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ABSTRACT Tide variations are affected not only by periodic movement of celestial bodies but also by
time-varying interference from the external environment. To improve the accuracy of tide prediction, a
modular tide level prediction model (HA-NARX) is proposed. This model divides tide data into two parts:
astronomical tide data affected by celestial tide-generating forces and nonastronomical tide data affected by
various environmental factors. Final tide prediction results are obtained using a nonlinear autoregressive
exogenous model (NARX) neural network combined with harmonic analysis (HA) data. To verify the
feasibility of themodel, tide data under different climatic and geographical conditions are used to simulate the
prediction of tide levels, and the results are comparedwith those of traditional HA, the genetic algorithm-back
propagation (GA-BP) neural network and the wavelet neural network (WNN). The results show that the
greater the influence of meteorological factors on tides, the more obvious is the improvement in accuracy
and stability of HA-NARX prediction results compared to traditional models, with the highest prediction
accuracy improvement of 234%. The proposed model not only has a simple structure but can also effectively
improve the stability and accuracy of tide prediction.

INDEX TERMS GA-BP neural network, harmonic analysis, WNN, modular prediction, NARX neural
network, tide prediction.

I. INTRODUCTION
Tides are periodic fluctuations of seawater generated by the
combined gravitational forces of the Moon and Sun and by
the inertial centrifugal force required for the relative motion
of the Earth.With the development of science and technology,
the influence of tides on navigation is gradually increas-
ing [1], [2].

As a traditional technique for tide prediction [3]–[5], the
harmonic analysis method decomposes complex tides into
several parts with periodic changes. By analyzing observed
tide level data, the constants in the tide harmonic model can
be obtained. Then, according to these harmonic constants, the
tide components can be calculated and used to predict tides.

The associate editor coordinating the review of this manuscript and
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The main drawback of this method is that a large amount of
long-term observation data is needed to obtain a relatively
accurate harmonic analysis model [6]. In addition, tides are
affected not only by gravity but also by weather, and the
harmonic analysis method is unable to consider the influences
of complex weather factors. Therefore, it is difficult for the
traditional harmonic analysis model with a static structure to
provide high-precision tide predictions.

In recent years, artificial intelligence technology has
developed rapidly. Intelligent computation techniques have
been widely employed in the areas of ocean engineer-
ing and marine science [7]–[10]. For example, wavelet
neural networks (WNNs) [11], support vector machines
(SVMs) [12], backpropagation (BP) neural networks [4],
[13], and long short-term memory (LSTM) neural net-
works [5], [14] have been extensively applied in coastal and
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marine engineering due to their strong searching, reasoning,
planning and self-learning abilities [15], [16]. Qiu et al. [17]
proposed an operational evaluation method for tide forecast-
ing based on dynamic weight allocation that realized syn-
chronous forecasting using multiple forecasters. Although
this method reduces unstable factors in the prediction results
and improves the accuracy and rationality of tide prediction,
the approach is more labor-intensive. Yin [18] proposed a
variable-structure radial basis function (RBF) network based
on a sliding data window to predict tide levels in real time.
The prediction accuracy of this method is improved com-
pared with that of traditional harmonic analysis, but consid-
erable room for improvement remains. Nitsure et al. [19]
proposed a method for indirectly predicting sea levels using
a generic programming artificial neural network (GPANN)
and wind field information, but its prediction accuracy is
easily affected by changes in the surrounding environment.
Yin [20] proposed an online sequential extreme learning
machine (OS-ELM) by introducing the hidden element prun-
ing strategy for online tide prediction. The OS-ELM has
improved prediction accuracy and calculation speed, but the
lack of neurons in the hidden layer makes the stability of the
network vulnerable.

In the last decade, an increasing number of scholars have
begun to use combined methods to predict tides. El-Diasty
and Al-Harbia [11] proposed a high-precision sea level pre-
diction model by combining harmonic analysis with WNNs.
The results showed that the prediction accuracywas improved
over that of traditional harmonic analysis; however, the
dispersion of the data was relatively large, and the data
were analyzed using only RMS, which was not sufficient
to quantify the accuracy. Zhang et al. [21] used harmonic
analysis and an adaptive network-based fuzzy inference sys-
tem (ANFIS) to establish a comprehensive and reliable tide
level prediction network with improved prediction accu-
racy. The main drawback of this model is its overly com-
plex structure, which requires tedious computational steps
to derive prediction results. Liu et al. [22] proposed a com-
bined tide forecasting model based on harmonic analysis
and autoregressive integrated moving average-support vector
regression (ARIMA-SVR), which improves the accuracy of
single-prediction models. This combined model shows effec-
tively improved prediction accuracy, but the improvement
is limited. Kumar et al. [23] proposed a model based on the
strong coupling between fully nonlinear potential flow theory
(FNPT) in the far field and the Navier-Stokes (NS) equations
in the nearshore region to estimate the run-up of tsunami-
like waves. The focus of this study was not tides, but it pro-
vided ideas for predicting tides using hybrid models. A tide
level prediction model with a simple structure, high-accuracy
prediction results, a short running time and the ability to
overcome the influence of atmospheric effects is proposed to
address the main drawbacks of previously proposed models.

