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ABSTRACT In this paper, we study the trajectory tracking problem using iterative learning control for
continuous-time nonlinear systems with a generic fixed relative degree in the presence of disturbances.
This class of controllers iteratively refine the control input relying on the tracking error of the previous
trials and some properly tuned learning gains. Sufficient conditions on these gains guarantee the monotonic
convergence of the iterative process. However, the choice of the gains is heuristically hand-tuned given
an approximated system model and no information on the disturbances. Thus, in the cases of inaccurate
knowledge of the model or iteration-varying measurement errors, external disturbances, and delays, the
convergence condition is unlikely to be verified at every iteration. To overcome this issue, we propose a robust
convergence condition, which ensures the applicability of the pure feedforward control even if other classical
conditions are not fulfilled for some trials due to the presence of disturbances. Furthermore, we quantify the
upper bound of the nonrepetitive disturbance that the iterative algorithm is able to handle. Finally, we validate
the convergence condition simulating the dynamics of a two degrees of freedom underactuated arm with
elastic joints, where one is active, and the other is passive, and a Franka Emika Panda manipulator.

INDEX TERMS Iterative learning control, nonlinear control systems, robustness, robots.

I. INTRODUCTION
Starting from the 80s, a new control framework, namely
iterative learning control (ILC), was introduced [1], [2]. The
basic idea is to polish, iteratively, the current control input
until the system is able to effectively perform the desired
task. The iterative algorithm does not require any accurate
description of the model, leading to good tracking perfor-
mance without any substantial modification of the system
dynamics, while incorporating persistent disturbances, e.g.,
gravity acceleration. Not surprisingly, ILC proved to be an
excellent tool for repetitive tasks. Indeed, its field of appli-
cations are multiple, e.g., robotic manipulation [3], the wafer
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stage [4], manufacturing process [5], quadrotors [6], and soft
robotics [7]–[10].

The iterative algorithm can be robust to disturbances [11]
and can follow a switching policy between learning
gains [12]. Additionally, the control law can involve a rec-
tifying action for the initial state [13], can be combined with
feedback control, e.g., proportional [14] or model predictive
control [15], and can learn the desired trajectory even in the
case of variations in the learning process [16].

The main problem when dealing with iterative processes
is guaranteeing convergence. For continuous-time linear sys-
tems and discrete-time systems, it is possible to draw suffi-
cient and necessary convergence conditions [17]–[19], while
it is still an open problem for continuous-time nonlinear
systems [19].
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Disturbances such as model uncertainties [11], [20], error
in the measurements, dynamic/external interactions [7], and
actuation delays or faults [21] may cause a failure of the
convergence condition.

Feedback controllers can mitigate the undesired effect
of disturbances through the application of suitable high
gains [22]. This leads to a profound alteration of the system
dynamics, which is not acceptable in some applications like,
for example, soft robotics [7]. In this case, the use of feedback
control actions is strongly limit [23], and pure feedforward
control action, e.g., ILC, is preferable. However, feedforward
methods lack robustness in the case of disturbances. Thus,
what happens in the case of disturbances? Which kind of
disturbances can an iterative learning controller manage?
What can we guarantee in terms of convergence?

The robustness of a pure feedforward iterative control law
problem has already been widely investigated in the case of
discrete-time systems [18], [20], [24], [25]. However, it is
still under-studied for continuous-time systems. In [26], the
sampled-data ILC algorithm for continuous-time systems can
manage the time nonrepetitive disturbances, while in [27], the
Authors tackle the same problem in the case of systems with
a fixed relative degree equal to one, constant linear input and
output fields, and saturated inputs.

In this paper, we design an iterative pure feedfor-
ward controller for multiple-input multiple-output (MIMO)
continuous-time nonlinear systems with a generic fixed rel-
ative degree. We prove its convergence in the case of a
great variety of disturbances. We distinguish disturbances
on their dependency on the state or on time. Additionally,
we classify them as repetitive or nonrepetitive depending
on their occurrences w.r.t. the iteration domain. In [11],
[18], [24], [25], the Authors already guarantee a bounded
error in the presence of time-dependent nonrepetitive dis-
turbance. We propose and prove a convergence condition
(D-condition), which guarantees a robust convergence also
in the presence of state-dependent nonrepetitive disturbances.
Theoretically, we propose a necessary and sufficient converge
condition for a restricted class of nonlinear systems. Then,
we quantify the iteration-frequency and module of the non-
repetitive disturbances that the iterative algorithm can handle.
Additionally, we prove that the D-condition does not modify
the already known convergence results in [11], [18], [24], [25]
dealing with time-dependent nonrepetitive disturbances.

Finally, we validate the D-condition on two simulated
robotic systems varying disturbances types and output func-
tions. The first robot is an underactuated compliant arm with
two degrees of freedom (DoFs), in which the first elastic joint
is active, while the other is passive. The second system is a
Franka Emika Panda manipulator.

A. NOTATION
Let Im ∈ Rm×m be the identity matrix and 0n×m ∈ Rn×m be
a zeros matrix. Let f (·), g(·) : x ∈ Rn

→ Rn be two vector
fields, Lf g(x) stands for the Lie derivative of g(x) along f (x),

i.e., Lf g(x) =
∂g(x)
∂x f (x). For any vector v ∈ Rn, for anymatrix

A ∈ Rn×m, we denote with ||v|| and ||A|| their infinity norm.
Let λ be a positive constant, for any vector v ∈ Rn, we denote
with ||v||λ its λ−norm, i.e., ||v||λ , supt

{
||v|| e−λt

}
. Let y :

t ∈ R → Rn be a vector function, we denote with y(i)(t) its
i−th time derivative. Let U be a set, we use the notation #U
to indicate its cardinality. Finally, all physical units may be
assumed to be expressed in SI (MKS), and angles in radian.

