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ABSTRACT With the increase in the installed capacity of wind power systems, the fault diagnosis and
condition monitoring of wind turbines (WT) has attracted increasing attention. In recent years, machine
learning (ML) has played a crucial role as an emerging technology for fault diagnosis in wind power systems
has played a crucial role. Even though ML methods have shown great potential in dealing with the issues
related to the fault diagnosis ofWT, there are still some challenges encountered inmany aspects. In this paper,
typical fault diagnosis methods based on ML methods for wind power systems are thoroughly reviewed in
terms of both theoretical fundamentals and industrial applications, including traditional machine learning
(TML), artificial neural networks (ANN), deep learning (DL) and transfer learning (TL), in the development
line of ML technologies. The advantages and disadvantages of various methods are analyzed and discussed.
Meanwhile, a distribution diagram is provided for the discussions of ML methods applied for WT fault
diagnosis, and the existing challenges on the applications for fault diagnosis based on ML for wind power
generation systems are presented. Moreover, some prospects for future research directions are provided.

INDEX TERMS Wind turbines, machine learning, fault diagnosis, review.

NOMENCLATURE

AE autoencoder.
AI artificial intelligence.
ANN artificial neural networks.
ART adaptive resonance theory.
BPNN back propagation neural network.
CA clustering algorithm.
CNN convolutional neural network.
DAE denoising autoencoder.
DBN deep belief network.
FCM fuzzy C-means clustering.
HMM hidden Markov model.
LSSVM least squares support vector machine.
LSTM long short-term memory network.
ML machine learning.
RBFNN radial basis function neural network.
RF random forest.
RLM extreme learning machine.
RNN recurrent neural network.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yiqi Liu.

RVM relevance vector machine.
SAE stacked autoencoder.
SCADA supervisory control and data acquisition.
SDAE stacked denoising autoencoders.
SOM self-organizing map.
SVM support vector machine.
t-SNE t-distributed logistic neighbor embedding.
TL transfer learning.
TML traditional machine learning.
VMD variational mode decomposition.
WT wind turbines.

I. INTRODUCTION
With the increasing consumption of fossil fuels and the
gradual deterioration of environmental problems, there is an
urgent need to find a clean and renewable energy source.
Wind energy is irreplaceable in energy structures owing to its
rapid growth. Wind power accounts for 20% of the world’s
total electricity, and WT are receiving increasing attention
as the core components of wind power generators [1], [2].
Usually, wind power generators are installed in remote areas
or offshore areas where traffic is inconvenient, and the
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gearbox is generally installed in a sky above tens or even
hundreds of meters from the ground. In addition, the blades
are often subjected to complex alternating impact loads
that are transmitted through the main shaft to other criti-
cal components of the WT during operation, which makes
the daily monitoring and maintenance of the WT difficult.
To maximize the economic benefits of the wind farm, the
size of the WT is increasing, the capacity of the generator
is increasing, and the structure of the corresponding gener-
ator has become more complicated. Once a problem occurs,
it requires considerable time to check out, which significantly
reduces the profits of the wind farm. Therefore, fault diagno-
sis and maintenance are very important during the operation
of WT [3].

The fault diagnosis first needs to obtain the operating data
of the WT, and the collected information is usually nonlinear
and nonstationary, which contains a lot of noise. In addition,
the fault data account for a relatively small amount, and there
is a defect in data loss during data transmission [3], [4].
Therefore, the researchers have introduced ML into the fault
diagnosis of WT based on this situation. In general, fault
diagnosis methods can be divided into four categories [5]:
(a) Method based on a physical model. Building a physical
model requires a good understanding of the structure of the
WT, but it is almost impossible to achieve a highly nonlinear
coupled complex system [5].
(b) Statistical-based approach. In the case of a limited
number of samples, the optimization between the learning
accuracy of the training samples and the ability to identify
arbitrary samples can be optimized to realize the best gener-
alization ability, and utilize the historical data to estimate the
changes in WT in the short term [6].
(c) TML-based methods. The known fault samples are rep-
resented by the mapping relationship between the input and
output of the diagnosticmodel. In addition, thesemethods can
well characterize the nature of the fault data, which further
improves the accuracy of fault diagnosis [7].
(d) A technique based on a hybrid model. Two or more
different fault diagnosis models are employed to form a
new diagnostic method that can achieve high fault diag-
nosis accuracy by taking advantage of various diagnostic
networks [8], [9].

In the early days, some TML methods have been applied
to fault diagnosis, such as Bayesian, decision tree, sup-
port vector machine, and random forest, and these methods
have some identical diagnostic processes in fault diagnosis.
First, the obtained data are preprocessed, the noise in the
received signal is reduced, and the abnormal values in the
data are addressed. Then, the preprocessed data are sampled
or grouped according to different approaches, and the faulty
feature extraction is performed on the grouped data. Subse-
quently, feature selection based on experience and specific
diagnostic issues is applied to form a feature vector for fault
diagnosis [10]–[12].

However, these methods have some limitations. Usually,
the obtained data are nonstationary and contain a large

amount of noise. After processing, there is still much noise
in the signal, which significantly influences the extraction
of fault features. Therefore, more advanced signal process-
ing techniques are required to process the collected data.
At the same time, relying on human experience when making
feature selection absolutely affects the accuracy of the fault
diagnosis, especially for some newly generated faults and
insufficient understanding of how the fault develops in the
early stage [13]. Furthermore, when the acquired data contain
some data that have never appeared or the data distribution
has changed, the diagnostic accuracy of the trained model
is severely reduced, which causes the diagnostic network to
retrain and waste much time [14].

To solve the above problems, researchers have employed
artificial neural networks (ANN) for fault diagnoses such
as BPNN, RBF, SOM, ART, and ELM. The basic units of
the ANN are the neurons and weights between neurons.
ANN can complete the learning of the target task in the
training process, while simultaneously optimizing its organi-
zational structure to represent the information so as to retain
the information in the data to a large extent. When a new fault
occurs, it only needs to adjust the weight of the connection
between some neurons or increase the number of neurons.
Thus, the local adjustment of the trained model can be used
for fault diagnosis of new problems. Therefore, retraining
of the entire diagnostic model can be avoided and the time
consumption is reduced. In addition, the neural network can
process data in a parallel manner with a fast calculation speed
and high calculation accuracy, which is suitable for building
online diagnostic models [15].

Although the diagnostic accuracy of ANN is superior to
that of TML methods, there are also some flaws. Most ANNs
have only one layer of the hidden layer, which cannot fully
exploit the information contained in the data, and some
information may be lost during the learning process [16].
In addition, the ability to search for optimum results in
the parameter space is limited and cannot provide accurate
results [8], and the optimization of existing ANN requires
further study.

Based on the basis of ANN, the researchers introduced
deep learning (DL), which includes CNN, DBN, SAE
and RNN. In practical terms, DL is just a subset of the ML.
However, there are two main differences between them. The
first difference between them is the way in which the data
are presented in the system. ML algorithms almost always
require structured data, whereas DL networks rely on layers
of neural networks. Another difference is that DL networks
do not require human intervention because multilevel lay-
ers in neural networks place data in a hierarchy of differ-
ent concepts, which ultimately learn from their own mis-
takes.DL uses a greedy learning algorithm to establish the
mapping relationship between inputs and outputs through
layer-by-layer nonlinear learning, obtain high-dimensional
feature representation under different working conditions,
and integrate network training and fault diagnosis processes
together. For complex nonlinear problems, a more abstract
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representation of the original data is obtained by increasing
the number of layers, and these features have excellent gen-
eralization capabilities. In addition, DL can directly learn the
acquired data, thereby eliminating the dependence on human
experience, and the fault diagnosis model can be transformed
into a life prediction model by changing the activation func-
tion of the output layer.

However, there is still some potential for improving DL.
Because DL diagnoses a fault bymulti-layer nonlinear fitting,
the computational complexity of the method is increased.
Hence, it is necessary to reduce the complexity of the net-
work computing. Most of the current DL methods are like
a ‘‘black box,’’ which cannot understand the role of each
step in the learning process. Therefore, it is necessary to
combine the visual learning method to show the results of
each stage of DL to improve the method. Another severe
problem is that the current DL fault diagnosis method is
only applicable to a specific situation or a certain type of
situation. When the method is applied to other components or
similar problems, the diagnostic accuracy can be significantly
reduced.

To solve the problem of reduced diagnostic accuracy in
similar situations, researchers have employed transfer learn-
ing (TL) to DL, which enables a well-trained model or
method to have better generalization capabilities and main-
tain good diagnostic accuracy in different mechanical sys-
tems. However, the negative transfer learning phenomenon
generated by the implementation process and how to make
full use of the data of the target domain require further
research.

It can be seen that, to overcome the different chal-
lenges in the field of fault diagnosis, researchers have
proposed different methodologies over the past decades.
From TML and ANN, to DL and TL, the performance
of diagnosis models has been improved with the devel-
opment of advanced methodologies. Meanwhile, for WT,
the fault diagnosis approaches based on ML have rarely
been mentioned in the existing works. Therefore, a review
is needed to summarize the current research progress in
this field. This review makes several contributions to the
literature:
(a) The development of WT fault diagnosis method is sum-
marized into four parts, which represent the evolution of ML
from TML, ANN, and DL to TL.
(b) A distribution diagram is provided for the discussion of
ML methods applied for WT fault diagnosis. The challenges
for research on ML methods for WT fault diagnosis are
summarized for future research directions.
(c) To the best of our knowledge, this is the first time that
such a comprehensive review of fault diagnosis methods and
applications specialized in WT is proposed.