Tide level data can be regarded as time series in forecasting.
The structural characteristics of a nonlinear autoregressive
exogenous (NARX) neural network model provide better

learning efficiency and higher prediction accuracy for time
series [24]. In addition, NARX neural networks have been
implemented in modeling and prediction in several research
areas, such as by Lou et al. [25], Buevich et al. [26] and
Shahbaz et al. [27]. It is worth noting that there is no existing
research on tide level prediction with NARX, which involves
a dynamic regression network consisting of static neurons
and network output feedback that outperforms full regression
neural networks. The details are shown in Section 2.

To further improve the prediction accuracy of tide data,
HA-NARX is proposed. The results are compared with those
of the traditional harmonic analysis method, a WNN, and the
genetic algorithm (GA)-BP neural network.

The rest of the paper is organized as follows. Section 2
presents the methods, including the comparison methods
and proposed method. Section 3 describes the selection of
tide data and quantifiers for accuracy. Section 4 contains
the prediction results obtained using the different meth-
ods. Section 5 contains the analysis and discussion of the
prediction results. Section 6 contains the conclusion and
recommendation.

II. METHODS
This section focuses on the NARX neural network, rec-
onciliation analysis method and HA-NARX, including the
algorithm structure, operation steps and parameter settings.
The remaining two comparison algorithms, theGA-BP neural
network and WNN, are also briefly introduced.

A. NARX NEURAL NETWORK
A NARX neural network is a nonlinear autoregressive model
for describing nonlinear discrete systems [35]. It is the most
widely used type of neural network in nonlinear dynamic sys-
tems and is suitable for time series prediction. Consequently,
NARX neural networks have been applied to solve nonlinear
sequence prediction problems in many fields.

Thememory effect of aNARXneural network on historical
data enhances its processing ability for dynamic data and
improves its prediction performance for complex series. Fur-
thermore, NARX neural networks have a stronger mirroring
capability for nonlinear fitting than other neural networks and
are more suitable for the analysis and prediction of time series
data such as tide level data [35]–[37].

Figure 1 shows the standard NARX neural network struc-
ture. In general, the output of a neural network is fed back
as input, as shown in Figure 2 (a). This mode is called
parallel mode (closed loop). However, because the expected
training output of a NARX neural network is known, an open-
loop model of the series-parallel neural network shown in
Figure 2 (b) is established. In this mode, the desired output
is fed back as input. This method has two advantages: first,
the NARX neural network is more accurate, and second, the
NARX neural network is transformed into a simple feedfor-
ward neural network, which can utilize the modeling function
of a static neural network. Because the expected output of
a NARX neural network is known, that is, measured tide
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FIGURE 1. A block diagram of the NARX neural network.

FIGURE 2. Two different NARX neural network structures.

level data, the series-parallel model is used for training and
forecasting.

In Figure 2, TDL is the time delay, y(t) is the known
expected output, and Y (t) is the predicted tide data.
In this model, the gradient descent method is used to update

the weight vector until the model converges to the target error.
The weighted sum of all inputs determines the activation state
of the neuron and is expressed as follows:

net = α6ωixi +6ω̄iyi + b (1)

The activation state can be described by the activation
function, which can be expressed as:

θ = ψ (net) (2)

FIGURE 3. The structure of the NARX neural network.

The activation function ψ can amplify the output of neu-
rons or limit the output to an appropriate range. In this paper,
the S-type function is selected as the activation function, and
the output layer is a linear function of the activation function.
A typical NARX neural network consists of an output layer,
an input layer, a hidden layer and output and input delays.
However, the parameters of each part of the corresponding
neural network should be determined before applying the
network model. The basic structure is shown in Figure 7.

In Figure 3, x(t) means the external input of the neural
network; the two y(t) terms in the structure mean the output
of the neural network at the next moment (the right-hand y(t))
and the output of the neural network at the previous (t-n)
time (the left-hand y(t)); W means the connection weight; b
means the threshold; and 1:2means the delay order, where the
analog number of the next output layer refers to the number
of the first two input layers, with the mathematical expression
y(t) = f (x(t)−1), x(t−2)).TheNARXneural networkmodel
can be expressed as the following equation [24], [38]:

y(t) = f (y (t − 1) , y (t − 2) , . . . , y
(
t − ny

)
, u (t − 1) ,

u (t − 2) , . . . , u (t − nu)) (3)

where u is an externally determined variable. According to
the formula, the value of y(t) at the next moment depends on
the input value x(t) and the previous output y(t).