II. PROBLEM DEFINITION
Let us consider an iterative process, where j ∈ U is the
iteration index, and U is the iteration set. The class of
continuous-time nonlinear systems under analysis can be
written as

ẋj(t) = fn(xj(t))+ g(xj(t))uj(t)

+dpx(xj(t))+ dpt(t)+ d rxj (xj(t))+ d rtj (t) (1)

yj(t) = h(xj(t))+ d
rty
j (t), (2)

with xj(0) as initial condition, xj(t) ∈ Rn is the state
vector, t ∈ [0, tf] is the time variable, tf is the terminal
time, uj(t) ∈ Rm is the control action, yj(t) ∈ Rny is
the output, h(·) : Rn

× [0, tf] → Rny is the output map,
fn(·) : Rn

× [0, tf] → Rn and g(·) : Rn
× [0, tf] → Rn×m

are the drift and control vector field, respectively. Addition-
ally, the system is affected by disturbances dpx(xj(t)), dpt(t),
d rxj (xj(t)), d rtj (t) ∈ Rn, and d rtyj (t) ∈ Rny which we classify
in relation to their dependency on iteration, state and time
domain. In particular, considering the iteration domain j ∈ U ,
we distinguish between repetitive and nonrepetitive distur-
bances. Furthermore, we divide them into state disturbances
and time disturbances, respectively. It is instrumental for
the development of the method to introduce the following
definitions.
Definition 1: A disturbance dpx(·) : U × [0, tf] × Rn

→

Rn, Lipschitz, and bounded is said to be state-repetitive (or
state-persistent).
Definition 2: A disturbance dpt(·) : U × [0, tf] → Rn,

Lipschitz, and bounded is said to be time-repetitive (or time-
persistent).
Definition 3: A disturbance d rxj (·) : T ⊂ U × [0, tf] ×

Rn
→ Rn, Lipschitz and bounded, i.e., maxt

∣∣∣∣d rxj (xj(t))
∣∣∣∣ =

d̄ rxj is said to be state-nonrepetitive.
Definition 4: A disturbance d rtj (·) : U × [0, tf] → Rn

(d rtyj (·) : U × [0, tf]→ Rny ) bounded, i.e., maxt
∣∣∣∣d rtj (t)∣∣∣∣ =

d̄ rtj (maxt
∣∣∣∣d rtyj (t)

∣∣∣∣ = d̄ rtyj ) and such that d rtj (·) 6= d rti (·)

(d rtyj (·) 6= d rtyi (·)), ∀i 6= j ∈ U is said to be time-
nonrepetitive.
It is worth highlighting that, nonrepetitive disturbances,

i.e., Def. 4, have already been widely studied in the liter-
ature, e.g., [11], [20], [26], [28]. However, the other types
of disturbances have not been properly analyzed yet. In the
following remark, we present a few practical examples of
these definitions.
Remark 1: State-repetitive disturbances (Def. 1) can rep-

resent an external force field, e.g., an unmodeled gravity
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vector in the dynamics of a robot. Time-repetitive distur-
bances (Def. 2) canmodel additive uncertainties in the system
nominal model. It is worth remarking that repetitive distur-
bances are present at each iteration of the whole iterative
process.
State-nonrepetitive disturbances (Def. 3) can derive from

the interaction between a robot and the environment or actu-
ators failure/delays. Time-nonrepetitive disturbances (Def. 4)
are disturbances with no relation with the state, e.g., mea-
surements noise. It is worth remarking that nonrepetitive
disturbances occur only for a few iterations (or change at
each iteration) during the whole learning process.

A. ASSUMPTIONS
We assume for the system (1)-(2) what follows:

A1) the system (1)-(2) is square, i.e., ny = m.
A2) The system (1)-(2) has a fixed relative degree (vector) rv

such as rv = [r1, . . . , rm] (see, e.g., [29]):
• LgzL

s
fnhi(x) = 0, i, z ∈ [1,m] , s ∈ [0, ri − 1].

• rank {D(x)} = m,∀x ∈ Rn, such asD(x) ∈ Rm×m and
Dij(x) = LgiL

rj−1
fn hj(x) with i, j ∈ [1,m].

The matrix D(x) is called the decoupling matrix.
Additionally, we assume that r1 = · · · = rm = r ∈ N.

A3) The initial condition xj(0) ∈ Rn is such that xj(0) =
xd(0), ∀j ∈ U .

A4) fn(·), g(·), h(·),Lsf h(·), s = 1, · · · , r , and D(·) are glob-
ally Lipschitz with constants f̄ , ḡ, h̄, 8̄s, and η̄ ∈

R+, respectively, i.e.,
∣∣∣∣fn(x̂)− fn(x̄)∣∣∣∣ ≤ f̄

∣∣∣∣x̂ − x̄∣∣∣∣ ,
x̂, x̄ ∈ Rn.

A5) The desired output trajectory yd : [0, tf] → Rm is
feasible, continuous and differentiable for r times, ∀t ∈
[0, tf].

It is worth noting that, thanks to assumption A5), there exist
bounded ud, xd, and yd, which are the desired control input,
state and output, respectively,1 such that ẋd(t) = fn(xd(t)) +
g(xd(t))ud(t) and yd(t) = h(xd(t)).

B. GOALS
Considering the disturbed system (1)-(2), given the desired
trajectory yd(t) : [0, tf] → Rm, and assumptions A1)-A5).
Themain purpose of this paper is to investigate the robustness
of the iterative feedforward control law uj(t) in the presence
of disturbances dpx(xj(t)), dpt(t), d rxj (xj(t)), d rtj (t), and d

rty
j (t).

