
Received October 10, 2021, accepted October 26, 2021, date of publication October 29, 2021, date of current version November 11, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3124455

An Improved Method for Phase Triangulation
Algorithm Based on the Coherence Matrix
Eigen-Decomposition in Time-Series
SAR Interferometry
QIAN HE 1,2, XIN HE3, HUIFU ZHUANG 1,2, (Member, IEEE), RUI WANG1,2,
AND JIAWEI CHEN4
1Jiangsu Key Laboratory of Resources and Environmental Information Engineering, China University of Mining and Technology, Xuzhou 221116, China
2School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
3Hubei YJT Technology Company Ltd., Wuhan 430073, China
4Ganzhou Liangye Technology Company Ltd., Ganzhou 341000, China

Corresponding author: Qian He (jcchgc@163.com)

This work was supported by the Basic Research Project of Jiangsu Province Natural Science Foundation under Grant BK20190645.

ABSTRACT Time-series SAR interferometry, which combines permanent scatterers (PSs) and distributed
scatterers (DSs), has been strongly developed in recent years. Unlike PS, DS corresponds to a natural target
whose neighboring pixels share similar reflectivity values. The selection of DS is relevant to the goodness-
of-fit value, the estimation of which is based on all possible combined interferometric phases and fails to
avoid the adverse effect of low-quality phases. This paper used eigen-decomposition of coherence matrix
that was constructed based on the identified homogeneous pixels to perform phase optimization, and then
only the interferometric phases with low noise and clear fringes are utilized to measure the goodness-of-fit.
30 Sentinel-1A images were applied to test the improved method of land subsidence monitoring in Beijing,
China. The deformation results of different methods were cross verified and the area statistics of the study
area were carried out. The results show that the maximum subsidence monitored by the improved method
is located in Jinzhan Town with a maximum rate of −109 mm/yr. This improved method extracts more
measurement points with accuracy ensured, which is proved to be an effective way to provide the high spatial
density of deformation measurements. The land subsidence in this area is mainly caused by the excessive
exploitation of groundwater resources. This research provides support for the prevention and control work
of relevant departments.

INDEX TERMS Distributed scatterers (DSs), interferometric synthetic aperture radar (InSAR), land
subsidence.

I. INTRODUCTION
Land subsidence is a common geological disaster with the
characteristics of slow formation and wide impact [1], [2].
Permanent scatterer (PS) interferometry and small baseline
subset (SBAS) interferometry are time-series InSAR tech-
niques that has a wide application in land subsidencemonitor-
ing [3]–[18]. Furthermore, Zhang et al. [19]–[22] combined
the advantages of PS and SBAS InSAR, and presented a
new method named Multiple-master Coherent Target Small-
Baseline InSAR (MCTSB-InSAR), which is a useful tool for
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measuring ground displacement. MCTSB-InSAR uses mul-
tiple thresholds such as amplitude dispersion index, average
amplitude and coherence coefficient to extract high coher-
ent targets and local Delaunay triangulation to increase the
redundancy of network connection. However, it is difficult for
these methods to obtain enough measurement points (MPs)
on natural land covers.

Since the SqueeSAR algorithm was put forward by
Ferretti et al. [23], time-series InSAR technique based on
distributed scatterer (DS) has gradually become a research
hotspot in the field of deformation monitoring. Unlike point-
wise PS, DS corresponds to a natural target whose neigh-
boring pixels share similar reflectivity values. As we all
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know, DSs are easily affected by temporal and geometrical
decorrelation [24]. It is necessary to carry out phase optimiza-
tion. In SqueeSAR, Kolmogorov-Smirnov (KS) test is uti-
lized to identify statistically homogeneous pixel (SHP), and
phase triangulation (PT) algorithm based on maximum like-
lihood (ML) estimator is applied to optimize the phase [23].
The traditional PS InSAR algorithm is used to process DS
and PS to estimate the displacement of each measurement
point (MP). Significantly, targets with SHP number greater
than the pre-set value are considered as DS candidates, and
then a certain goodness-of-fit threshold is utilized to select
reliable DS from them [25]. The key of DS research lies in
SHP identification and phase optimization.