Similarly, to predict the tide level, it is necessary to set
the initial input parameters of the NARX neural network,
including the numbers of nodes in the input layer, hidden
layer and output layer and the delay order of the input and
output.

In this paper, consideringmany nonlinear factors that affect
tide level data, five input parameters, namely, the wind speed,
wind direction, gust speed, air temperature and air pressure,
are selected to predict the tide level. Therefore, the number
of input nodes is 5; the number of output nodes is 1; the
number of neurons in the hidden layer is determined to be
10 according to empirical Equation (3); and the default delay
order of the input and output is 1:2 (meaning that the simu-
lation data of the next output layer refers to the data of the
first two input layers). The larger the delay order is, the more
data are referenced in the prediction process, and the better
the prediction effect is. In this paper, the delay order is set
as 1:20.

The structure of the NARX neural network after setting
these parameters is shown in Figure 4.
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FIGURE 4. The structure of the NARX neural network.

B. HARMONIC ANALYSIS
According to long-term observations, tides are composed
of a series of harmonic vibrations (tide components). The
period of tide components corresponds to the period of each
component field of the tide force.

Each tide component can be expressed by the following
formula:

h = R cos (qt + V0 + u− K ) (4)

In Equation (4), h means the height of the component, R
means the amplitude of the component, qt means the angular
rate of the component (which can be determined according to
the component), V0 + u means the phase angle of the imagi-
nary celestial body at zero universal time at the beginning of
the observation period, andK means the phase angle at which
the high tide lags behind the moon culmination due to seabed
friction and inertia.

The tide component expression can be further written as
follows:

h = fHcos (qt + V0 + u− K ) (5)

In Equation (5), f , qt and V0 + u are all known. If the
values of H and K for each component are obtained, then
the tide component can be obtained. H and K are called the
tide harmonic constants of tide components. If the harmonic
constants are known, the tide height of each component can
be acquired, and the future tide can be calculated by adding
all of the components.

In this paper, the T_TIDE tool package [28] is selected
to perform tide harmonic analysis. The tide level data to be
analyzed are input, the data interval is set as 1 hour, and the
latitudes of the tide stations are set (Table 2). The starting time
of the data is GMT 0000 on January 1, 2019.

The output parameters include the names of the tide com-
ponents obtained by harmonic analysis, which depend on the
length of the data; that is, the longer the data, the more tide
components there are. The tide components selected in this
paper include M2, S2, K1, O1, N2, Q1, P1, K2, Ssa, and
Sa. In addition, the angular rate, amplitude and amplitude
error, and delay angle and delay angle error of the tide com-
ponent are also included. The signal-to-noise ratio (SNR) is
used in T_TIDE to determine whether the tide component is
significant, as calculated by the square of the ratio of the tide
component amplitude to the amplitude error. Generally, a tide
component with an SNR > 2 is considered significant.

FIGURE 5. A block diagram of the HA-NARX prediction model.

The T_TIDE tool package is run in MATLAB to obtain H
and K , and the final tide level predicted by harmonic analysis
is obtained by inserting the obtained values into Equation (4)
or Equation (5).

C. MODULAR TIDE PREDICTION METHOD
Theoretically, tides are periodic fluctuations of sea water
caused by the gravitational influences of the Moon and Sun,
but other factors also affect tides, such as the air temper-
ature, air pressure, and wind. Therefore, tide data can be
divided into astronomical tides and nonastronomical tides in
tide forecasts. Astronomical tides are caused mainly by the
tidal forces of celestial bodies and exhibit obvious variation
trends. In contrast, nonastronomical tides are affected by
environmental factors and do not display regular changes,
instead showing strong randomness. Therefore, there is a
large difference between these two tide types, and using only
a singlemethodmay not reflect the complete law of tides [39],
resulting in relatively large errors.

Based on the above information, the modular/ensemble
tide predictionmethod is added to theNARXmodel [40], [41].
This model divides tide data into two parts: astronomical
tide data affected by celestial tide-generating forces and
nonastronomical tide data affected by various environmental
factors. Using the characteristics of harmonic analysis, the
astronomical tidal component of the tide is obtained by
reconciling the results of the analysis, and then the NARX
neural network is used to predict the nonastronomical tide
component and modify the prediction results to improve the
accuracy of tide prediction. The specific steps are depicted in
Figure 5.