In particular, we summarize the goals of this work as follows.

G1) Design an iterative feedforward control law u(t) :
[0, tf] → Rm able to follow yd(t) ∀t ∈ [0, tf], i.e.,
limj→+∞

∣∣∣∣yd(t)− yj(t)∣∣∣∣λ = 0.
G2) Propose a robust convergence condition, namely

D-condition, which guarantees even in the presence of
state-nonrepetitive disturbances d rxj (xj(t)).

1Note that ud is unique, and that both xd, and ud are unknown and required
only to theoretically prove the convergence of the method.

G3) Find an upper-bound of the state-nonrepetitive distur-
bances d rxj (xj(t)), which can be dealt with by the con-
vergence condition proposed in G2).

G4) Prove that the D-condition in G2) handles the presence
of time-repetitive dptj (t) and time-nonrepetitive d rtj (t)

and d rtyj (t) disturbances, guaranteeing limj→+∞
∣∣∣∣ud(t)−

uj(t)
∣∣∣∣
λ
≤ bu with bu ≥ 0.

III. SOLUTION
This section is dived into four parts. Firstly, we present
the employed control law. Secondly, we report well-known
results for this iterative control. Third, we propose the main
result of this paper, i.e., a robust convergence condition for the
control law (3). This converge condition is able to cope with
state repetitive and nonrepetitive disturbances, i.e., Def. 1
and 3. Finally, the fourth section extends the main result con-
sidering also the presence of time repetitive and nonrepetitive
disturbances, i.e., Def. 2 and 4.

A. ITERATIVE CONTROL LAW
In this paper we employ an ILC control law, which is purely
feedforward. This has already been widely used in literature,
for example in [9] and [30], achieving G2). Recalling the
system (1)-(2) and the assumptions A1)-A5), we employed
control law is

uj+1(t) = uj(t)+ 0j(t)rej(t), (3)

where0j(t) ∈ Rm×m is the time and iteration varying learning
gain and the error signal rej(t) ∈ Rm is defined as

rej(t) ,
r∑
i=0

ϒi

(
y(i)d (t)− y(i)j (t)

)
=

r∑
i=0

ϒi

(
L ifnh(xd)− L

i
fnh(xj)

)
︸ ︷︷ ︸

8(xj,xd)

+ϒr
(
D(xd)ud − D(xj)uj

)
, (4)

whereϒi ∈ Rm×m, ϒi � 0,∀i = 0, . . . , r are tunable control
gain matrices, which affect the convergence velocity [9]. The
initial guess u0(t) ∈ Rm of the iterative control law (3) can
be arbitrarily chosen.

Assuming that the measurements of y(i)j (t) for i = 0, · · · , r
can be easily obtained through sensors, for each iteration
j and time instant t ∈ [0, tf], the control law (3) requires
(r+1)(m2

+m) operations. In the case that the derivative mea-
surements are not available the method complexity increases
depending on the adopted algorithm.

It is instrumental for the derivation of the method to intro-
duce the following definition.
Definition 5: If for any initial guess u0(t) : [0, tf]→ Rm,

the iterative control law (3) converges to ud(t) : [0, tf]→ Rm

in such a way
∣∣∣∣ud(t)− uj(t)∣∣∣∣λ = 0 when j→+∞, then (3)

is said to be convergent.
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Lemma 1: If the control law is convergent (Def. 5), then
the error (4) is such that

∣∣∣∣rej(t)∣∣∣∣λ→ 0 when j→+∞.
Proof: Recalling assumptions A3) and A5), i.e., no shift

in the initial condition and the feasibility of the desired tra-
jectory, the proof is trivial. �

B. STATE OF THE ART
A sufficient convergence condition [30] for the controller (3),
which we call not-disturbed (ND) convergence condition, is∣∣∣∣Im − 0j(t)D(xj)∣∣∣∣ < 1,∀j ∈ U ,∀x ∈ Rn,∀t ∈ [0, tf]. (5)

If (5) is verified, then the iterative process is guaranteed to
convergence. This occurs also in presence of state-repetitive
disturbances (Def. 1), see, e.g., [7], [31]. Indeed, considering
the system (1), the state-persistent disturbances dpx(xj(t)) can
be included in the vector fn(xj(t)), which is still Lipschitz.
For this reason, in the following, without loss of generality,
we can directly consider the disturbed drift vector

f (xj(t)) , dpx(xj(t))+ fn(xj(t)). (6)

It is worth noting that, the Lipschitz constant of f (xj(t)) is
still f̄ ∈ R, i.e., assumption A4).

Additionally, (5) can also deal with both time-nonrepetitive
and time-repetitive disturbances (Def. 2 and 4). However,
in this case the iterative process will not have a perfect
convergence as in Def. 5, but it will be bounded, i.e.,∣∣∣∣ud(t)− uj(t)∣∣∣∣λ ≤ bu, with bu > 0 finite, see, e.g., [11].

On the other hand, (5) does not guarantee the so-called
control contraction when state-nonrepetitive disturbances
(Def. 3) occur. Therefore, the main contribution of this work
is to propose a robust convergence condition (D), which
extends (5). This is presented in the following section.

C. MAIN RESULT: STATE-NONREPETITIVE DISTURBANCES
For the sake of clarity, let us define what follows.
Definition 6: Let U ≡ N be the iteration set. U is such

that U = T ∪ V , where V contains all that iteration j such
that (5) is not fulfilled, while T = U−V .