The rest of this paper is organized as follows.
In Section II, some TML methods are summarized.
Section III gives a review of the applications of ANN meth-
ods. Section IV mainly focuses on the approaches of DL.
Section V introduces TL method and its applications,

and Section VI provides a discussion. Conclusions are
enclosed in section VII.

II. TML METHODS APPLIED FOR FAULT
DIAGNOSIS OF WT
A. SUPPORT VECTOR MACHINE (SVM)
1) THEORETICAL BASIS
SVM is a pattern-recognition method based on the principle
of structural risk minimization. SVM is usually based on
a limited sample to find the best generalization ability by
finding the optimal compromise between model complexity
and learning ability. It attempts to find the maximum margin
between the two data categories and then determines the
hyperplane that is in middle of the maximum margin.

For a dataset {(x1, y1), · · · , (xl, yl)} and yi ∈ {−1, 1}, SVM
training attempts to find a parameter w and a parameter b
of the linear decision function f (x) = wx + b defining the
optimal hyperplane. Considering two points x1 and x2 with
f (x1) = 1 and f (x2) = −1, the margin equals to:

margin =
f (x1)− f (x2)
‖w‖

=
2
‖w‖

. (1)

Thus, maximizing the margin is equivalent to minimizing
‖w‖
2

or
‖w‖2

2
. Then, to achieve the optimal hyperplane, the

SVM solves the following optimization problem:

min
w,b

1
2
w′w

s.t. yi(w′ · xi + b) ≥ 1, ∀i = 1, 2, · · · , l. (2)

The transformation of this optimization problem into its
corresponding dual problem gives the following quadratic
problem:

max
α

l∑
i=1

αi −
1
2

l∑
i,j=1

αiαjyiyj(xi · xj),

s.t.
l∑
i=1

yiαi = 0, α ≥ 0 ∀i = 1, 2, · · · , l, (3)

where αi is the Lagrange multiplier. The solution of the
previous problem gives the parameter w =

∑l
i=1 yiαixi of

the optimal hyperplane. Hence in dual space, the decision
function becomes:

f (x) =
l∑
i=1

αiyi(xi · x)+ b. (4)

The SVM maps the eigenvectors of the low-dimensional
space to a high-dimensional space through appropriate
kernel functions, and constructs the optional linear
classification hyperplane in the assigned area to classify
different types of points. However, the classical SVM is
suitable for the two-classification problem, but it is nor-
mally a multi-classification problem, and the original SVM
needs to be modified to adapt to the multiclass problem by
transforming it into a serial of two-class problem as shown
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FIGURE 1. SVM for classification. (a) SVM for two-classification, (b) SVM
for multi-classification.

in Fig 1. Currently, there are primarily four types of SVM
for the multi-classification problem: one against all (OAA),
one against one (OAO), directed acyclic graph (DAG), and
hierarchical SVM (H-SVM).

In the OAA algorithm, a class of samples is distinguished
for each classifier, so K of the two-class SVM is needed to
identify K class samples. When applying the OAA method,
the training time increases proportionally with the incre-
ment of the sample, and the sample classification accuracy
decreases with the accumulation of the test error rate by mul-
tiple classifier algorithms. The OAO algorithm recombines
any two of the multiple categories and designs corresponding
two-class SVM for each combination. Then, the unknown
samples categories are specified according to the amount
of the corresponding division of each classifier result. The
disadvantage of the algorithm is that the number of classi-
fiers generated increases rapidly with the number of classes,
and when there are too many classification categories, the
training speed decreases exponentially. The DAG algorithm
is a directional graph without a closed loop, which is con-
sistent with OAO during the training phase. For the prob-
lem of distinguishing N types of samples, only N-1 steps
are required to complete the classification. Compared with
the OAO classification, the DAG improves the classification
speed. Nevertheless, the algorithm does not study the impact
of sample error propagation on subsequent generations. The
H-SVM algorithm is similar to DAG. When the morphology
of the hierarchy is close to that of the complete binary tree,
the method has an ideal training speed and requires fewer
classifiers [17].

2) APPLICATIONS
Owing to the complexity of theWT system, only some typical
faults are discussed in this section.

(a) Fault diagnosis applied to the gearbox of WT.

In Ref. [18], a WT fault diagnosis method was proposed
based on a diagonal spectrum and clustering binary tree SVM.
Comparing the test results with the general SVM and radial
basis function (RBF) neural networks, the method presented
in this paper achieved higher diagnostic accuracy with fewer
fault samples. The sample attributes were reduced by using
a rough neighborhood set in Ref. [19]. The rough neigh-
borhood set ensured that important attributes were added to

the reduced attribute set using a forward search method to
avoid the loss of essential characteristics. Compared with
SVM without rough neighborhood set, the proposed method
reduced the computational time and improved the accuracy
of fault diagnosis by 6%. In Ref. [6], the optimal penalty
factor and kernel function parameters were obtained by cross
optimization to construct an SVM classifier with the lowest
structural risk and good classification effect. In Ref. [20],
Cuckoo search optimization (CSO) algorithm was applied
to optimize the kernel function parameters in the SVM. The
CSO algorithm is a novel particle swarm optimization (PSO)
algorithm, and the diagnostic results of SVM based on the
CSO algorithm were increased by 2.5%, 3.5% and 6.5%
respectively, as compared with the traditional SVM and SVM
based on PSO and KNN. In Ref. [21], the proposed structure
selected SVM based on DAG overcame the unreasonable
distribution of nodes, which led to poor diagnosis results.
By considering the similarity between the nodes, the nodes
were selected to maximize the difference between the two
categories. However, the proposedmethod does not guarantee
that the chosen results have a minimum diagnostic error rate.
In Ref. [22], multi-fault SVM classifiers composed of OAO
algorithms can achieve fault diagnosis under multiple operat-
ing conditions, which improves the generalization ability of
the proposed method. In addition, the current signal is used
for fault diagnosis in this method so that the signal acquisition
cost is reduced under the premise of improving the signal
reliability. According to the characteristics of vibration fault
signals in the gearbox of WT, the feature vectors obtained
by wavelet decomposition of the gearbox vibration signals in
Ref. [23] were input into the multi-class least squares SVM
(LSSVM) constructed by the OAOmethod for model training
and fault diagnosis. A novel fault diagnosis method based on
manifold learning and Shannon wavelet SVM was presented
by Tang et al. [24] for WT transmission systems. The suc-
cessful fault diagnosis application in a WT gearbox proved
that the performance of the proposed method is effective.

(b) Fault diagnosis applied to WT bearing.

In Ref. [25], a model of the WT output power was estab-
lished using the regression SVM. When the WT fails, the
generator output power gradually decreases with the gradual
increase of the fault, and the residual between the actual value
and the predicted value exceeds the standard threshold. Thus,
potential failure can be detected through a continuing change
in the trend of the residual. Gao et al. [26] proposed a novel
WT fault diagnosis method based on integral extension load
mean decomposition multiscale entropy and LSSVM which
was aimed at the nonstationary and nonlinear characteristics
ofWT vibration signals. The feature vectors were obtained by
ensemble empirical mode decomposition (EEMD) [27] and
input into the model for training which were optimized by
inner cluster distance (ICD). The ICD canmeasure the degree
of separation between different categories in the characteris-
tic space, which can be used to optimize the kernel function
parameters in the SVM. The experimental results showed
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better diagnostic performance than the EMD-ICD-SVM and
EEMD-ANN. In Ref. [28], the problem of low-speed rotating
bearing fault diagnosis was solved using an alpha stable dis-
tribution (ASD). The proposed approach combined the EMD
to obtain the characteristic parameters, and chose the most
sensible and stable characteristic parameters of the faults that
were input into the diagnostic network, and optimized the
LSSVM by using PSO. The test results demonstrated that
the proposed method can not only achieve fault diagnosis of
low-speed rolling bearings’ damage position and degree, but
also has better diagnostic accuracy and operational efficiency
than other methods. In Ref. [29], the variational mode decom-
position (VMD) was optimized using the quantum chaotic
fruit fly optimization algorithm for the fault diagnosis of the
bearing in the WT. The fault features were then grouped into
two-dimensional, vectors that were sent to the RVM for fault
diagnosis, and the experimental results demonstrated that the
proposed method is effective.

(c) Fault diagnosis applied to the rotational imbalance of
the WT.

In Ref. [30], a fault diagnosis method for a direct-drive
wind turbine based on support vector machine (SVM) and
feature selection was presented. Five direct-drive wind tur-
bine experiments were carried out, the features of which were
analyzed. Then the sensitive time-domain feature parameters
in the horizontal and vertical directions of the vibration signal
in the five conditions were selected and used as feature sam-
ples. Themethodwas effective in identifying the fault of wind
turbine and had good classification ability and robustness to
diagnose faults in direct-drive WT. In Ref. [31], the kernel
FCM algorithm was used to estimate the degree of similarity
between test samples, and the PSO algorithm was employed
to optimize the parameters of the kernel function. Finally,
the optimized eigenvectors were used to train and test the
optimized multiclass fuzzy SVM model constructed using
the OAO method. The experimental results demonstrated
that the proposed approach is an effective fault diagnosis
method. In Ref. [32], the obtained representative features
were selected using the principal component analysis (PCA)
method and applied to train the proximal SVM (PSVM).
Compared with the probability neural network and learning
vector quantization, it requires less time and has a higher
diagnostic accuracy.