The measured tide level data y(t) are set as the input of
the modular prediction model. Because the harmonic analysis
prediction model can be used for long-term tide prediction,
y0(t) is the tide prediction value obtained from the harmonic
analysis module, and y1(t) is the difference between y and y0.
Since the harmonic analysis method considers the influences
of celestial bodies on tides, the difference y1(t) between the
verified data and the data predicted by the harmonic analysis
method can be regarded as the nonastronomical component of
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TABLE 1. Comparison of the HA-NARX and simple NARX prediction
models.

the tide level data affected by various uncertainties and non-
linear factors such as hydrometeorology. In theNARXmodel,
according to the model structure (Figure 4), if the model
outputs the prediction data y2(t + 1) at the next moment, the
input terminal actually measures five kinds of meteorological
data y3(t), y3(t−1) . . . y3 (t−N+1), and the prediction y1(t)
is output in the last step. The final prediction result Y (t +N )
is obtained by adding the output data from the NARX model
to that of the harmonic analysis module.

This table shows the improvement obtained using
HA-NARX compared to simple NARX neural networks with
the same testing data. The tide data of Miami Biscayne Bay
(25◦ 43.9’ N, 80◦ 9.7’ W), USA, from June 1, 2020 GMT
0000 to July 30, 2020 GMT 2300 are selected as the test
data, and the observations are sampled every 1 h, for a total of
1440 sets. Consistent with the formal prediction experiment,
the first 1200 groups of data are used as training data, and the
remaining 240 groups of data are used as prediction data.
The accuracy indicators in the table are described in detail
in Section 3.

It can be seen from the indicators that HA-NARX has a
better prediction effect than simple NARX, the accuracy and
robustness of the model are improved, and the comprehensive
optimization degree is calculated as approximately 23.3%.
The working principle of the proposed prediction method
is presented above, and the remainder of this section will
briefly introduce the tide level prediction methods used for
comparison.

D. GA-BP NEURAL NETWORK
The BP neural network is a multilayer feedforward neural
network trained according to the error reverse propagation
algorithm and is the most widely used neural network at
present [29], [30].

The BP neural network mainly includes two aspects: signal
forward transmission and error BP. In forward transmission,
the input signal is processed layer by layer from the input
layer to the output layer by the hidden layer. If the out-
put layer cannot obtain the actual output, BP is initiated
to adjust the weight and threshold of the whole network
according to the prediction error so that the predicted output
of the BP neural network gradually approaches the actual
output.

To fundamentally improve the prediction accuracy of the
BP neural network, this paper adopts the genetic algo-
rithm (GA) to optimize the neural network. The GA, which
was originally proposed by Professor Holland of Michigan

University [31], is a method that simulates the biolog-
ical evolution mechanism in nature; that is, useful fea-
tures are retained, while useless features are removed in
the optimization process. When solving complex combina-
torial optimization problems, compared with some conven-
tional optimization algorithms, the GA can usually obtain
better optimization results quickly.

To complete the tide level prediction, it is necessary to
set the initial input parameters of the GA-BP neural net-
work. The main contents include the number of layers of
the BP neural network, the numbers of nodes in the input
layer, hidden layer and output layer, and the initial param-
eters of the genetic optimization algorithm. First, the topo-
logical structure of the neural network model should be
determined.

The number of nodes in the input layer is determined by
the number of input parameters. In this paper, a BP neural
network is trained with the data obtained by the harmonic
analysis method to predict tides; thus, the number of nodes
in the input layer is taken as 1.

The number of nodes in the hidden layer is the main factor
affecting the performance of the BP neural network. If the
selected number of hidden layer nodes is not appropriate, it is
difficult for the trained network to output accurate prediction
data. To solve this problem, this paper adopts Equation (6).

M =
√
m+ n+ a (6)

In Equation (6), M means the number of hidden layer
nodes, m means the number of input layer nodes, n means
the number of output layer nodes, and a is a random natural
number between 0 and 10.

By solving of the empirical formula combined with the
multiple test prediction method, the number of hidden layer
nodes is finally determined to be 10.

For the GA-BP neural network model used in this paper,
the output is the predicted tide level at a certain time; thus,
the number of nodes in the output layer is set as 1.

For the introduced GA, four parameters need to be set in
advance.

1) THE SIZE OF THE POPULATION IS GENERALLY 20∼100
If the population size is too small, the evolution of the pop-
ulation cannot produce the expected number according to
the pattern theorem. If the population size is too large, it is
difficult for the algorithm to converge, resources are wasted,
and the robustness is reduced.