The following Theorem represents the main result of
this paper. It enables the controller (3) to cope with
state-nonrepetitive disturbance such as in Def. 3, achiev-
ing G2).
Theorem 1: Let us consider the system in the form (1)-(2)

with dpt(t) ≡ 0n×1, d rtj (t) ≡ 0n×1, d
rty
j (t) ≡ 0m×1, and let

yd(t) ∈ Rm be the desired output trajectory. Let N ∈ N be
a finite constant. Under assumptions A1)-A5), if the learning
gain 0j(t) ∈ Rm×m satisfies

j+N−1∏
i=j

||Im − 0i(t)ϒrD(xi)|| ≤
j+N−1∏
i=j

ρi < 1,

∀j = sN ∈ U , s ∈ N ,∀t ∈ [0, tf]. (7)

then, the control law (3) is convergent (Def. 5), i.e.,∣∣∣∣rej(t)∣∣∣∣λ→ 0, when j→+∞.
Proof: For the sake of clarity, we omit the time depen-

dency.

Given the control law (3) and (4), we have

ud − uj+1 =
(
Im − 0jϒrD(xj)

) (
ud − uj

)
− 0j8(xj, xd)

+0jϒr
(
D(xj)− D(xd)

)
ud. (8)

Defining δuj , ud − uj and δxj , xd − xj, we can write∣∣∣∣δuj+1∣∣∣∣ ≤ ∣∣∣∣Im − 0jϒrD(xj)∣∣∣∣ ∣∣∣∣δuj∣∣∣∣+ ∣∣∣∣0j∣∣∣∣ ∣∣∣∣8(xj, xd)∣∣∣∣
+
∣∣∣∣0j∣∣∣∣ ||ϒr || ∣∣∣∣D(xj)− D(xd)∣∣∣∣ ||ud|| . (9)

Given (4) and A4), we compute∣∣∣∣8(xj, xd)∣∣∣∣ = ∣∣∣∣∣∣ r∑
i=0

ϒi

(
L if h(xd)− L

i
f h(xj)

) ∣∣∣∣∣∣
≤

r∑
i=0

∣∣∣∣ϒi8̄i
∣∣∣∣ ∣∣∣∣δxj∣∣∣∣≤ (r + 1)8?

∣∣∣∣δxj∣∣∣∣ , (10)
with 8? ∈ R is such that 8? ≥ maxi=0,··· ,r

{
||ϒi||

∣∣∣∣8̄i
∣∣∣∣}.

Recalling A4), let χj be such that
∣∣∣∣Im − 0jϒrD(xj)∣∣∣∣ ≤ χj,

defining µ , supt
{
||ϒr ||

(∣∣∣∣0j∣∣∣∣ η̄ ||ud|| + (r + 1)8?
)}
, one

has ∣∣∣∣δuj+1∣∣∣∣ ≤ χj ∣∣∣∣δuj∣∣∣∣+ µ ∣∣∣∣δxj∣∣∣∣ . (11)

Using again assumption A4), we can write the following
inequality for the system (1)∣∣∣∣δxj∣∣∣∣ ≤ ∫ tf

0

(
f̄ + ḡ ||ud(τ )||

) ∣∣∣∣δxj(τ )∣∣∣∣
+
∣∣∣∣g(xj(τ ))∣∣∣∣ ∣∣∣∣δuj(τ )∣∣∣∣ dτ. (12)

Applying the Gronwall’s Lemma to (12), leads to∣∣∣∣δxj∣∣∣∣ ≤ ∫ tf

0
c1
∣∣∣∣δuj(τ )∣∣∣∣ ec2(t−τ )dτ, (13)

where c1 , supt
{∣∣∣∣g(xj)∣∣∣∣} and c2 , supt

{
f̄ + ḡ ||ud||

}
.

Substituting (13) in (11), leads to∣∣∣∣δuj+1∣∣∣∣ ≤ χj ∣∣∣∣δuj∣∣∣∣+ µc1 ∫ t

0

∣∣∣∣δuj(τ )∣∣∣∣ ec2(t−τ )dτ. (14)

Computing the λ−norm of (14), we obtain∣∣∣∣δuj+1∣∣∣∣λ≤χj ∣∣∣∣δuj∣∣∣∣λ+supt µc1

∫ t

0
e(c2−λ)(t−τ )dτ

∣∣∣∣δuj∣∣∣∣λ .
(15)

Grouping for
∣∣∣∣δuj∣∣∣∣λ and solving the integral, leads to

∣∣∣∣δuj+1∣∣∣∣λ ≤
(
χj +

µc1
(
1− e(c2−λ)tf

)
λ− c2

) ∣∣∣∣δuj∣∣∣∣λ , (16)

which can be rewritten as∣∣∣∣δuj+1∣∣∣∣λ ≤ (χj + νj(λ)) ∣∣∣∣δuj∣∣∣∣λ ≤ ρj ∣∣∣∣δuj∣∣∣∣λ . (17)

Considering χj < 1, then ∀c2 ≥ 0, ∃λ ≥ 0 such that χj +
νj(λ) < 1, ∀j ∈ U . It is worth mentioning that this proves the
ND-condition (5).

On the other hand, the presence of state-nonrepetitive
disturbances d rxj (x) (Def. 4) affects the constant c2 in (13),
leading to c′2 , c2 + d̄ rxj . This may lead to a failure in
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the convergence condition (5). Indeed, ∀c2, and λ (already
selected), ∃d̄ rxj : χj + νj(λ, d̄

rx
j ) > 1 , ∀j ∈ V in (17).