(d) Fault diagnosis applied in the misalignment of WT.

When a misalignment problem occurs, a severe dynamic
load is generated between the high-speed shaft of the trans-
mission and the generator shaft, increasing the axial and
radial vibrations of the shaft. In addition, the bearing oil
leakage, high temperature and loosening of the fastening bolts
affect power generation. In Ref. [33], the dual-tree complex
wavelet transform (DTCWT) was used to demodulate and
reconstruct the signal to obtain the feature vector. Then the
PSO algorithm was employed to optimize the kernel function
parameters and the penalty factor in the SVM, and construct
a multi-class SVM using the OAO method. Nevertheless,

this method was only for simulation analysis, and actual
cases were not applied to examine the effectiveness of the
approach. In Ref. [34], a method of heterogeneous infor-
mation fusion was proposed to solve the problem of mis-
alignment in WT. First, the feature vectors were obtained
by fusing the fault characteristics of the multi-source sig-
nals, and dimensionality reduction processing was performed
using t-distributed stochastic neighbor embedding (t-SNE).
Subsequently, the LSSVM was optimized by using the artifi-
cial bee colony algorithm while performing network training.
The t-SNE algorithm is based on the conditional probabil-
ity nonlinear reduction algorithm, which is able to repre-
sent high-dimensional information using two-dimensional or
three-dimensional data so that it could be used as a visualiza-
tion algorithm.

3) SUMMARY
SVM maps feature vectors of high-dimensional space by
selecting appropriate kernel functions and thus achieving
fault classification.

It is particularly suitable for nonlinear processing data and
high-dimensional samples. It can obtain higher diagnostic
accuracy with fewer and simpler samples, and has good
global optimization and generalization capabilities. Never-
theless, it is worth noting that the SVM still has some defects:

(a) The selection of the kernel function and penalty factor is
essential for the diagnosis accuracy of SVM.
(b) SVM is suitable for solving the binary problem, for the
multi-classification problem and processing a large number
of samples, the performance of SVM needs to be improved.
(c) SVM converges to a local minimum easily. Therefore, the
SVM should be further optimized and improved.
(d) When a new type of fault occurs, the established diagnos-
tic model should be able to update itself.

B. DECISION TREE (DT)
1) THEORETICAL BASIS
The DT uses an attribute test of the data to achieve classifica-
tion. Generally, a DT contains a root node, several intermedi-
ate nodes, and several leaf nodes. Each leaf node represents a
category corresponding to the decision result. Each interme-
diate node represents an attribute test. The considering scope
of each test is within the bounds of the last decision result, and
the contained samples based on the outcome of the attribute
test are divided into sub-nodes. The root node contains the
complete set of samples, and the path from the root node
to each leaf node corresponds to a decision test sequence.
A greedy algorithm is applied to the decision tree in the con-
struction process to optimize the current classification effect
optimal. There are three forms of termination conditions for
decision tree recursion: (a) all samples of the current node
belong to one category and do not need to be divided; (b) the
current attribute set is empty, or all samples have the same
value of all attributes and cannot be separated; (c) the current
sample set is empty and cannot be divided.
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2) APPLICATIONS
In Ref. [35], the fault diagnosis decision table was obtained
from the past fault samples and discretized by the FCM,
which was optimized by the rough set theory and the max-
imum cluster ratio. The optimized decision table was then
used together with the C4.5 algorithm to train the DT. The
experimental results showed that the proposed method can
effectively reduce the computing load of fault diagnosis and
improve the diagnostic accuracy. Vamsi et al. [36] proposed
a method utilizing the multi-source signals to acquire fault
features for the gearbox fault diagnosis problem in WT.
Then the features were chosen by the C4.5 algorithm, and
the dominant features were selected as the feature vector
and sent to the SVM for fault diagnosis model training
and verification. In Ref. [37], [38], the J48 algorithm was
used to extract the fault features, and the features that were
most sensitive to the fault were selected as the feature vec-
tor, which was sent to fuzzy Q-learning for fault diagnosis
in Ref. [37]. The experimental results proved that the per-
formance of the method was better than that of the ANN
and SVM. In Ref. [38], the features were sent to a classifier
based on the best-first tree algorithm and functional trees
algorithm, and it was proved that the fault diagnosis rate of the
method in WT blade reached 91.67% in 10-fold cross valida-
tion. In Ref. [39], the DTmethod was used for fault diagnosis,
and a graphical relationship between the fault source and
the fault was established. Then, the reasoning between the
fault and the fault source was learned based on the existing
fault samples, and the learning results were utilized for fault
diagnosis. Both the diagnostic accuracy and the confirmation
time of the fault were improved.

3) SUMMARY
The DT can deepen the understanding of faults in WT
based on the learning of existing fault samples, and does
not require much processing of the data when establishing
the DT. In addition, it can deal with the data containing
noise, and is not sensitive to information loss. Nevertheless,
it is easy to converge to a local minimum, and the risk of
overfitting the data is high, and cannot be used to establish
an online diagnostic network. Moreover, when there are too
many categories need to be classified, the diagnostic accuracy
may decrease.

C. BAYES
1) THEORETICAL BASIS
Bayesian decision theory is a method for implementing deci-
sions based on prior knowledge of the conditions. The fun-
damental principle of the Bayes classifier is the Bayes rule,
as follows:

P(ωi|x) =
p(x|ωi)P(ωi)∑c
j=1 p(x|ωj)P(ωj)

. (5)

The Bayes rule indicates how the information of
known probability density functions, p(x|ωi), and a priori
probabilities, P(ωi), can be used to calculate the posteriori

probability, P(ωi|x). The minimum-error- rate classification
can be achieved by use of the Bayes discriminant functions
as follows:

gi(x)= lnP(x|ωi)+lnP(ωi), where i=1, 2, · · · , c. (6)

This expression above can be readily evaluated if the
densities p(x|ωi) are normal distribution, that is, if there is
a distribution p(x|ωi) ∼ N (µi,

∑
i). So in this case, we

have:

gi(x) = −
1
2
(x − µi)T

∑
i

(x − µi)−
d
2
ln 2π

−
1
2
ln |

∑
i

| + lnP(ωi), (7)

where µi is the mean and d ln 2π is a constant. All the
necessary information of each class and feature cluster is
contained in the mean vector and covariance matrix. The
center of each cluster is determined by the mean vector and
the shape of the cluster using the covariance matrix. As for
sorting tasks, in cases where all correlation probabilities are
known, Bayesian decision-making considers how to choose
the best class label based on these probabilities andmisjudged
losses. Because each sample has the possibility of being
mislabeled, the expected loss due to a misclassification of
the sample which is the conditional risk of an example can
be calculated based on the posterior probability. To minimize
the risk of overall misjudgment, it is necessary to reduce
the conditional risk of each sample, which is to select the
category label that minimizes the conditional likelihood for
each sample based on the Bayesian decision rule. The pos-
terior probability used in the Bayesian decision rule, which
is immeasurable in actual operating conditions is usually
obtained indirectly by Bayes’ theorem. Nowadays, the naïve
Bayes classifier is widely used to solve the problem of joint
probability between attributes when calculating the posterior
probability. The naïve Bayes classifier uses the ‘‘attribute
conditional independence assumption’’ which means that for
all known categories, it is assumed that all attributes are inde-
pendent of each other. The semi-naïve Bayes classifiers are an
improvement of the naive Bayesian classifiers by providing
proper consideration of the interdependence of attributes. [7]

2) APPLICATIONS
(a) Fault diagnosis applied to the gearbox of WT.

Song et al. [40] conducted a comparison study on three
types of Bayesian diagnostic models constructed based on
SCADA, which include the bin method, the multivariate
normal distribution-based method, and the Copula method.
Examining the same data with the three diagnostic models
showed that the Copula method can provide more diagnostic
information. Moreover, the Bayesian diagnostic model was
compared with the traditional energy curve-based diagnostic
method to illustrate the superiority of the Bayesian diagnostic
network. Li et al. [41] proposed a method based on tunable
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Q-factor wavelet transform-morphological component analy-
sis (TQWT-MCA) and a sparse Bayesian iteration algorithm
combined with a step-impulse dictionary to address the issue
of high-speed remote transmission and large-capacity data
storage. The proposed method solves the problem of data loss
and confusion during data transmission by considering the
interaction of data between multiple channels. Yu et al. [42]
tried to establish a decision table using the characteristic
relation and then used an assignment reduction algorithm to
remove redundant features, and the remaining features were
sent to a flexible naïve Bayesian classifier for fault diagnosis.
The experimental results prove that the proposed method can
achieve a planetary gearbox fault diagnosis with incomplete
diagnostic information, reduce computational complexity,
and enhance reasoning accuracy. Zhong et al. [43] combined
correlation analysis with the Hilbert-Huang transform (HHT)
to extract eigenvectors, and then eigenvectors were sent to a
pairwise-coupled sparse Bayesian extreme learning machine
for model training and fault diagnosis. Comparing themethod
with pairwise-coupled probabilistic neural networks and
pairwise-coupled RVM, the results demonstrated the effec-
tiveness of the proposed method.

(b) Fault diagnosis applied to the bearing of WT.

