - Figure 24.

Figures 17-18 show the noise added to the position subsystem
and attitude subsystem. Figure 19 is the specific trajectory
of the quadrotor formation in three directions. Figures 20-24
show the quaternion errors of each quadrotor.

As shown in Figure 19, it can be seen that the quadrotor for-
mation can maintain unity at about 2.5s. From Figures 20-24,
it can be seen that the quaternion errors of each quadrotor can
converge before 3s. From these figures, it can be seen that the
proposed method has an improved tracking performance of
the closed-loop control system.

V. CONCLUSION
Distributed formation control problem for multi-quadrotors
described by unit-quaternions has been studied in this paper.
Based on super-twisting control and finite time control
method, considering the characteristic of the position subsys-

tem and attitude subsystem, the different control methods are
developed and adopted to improve the convergence rate and
accuracy of the system respectively. Then with the theoretical
analysis, the stability of whole closed-loop system is proved
and quadrotor formation can converge to the desired forma-
tion configures in finite time. Finally, the effectiveness of the
proposed method has been illustrated with numerous simu-
lations. In the future work, the actuator deadzones, unmod-
eled dynamics and other practical problems will considered.
The hardware implementation of quadrotor formation will be
developed, and the simulation results will be compared with
the actual results.
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