Without loss of generality, we can group (16) by windows
of N trials, which contains iterations belonging to both V and
T . This leads to

∣∣∣∣δuj+N ∣∣∣∣λ ≤ j+N−1∏
i=j

ρi
∣∣∣∣δuj∣∣∣∣λ , Pj

∣∣∣∣δuj∣∣∣∣λ , (18)

which is a control contraction for hypothesis, i.e., Pj < 1.
We substitute all the iterations of the iterative process, and

we compute the limit for j→+∞

lim
j→+∞

∣∣∣∣δuj+1∣∣∣∣λ ≤ +∞∏
j=0

Pj ||δu0||λ = 0. (19)

The right-hand side of (19) is an infinite product of factors
Pj such that 0 ≤ Pj < 1. This implies that

∏
+∞

j=0 Pj = 0.
Recalling Lemma 1, we state that

∣∣∣∣rej(t)∣∣∣∣λ→ 0 , j→+∞.
Thus, the proof is completed. �
Note that, if we choose N = 1, convergence condi-
tion (7) (D) shrinks into (5) (ND). Conversely, choosing
1 < N < +∞, leads to a convergence condition, which is
more robust than (5). Indeed, (7) guarantees the convergence
even if (5) is not fulfilled for some iterations.

A necessary and sufficient convergence condition for the
controller (3) and nonlinear system (1)-(2) is still an open
problem. However, restricting the class of nonlinear systems
under study, it is possible to obtain the necessary and suffi-
cient convergence condition for the controller (3), as proven
in the following Theorem.
Theorem 2: Under the same assumption of Theorem 1, let

D(x) be the decoupling matrix, such that D(x) = D, with
D constant matrix such that η = ||D|| ∈ R. Then, (7) is
the necessary and sufficient convergence condition for the
control law (3).

Proof: Sufficiency.We refer to Theorem 1.
Necessity.By contradiction, let us assume that

∣∣∣∣rej(t)∣∣∣∣λ→
b ≥ 0, when j→+∞.

Recalling (4), and A4), leads to∣∣∣∣∣∣rej+N ∣∣∣∣∣∣ ≤ (r + 1)8?
∣∣∣∣δxj+N ∣∣∣∣+ η ∣∣∣∣δuj+N ∣∣∣∣ . (20)

Defining 8̄? , (r + 1)8? and substituting (12)-(18) into
(20), one has∣∣∣∣∣∣rej+N ∣∣∣∣∣∣

λ
≤
(
8̄? + νj+N + η

) ∣∣∣∣δuj+N ∣∣∣∣λ
≤
(
8̄? + νj+N + η

)
Pj
∣∣∣∣δuj∣∣∣∣λ . (21)

Since
∣∣∣∣rej∣∣∣∣λ→ b ∈ R+ , j→+∞, thenPj ≥ 1 for some

j, which is absurd (Pj < 1 ∀j ∈ U ). Thus
∣∣∣∣rej(t)∣∣∣∣λ→ 0, and

the proof is completed. �
Since the windowsN is not known a priori, (7) results not triv-
ial for a practical interpretation. To have a trivial comparison
with a classic convergence condition (ND), i.e., (5), we state
what follows.

Corollary 1: Under the same assumptions of Theorem 1,
let U = V ∪ T be the iteration set such that #T = ∞ while
#V <∞. A sufficient condition for the convergence of (3) is∣∣∣∣Im − 0j(t)ϒrD(xj)∣∣∣∣ ≤ ρj < 1 ∀j ∈ T ,∀t ∈ [0, tf]. (22)

Proof: We here report only a sketch of it. Recalling (17),
we substitute all the previous trials, we split the products, and
we compute the limit

lim
j→+∞

∣∣∣∣δuj+1∣∣∣∣λ≤ lim
j→+∞

∏
j∈V

(
χj + νj

)∏
j∈T

(
χj+νj

)
||δu0||λ ,

(23)

in which
∏

j∈T
(
χj + νj

)
= 0 and

∏
j∈V

(
χj + νj

)
= ν? ∈

R+\{+∞}. The proof is completed. �
We tackle the goal G3) with the following Proposition.
Proposition 1: Under the same assumptions of Theorem 1,

and given a window N of iterations, let NV and NT be two sets
such that N = #NV + #NT. The two sets NV and NT include
the iteration indexes j where a state-nonrepetitive disturbance
occurs or not, respectively.
Let be A , 1/

∏
j∈NT

ρj, 1 ≤ A < +∞ and let the learning
gain 0j(t) equal to

0j(t) = εϒ−1r D−1(xj),∀t ∈ [0, tf], ε ∈ (0, 1],∀j ∈ U . (24)

For any iteration window N, the D-condition (7) holds if
the nonrepetitive disturbances are such that

d rx?
= max

j∈NV
{d̄ rxj } < λ− c2

−W

 tfc1µ
#NV
√
A
exp


(

ε
c1µ
+ 1

)
tfc1µ

#NV
√
A

 1
tf
−

ε

c1µ
+ 1,

(25)

where W is the Lambert function [32], λ ∈ R+\{+∞}, and
µ, c1, c2 are respectively defined in (11) and (13).

Proof: Since we assumed that (7) holds true, recalling
(16) and Def. 6, we can write∏

j∈NT

ρj
∏
j∈NV

ρj = A−1
∏
j∈NV

ρj < 1, (26)

where A−1 < 1 and
∏

j∈NV
ρj ∈ [1,+∞).

Substituting (24) into (26), and computing d rx? =

maxj∈NV{d
rx
j }, yield to

∏
j∈NV

ρj =

(
ε +

µc1
(
1− e(c2−λ−d

rx
? )tf
)

λ− c2 − d rx?