Herp et al. [44] developed a method that assumes that
the fault features extracted from the SCADA data obey the
Gaussian distribution in the feature space, and the fault diag-
nosis model was established by learning the fault samples.
The experimental outcomes demonstrated that the method
can detect faults on average 33 days in advance, but the
method has low fault diagnosis accuracy and relies heavily
on high-quality samples. D. Wang [45] proposed an approach
to combine the Infogram with the novel Bayesian inference
to improve the wavelet filtering to determine the optimal
wavelet parameters and apply them for fault diagnosis. Two
instance studies proved that the proposed Bayesian inference
method is convergent and provides more fault signatures
than the Infogram. Li et al. [46] utilized the PSO algorithm
to optimize the importance of different signals in the pro-
cess of extracting fault features. The PCA algorithm was
then used to select the most sensitive fault features that
were subsequently sent to the three-tier Bayesian belief net-
work for fault diagnosis. The effectiveness of the proposed
method was verified through experiments. Yu et al. [47]
presented a fault feature extraction method based on
mean multi-granulation decision-theoretic rough set (MMG-
DTRS) and non-naive Bayesian classifier (NNBC). To begin
with, fault features were obtained by the MMG-DTRS, and
the representative feature dimension was then reduced by
the attribute reduction algorithm, and finally the fault diag-
nosis was performed by the NNBC. In addition, the choice
of optimized bandwidth in NNBC was used to ignore the
assumption of attribute independence, and the joint proba-
bility density function was applied to replace the edge prob-
ability density function to make the diagnostic model more
realistic.

3) SUMMARY
Bayesian networks diagnose faults by minimizing the risk
of separation. The diagnostic model can make the fault
diagnosis fast and straightforward. For multi-classification
problems, the computational complexity does not increase
significantly. In addition, in the case of independent distribu-
tion of attributes, the diagnosis effect is particularly useful,
and it is not sensitive to data loss. Nevertheless, the net-
work cannot work when there is an error category that has
never been recorded in the data, and the diagnostic accuracy
decreases when the input data attributes are not independent
of each other. Moreover, the diagnostic system needs to know
the prior probability in advance, which is usually subjected to
a hypothetical model. If the model selected is unreasonable,
the diagnostic accuracy decreases.

D. HIDDEN MARKOV MODEL (HMM)
1) THEORETICAL BASIS
HMM is based on the Markov chain. The state at the next
moment is only related to the current state and has nothing
to do with the previous state. There are two variables in
HMM. The first one is a state variable, which indicates the
state of the system at a precise moment because the system
often changes between these states, so the state variables of
the system are usually discrete spaces with some possible
values and usually assume that the state variables of the
system are not measurable. The second state variable is the
observed variable, which is the observed value of the system
at a particular time. The observed values may be discrete or
continuous. The transition between states in the basic HMM
depends on a certain probability, which is the state transition
probability matrix, and assumes that the probability matrix
and the state in the diagnostic model do not change over time.

An N states’ HMM can be expressed by:

λ = (N ,M , π,A,B), (8)

where N is the number of state of HMM and the state bt ∈
{S1, S2, · · · , SN } at moment t . M is the number of possible
observations for each state. π denotes to probability of the
original state and π = (π1, π2, · · · , πN ). Note that πi can be
described as:

πi = P(qi = Si), 1 ≤ i ≤ N , (9)

and πi satisfies to normalization condition, i.e.
∑N

i=1 πi = 1.
A is state transition probability matrix,

A = (aij)N×N , aij = P(qt+1 = Sj|qt = St ),

1 ≤ i, j ≤ N ,
N∑
j=1

aij = 1. (10)

B is observed probability matrix and

B = (bjk )N×M , bjk = P(Ot = Vk |qt = Sj),

1 ≤ j ≤ N , 1 ≤ k ≤ M ,
N∑
k=1

bjk = 1. (11)
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HMM model can also be simplely remarked as λ =
(π,A,B). Moreover, in a classification problem, the diag-
nostic model is usually estimated based on the observed
sequence, and maximizes the probability of occurrence of the
observed sequence [48], [49].

2) APPLICATIONS
(a) Fault diagnosis applied to the gearbox of WT.

Li et al. [50] presented a new optimal Bayesian control
approach to predict the early fault of a partially observ-
able gear shaft system subjected to deterioration and ran-
dom failure. The optimal maintenance policy represented by
a multivariate Bayesian control scheme based on a hidden
semi-Markov model (HSMM) was developed. The method
determines whether there is a fault by detecting the posterior
probability, and the model can be applied to online diagnosis
once the boundary of the posterior probability is determined
by learning. Long-term vibration data were collected from a
3MWWT based on two-year observations [51]. The observa-
tion thresholds of various signals and the correlation coeffi-
cients between the signals were determined and committed
to the HMM for fault diagnosis. The experimental results
indicated that the success rate of the method was as high
as 95%. However, considering the continuous monitoring of
the acquired data, the threshold in the method needs to be
adjusted in real time, and when a new state occurs, the state
transition matrix should update in time.

(b) Fault diagnosis applied to the bearing of WT.

In order to tackle the issue that HMM is not very efficient
in accuracy and sensitivity of fault diagnosis [52], the fuzzy
scalar quantization method was used to reduce the influence
of outliers in the data which makes the HMM more sensitive
to fault characteristics. Gao et al. [53] proposed a method
to obtain the feature vector by combining the local mean
decomposition with the mutual information method and the
false nearest neighbor, and then the features were used for
HMM training and diagnosis. The experimental results show
that the proposedmethod can effectively identify the different
faults of the rolling bearing. Liu et al. [54] introduced a hybrid
generalized HMM-based condition monitoring approach for
rolling bearings where interval valued features were used
to efficiently recognize and classify machine states in the
machine process. The PCA technique was applied to reduce
the dimensionality of features that were obtained by VMD,
and the remaining fault features were sent to the generalized
HMM for fault diagnosis. The experimental results proved
the superiority of the method in signal processing and fault
diagnosis.

3) SUMMARY
The HMM is a graphical diagnostic model based on the
Markov chain. This indicates the reasoning process for fault
diagnosis. However, because of the nature of the Markov
chain, it is only related to the state of the previous moment.
Hence, the historical data cannot be fully utilized, and the

probability of the state transition matrix remains unchanged
in the diagnostic model, which is not in line with the real
situation. Moreover, the topology in the diagnostic model is
sometimes ambiguous, and it is challenging to create a precise
topology.

E. RANDOM FOREST (RF)
1) THEORETICAL BASIS
RF is a typical representative of ensemble learning, com-
pleting learning tasks by building multiple learners. The
RF makes multiple learners parallel based on the decision
tree to learn one problem at the same time. The results of
these learners decide on the final results. Moreover, in the
process of learning in an RF, the current partitioning attribute
is obtained by randomly selecting k attributes in the attribute
set, and then the optimal attributes among the k attributes are
chosen. In this way, not only the diversity of samples but also
the diversity of attributes improve the generalization ability
of RF algorithms.

2) APPLICATIONS
(a) Fault diagnosis applied to the gearbox of WT.

Gan and Jiao [55] proposed a fault diagnosis method
for WT’ gearbox based on an improved genetic algorithm
RF classifier. The acquired feature vectors were filtered by
the PCA algorithm to form feature vectors, which were sent
to the RF for fault diagnosis. In addition, the number of RF
learners in the method and the number of attributes in each
node partition attribute set were optimized using the genetic
algorithm (GA). The experimental results indicated that the
method is more effective than SVM and traditional RF.
A gearbox fault diagnosis method based on deep RF fusion of
acoustic and vibration signals was introduced by Li et al. [56].
The obtained feature vectors were sent to the deep Boltzmann
machine for high-dimensional fault feature learning, and the
learned fault features were fused by RF and used for fault
diagnosis. The experimental results indicated that the diag-
nostic accuracy of the method was as high as 97.68% for the
11 different condition patterns.

(b) Fault diagnosis applied to the bearing of WT.

Han and Jiang [57] utilized VMD to obtain a feature vector
that was sent to the RF for fault diagnosis. The experimental
results showed that the approach achieved higher accuracy
than SVM,GA-SVM, and PSO-SVMwith less time. Qin [58]
combined ensemble empirical mode decomposition (EEMD)
and RF to achieve a fault diagnosis. The feature vectors
obtained by EEMD are subsequently sent to the RF for fault
diagnosis. Five cross-validations proved the effectiveness
of this method. To address the issue of traditional feature
extraction methods, it is difficult to accurately extract fault
information, and there is a serious problem of information
redundancy in fault diagnosis. Jia et al. [59] used the two-
dimensional signal correlation information combined with
the complex EMD to obtain the fault features, and then used
the Gini index to measure the importance of each feature
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to perform feature screening, and finally sent the features
into the RF for fault diagnosis. Simulation and experimental
results shows that the method can effectively extract fault
features.

3) SUMMARY
RF is a fault diagnosis model based on the decision tree.
Because it learns the same problem throughmultiple learners,
it can obtain better diagnostic results than the general learner.
Through different sampling methods and selecting different
partitioning attributes, the robustness of RF is enhanced,
which makes the method more generalizable. Moreover, the
RF is not sensitive to outliers in the data. However, because
it contains multiple learners, the training process is compli-
cated. And it requires much more calculation time. If there is
intense noise in the processed data, the method may suffer
from the risk of overfitting. In addition, when selecting a
learner, there is no clear guideline to specify which learner
is better at diagnosing a problem.