2) THE MUTATION PROBABILITY IS GENERALLY 0.0001∼0.1
If the mutation probability is too small, the diversity of the
population will decrease too quickly, leading to the rapid loss
of effective genes, and this situation is not easy to repair.
If the mutation probability is too large, although population
diversity can be guaranteed, the probability of high-order
patterns being destroyed increases with increasing mutation
probability.
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3) THE CROSSOVER PROBABILITY IS GENERALLY 0.4∼0.99
If the crossover probability is too large, it is easy to destroy
the existing favorable pattern, increase the randomness, and
easilymiss the optimal individual. If the crossover probability
is too small, the population cannot be effectively updated.

4) THE EVOLUTIONARY ALGEBRA IS USUALLY 100∼500
If the evolutionary algebra is too small, the algorithm does
not easily converge, and the population is not mature. If the
evolutionary algebra is too large, the algorithm is already
skilled, or it is too early for the population to converge; thus,
it is meaningless to continue the evolutionary process, which
only increases the time expenditure and waste of resources.

Currently, for the genetic algorithm, there is no method
to accurately determine the optimal parameter values, and in
this paper, the optimal parameters are tested through several
experiments based on the set parameter range. The number of
iterations is 100∼250, the number of populations is 25∼55,
the crossover probability is 0.2∼0.6, and the probability of
variation is 0.001∼0.01. Within this range, this paper con-
ducts 20 experiments using the test data. By comparing the
model prediction times required under different parameter
conditions and the relevance of the prediction results, it can
be seen that the best results are obtained from experiment
No. 2. Simultaneous predictions with shorter run times have
the highest correlation. Therefore, the final set parameters is
as follows: the population size is set as 50, the number of
iterations is set as 100, the crossover probability is set as 0.5,
and the mutation probability is set as 0.005.

E. WAVELET NEURAL NETWORK
The WNN was first proposed by Zhang and Benveniste [33]
in 1992 as a neural network model. The algorithm combines
the advantages of the wavelet function and BP neural net-
work. WNNs are based on the topological structure of the
BP neural network and employ a wavelet neural function
to replace the sigmoid function of the hidden layer nodes
for mapping. On the basis of retaining the characteristics
of BP neural networks, such as signal forward propagation
and error BP, a BP neural network is combined with wavelet
analysis theory, giving the model numerous advantages over
traditional BP neural networks, namely, fault tolerance, con-
vergence and approximation ability [34].

The training steps and prediction algorithm flow of the
WNN are as follows:

1. Network initialization. The scaling factor aj, translation
factor bj and network connection weights Wij and Wjk of the
wavelet function are initialized randomly.

2. Sample classification. The samples are divided into
training samples and test samples. The training samples are
used to train the network, and the test samples are used to test
the prediction accuracy of the network.

3. Output value prediction. The training samples are input
into the network to calculate the network prediction output

and the error between the network output and the expected
output.

4. Weight correction. According to the error, the network
weights and wavelet basis function parameters are modified
so that the network predictions are close to the expected
values.

5. Whether the algorithm ends is determined. If not, the
algorithm returns to step 3.

Before using the WNN to forecast tides, it is necessary
to set various parameters. The input data structure used in
this paper is 2-10-1: the input layer has two nodes, which
represent the tide data of the first two time points of the
prediction time node; the hidden layer has 10 nodes, which
are determined by an empirical formula; and the output layer
has one node, which is the tide level predicted by the WNN.
The network weight and wavelet basis function are randomly
obtained during the parameter initialization step. The WNN
is trained 100 times. Then, the trainedWNN is used to predict
the tide data at the next moment.

III. MATERIALS
This section presents information on the data selected for
the simulation, including the time, location, sampling interval
and additional meteorological data of the selected tide data.
The selected measures of prediction effectiveness, including
RMSE, CC, NSE, andMAPE, are also presented.
Astronomical tides can be divided into atmospheric tides

and ocean tides; that is, tides are affected not only by gravity
but also by the atmosphere, which is related to thermal exci-
tation by the sun, and this atmospheric effect is more obvious
at middle and low latitudes than at high latitudes.

Due to differences in atmospheric conditions under the
influence of different climate types, this paper selects tide
stations in the eastern and western United States to obtain
observation data and selects 90 days of data from these two
tide stations, namely, Yorktown in the southeastern United
States and San Francisco in the western United States, from
GMT0000 on June 1, 2020, to GMT2300 on July 30, 2020.
The East Coast of the United States is characterized by a
humid subtropical monsoon climate with an average temper-
ature above zero degrees in the coldest month in winter. The
climate is hot and rainy in summer, warm and dry in winter,
and has four distinct seasons. In contrast, the West Coast of
the United States has a Mediterranean climate that is hot and
dry in summer and mild and rainy in winter.