Many scholars have done a series of related research on the
extraction of SHP [26]–[29]. Parizzi et al. [30] compared and
analyzed the Kullback-Leibler divergence, the KS test, the
Anderson-Darling (AD) test and generalized likelihood ratio
test (GLRT). Their study showed that the parametric GLRT
performed best under the assumption that the amplitude sat-
isfies the Rayleigh distribution. AD test is a special form of
Cramer-von Mises (CM) test. Jiang et al. [31] demonstrated
that Baumgartner-Weiβ-Schindler (BWS) test had higher
power than KS test and CM test. However, the calculation
of these tests is very time-consuming. A Fast Statistically
Homogeneous Pixel Selection (FaSHPS) algorithm was pre-
sented [32], [33], which used confidence interval estimation
to replace significant difference judgment of hypothesis test
for the case of Rayleigh-distributed amplitudes. To further
decrease the heterogeneity of SHP, Jiang et al. [34] improved
the FaSHPS and proposed the hypothesis test of confidence
interval (HTCI) algorithm, which had a higher estimation
accuracy in medium and large samples [35].

After identifying the SHP, the covariance matrix can be
constructed, and then the phase-estimation procedure can be
carried out. Cao et al. [36] put forward twomodified PT algo-
rithms (equal-weighted PT and coherence-weighted PT) and
analyzed the differences between published PT algorithms.
To reduce the computational complexity, a method named
the Component extrAction and sElection SAR (CAESAR)
was presented [37], which estimated the principal phase
component for DS by eigenvalue decomposition (EVD) of
the covariance matrix [38]. The deformation estimation per-
formed through the CAESAR module in MCTSB-InSAR
processing chain, is hereafter defined as CAESAR-InSAR in
our work. For medium or large stack sizes, it has significant
advantages in computational efficiency. However, working
on covariance matrix is easily affected by the unbalances
of backscattered power between SAR images. These algo-
rithms use all possible N (N − 1)/2 interferometric phases
to calculate the goodness-of-fit when evaluating the quality
of phase optimization and selecting DS pixels (N is the
number of SAR images), which ignores the adverse effects of
low-quality interferometric phases.

In view of this, we propose an improved method for PT
algorithm based on the EVD of coherence matrix. To be spe-
cific, the coherencematrix constructed by the SHPs identified

the HTCI algorithm is applied for EVD to optimize the
phase. Most notably, only the interferometric phases with low
noise and clear fringes are utilized to calculate the goodness-
of-fit value in DS selection, which is a unique feature of
the improved method. In addition, the final deformation is
the result of joint processing the selected DS and PS. The
improved strategy is performed in the framework ofMCTSB-
InSAR to extend the analysis of coherent targets interferome-
try and increase spatial density of deformationmeasurements.

In this paper, the improved method is tested for
land subsidence monitoring over Beijing in China using
30 Sentinel-1A images. Besides, the monitoring results
derived from different methods (MCTSB-InSAR, CAESAR-
InSAR and the improved method) are compared, verified
and analyzed. The rest of this paper is organized as follows:
Section 2 describes the study area and datasets. Section 3
presents the methods adopted in this study. Section 4 shows
the results of the experiments. Section 5 is a discussion
of the obtained results. Finally, Section 6 draws the main
conclusions from this work.

II. STUDY AREA AND DATASETS
A. STUDY AREA
The study area is located in the northeast of Beijing, China
with geographic coordinates of 116◦29′ E-116◦40′ E, 39◦57′

N-40◦8′ N, as shown in Figure 1. The climate is hot and rainy
in summer, and cold and dry in winter. The transportation is
very convenient. The land cover classification of study area
mainly includes water bodies (like Wenyu River), vegetation
(like golf courses and parks), bare land, buildings and struc-
tures (like Beijing Capital International Airport Terminal and
Airport Expressway).

FIGURE 1. Location of the study area. The blue rectangle represents the
outline of SAR images.

B. DATASETS
30 Sentinel-1A single look complex (SLC) images were
acquired between 4 November 2017 and 11 November 2018
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in ascending orbit. The satellite is a C-band SAR satellite
with a 12-day return period. The detailed parameters of SAR
data are shown in Table 1. Additionally, 30 m resolution
Digital Elevation Model (DEM) collected by Advanced Land
Observing Satellite (ALOS) was applied for the removal of
the topographic phase.

TABLE 1. Details of the processed SAR data.