)#NV

< A. (27)

Note that, we are looking for d rx? ∈ R\{∞}, which satisfies
(27). Then, after mathematical manipulation, and defining
ζ , λ− c2 − d rx? , one has e−ζ tfc1µ > −

#NV
√
Aζ − ε + c1µ,

whose solution is (25). �
In practice, (25) is difficult to apply, but it guarantees an upper
boundw.r.t. the iteration frequency for any state-nonrepetitive
disturbances.
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Remark 2: The control law (3) depends on the control
gains ϒi ∈ Rm×m, for i = 0, · · · , r. These directly multiply
the derivative of the output. Large values could speed up
the convergence of the method. However, the magnitude of
the gains should be proportional to the reliability of the
measurements. i.e., inaccurate measurements should be mul-
tiplied by low gains. Moreover, in practical applications, the
control action could exceed the actuators physical limits and,
eventually, damage the system.

D. OTHER RESULTS: ALL DISTURBANCES
In this section, we analyze the presence of also the
time-nonrepetitive and repetitive disturbances (Def. 2 and 4),
achieving G4). As discussed in Sec. III-B, these disturbances
do not affect (7), although, they lead to a bounded error [28]
and [18]. The following Theorem extends Theorem 1 w.r.t.
all disturbances under analysis, relaxing also A3).
Theorem 3: Let us consider the system in the form (1)-(2),

and let yd(t) ∈ Rm be desired output trajectory.
Under assumptions A1), A2), A4), A5), let us consider

the initial condition such as xj(0) = xd(0) + lj , ∀j ∈
U, with supj

∣∣∣∣lj∣∣∣∣ ≤ bl < +∞. Let us assume that the
time-nonrepetitive disturbances d rtyj (t) ∈ Rm (Def. 4) is time
differentiable for r times with bounded derivatives, namely
d̄ rty0 , · · · , d̄ rtyr ∈ R\{+∞}.
If 0j(t) ∈ Rm×m satisfies (7), then the controller (3) is

such that
∣∣∣∣ud(t) − uj(t)

∣∣∣∣
λ
≤ bu, when j → +∞ with

bu ∈ R+\{+∞}.
Proof: The presence of time-repetitive and nonrepetitive

disturbances modify (11) such as∣∣∣∣δuj+1∣∣∣∣ ≤ χj ∣∣∣∣δuj∣∣∣∣+ µ ∣∣∣∣δxj∣∣∣∣+ ∣∣∣∣0j∣∣∣∣ d̄ rty, (28)

with d̄ rty = (r + 1)max{
∣∣∣∣ϒ0

∣∣∣∣d̄ rty0 , · · · ,
∣∣∣∣ϒr ∣∣∣∣d̄ rtyr }.

Now, let us recall (13), which becomes∣∣∣∣δxj∣∣∣∣ ≤ blec2t + ∫ tf

0

(
c1
∣∣∣∣δuj(τ )∣∣∣∣+ d̄ rxj )ec2(t−τ )dτ, (29)

where d̄ rxj = maxt {d rxj (t)}. Then, with analogous calculation
from (14)-(18), we derive

∣∣∣∣δuj+N ∣∣∣∣λ ≤ j+N−1∏
i=j

ρi
∣∣∣∣δuj∣∣∣∣λ + N−1∑

k=1

j+N−k∏
i=j

ρid̄ + d̄j+N ,

(30)

with d̄ , supj{d̄j} = supj{
∣∣∣∣0j∣∣∣∣d̄ rty + µbl + µd̄ rxj ν(λ)} <

+∞, and d̄j+N , supj{d̄j+N } = supj{
∣∣∣∣0j+N ∣∣∣∣d̄ rty + µbl +

µd̄ rxj+N ν(λ)} < +∞.
Computing the limit for j→+∞, using (7), and rearrang-

ing (30) by splitting into N iteration products, lead to

lim
j→+∞

∣∣∣∣δuj+N ∣∣∣∣λ ≤ +∞∏
j=1

Pj ||δu0||λ +
+∞∑
j=1

Pjd + d̄N , (31)

where d̄N is bounded because it is a finite sum of N bounded
variables.

Recalling (7), and defining P , supjmaxt Pj, one has

lim
j→+∞

∣∣∣∣δuj+N ∣∣∣∣λ ≤ 1

1− P
d + d̄N , bu < +∞. (32)

The proof is completed. �

IV. VALIDATION
We validate the effectiveness of the D-condition through
simulations, using MATLAB. Firstly, we simulate a 2 DoFs
underactuated compliant robot, namely RR, composed of two
elastic joints, where only the first one is actuated. Secondly,
we test the method on a Franka Emika Panda robot equipped
with elastic joints.

The dynamic model is used for simulating the system and
for tuning the gain 0j(t) of the controller (3). The gains ϒ
are chosen depending on the system, while ε = 0.9. The
initial guess u0 is chosen equal to the constant torque able
to maintain the robot in the starting position of the trajectory
yd(0), i.e., solving fn(xd(0))+ g(xd(0))u0(t) = 0.
To quantify the tracking performance, we use as a metric

the root mean square (RMS) of the norm of each component
of the output error, showing that the D-condition (7) extends
the ND-condition (5). The learning is executed until the RMS
error reaches a value of 0.001rad.

A. TWO DoFs UNDERACTUATED ROBOT: RR
We simulate the dynamics of a two DoFs underactuated arm
with elastic joints. We refer to [9] for a more exhaustive treat-
ment of the system dynamics. Let m = 0.55 kg, J = 0.001
kgm2, l = 0.085 m, a = 0.089 m, and dν = 0.3 Nms/rad
be the mass, inertia, length, center of mass distance, and
damping of each link, respectively. The stiffness of each link
is tested in two configurations: Soft, i.e., k = 1 Nm/rad, and
Stiff, i.e., k = 3 Nm/rad. For the sake of clarity, let us recall
that the state x ∈ R4 of the robot is x = [x1 , x2 , x3 , x4]>,
where x1 and x2 are the joint positions, while x3 and x4 are
the joint angular velocities.