In addition, considering the impact of extreme weather,
90 days of data from Matagorda Bay in the southern United
States affected by the Hurricane Delta from GMT0000 on
August 1, 2020, to GMT2300 on September 30, 2020, are
added. The tide and meteorological data used in this paper are
from the website https://tidesandcurrents.noaa.gov/. The tide
level is expressed in units of meters, the starting surface of
the tide level is the average low tide level, and the observation
interval is 1 hour. Three sets of data sets are listed, and each
set contains 1440 tide levels. By listing these data, the tide
level time series of this period can be obtained.
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TABLE 2. GA-BP neural network parameter test results.

On the other hand, this paper also collects meteorological
data corresponding to each tide level, including temperature,
pressure, wind direction, wind speed and gust speed data.

In the neural network model, one-step prediction is car-
ried out first. This paper takes the first 1200 groups of data
as training data and the remaining 240 groups of data as
prediction data. Due to the large amount of data required
by the harmonic analysis method to predict tide levels, this
paper also collects historical data from three tide stations
from January 2019 to June 2020, which satisfies the required
amount of historical data (more than 18 months) required
for the harmonic components selected in this paper. The tide
gauge information and tide level data selected in this paper
are described below.

To quantitatively calculate the prediction accuracies of dif-
ferent prediction models, in this paper, the root mean square
error (RMSE), correlation coefficient (CC), Nash-Sutcliffe
efficiency coefficient (NSE), and mean absolute percentage
error (MAPE) are introduced. The calculation formulas are
as follows:

RMSE =

√∑n
k=1

(
yk − ŷk

)2
N

(7)

CC =

∑n
k=1 (yk − ȳk)

(
ŷk − ¯̂yk

)
√∑n

k=1 (yk − ȳk)
2∑n

k=1

(
ŷk − ¯̂yk

)2 (8)

TABLE 3. Tide station information.

NSE = 1−

∑n
k=1

(
yk − ŷk

)2∑n
k=1 (yk − ȳk)

2 (9)

MAPE =
100%
n

n∑
k=1

∣∣∣∣ ŷk − ykyk

∣∣∣∣ (10)

where n is the number of samples or interpreted as a time
index in time series analysis; yk and ȳk represent the observed
values and the average of the observed values, respectively;
and ŷk and ¯̂yk represent the predicted values and the average
of the predicted values, respectively.

The RMSE can effectively reflect the measurement pre-
cision. In contrast, the CC is a statistical index reflecting
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FIGURE 6. A structural diagram of the GA-BP model.

the closeness of the degree of correlation between variables
and is calculated according to the product difference method.
Based on the deviations between two variables and their
respective averages, the degree of correlation between these
two variables is reflected by multiplying the two deviations.
Generally, a CC above 0.7 indicates that the relationship
is very close; 0.4∼0.7 indicates a close relationship; and
0.2∼0.4 shows that the relationship is general. The smaller
the RMSE is, the larger the CC, indicating a better prediction
effect.

The NSE is generally used to verify the goodness of hydro-
logical model prediction results. The NSE takes a value from
negative infinity to 1. If the NSE is close to 1, the model is
of good quality and credible; if the NSE is close to 0, the
simulation results are close to the mean level of the observed
values (i.e., the overall results are credible, but the process
simulation error is large); and if the NSE is much less than 0,
the model is not credible.

The MAPE can be used to measure the goodness of a
model’s prediction results, considering not only the error
between the predicted value and the true value but also the
ratio between the error and the true value in the range of
[0, +∞). A MAPE of 0% indicates a perfect model, and a
MAPE greater than 100% indicates a poor model. However,
there is a drawback: the MAPE is asymmetric and imposes
a greater penalty for negative errors (when the predicted
value is higher than the actual value) than for positive errors.
Therefore, the MAPE will favor models that underpredict
rather than overpredict.

IV. SIMULATIONS
In this section, Figures 11, 12, 13 and 14 show the prediction
results of each of the four prediction models under different
atmospheric effects, and Table 4 compares the error extremes
of each prediction.

FIGURE 7. The training steps and prediction algorithm flow of the WNN
model.

FIGURE 8. The tide level observation data from San Francisco.

FIGURE 9. The tide level observation data from Yorktown.

FIGURE 10. The storm surge observation data from Matagorda.

A. HARMONIC ANALYSIS
The tide levels predicted by the harmonic analysis method
and the observed tide levels are compared in Figure 11.
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FIGURE 11. The prediction results of the harmonic analysis method at the
three tide stations.

B. GA-BP NEURAL NETWORK
The tide levels predicted by the GA-BP neural network and
the observed tide levels are compared in Figure 12.

C. WAVELET NEURAL NETWORK
The tide levels predicted by the WNN and the observed tide
levels are compared in Figure 13.

D. HA-NARX NEURAL NETWORK
The predicted tide levels and the observed tide levels after
training the HA-NARX neural network are compared in
Figure 14.