III. METHODOLOGY
Time-series SAR imageswith sizeN are fine registered. After
multi-looks, 1200× 1000 pixels are cropped. Interferometric
pairs with free combination are generated according to the
pre-set thresholds of temporal and perpendicular baseline,
and then M interferograms with lower noise and clearer
fringes are selected. After removing the flat Earth phase
and topographic phase through satellite orbit parameters and
external DEM, M differential interferograms are generated.
Reliable PS pixels are extracted by the threshold of ampli-
tude dispersion index and average amplitude [19]–[22]. This
section addresses DS selection and phase optimization.

A. SHP IDENTIFICATION
The HTCI algorithm is a parametric test method [34], [35],
which identifies SHP by comparing the similarity between
the central pixel p and the neighboring pixel q in the search
window. It assumes that the single-look complex (SLC) SAR
image obeys the complex circular Gaussian (CCG) distribu-
tion, and amplitude satisfies the Rayleigh distribution. For
SAR image, its intensity is equal to the square of its ampli-
tude, and the intensity I follows the exponential distribution.
The probability density function (PDF) of I is defined as

f (I ) =
1
σ 2 e
−

I
σ2 (1)

where σ 2 is the standard deviation of exponential distribution.
The comparison of the two exponential distributions Ip and
Iq is equivalent to the following hypothesis testing problem.
The null hypothesis H0 and alternative hypothesis H1 can be
expressed as

H0: σ 2
p = σ

2
q = σ

2 H1: σ 2
p 6= σ

2
q (2)

Suppose that
{
I1,p, I2,p, · · · , IN ,p

}
and

{
I1,q, I2,q, · · · ,

IN ,q
}
are samples of size N . According to the relationship

between exponential and chi-square distribution, the sum
of N independent random variables follow chi-square dis-
tribution with 2N degrees of freedom 2

∑
Ii,p/σ 2

p ∼ χ2
2N

and 2
∑
Ii,q/σ 2

q ∼ χ
∼

2
2N . Further derivation is shown as

follows [35]

σ 2
q Īp

σ 2
p Īq
=
χ2
2N /2N

χ
∼

2
2N /2N

∼ F2N ,2N ⇒
Īp
Īq

H0
∼ F2N ,2N (3)

If H0 is true, the ratio of the temporal average intensity Īp
and Īq satisfies the F distribution with (2N , 2N ) degrees of
freedom. Thus, the interval estimation can be described as

P

{
fα/2;2N <

Īp
Īq
< f1−α/2;2N

}
= 1− α (4)

where P {·} stands for probability, fα/2;2N is the α/2 per-
centile of the F distribution. The initial window should be set
relatively small (set to 7×7 in this work), and then the initial
SHP set�init is obtained using the formula (4). Subsequently,
all pixels in �init are averaged to gain an estimate of the
central pixel ûp.
The cumulative sum of the intensity map follows the stan-

dard Gamma distribution with scale parameter N . Therefore,
a more accurate interval can be given by

P
{
gα/2,N · ûp/N < û < g1−α/2,N · ûp/N

}
= 1− α (5)

where gα/2,N is the α/2 percentile of the Gamma distribution.
û represents the average intensity of the neighboring pixels in
the search window.

The HTCI algorithm uses the unbiasedness of the likeli-
hood ratio test (LRT) to reduce type I error when obtaining
�init , and the more accurate interval of the Gamma test to
control the type II error. When the significance level α is
given, the pixel q falling into the interval of formula (5) is
homogeneous with the pixel p. Moreover, DS candidates are
selected through SHP threshold.

B. PHASE OPTIMIZATION
After determining the SHP of pixel p, the sample covariance
matrix C can be estimated by the following formula [36].

C = E
[
XXH

]
≈

1
Np

∑
X∈�

XXH (6)

whereE [·] denotes the expectation.X = [x1, x2, · · · , xN ]T is
the original complex observation of N SAR images. H stands
for the transpose-conjugate operator. � represents the set
of homogeneous pixels containing Np adjacent pixels with
similar backscattering properties.

To reduce the effect of unbalanced backscattered power
among all the SAR images, we use the normalized data to
construct the coherence matrix T for EVD. T is calculated as
follows

T = E
[
YYH

]
≈

1
Np

∑
Y∈�

YYH (7)
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where Y = [y1, y2, · · · , yN ]T is the normalized com-
plex observation of N SAR images. It can be known that
E
[
|yi|2

]
= 1. The connection between xi and yi is yi =

xi/
√
E
[
|xi|2

]
. T is an N × N Hermitian matrix, which can

be further expressed as

T =


1 γ1,2ejφ1,2 · · · γ1,N ejφ1,N

γ2,1ejφ2,1 1 · · · γ2,N ejφ2,N
...