F. CLUSTERING ALGORITHM (CA)
1) THEORETICAL BASIS
The CA is an unsupervised learning algorithm that attempts
to divide the unmarked samples into several disjoint subsets,
each of the subsets integrates into a ‘‘cluster’’ as shown
in Fig. 2. The classification goal is that the samples within
the cluster should be as similar as possible, and the differ-
ences between the clusters are expected to be as substantial
as possible. The most widely used CA is the k-means and
FCM algorithms.

The K-means algorithm uses the squared loss function to
measure the similarity of the samples in the cluster and selects
the cluster center by minimizing the squared loss function.
The loss function can be defined as the sum of squares of
errors between each sample and the center point of the cluster
to which it belongs:

J (c, µ) =
M∑
i=1

‖xi − µci‖
2, (12)

where xi represents the ith sample, ci is the cluster to which
xi belongs, µci represents the center point corresponding to
the cluster, andM is the total number of samples.

The FCM algorithm determines the label of the sample by
calculating the membership of each sample and the cluster
center. By optimizing the objective function, it obtains the
membership degree of each sample point to all class centers,
so as to automatically classify the samples. If the computed
values exceed a certain threshold, a new sample marker is
added to accommodate the change of the sample. Suppose
we have a dataset X , and we want to classify the data in it.
If these data are divided into c classes, the corresponding c
class centers are ci, and each sample xj belongs to a cer-
tain class, and the membership of ci is determined as uij.
Then we define a FCM objective function and its constraints

FIGURE 2. Clustering algorithm schematic diagram.

as follows:

J =
c∑
i=1

n∑
j=1

umij ‖xj − ci‖
2, (13)

c∑
i=1

uij = 1, j = 1, 2, · · · , n, (14)

where m is a factor of membership, generally values to 2,
and ‖xj − ci‖ represents the Euclidean distance from xj to
the center point ci.

2) APPLICATIONS
(a) Fault diagnosis applied to the gearbox of WT.

A feature extraction method based on multi-fractal approx-
imate entropy and subtractive clustering has been pro-
posed [60]. First, the multi-fractal spectrum was combined
with the approximate entropy to obtain the feature vector, and
then the subtractive clustering was used to process the feature
vector to make the initial clustering center, and FCM was
applied for fault diagnosis. Among them, subtractive cluster-
ing can effectively solve the problem in which FCM easily
falls into the local optimum. And it improves the convergence
speed.Wu et al. [61] proposed a method to use kernel FCM to
improve the clustering result of fuzzy c-means clustering for
nonlinear data. Additionally, a gravitational search algorithm
was proposed to solve the randomness of clustering centers.
The results showed that concurrent faults could be effectively
diagnosed.

(b) Fault diagnosis applied to the bearing of WT.

The K-means CA was used to process the outliers of
the data [62], and then the auto-associative neural net-
work was combined with the residual approach to approx-
imate the data distribution to a normal distribution, and
Hotelling multivariate quality control charts were used for
fault identification. However, the method of processing data
needs to be improved, and the diagnostic model cannot
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be updated in time. Because the accuracy of fault diag-
nosis is limited considering a single operating condition,
Zhang et al. [63] combined the historical state of the SCADA
data with the K-means CA to divide the health state into
four subspaces. In each operational state subspace, according
to the Gaussian mixture model, a basic model of health
status and a health index was established based on the
Mahalanobis distance to assess the health status of the
online WT. However, this method does not adequately con-
sider changes in the operating conditions under regular
operation. A novel cluster-contraction stage-wise orthogo-
nal matching-pursuit approach for bearing fault information
extraction was presented [64]. The clustering contraction
mechanism was added to the Stage-wise Orthogonal-
Matching-Pursuit (StOMP) algorithm and the selected atoms
were filtered twice during atomic search, making the condi-
tion number of the support set more reasonable, thus real-
izing amelioration of the pathological equation in weight
determination.

3) SUMMARY
The CA achieves classification by calculating the different
membership degrees of each sample in the cluster center.
This method can manage massive quantities of data with high
efficiency. However, the number of categories needs to be
given in advance, and the selection of the initial cluster center
has a significant influence on the training of the model. With
the new data input, the cluster center of each class should con-
tinually adapt, which increases the amount of computation of
the method. In addition, it may converge to a local minimum
when processing big data.

G. SUMMARY OF TML
From the above introduction, it can be found that the appli-
cation of TML methods for fault diagnosis of WT is perva-
sive. In fact, TML-based fault diagnosis methods are a big
domain of many technologies. Many valuable methods that
have been applied to fault diagnosis in addition to those we
have summarized. For instance, [65] developed a surrogate
model method, namely the modified Kriging-based mov-
ing extremum framework (MKMEF) to efficiently perform
probabilistic analyses of the structural dynamic response.
To improve the dynamic reliability analysis of complex
structures such as turbine blisk, [66] proposed a moving
extremum surrogate modeling strategy (MESMS) method.
In [67], two different modified multi-extremum response
surface basis models (MRSM) were proposed for dynamic
nonlinear responses of failure capacities for turbine blisk
responses. Usually, the information on the fault samples is
analyzed to integrate the representative fault features based
on past fault samples. A summary of the applications of TML
for WT fault diagnosis is presented in Table 1.

To reduce the complexity of fault diagnosis in high-
dimensional space and the time spent in model training,
the acquired fault features are subjected to a dimensional-
ity reduction process to remove redundant information and

TABLE 1. The summary of applications of TML to WT fault diagnosis.

obtain more sensitive fault features. Then, a peculiar type
of WT fault is trained in the model based on these fault
characteristics. Nevertheless, there are some issues with this
type of method:

(a) Because the acquired data are usually nonlinear and, non-
stationary, the data contain considerable noise interference.
Extracting the fault features of these data while eliminating
noise requires advanced signal processing methods. Never-
theless, the existing method can deal with these problems,
simply because the approach is too complicated and time
consuming, so it is not suitable for online fault diagnosis.
(b) Fault features usually obtained in the time, frequency, and
time-frequency domains. Although different fault features
provided by different domains in the same algorithm can
contain more fault information at the same time, it increases
the complexity of the algorithm, and the selection of fault fea-
tures in a specific fault usually depends on prior knowledge.
Therefore, it is necessary to further study the domain to select
for feature extraction and the fault features in the domain.
(c) The usually trained model only works for the particular
problem merely, when the data structure changes or new
issues arise, the model needs to be retrained, which means
that it needs more time, and the accuracy of the diagno-
sis result decreases. Hence, it was not possible to achieve
real-time updates of the model.
(d) Environmental information, climate change, and other
factors should be considered when selecting fault feature
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vectors to ensure the comprehensiveness of the information
obtained.

III. ARTIFICIAL NEURAL NETWORKS (ANN)
The ANN is a data-driven fault diagnosis method based on a
biological model. ANN establishes a system of adaptive neu-
rons with a broad scope of parallel interconnections, and fault
diagnosis is achieved by nonlinear fitting of the input samples
and output results. A typical representative of an ANN is a
multilayer perceptron as shown in Fig 3. It consists of an
input layer, an output layer, and a hidden layer in the center.
Because of their high self-learning capability, ANN-based
models could automatically learn better diagnosis knowledge
with fewer prior knowledge than TML. Therefore, they can
be regarded as more advanced technologies than TML-based
methods.

FIGURE 3. A typical representative of an ANN. (a) Human neuron
information transmission schematic diagram, (b) Typical
ANN schematic diagram.

Fig 3 (b) depicts a fully connected neural network, where
each neuron is connected to each neuron in the adjacent layer.
The input layer neurons only accept external inputs. The
hidden layer neurons not only accept the information from
the previous layer but also generate an output to the next layer
by comparing the total received inputs with the threshold of
the neuron. In addition, the effect produced by the hidden
layer was invisible. The output layer neurons produce outputs
based on the inputs obtained through an activation function.
This section introduces several widely used ANNs.

A. BACK PROPAGATION NEURAL NETWORK (BPNN)
1) THEORETICAL BASIS
The BPNN is a multilayer feedforward network trained by
an error back-propagation algorithm. The training process
includes two parts: the forward propagation of the diagno-
sis network and the reverse fine adjustment of the network
parameters. The error propagation in the opposite direction
is to distribute the output error through the hidden layer
to the input layer, giving out the error to each layer unit.
The learning rule applies the gradient descent method to
continuously adjust the weights and thresholds of the network
through backpropagation as shown in Fig 4, thus minimizing
the sum of squared errors of the network. Given the training
dataset {xi, yi}mi=1 with m samples, where xi ∈ Rd includes
d features and yi ∈ Rl includes l health states, the output of

FIGURE 4. Backpropagation learning rule. (a) Feed-forward multi-layered
ANN, (b) Back-forward multi-layered ANN.

the hth hidden layer is expressed as:

(xhi )j = σ
h(
h−1∑
i=1

ωhj · x
h−1
i + bhj ),

j = 1, 2, · · · , nh, h = 1, 2, · · · ,H , (15)

where (xhi )j is the output of the jth neuron in the hth hidden
layer, and x0i = xi, nh is the number of neurons in
the hth hidden layer, σ h represents the activation function of
the hth hidden layer, nh−1 is the number of neurons in the
(h−1)th hidden layer, ωhj is the weights between the neurons
in the previous layer and the jth neuron in the hth hidden layer,
and bhj is the bias of the hth hidden layer. The predicted output

of BPNN is:

(ŷ)k = σ out (
nH∑
i=1

ωoutj · x
H
i + b

out
j ), k = 1, 2, · · · , l, (16)

where (ŷ)k is the predicted output of the kth neuron in the
output layer, σ out is the activation function of the output layer,
ωoutj and boutj are respectively the weights and bias of the
output layer. When given a certain training samplexi, yi, the
optimization objective of BPNN aims to minimize the error
between the predicted output and the target one by:

min
ω,b

Ei =
1
2

l∑
k=1

[(yi)k − (ŷi)k ]2. (17)

2) APPLICATIONS
To address the problems of highly nonlinear and nonstation-
ary signals of WT, a fault diagnosis method for direct-drive
WT was proposed by An et al. [68] used a BPNN. The
time-domain feature parameters of the vibration signals in
the horizontal and vertical directions were considered in the
method. Test samples were utilized to verify the validity of
the BPNN model, and showed a higher diagnostic accuracy.
In Ref. [69], the Levenberg-Marquardt (L-M) algorithm was
utilized for the BPNN, and the faults of the gearbox, wind
pressure difference system and generator in the WT were
diagnosed. The MATLAB simulation experiment was used
to determine the fault characteristics that were most sensitive
in differentiating faults, and it was indicated that it is feasi-
ble to use neural networks for the fault predictive diagnosis
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of WT. Wang et al. [70] proposed a method based on a
BPNN to address the WT converter circuit fault diagnosis
online. The converter circuit model of the doubly fed WT
has strong nonlinearity, which makes it difficult to diagnose
faults online. Data acquisition and data normalization were
performed using critical points in the voltage or current sig-
nals that might be faulty. Then, the data with fault information
were sent to a four-layer BPNN for fault diagnosis. The
field results proved the effectiveness of the proposed method.
Han et al. [71] proposed a tabu search method to optimize
the BPNN for predicting the output energy of the WT. Owing
to the ability of global optimization, the tabu search method
can improve the BPNN deficiency that can quickly converge
to the local optimal value. By inputting appropriate param-
eters, the method can improve the convergence speed while
improving the diagnostic accuracy.

3) SUMMARY
BPNN has been widely applied in fault diagnosis because of
its maturity. Under the assumption that there are enough neu-
rons in the hidden layer, the three-layer neural network can
approximate any function with arbitrary precision. Network
training sustains self-learning and self-adjustment capability.
Moreover, this method has fault tolerance ability. When an
individual neuron has an error, the impact on the overall result
is not significant, and there is a specific generalization ability
for the same type of problem. However, the convergence
speed of BPNN is slow, and it is easy to converge to the local
optimal value, and there is a certain risk of overfitting. The
selection of the initial weight in the method and the selection
of the learning rate in the fine-tuning process need to be
further studied.

B. EXTREME LEARNING MACHINE (ELM)
1) THEORETICAL BASIS
The ELM is an improvement of BPNN, also a feedforward
neural network, so it has an input layer, a hidden layer, and
an output layer. The connection weights of the input layer and
the hidden layer and the threshold of the hidden layer are set
randomly or artificially and do not need to be updated during
the learning process. The weighted connections of the hidden
and output layers are determined by solving the system of
equations and cannot be updated once determined.

If the training dataset is given as

{xi, ti|xi ∈ RD, ti ∈ Rm, i = 1, 2, · · · ,N }, (18)

where xi is ith data instance, ti is the label of ith data instance,
and such set denotes to all training data, the output of hidden
layer can be written as,

H (x) = [h1(x), h2(x), · · · , hL(x)] (19)

where hi(x)(i = 1, 2, · · · ,L) is output of the ith hidden layer
node, which is not unique. Generally, hi(x) can be described
as follows:

hi(x) = g(wi, bi, x) = g(wix + b), wi ∈ RD, bi ∈ R (20)

where g(wi, bi, x) is the activation function and Sigmoid
function and Gaussian function are commonly used. wi and
bi are parameters of hidden layer nodes. Then the output
of the ‘‘generalized’’ single hidden layer feedforward neural
network ELM is:

fL(x) =
L∑
i=1

βihi(x) = H (x)β (21)

where β = [β1, β2, · · · , βL]T is the output weights between
hidden and output layers

2) APPLICATIONS
(a) Fault diagnosis applied to the gearbox of WT.

Li et al. [72] proposed a method that combines VMD
with the kernel ELM (KELM) for rolling bearing fault diag-
nosis. The feature vectors obtained by the VMD method
were sent to the KELM for fault diagnosis. Simultaneously,
the PSO algorithm was employed to optimize the penalty
factor and kernel function parameters in the KELM. The
experimental results indicated that the proposed method per-
formed better than BPNN, SVM, and ELM. An intelligent
WT gearbox diagnosis approach using VMDEA (optimize
VMDparameter with differential evolution algorithm (DEA))
and ELMwas reported by Isham et al. [73]. Themode number
and the balancing parameter in the VMD were optimized
based on DEA [72], and the signal was demodulated by
the optimized VMD to obtain the feature vector for the
ELM training. The experimental results indicated that the
diagnostic accuracy of the method was improved by 10%
for the ELM-based diagnostic method, and the diagnostic
accuracy of the method was improved by 5%-10% for the
VMD-based diagnostic method. A one-dimensional feature
vector obtained by HHT was sent to a pairwise-coupled
sparse Bayesian ELM for model training [43]. Experiments
demonstrated that this method can consume a relatively short
time to obtain higher diagnostic accuracy. To address the chal-
lenges of the dynamical and high-dimensional data generated
from the WT generator system, Yang et al. [74] proposed
a new fault diagnosis scheme composed of multiple ELMs.
A multiple ELM in a hierarchical structure was utilized to
achieve feature extraction and dimensionality reduction of
data, and the last layer of the ELMwas set as a fault classifier.
Compared with other fault diagnosis methods that use a com-
bination of wavelet packet transform (WPT), time-domain
statistical feature (TDSF) and kernel principal component
analysis (KPCA), the diagnostic accuracy of the proposed
method was improved by 5%-10%. In Ref. [75], cloud com-
puting technology was adopted for the condition monitoring
of WT, and the compressed sensing method was used for
data transmission, which can reduce the data transmission
amount while ensuring the data security. The obtained feature
vector was sent to the hierarchical ELM for fault recogni-
tion, and experiments proved the robustness of the proposed
method.
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(b) Fault diagnosis applied to the transmission chain of WT.
To solve the weakness (weak generalization ability, low

diagnostic rate) of traditional fault diagnosis with feedfor-
ward neural networks, a fault diagnosis method based on
an improved extreme learning machine (IELM) was pro-
posed [76]. The sample set was updated by the new fault
sample and the historical sample similarity, which guarantees
that the diagnostic network can update the network according
to the change in the fault sample while reducing the cal-
culation time. Compared with SVM, ELM, and fixed-size
sequential ELM, the proposed method has better diagnostic
accuracy. Wang et al. [77] proposed a novel dual-ELM-based
fault diagnostic framework for feature extraction and fault
pattern recognition. The acquired fault characteristics are sent
to the dual-ELM for fault diagnosis. The dual-ELM contains
only two basic ELMs, one for calculating the number of
faults and the other for indicating the types of faults that
may be involved. In addition, the network structure of the
method is relatively small, and the ELM operation speed
can be effectively utilized. In Ref. [78], an online sequential
ELM method was proposed for fault diagnosis. The obtained
fault features were normalized using a physical kinetic energy
correction model to eliminate the effects of different speeds.
The short-term and long-term fault diagnosis of WT through
SCADA data proved the effectiveness of the method, and the
method can update the model in real time according to the
data change.

3) SUMMARY
ELM is normally deemed as an improvement of BPNN
because the learning speed of the algorithm is greatly
improved as compared with the BPNN. Moreover, the algo-
rithm performs complex learning by increasing the number
of hidden layer neurons. Usually, the number of hidden layer
neurons is connected to the categories that need to be distin-
guished so that they can adapt to new situations. At the same
time, this method has better generalization ability. However,
this method has only one layer of hidden neurons, and thus,
the learning ability is limited.

C. RADIAL BASIS FUNCTION NEURAL NETWORK (RBFNN)
1) THEORETICAL BASIS
The RBFNN is a single hidden layer feedforward neural
network that uses a radial basis function as the activation
function of the hidden layer neuron, which is a local response
function. The radial basis function(RBF) is a real-valued
function whose value depends only on the distance from the
origin or arbitrary point c, and point c is called the central
point. That is, the RBF can be described as follows:

φ(x) = φ(‖x‖),

or φ(x, c) = φ(‖x−c‖). (22)

Gaussian function φ(x) = exp(−r2/2σ 2), multiquadric
function φ(x) =

√
x2 + c2, and inverse Multiquadric func-

tion φ(x) = 1/
√
x2 + c2 are some tipical RBFs.

In the application of this method, the number of center
points and the position of the center points should be deter-
mined first, which are the number and location of neurons
in the hidden layer. In addition, the method calculates the
distance between the input sample and the hidden layer point
as the input of the radial basis function, and the output layer
is the linear combination of the output of the hidden layer
neuron function. Moreover, the weights and biases in the
neural network were determined from the process of learning
the samples.

2) APPLICATIONS
In Ref. [79], for the fault diagnosis of blades of WT, the
fault features were first extracted based on historical data,
and then the features were selected using the J48 algorithm.
Subsequently, the acquired features were employed to train
the sequential minimal optimization (SMO) algorithm and
simple logistic algorithm (SLA), BPNN, logistic algorithm
(LA), and RBFNN. The experimental results indicated that
the SLA had most significant effect, and the correct rate
eached 93.67%. A data-driven fault diagnosis and isolation
method was proposed for fault diagnosis of actuators in
WT [80]. The obtained feature vectors were sent to the
BPNN, RBFNN, DT, and KNN for parallel training, and then
the results of the respective learners were fused to obtain the
results. Simulation results and Monte Carlo sensitivity anal-
ysis have proved the effectiveness of the proposed method.