V. ANALYSIS
In this section, Figures 15, 16, and 17 show the prediction
results and comparisons of the error curves for the four tide
level prediction methods at the three tide stations. Table 5
shows a comparison of the calculated CC, NSE, RMSE, and
MAPE values of the four models for convenience.

At the San Francisco tide station, which is characterized by
a Mediterranean climate, the data were acquired in summer

FIGURE 12. The prediction results of the GA-BP neural network at the
three tide stations.

(June and July), just after the rainy season had ended. During
this period, under the control of the subtropical high, air
masses sink, the climate is hot and dry with little rain, there
are few clouds and sufficient sunshine, and the climate is
relatively stable. Hence, the influences of nonlinear climate
factors are weak, and the most important factor affecting tides
is the gravitational force between celestial bodies. Moreover,
the observation data (Figure 8) demonstrate that the measured
curve exhibits periodic oscillation; therefore, among the four
models, the HA-NARX neural network provides the most
accurate prediction results.

In summary, for tide data that are minimally affected by
atmospheric conditions, the advantage of the HA-NARXneu-
ral network is not obvious.

The data from the Yorktown tide station influenced by a
humid subtropical monsoon climate were similarly acquired
during summer (June and July). During this period, which
coincides with the annual rainy season, the temperature and
precipitation change violently. Excessive precipitation leads
to a high actual local tide level, causing the traditional adjust-
ment and analysis method to provide inaccurate predictions.
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TABLE 4. Comparison among the error extremes (m).

FIGURE 13. The prediction results and errors of the WNN at the three tide
stations.

This phenomenon continues until the end of the rainy season,
and thus, the error in the former part of the forecast data is
obviously larger than that in the latter part.

FIGURE 14. The prediction results of the HA-NARX neural network at the
three tide stations.

Likewise, the prediction results of the GA-BP neural net-
work selected in this paper can also be divided into two
parts. In the former part, the influences of nonlinear climate
factors are fully considered, thereby increasing the prediction
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FIGURE 15. Prediction results and error comparison for the San Francisco
tide station.

FIGURE 16. Prediction results and error comparison for the Yorktown tide
station.

accuracy. However, in the latter part, the influences of climate
factors on the tide level basically disappear, but the GA-BP
neural network does not make timely adjustments. As a result,
the predicted levels are higher than the actual measured
levels. This is because the input data of the GA-BP neural
network are based on the prediction data of the harmonic
analysis method. Although the error of the harmonic analysis

FIGURE 17. Prediction results and error comparison for the Matagorda
tide station.

method is reduced to a certain extent, due to the limitation
of the neural network structure, the GA-BP neural network
cannot adjust the prediction output in time to change the
data. Hence, the GA-BP neural network improves the overall
prediction accuracy only in comparison with the traditional
harmonic analysis method and does not completely overcome
the influences of climate factors.

However, in the WNN prediction results, the prediction
curve basically conforms to the measured values, and the
error distribution is uniform. This is because the hidden layer
of the WNN uses a wavelet neural function, which has a
better mapping performance for tide data, and the predic-
tion accuracy is improved compared with that of the tradi-
tional harmonic analysis method and GA-BP neural network.
Therefore, the WNN can basically overcome the influences
of nonlinear climate factors.

Finally, comparedwith all previousmodels, theHA-NARX
neural network exhibits the best prediction effect. As a kind
of dynamic neural network, it can remember the tide level
at a previous time and apply it to future predictions. Conse-
quently, the HA-NARX neural network can handle complex
climate change and make accurate predictions of tide levels.
Furthermore, the tide levels predicted by the HA-NARX
neural network are consistent with the measured values, and
the error distribution is uniform and smaller than that of the
WNN. Therefore, the HA-NARX neural network not only
overcomes the influences of nonlinear climate factors but also
further reduces the error based on the WNN to improve the
prediction accuracy.

To highlight the influences of atmospheric factors on tide
level data, this paper introduces tide data measured during
an extreme weather event in August and September at the
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TABLE 5. Comparison among the quantifiers of accuracy.

Matagorda tide station. Hurricane Delta originated in the
North Atlantic Ocean and landed near Creole, Louisiana,
on October 9, 2020, approximately 310 km from the tide
gauge station. The measured data were greatly affected by the
hurricane and exhibited obvious instability that was signifi-
cantly different from the tide level data affected periodically
by climatic factors. The former part of the data is relatively
stable and exhibits periodicity, whereas the latter part displays
an obvious increase in the tide level, increasing the difficulty
of accurately predicting the tide level.