...
. . .

...

γN ,1ejφN ,1 γN ,2ejφN ,2 · · · 1

 (8)

where γm,n and φm,n are the coherence and interferometric
phase obtained by the original mth image and nth image,
respectively. j is the unit of imaginary part.
The EVD of T is a linear combination of outer products of

the eigenvectors that weighted by the corresponding eigen-
values [37].

T =
N∑
i=1

λivivHi (9)

where the eigenvalues λi are arranged in decreasing order.
λ1 ≥ λ2 ≥ · · · ≥ λN . vi is the eigenvector relative
to λi. Based on the principle of principal component anal-
ysis (PCA), the phase is estimated by extracting the phase
of the eigenvector associated with the largest eigenvalue
from the coherence matrix. The first principal component is
the one associated with the first eigenvalue-eigenvector pair
(λi, vi). T is approximated with a single elementary scattering
mechanism T1 (where T1 = λ1v1vH1 ). As a result, θ =
[θ1, θ2, · · · , θN ]T is the optimal phase extracted from v1.
The PT algorithm of the EVD-based phase estimator

allows the separation of different contributions, thereby
reducing the decorrelation caused by scattering interference.
Moreover, it only uses the first principal component to opti-
mize the phases, which is advantageous in terms of computa-
tional efficiency.

C. RELIABLE DS PIXELS SELECTION
The goodness-of-fit is the quality indicator for phase opti-
mization. It is considered as the temporal coherence of DS
and an important parameter for DS selection [25]. Previous
studies have shown that the goodness-of-fit κ is calculated by
all possible N (N − 1)/2 interferometric phases before and
after optimization [36]–[38].

As we all know, not all the interferometric phases are
involved in the following process of deformation estimation
due to the abandonment of some low-quality interferograms.
It is inaccurate to estimate the value of goodness-of-fit in this
way. One improvement is to select those interferometric pairs
with low noise and clear fringes to measure the goodness-of-
fit κimp. In light of this, the calculation formula of κimp can be
expressed as

κimp =
1
M
Re

(∑
s∈3

∑
t∈3

ejφs,t e−j(θs−θt )
)

(10)

where Re (·) denotes the real part of complex data. φs,t indi-
cates the interferometric phase between the original sth image
and tth image. θs and θt are the optimal phases of the sth
image and tth image, respectively. Most notably, t = s + 1.
3 stands for the set of SAR images corresponding to M
interferometric pairs that we select. The value of κimp is
between 0 and 1. The larger the value of κimp is, the higher
the coherence and the signal-to-noise ratio are.

DS selection is closely related to the goodness-of-fit value.
κimp is estimated from M interferograms filtered by the
improved strategy, which theoretically avoids the effect of
low-quality interferometric phase. Pixels with κimp higher
than a certain threshold are extracted fromDS candidates, and
the corresponding phase values of the original SAR images
are substituted with their optimized values.

D. ESTIMATING DEFORMATION AT RELIABLE PIXELS
The deformation estimation of the improved method is per-
formed in MCTSB-InSAR processing chain. All the pixels
(reliable DS and PS pixels) are connected by the local Delau-
nay triangulation, which has advantages in the redundancy of
network connection [21].

The observation equations between linear deformation
rate, DEM error and residual phase of those two selected
adjacent pixels are constructed. The least square algorithm is
used to estimate the linear deformation rate and DEM error.
Meanwhile, GACOS atmospheric correctionmodel is applied
for the generation of atmospheric phase [39]. After deter-
mining the linear deformation, the nonlinear deformation,
noise phase and atmospheric phase are separated from the
residual phase by temporal-spatial filtering algorithm [41].
Additionally, the phase unwrapping (PhU) consistency index
threshold (set to 0.8 in this work) is used to determine the out-
put mask of MP and generate the deformation products [38].
Specifically, the PhU consistency index ρ is given by ρ =∣∣∣∑M

i=1 e
jRi
∣∣∣/M (where Ri is the residual phase of the ith

interferogram) [40].
The linear and nonlinear deformations combine to form a

line-of-sight (LOS) displacement, which can be converted to
vertical subsidence by using the cosine value of the incident
angle. The subsidence map of SAR coordinate system is
transformed into that of geographic coordinate system by
geocoding. For better understanding, Figure 2 shows the
flowchart of the improved method.