To test the robustness of the method, we design the learn-
ing gain 0j using a model whose parameters are different
from the nominal one. In particular, the second link param-
eters m̃2, J̃2, l̃2, and ã2 are decreased by 50%. This is a
state-repetitive disturbance dpx in (1). Additionally, we test
the control algorithm simulating measurement noise d rtyj (t),
external disturbances, and delays in the controller uj(t),
which can be both modeled as state-nonrepetitive distur-
bances d rxj (xj(t)) in (1).
The chosen output function h(x) ∈ R is the absolute angle

of the robot tip i.e., y = x1 + x2, which leads to a relative
degree r = 2 iff ( [9])

D(x) = LgLfnh(x) =
−b2 cos (x2)
detM(x)

6= 0, (33)

where b1 = m2a21+m1l21 + J1, b2 = m2l22 + J2, b3 = a1l2m2
and detM(x) = b1b2 + b23 cos x2 6= 0,∀x ∈ Rn.
The desired trajectory is a minimum jerk signal that starts

from the initial position y0 = 0 and reaches the final one
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yf = π
4 in tf = 10s, i.e.,

yd(t) = yf

(
10
(
t
tf

)3

− 15
(
t
tf

)4

+ 6
(
t
tf

)5
)
. (34)

To fulfil (7), we choose a constant learning gain

0 = −ε ˜detM/b̃3, (35)

with b̃3 = a1 l̃2m̃2 and ˜detM = b1b̃2 − b̃23.
In each trial, the starting configuration is xj(0) = 04×1 ∀j ∈

U , and the control gains are [ϒ0, ϒ1, ϒ2] = [80, 5, 1].

1) SOFT CONFIGURATION
In presence of particularly low stiffness, during the robot
motion, the second link position x2 reaches x2 = π/2. Thus,
(33) vanishes leading to a variation of the relative degree. This
variation causes a failure of the convergence condition (5),
and no conclusions on the convergence of the iterativemethod
can be drawn. However, this simulation shows that using the
gain (35), we can guarantee the convergence thanks to (7).

We test the same task in two different conditions:
• D - Model: we design the learning gain using (35). The
disturbances are due tomodel uncertainties and a change
in the relative degree, namely dpt(t).

• D - Noise: we employ (35), and, in addition to the issues
of the D - Model case, we inject Gaussian noise into
the system simulating the presence of time-nonrepetitive
disturbances d rtyj (t). The mean value of the Gaussian
noise is equal to 0, the standard deviation equal to 10−3

on the position measurements, and 10−5 on the velocity
measurements.

Thus in the D - Noise scenario, recalling (1)-(2), and (6),
the simulated system can be written as{

ẋj(t) =f (xj(t))+ g(xj(t))uj(t)+ dpt(t)+ d rtj (t) (36)

yj(t) = h(xj(t))+ d
rty
j (t). (37)

Finally, in theD -Model scenario, we have d rtyj (t) ≡ 0m×1,
and dpt(t) ≡ d rtj (t) ≡ 02n×1 in (36)-(37).
Fig.1 reports the simulation results, where at trials j = 6, 8,

x2 is x2 = π/2. Fig.1(a) shows the tracking performance at
the last iteration, while Fig.1(b)-1(c) depict the error evolu-
tion over iterations.

2) STIFF CONFIGURATION
We test the same task in four different conditions:
• ND: we use the nominal model in (24), where D(xj) is
computed as (33).

• D - Model: we design the learning gain using (35). The
disturbances are due to model uncertainties, i.e., dpx(t).

• D - Force: we employ (35), and, in addition to the
issue of the D - Model case, we simulate the presence
of an external force due to an interaction between the
robot and the environment, which occurs at trails j =
8, 12. This is a state-nonrepetitive disturbance d rxj (xj(t)),

which is mapped at the joint level with d̄ rxj = 0.5 Nm at
t = 5 s.

• D - Delay: we employ (35), and, in addition to the issue
of the D - Model case, we simulate the presence of a 1 s
delay in the control action. This occurs at trails j = 8, 12
and it can be modeled as state-nonrepetitive disturbance
d rxj (xj(t)).

Thus, in the D - Force and Delay scenarios, recalling (1)
and (6), the simulated system can be written as

ẋj(t) = f (xj(t))+ g(xj(t))uj(t)+ d rxj (xj(t))+ dpt(t). (38)

Finally, in the D - Model scenario, we have dpt(t) ≡
d rxj (xj(t)) ≡ 02n×1 in (38).
Fig. 2 reports the simulation results. Fig. 2(a) depicts the

tracking performance at the last iteration, while Fig. 2(b)-
Fig. 2(c) show the error evolution over iterations.

It is worth mentioning that, taking N = 5, λ = 1.8,
A = 1.52, µ = 3e − 4, c2 = π/4 and c1 = 26, (25) holds.
In particular we have that in theD - Force scenario d rx? = 0.5,
while in the D - Delay scenario d rx? = 0.4.

B. SERIAL MANIPULATOR
We simulate a 7-DoFs Franka Emika Panda2 manipulator
adding a joint stiffnessmatrixK = diag {5, 5, 5, 3, 3, 3, 3} 1e2
and a joint damping matrix F = diag {10, 10, 10, 5, 5, 5, 5}.
Additional details on the dynamics model of the robot can be
found in [33].