The prediction data selected in this paper can be divided
into a water increase component and a periodic change com-
ponent. Figure 17 demonstrates that the prediction results
of the harmonic analysis method are completely inconsistent
with the actual situation. The overall predicted tide levels are
low, with periodic fluctuations. Therefore, the trend found by
the harmonic analysis method from past data is not suitable
for predicting tide levels during extreme weather. Further-
more, the GA-BP neural network is trained and predicted on
the basis of the harmonic analysis data, which reduces part
of the error, but the overall output is still periodic due to the
abovementioned limitation of the harmonic analysis method.
Moreover, the prediction data from the WNN are close to
the real values, and the increasing trend of the tide level is
predicted well, but the predicted peak value is not accurate.
Ultimately, the HA-NARX neural network prediction results
are most in line with the real situation, and accurate results
are obtained for both the water increasing component and the
periodic change component because the HA-NARX neural
network considers the tidal forces of celestial bodies and the
influences of atmospheric factors.

By comparing the quantifiers of prediction results at the
three tide stations, it can be calculated that the greater the
influence of meteorological factors on the tide, the more
obvious the improvement in the accuracy and stability of
HA-NARX prediction results compared with the traditional
model. The comprehensive improvement in prediction accu-

TABLE 6. Comparison among other researchers’ models.

racy is 23.87% and 40.03% in San Francisco and Yorktown,
respectively, where astronomical tides dominate, while in
Matagorda City, which is affected by extreme weather con-
ditions, i.e., nonastronomical tides dominate, the prediction
accuracy is improved by 234%.

It is undeniable that in San Francisco, all three conventional
models outperform HA-NARX in the comparison of CC
values; however, when evaluating the prediction results in
terms of CC, 0.7 is used as the cutoff point. The CC values
of all four models exceed 0.9, indicating that the prediction
results are very closely related to the actual observations;
thus, they are calculated at the same level in this index.
Similarly, in Yorktown, WNN outperforms HA-NARX in the
CC comparison and was also calculated at the same level.
However, GA-BP outperformsHA-NARX in theMAPE com-
parison. In balance, GA-BP outperforms HA-NARX at the
San Francisco tide station.

In Matagorda City, for the harmonic analysis method with
CC < 0.2 and NSE < 0, the prediction made can no longer
be used as a reference. The positive NSE of GA-BP is close
to 0, indicating a good overall prediction trend but a large
error. For WNN, the combined improvement of HA-NARX
in prediction results is calculated to be 47%. In summary,
HA-NARX shows good prediction accuracy and stability and
good generalizability under any conditions.

Table 6 compares the mean tide prediction results
of the HA-NARX model with the results of models
by other researchers, including Developed WN [11],
Hybrid ANFIS-GP4 [21] and ARIMA-SVR [22]. Since the
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indicators selected by other researchers for measurement
include the RMSE, mean absolute error (MAE) and CC, they
are chosen for uniform application as comparison indicators
in the table. The calculation formula of theMAE is as follows:

MAE =

∑n
k=1

∣∣yk − ŷk ∣∣
n

(11)

where n is the number of samples or is interpreted as a
time index in time series analysis; yk represents the observed
values; and ŷk represents the predicted values.

Table 6 shows that in terms of the RMSE, HA-NARX is
the lowest, indicating that it has the best prediction effect.,
and in terms of the CC, the predictions of all four models are
highly linearly correlated with the observations, with Hybrid
ANFIS-GP4 and ARIMA-SVR performing the best. In terms
of theMAE, the prediction error of HA-NARX is second only
to that of Developed WN, but its prediction correlation is
better than that of DevelopedWN. collectively, the prediction
results of HA-NARX are more satisfactory.

VI. CONCLUSION
A modular tide prediction model based on a NARX network
method is proposed and developed in this paper. Considering
the influences of atmospheric factors on the atmospheric
tidal components of astronomical tides, observation data from
three tide stations with different atmospheric conditions are
selected and input into different prediction models to predict
tide levels. The influences of atmospheric factors on the three
tide stations gradually increase. The results show that the
proposed HA-NARX model has robustness as well as high
accuracy, and the majority of error values and the differences
between observed and predicted tide levels fall within the
range of −6.1 cm and +6.7 cm. The prediction accuracy
is improved by 20% to 40% compared with the traditional
method, the prediction data has high correlation with and low
dispersion relative to observation data, the error is stable, and
the effect is more prominent under extreme weather condi-
tions. The prediction accuracy is comprehensively improved
by 234% compared with the traditional method. In addition,
the proposedmethod has the advantages of a simple structure,
short runtime and short calculation time compared with the
traditional method. It is worth noting that there is a drawback
of the HA-NARX model is that it requires a large amount of
real-time weather data, which requires multiple observation
devices to work simultaneously, and the cost of forecasting is
thereby increased. Additionally, the effectiveness ofmultistep
forecasting by HA-NARX needs to be further investigated.
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