IV. RESULTS
A. SHP IDENTIFICATION AND PHASE OPTIMIZATION
RESULTS
The experiments are carried out using 30 Sentinel-1A datasets
(N = 30) based on the above principles and methods.
Figure 3(a-b) is the average amplitude and SHP number when
α = 5%. The value of each pixel in Figure 3(b) represents the
number of SHP identified by the HTCI algorithm in a 15 ×
15 search window. The SHP number of 0 indicates that there
are no homogeneous pixels in the window, which may be due
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FIGURE 2. Flow chart of the improved method we proposed.

to isolated PS or noise points. The number of SHP is 224,
indicating that all pixels in the window are homogeneous.
It can be found that SHP number is particularly associated
with the land cover type. Pixels in vegetation show large SHP
number, but this is not the case in buildings and structures
where the number of SHP is relatively small. Most PS targets
correspond to isolated pixels with a small number of SHPs.
To be specific, 90% of PS pixels with temporal coherence
greater than 0.8 have less than 38 SHP, so we regard 38 as the
threshold of SHP number to select DS candidates.

As is known to all, 435 interferometric pairs can be gen-
erated from the free combination of 30 images. By setting
the threshold of temporal baseline (120 days) and perpendic-
ular baseline (150 m), multiple-master interferograms can be
generated. Afterwards we select 83 interferograms (M = 83)
with less noise and clearer fringes. The distribution of inter-
ferometric pairs is shown in Figure 4. It should be noted that
the spatiotemporal baseline map is composed of closed loops.
The two interferograms that do not involve any loop may
affect the performance of PT and phase unwrapping.

To compare the differences of phase optimization between
the classical CAESAR algorithm and improved method,
we calculate the goodness-of-fit values obtained by the two
algorithms (see Figure 5). Furthermore, the percentage of
goodness-of-fit values are shown in Figure 6. The goodness-
of-fit value in vegetation is smaller than that in buildings
and structures, and higher than that in water area. The aver-
age goodness-of-fit values of the two algorithms (CAESAR
and the improved strategy) are 0.639 and 0.732, respec-
tively. Obviously, 97% of pixels in Figure 5(b) show greater
goodness-of-fit than that in Figure 5(a), which demonstrates
that the phase quality of the improved strategy is better than
that of the classical CAESAR algorithm. We consider pixels
with goodness-of-fit greater than 0.8 as reliable DS pixels
in this work. The percentages of pixels with goodness-of-fit
greater than 0.8 in Figure 5(a-b) are 25% and 37%, respec-
tively. It indicates that the improved strategy increases the
possibility of high density of measurement points.

B. DEFORMATION RATES ANALYSIS
As mentioned in the first and three section, the improved
method is implemented in MCTSB-InSAR processing chain
and makes the modification based on CAESAR algorithm.

FIGURE 3. (a) The average amplitude image. (b) The map of SHP number.
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FIGURE 4. Distribution of multiple-master interferometric pairs. Blue dots
indicate SAR images and black lines denote interferograms.

To testify the effectiveness of the improvedmethod, we check
the reliability of its PhU and compare its deformation moni-
toring results with those of the other two methods (MCTSB-
InSAR, CAESAR-InSAR).

Figure 7 shows the histogram of the PhU consistency index
ranging from 0 to 1. The closer its value is to 1, the smaller the
residual error generated in the PhU process is. The average
PhU consistency indexes of the three methods (MCTSB-
InSAR, CAESAR-InSAR, and the improved method) are
0.968, 0.977 and 0.981, respectively. As can be seen from
Figure 7, the right peak of the graph of the improved method
moves to 1, and is characterized by a highest number of
occurrences. It indicates that the PhU of the improvedmethod
outperforms the other two methods.

Figure 8 is the deformation rate of study area obtained
by different methods. The location and magnitude of land
subsidence in Figure 8(a-c) are roughly the same. There is no
land subsidence in the northwest of the study area. Noticeable

land subsidence (≤ −10 mm/yr) is situated in the south and
northeast of the study area, especially in Jinzhan Town.