3) SUMMARY
The RBFNN has strong nonlinear fitting ability, which can
deal with the law that is difficult to analyze in the system.
Moreover, it has fast convergence speed and better general-
ization ability. Moreover, its performance for classification
problems is better than BPNN. However, the quality of the
learning data and the selection of samples significantly influ-
enced on the learning effect. There is a problem of informa-
tion loss in the learning process, and the reasoning process of
the method cannot be explained.

D. SELF-ORGANIZING MAP (SOM)
1) THEORETICAL BASIS
SOM is a competitive learning model belonging to unsuper-
vised neural network, which maps high-dimensional inputs
to low-dimensional space while maintaining the topological
structure of input data in the high-dimensional area, in other
words, similar sample points in high-dimensional space are
mapped to the adjacent neurons in the network output layer.
The output layer neurons of SOM are arranged in amatrix in a
two-dimensional space, and each neuron has a weight vector.
After accepting the input vector, the network determines the
winning neurons in the output layer and the position of the
input vectors in the low-dimensional space. The vectors of
the winning neurons and their neighboring neurons were then
continuously adjusted to reduce the distances between these
weight vectors and the current input samples. The purpose of
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SOM training is to find an appropriate weight vector for each
neuron to maintain the topology.

The SOM process involves for major components, ini-
tialization, competition, cooperation and adaptation. In the
initialization process, all connection weights were initialized
with small random values.

In the competitive process, if the input space is D dimen-
sion, the input data can be written as x = {xi : i = 1, . . . ,D}
and the connection weights between the input units i and
the neurons j in the computation layer can be written as
wj = {wji : j = 1, . . . ,N ; i = 1, . . . ,D} where N is the total
number of neurons. The discriminant function can be defined
as the squared Euclidean distance between the input vector x
and the weight vector wj for each neuron j,

dj(x) =
D∑
i=1

(xi − wji)2. (23)

The neuron whose weight vector comes closest ro the input
vector is declared the winner.

In the cooperative process, a similar topological neighbour-
hood for the neurons in SOM is defined as,

Tj,I (x) = exp(−
S2j,I (x)
2σ 2 ), (24)

where Sij is the lateral distance between neurons i and j on
the grid of neurons, I (x) is the index of the winning neuron.
A special feature of the SOM is that the size σ of the neigh-
bourhood needs to decrease with time which is defined as
σ (t) = σ0 exp(−t/τσ ) where σ0 and τσ are super parameters.

In the adaptive process, the winning neuron and its neigh-
bours have their weights updated. In practice, the appropriate
weight update euation is

1wji = η(t) · Tj,I (x) · (xi − wji), (25)

where t is a time epoch and η(t) = η0 exp(−t/τη) is the
learning rate. η0 and τη are super parameters.

2) APPLICATIONS
To extract fault features of WT from complicated non-
linear time-varying system, an novel algorithm that com-
bines a modified 1ocal discriminant basis(LDB) algorithm
and SOM was presented [81]. The obtained signal passed
through the LDB algorithm, and the received characteris-
tic information was sent to the SOM network to transform
the one-dimensional feature into two-dimensional(2D) fea-
ture, thereby improving the signal separation degree. Subse-
quently, the 2D elements were sent to the BPNN for fault
diagnosis. In Ref. [82], the fault characteristics of the con-
verter output voltage or current were obtained by wavelet
transform, and then the fault features were sent to the SOM
network for network training and fault diagnosis. The results
showed that the performance of the proposed method was
effective. Yang et al. [83] proposed a hybrid SOM–PCA
method for the fault diagnosis of bearings in WT. The fault
features were first extracted, and then PCA was used to

select the appropriate fault features for the SOM network
training. The results indicated the efficiency of themethod
in the field of unsupervised classification of most faults.
Kramer et al. [84] presented a method from neural computa-
tion that can serve as forecasting and monitoring techniques
for WT energy prediction and supervision problem. The sup-
port vector regression method was proposed to predict the
energy output, and the SOM method was used to reduce the
dimensionality of the high-dimensional data. The experimen-
tal parts were based on real wind energy time series data
from the National Renewable Energy Laboratory (NREL)
western wind resource dataset, and experimental case stud-
ies were described to validate the proposed method, which
showed the efficiency of fault detection and diagnostic in
experimental data such as the unsupervised classification of
most faults. Wang et al. [85] proposed a new abnormality
detection and prediction technique based on heterogeneous
signals and information. The output power signals and wind
turbin downtime event information were collected from the
SCADA system, and then transported to a linear mixture
SOM classification for network training and fault diagnosis.
Experiments showed that this method is better than the tra-
ditional SOM method. Gil et al. [86] presented indicators of
non-expected behavior in components of a WT for the fault
diagnosis of the generator and gearbox. Several diagnostic
models were established under normal working conditions,
and then the state of WT was judged by whether the actual
behavior conformed to the expected behavior. To identify the
health status of WT, Blanco et al. [87] presented a strategy
based on SOM and interpretation-oriented post-processing
tools. There was a problem with the same type of fault for
various components in WT. Thus, SOM combined with CA
was utilized to put the failures of similar behaviors into the
same subset. On this basis, a post-processing tool was added
to further enhance the degree of aggregation. The experi-
mental results demonstrates the effectiveness of the proposed
method.

3) SUMMARY
The output results of the SOM network are easy to under-
stand. This method can also be used for the visualization of
an algorithm, and its implementation structure is relatively
simple. However, the calculation complexity of this method
is relatively high, and it cannot learn a dataset with missing
data. When the number of learning samples is small, the
order of the input sample has a significant influence on the
learning results. Moreover, the setting of the initial state and
the selection of parameters influence the convergence speed
of this method.

E. ADAPTIVE RESONANCE THEORY (ART)
1) THEORETICAL BASIS
ART is a competitive learning network. The network has a
comparison layer, identification layer, identified threshold,
and reset module. The comparison layer receives the input
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sample and transmits it to the recognition layer. Each neuron
of the recognition layer corresponds to a pattern category,
and the number of neurons can be dynamically increased
during the training process to add a new pattern class. Upon
having the input signal of the comparison layer, each neuron
in the recognition layer calculates the distance between the
representative vector of all storage classes and the input
vectors, and the smallest distance is the winning neuron.
If the similarity between the input vector and the winning
neuron is greater than the recognition threshold, the current
input sample is marked as the category to which the vector
belongs, and the network weight is updated. Subsequently,
when accepting similar input samples, the model calculates a
higher degree of similarity, which gives the neuron a higher
chance of winning. When the similarity between the input
vector and the winning neuron is below the threshold, the
reset module adds a new neuron in the recognition layer, and
its representative vector is the current input vector.

The structure of ART includes layer F1 and F2, layer
F1 is the comparison layer and layer F2 is the recognition.
The neurons of each sublayer of F1 works in a shunt model
and operates in an instantaneous balance. Vi(i = 1, . . . ,M )
represents the activity of neurons and can be calculated as,

ε
d
dt
Vi = −AVi + (1−BVi)J

+

i − (C + DVi)J
−

i , (26)

where A and D are constants, B,C = 0, and J+i represents
the stimulation and J−i represents the inhibition. The solution
of Vi is,

Vi =
J+i

A+ DJ−i
, (27)

The winning neuron y is obtained by layer F2 selects the
from the result of F1, which is calculated as,

Tj =
∑
i

pizji (28)

yi =

{
d, Tj = maxk{Tk}, ∀k not marked,
0, otherwise.

(29)

where Tj is the similarity of neuron j of F2, zji represents
the connection weight between neuron i of F1 and neuron j
of F2, pi is a parameter of layer F1 and d is a super parameter
that can be selected according to different systems.

2) APPLICATIONS
Yang et al. [88] constructed a vibration condition monitoring
system for WT bearings based on noise suppression using
multi-point data fusion. The feature vectors acquired by the
EMD correlation analysis were sent to ART for fault diag-
nosis. As an improved version of the ART, ART-2 can learn
autonomously about emerging issues, and no prior knowledge
is required. Through an analysis of the actual and simu-
lated fault vibration signals of wind turbine bearings, the
proposed EMD correlation model supplemented with ART-2
data fusion could not only effectively remove white noise and

short-term disturbance noise but also extract early weak fault
feature frequencies. In Ref. [89], the feature vectors obtained
by the discrete wavelet transform (DWT) were addressed by
ART-2 for fault diagnosis. The proposed method was applied
to the vibration signals collected from a gearbox to diagnose
gear-crack faults. The results showed that the relative wavelet
energy could effectively extract the signal feature and that
the ART-2 neural network could recognize the changing trend
from the normal state to a crack fault before the occurrence
of a broken tooth fault. Ben et al. [90] proposed an online
automatic diagnosis approach for WT bearings progressive
degradations based on ART-2, which was simulated by the
Randall model and combined with the obtained feature vector
into ART-2 for fault diagnosis. The use of real measured
data from a wind turbine drivetrain proved that the proposed
data-driven approach is suitable for online condition monitor-
ing of WT bearings even under real experimental conditions
and achieves a better generalization capability as compared to
previous works even with noisy measurements. Lee et al. [91]
presented a model-based fault diagnosis method for detecting
and isolating faults in a robot arm control system. When a
change in the system occurred, the errors between the system
output and the estimated output crossed a predetermined
threshold, and once a fault in the system was detected, the
estimated parameters were transferred to the fault classifier
by ART2 neural networks with uneven vigilance parameters
for fault isolation. For the problem of gear fault diagnosis, the
soft competitive learning fuzzy ART method was adopted by
Wan et al. [92]. The Yu norm was introduced to solve the
influence of the input sample order in the soft competitive
learning fuzzy ART, and the lateral inhibition theory was
also applied to solve the problem of modal node chaos. The
obtained fault characteristics were sent to the soft competitive
learning fuzzy ART for training, and then the weighted voting
method was employed to make a judgment based on the
correlation selection partial diagnosis results. Experiments
demonstrated that the proposed method had better diagnostic
accuracy and generalization ability.