We design a Cartesian trajectory (X − X0)2+ (Y − Y0)2+
Z2
0 = R2, where [X0,Y0,Z0]> ∈ R3 is the Cartesian

starting position of the robot and R = 0.1 m is the radius
of the circumference. Solving the inverse kinematic leads
to the desired time evolution of the joints, i.e., yd(t) =
[ones(1, 7),zeros(1, 7)] xd, in such a way that the rel-
ative degree r is r = 2, [34]. We indicate the nominal
inertia matrix of the robot as M (q) and its model with
M̃ (q) = 0.9M (q). This is a state-repetitive disturbance
dpx in (1). Note that both M (q), M̃ (q) � 0. The control
gains are ϒ0 = M̂−1(q)diag {5, 5, 3, 3, 7, 7, 10} 1e1, ϒ1 =

M̂−1(q)diag {3, 3, 3, 5, 5, 5, 5}, ϒ2 = 0.1diag {ones(1, 7)},
where M̂ is either the nominal or the perturbed inertia matrix
depending on the case under study.

We test the same task in three different conditions:

• ND: we use (24), where D(xj) = M−1(qj).
• D - Data Loss: we design the learning gain such as
0j(t) = εM̃ (qj), which is a model uncertainty, namely
dpt(t). Additionally, at trials j = 4, 6, we simulate a
complete loss of joint position data, i.e., 0j+1 = εM̃ (q0)
leading to a failure of (5). The loss of data can be
modeled as a state-nonrepetitive disturbance d rxj (xj(t)).

• D -Delay: in addition to designing the learning gain such
as in theD - Data Loss case, we simulate the presence of
a delay of 0.8 s in the control action of the joints 1, 3, 6, 7
at the trails j = 8, 12. This leads to a failure of (5).

2https://www.franka.de/
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FIGURE 1. RR simulation results in the soft configuration.

FIGURE 2. RR simulation results in the stiff configuration.

FIGURE 3. Franka Emika Panda: error evolution over iteration.

The delay can be seen as state-nonrepetitive disturbance
d rxj (xj(t)).

Note that the learning gain 0j(t) ∈ Rm×m is nonlinear.
Thus, in the D - Delay and Data Loss scenarios, recalling

(1) and (6), the simulated system can be written as

ẋj(t) = f (xj(t))+ g(xj(t))uj(t)+ d rxj (xj(t))+ dpt(t). (39)

Finally, in the ND scenario, we have dpt(t) ≡ d rxj (xj(t)) ≡
02n×1 in (38).

Fig 3 shows error evolution over iterations, while Fig 4(a)
compares the Cartesian trajectory executed with the ND
and the D conditions at the last trail. Finally, Fig 4(b)
shows a 3-D view of the robot at the end of the learning
phase.

It is worth mentioning that, taking N = 10, λ = 1.6 1e3,
A = 2.1, µ = 0.078, c2 = 1.9 and c1 = 195, (25) holds.
In particular we have that d rx? = 770 in both D scenarios (7).

FIGURE 4. Franka Emika Panda simulation.

V. DISCUSSION
Results show that the proposed method improves the tracking
error between the first and the last iteration G2), reaching
the desired tracking error value (0.001rad) in presence of
state-repetitive and state-nonrepetitive disturbances (Theo-
rem 1, goal G2)) both in case of underactuated (Fig. 1(b)-
2(b)) and MIMO systems (Fig. 3). Quantification of the
robustness of the method is also presented (Proposition 1,
goal G3)). As expected, the error convergence is not achieved
in the case of time-repetitive and nonrepetitive disturbances
(Fig. 1(c)), where a bounded error is obtained (Theorem 3,
goal G4)).
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If the employed model is exact, and there are no dis-
turbances, the converge is smooth, fast, and exponential
Fig. 2(b)-Fig. 3. On the other hand, as expected, the pres-
ence of state-nonrepetitive disturbances leads to an increment
of the error for some iterations, Fig. 1(b)-Fig. 2(b)-Fig. 3,
leading to a non-monotonic convergence. However, thanks to
the fulfillment of the D-condition we proposed, the controller
is able to achieve the same tracking performance (goal G2))
Fig. 2(a)-Fig. 4(a). This proves that the D-condition is more
robust w.r.t. the original ND one. Indeed, the D-condition
obtains the minimization of the error while dealing with the
incorrect contribution added to the control input, achieving
the same tracking performance as the ND-condition.

VI. CONCLUSION AND FUTURE WORK
In this paper, we tackled the problem of trajectory track-
ing for continuous-time nonlinear systems affected by dis-
turbances. We define different classes of disturbances. The
goal was to obtain a controller able to achieve good tracking
performance even in presence of state-nonrepetitive distur-
bances. We proposed and proved a convergence condition
for a class of iterative learning controllers. The algorithm is
purely feedforward, and it copes with nonlinear systems with
a generic and fixed relative degree. The proposed method
is robust both to repetitive and nonrepetitive disturbances.
Additionally, we presented an upper bound of the disturbance
amplitude that can be dealt with. Finally, we validated the
proposedmethod through simulations using an underactuated
compliant arm andFranka Emika Panda robot, both subjected
to different types of disturbances.

Future work will investigate the robustness of the itera-
tive framework from both a theoretical and an experimental
point of view. We will combine feedforward and feedback
terms and design switching policies depending on the sys-
tem relative degree. Additionally, the employed control law
(3) is based only on the output measurements. Future work
will rely on state-observers [35] to design a control law
employing the knowledge of the whole state. Finally, from
a more experimental point of view, we will implement the
algorithm on a real soft continuum prototype and medical
image encryption [36] both with disturbances.
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