Some MPs are concentrated in the area where buildings
and structures (such as residential buildings, Airport Terminal
and Expressway) are gathered, which are reliable PS pixels.
Some MPs correspond to natural targets, which are reliable
DS pixels. There is no MP in the water area (for example
Wenyu River) due to the relatively low coherence.

There are 95,991 points in Figure 8(a) with the maximum
rate value of −107 mm/yr, while 158,752 points are visible
in Figure 8(b) with the maximum rate value of −107 mm/yr.
Unlike Figure 8(a-b), Figure 8(c) shows 250,059 points with
the maximum deformation rate of −109 mm/yr. It can be
found that the number ofMPs in Figure 8(c) is about 2.6 times
that in Figure 8(a), and 1.6 times that in Figure 8(b). Com-
pared with Figure 8(a), the additional MPs in Figure 8(b)
are extracted by the CAESAR algorithm. In addition, the
additional MPs in Figure 8(c) are a proof of the increase in
the number of MP selected by the improved strategy.

To compare the three monitoring results in detail, we make
statistics on the number of MPs and maximum deformation
rate of the three representative subareas (the area occupied
by the Circular Railway, Airport, and Jinzhan Town) in the
study area, as shown in Figure 9. It can be found that the
improved method obtains more MPs in the three subareas
than the other two methods. Most of the additional MPs are
located in debris areas and non-cultivated land with short
vegetation. Moreover, there is little difference (no more than
4 mm/yr) between the maximum deformation rate monitored
by the three methods in three subareas, which can be accepted
in the experiment.

From the results, more reliable coherent targets (DS and
PS) have a beneficial effect on the construction of dense

FIGURE 5. The goodness-of-fit values calculated by different methods. (a) The CAESAR algorithm (b) The improved method.
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FIGURE 6. Histograms of the goodness-of-fit values corresponding to
Figure 5.

FIGURE 7. Histograms of the PhU consistency indexes estimated by three
different methods.

Delaunay triangulation for PhU and better consistency of the
unwrapping process. The improved method has advantages
of high-density MP.

V. DISCUSSION
A. VERIFICATION OF MONITORING RESULTS
During the monitoring period, we are unable to obtain the
measured leveling data. To verify the monitoring results of
different methods (MCTSB-InSAR, CAESAR-InSAR, and
the improvedmethod), the linear regression analysis is carried
out on the deformation rates of completely coincident points
in the whole study area. The correlation coefficient r is used
to measure the degree of close correlation between the two
methods [29], [42], as shown in Figure 10. Assuming that υ
and µ represent the deformation rates obtained by two differ-
ent methods, their correlation coefficient P can be expressed
as

P =
Cov (υ, µ)
√
D (υ)

√
D (µ)

(11)

where Cov(·) and D(·) denote the covariance and variance,
respectively. The value range of P is from 0 to 1. The larger
the P is, the stronger the correlation between υ and µ is.

TABLE 2. Dangerous grading and area statistics.

The value of P is 0.973 in Figure 10(a), which demon-
strates that Figure 8(b) is relatively close to Figure 8(a). The
correlation coefficient P between Figure 8(a) and Figure 8(c)
is 0.970, which indicates that the deformation rates in
Figure 8(c) are in consistency with those in Figure 8(a).
Besides, the Root Mean Square Error (RMSE) of
Figure 10(a-b) is 5.885 and 5.982, respectively. This means
that the monitoring results of improved method are as
accurate as those of MCTSB-InSAR and CAESAR-InSAR
methods. Therefore, the monitoring results of the improved
method are credible. Overall, the improved method is
an effective way to increase the density of deformation
measurements.

B. DAMAGE CAUSED BY LAND SUBSIDENCE
To obtain the detailed damage information caused by land
subsidence, dangerous assessment and area statistics are
performed based on the results of the improved method.
Previous studies have shown that there are different danger-
ous assessment indexes in different areas and actual condi-
tions [42]–[44]. In this paper, areas with deformation rate less
than −10 mm/yr are considered as dangerous areas, which
are classified into four groups. According to the dangerous
grading index, the area statistics of the study area are carried
out (see Table 2).

The subsidence area (less than −10mm/yr) of the study
area is approximately 64.942 km2, accounting for about 28%
of the total area. The area occupied by the Circular Railway
and the northwest of the Airport belong to medium and high
dangerous areas. The very high dangerous area is situated in
Jinzhan Town. The damage caused by land subsidence will
bring hidden dangers to people’s lives and the sustainable
development of society.

By analyzing the existing data [45]–[47], it can be known
that the spatial distribution of the land subsidence has a
high consistency with that of the groundwater level in the
same period. A large amount of groundwater is exploited
for residents’ life, particularly in densely populated Jinzhan
town. Grassland, cultivated land and woodland also need
water for irrigation. The excessive exploitation of ground-
water resources is the major reason of subsidence in the
study area. For the Airport, the apparent differential subsi-
dence in the northwest and southeast is mainly caused by the
Shunyi ground fissure developed by the Shunyi-Liangxian
fault structure. In view of this, the related department should
pay special attentions to this matter and take corresponding
prevention actions.
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FIGURE 8. Deformation rates derived from Sentinel-1A images superimposed onto the average amplitude with
different methods. (a) MCTSB-InSAR (b) CAESAR-InSAR (c) The improved method.

150208 VOLUME 9, 2021



Q. He et al.: Improved Method for Phase Triangulation Algorithm

FIGURE 8. (Continued.) Deformation rates derived from Sentinel-1A images superimposed onto the average
amplitude with different methods. (a) MCTSB-InSAR (b) CAESAR-InSAR (c) The improved method.

FIGURE 9. The Number of MPs and maximum deformation rate obtained by three methods in three subareas, respectively.

C. LIMITATION AND FUTURE WORK
In this work, we use the coherence matrix eigen-
decomposition for DS phase optimization. The construction
of coherence matrix is an important part in this process.
It can be seen from formula (8) that the elements of the
coherence matrix can be expressed as the product of the
coherence and interferometric phase. A follow-on research
direction is to further refine the coherence matrix by using

the accurately estimated coherence. The bias of the coherence
can be mitigated with bootstrap, second kind statistics or
other improved algorithms. Further research will follow this
idea to practice.

In addition, the study area we selecte includes the largest
subsidence region in Beijing and some areas with represen-
tative buildings, which has relatively high spatial coherence
and is beneficial to deformation estimation. However, the
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FIGURE 10. The scatter diagram and correlation of completely coincident points’ deformation rates. (a) correlation between Figure
8(a-b), (b) correlation between Figure 8(a) and Figure 8(c). The horizontal and vertical axes respectively represent the deformation
rates obtained by two different methods.

area proportion of buildings and structures is larger than that
covered by natural targets. To highlight the advantages of the
improved method, the study area will be re-selected in the
future, and long time-series SAR images will be used for
the real-time monitoring of land subsidence

VI. CONCLUSION
An improved method for phase triangulation algorithm based
on the coherence matrix eigen-decomposition is proposed
in time-series InSAR to extend the analysis of coherent tar-
gets interferometry. Specifically, SHP identified by the HTCI
algorithm, and the coherence matrix is estimated according
to the mean value of the pixels in SHP patch rather than that
in the boxcar window. The optimized phase is obtained by
EVD of coherence matrix on the basis of PCA, which has
obvious advantages in computational efficiency. A unique
feature of the improved method is that the goodness of fit
is estimated by the interference phase of low noise and clear
fringes. This strategy can accurately estimate the goodness-
of-fit for evaluating the quality of phase optimization and
selecting DS targets.

Our experiments are conducted using 30 Sentinel-1A
images collected between 4 November 2017 and 11 Novem-
ber 2018 over Beijing. We compare the PhU consistency
indexes estimated by three different methods (MCTSB-
InSAR, CAESAR-InSAR and the improvedmethod) and ver-
ify the monitoring results through the correlation coefficient
calculated from the deformation rate of the completely coin-
cident points obtained by different methods. Furthermore,
the area statistics of the study area are implemented, and the
causes of land subsidence are briefly analyzed.

The results show that the improved method performs better
than the other two methods during the process of PhU, and
increases the density of MPs with measurement accuracy
ensured. The area most seriously affected by land subsidence
is Jinzhan Town with a maximum rate of −109 mm/yr.

The main influencing factors of land subsidence is the
exploitation of groundwater resources. All the information
is helpful for the prevention and control work of relevant
departments.
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