3) SUMMARY
ART is an incremental learning method that can learn new
problems while retaining previous learning experiences. It is
an unsupervised learning method that can learn the problem
without any prior knowledge and can stably and quickly
identify the object that has been determined. In addition, the
method can avoid the disadvantages of other algorithms that
easily converge to a local minimum. However, the ART needs
to set parameters, and it is very difficult to determine the
optimal combination of parameters. In addition, ART cannot
handle imbalanced datasets and the order of the test data
affects the final clustering results.

F. SUMMARY FOR ANN
ANNmakes fault diagnosis faster and has a higher diagnostic
accuracy than TML methods. Utilizing the nonlinear fitting
of the ANN between the inputs and outputs can better learn
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TABLE 2. The summary of applications of ANN to WT fault diagnosis.

the faulty information. When the structure of the input infor-
mation changes or a new type of fault occurs, the ANN can
learn new information structures or problems by modifying
the link weights between some neurons, updating the thresh-
olds, or adding new neurons. The ability of ANN to learn
indivisible linear problems, especially high-dimensional data,
is better than that of TML algorithms. Although the degree
of dependence of ANN on prior knowledge is not as high
as that of conventional TML algorithms, it still needs to rely
on manual experience in feature extraction and feature selec-
tion. Meanwhile, other than the typical ANN-based methods
reviewed in this section, there are many ANN-based works
for fault diagnosis that are in the minority but have shown
good performance. For example, [93] proposed an extremum
response surface method by introducing generalized regres-
sion neural network (GRNN) and a multi-population genetic
algorithm (MPGA).This is an effective work that provides
a learning-based reliability analysis method for complex
equipment.

The summary of applications of ANN for WT fault diag-
nosis can be shown in Table 2.

However, the hidden layer in the ANN usually has one
layer, which causes the neural network to have limitations
in learning data and may miss some vital information in
the learning process to affect the accuracy of fault diag-
nosis. Another problem is that there is no precise standard
for determining the number of neurons in each layer of the
network. If the number of neurons is too small, the learning
effect is impacted, and the accuracy of the fault diagnosis is
subsequently reduced. However, if the number of neurons is
too large, it takes much more time is required to train the
model, and the probability of overfitting increases, which
reduces the generalization ability of the proposed method.

IV. DEEP LEARNING (DL)
To solve the problem that the acquisition process of fault
features still relies on the manual experience in the ANN as

FIGURE 5. A typical CNN schematic diagram and its application for fault
diagnosis.

well as only the superficial level features are learned and the
extraction of deep-level features is insufficient, researchers
introduced DL fault diagnosis forWT. The DL directly learns
the acquired data through a multidimensional neural net-
work to obtain high-dimensional features, which are a more
essential representation of the data structure. Therefore,
the generalizability of the diagnostic method is improved.
DL combines two processes of feature acquisition and fault
diagnosis, which reduces the dependence on advanced sig-
nal processing technology and diagnostic experience to
improve the accuracy of fault diagnosis. In addition, this
method has no special requirements for data and can process
high-dimensional and nonlinear data that cannot be addressed
in the past. The most commonly used DL networks are
convolutional neural networks (CNN), deep belief networks
(DBN), stacked auto-encoders (SAE), and recurrent neural
networks (RNN).

A. CONVOLUTIONAL NEURAL NETWORKS (CNN)
1) THEORETICAL BASIS
ACNN is a typical feedforward neural network. It essentially
aims to build multiple filters that can extract the features of
the input data. Through layer-by-layer convolution and pool-
ing of these filters, the topological features hidden in the data
are extracted step by step, and finally, the characteristics of
the input data are obtained during the process of translation,
rotation, and scaling. The CNN is usually composed of an
input layer, convolution layer, pooling layer, fully connected
layer, and an output layer, and the convolution layer and the
pooling layer are alternately arranged as shown in Fig. 5 (a).
Fig. 5(b) shows the normal procedure for fault diagnosis
with CNN. The signal samples are first processed by the
stacked convolutional layer and pooling layer to obtain local
features, and then the fully connected layer is used to trans-
form local features into global features, and finally the prob-
ability distribution of the sample is output The convolution
layer of the CNN includes many feature planes, each of which
contains many neurons, and each neuron connects to a local
area of the upper feature layer through the convolution kernel,
which is a weight matrix. In addition, CNN obtains fault
features through convolution operations and share weights in
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the same feature plane, which reduces the complexity of the
model and makes the model easier to train. The pooled layer
follows the convolutional layer and has a structure similar
to that of the previous convolutional layer, which aims to
obtain spatially invariant features by reducing the resolution
of the feature surface. Moreover, pooling operations reduce
the number of neurons, thereby reducing the computational
complexity of the network model [94].

2) APPLICATIONS
(a) Fault diagnosis applied to the gearbox of WT.

Two-dimensional feature vectors were obtained by differ-
ent methods and sent to the CNN for fault diagnosis [95].
The proposed method was verified and compared with other
methods to demonstrate that the proposed method has a
robust ability to suppress noise while processing data and
can obtain a diagnostic accuracy of 99.3%. An algorithm was
proposed by Monteiro et al. [96] to reduce the training time
by 80%without affecting the accuracy of the CNN diagnosis.
The obtained features were sent to the CNN for training, and
the output results were sent to the SVM for fault recognition.
The algorithm was improved by explaining the results of the
DL in the decision-making stage. To solve the problem that
the CNN learning process cannot be explained, the layer-wise
correlation propagation method was proposed to make the
CNN learning process visible [97], which demodulates the
two-dimensional signal output after CNN learning into a
series of pixel points and quantizes them to obtain the feature
variables that have the greatest impact on fault diagnosis.

(b) Fault diagnosis applied to the bearing of WT.

In Ref. [98]–[100], CNN was compared with several tra-
ditional ML methods, both the simulation and experimental
results indicated that CNN is much better in terms of diagno-
sis accuracy and network convergence speed. However, this
method still has the possibility of misclassification, so more
sensors were needed to obtain data to reduce the probability
of errors. In the process of fault diagnosis, PSO algorithm
was used to optimize the number of convolution kernels
and learning rate of CNN [101]. Comparing the trained
model with ANN network and SVM, it was proved that the
method can achieve higher diagnosis accuracy, but the calcu-
lation efficiency of the method needs to be further improved.
Guo et al. [102] proposed an intelligent fault diagnosis
method for bearings with variable rotating speed based on
Pythagorean spatial pyramid pooling (PSPP) and CNN. Two
dimensional fault features were obtained by CWT and PSPP,
and sent to CNN for fault diagnosis. The accuracy of PSPP
and CNN can reach 99.11%, which is much better than other
fault diagnosis methods. Moreover, the model trained at a
certain speed can be applied to fault diagnosis under all
operating conditions, but if more environmental information
is considered, the accuracy of fault diagnosis needs to be
further improved.

Chen et al. [103] presented a wind power generation
fault diagnosis approach based on a DL model using the

Internet of Things (IoT) with clusters. The representative
features of these data can be obtained through the collection
and fusion of a variety of data. When these representative
features were used in the training of DL, the trained net-
work had higher diagnostic accuracy and smaller prediction
error, which was demonstrated by the experimental results.
In Ref. [104], the acquired signal was input into the CNN
for network training. By learning the one-dimensional sig-
nal directly, the loss of data can be avoided, and the fault
diagnosis accuracy of the network was improved as well.
Zhuang et al. [105] introduced a novel fusion diagnosis
method for rotor system faults based onDL andmulti-sourced
heterogeneous monitoring data. A multi-source CNN
(M-CNN) was used to learn one-dimensional or two-
dimensional signals. The high-dimensional features obtained
were subsequently fused by t-SNE and the fused features
were sent to M-CNN for fault diagnosis. The experimental
results proved the feasibility of using multi-source heteroge-
neous data for fault diagnosis.

3) SUMMARY
Compared with the traditional ANN, CNN reduces the vari-
able parameters in the network training process through the
weight sharing network in the convolutional layer, which
reduces the complexity of the network model and avoids
overfitting of data, thus improving the generalization ability
of the CNN. At the same time, the pooling operation used in
the CNN structure dramatically reduces the number of neu-
rons in the model, and the translation invariance of the input
data makes the CNN more robust. However, this method has
several drawbacks. A large amount of data are required in the
network training process, which increases the computational
complexity of the method. During the pooling process, some
critical information may be lost, and the method is generally
incomprehensible for the data learning process. In addition,
the CNN can only process input data with a fixed length, so it
is necessary to further exploit the potential advantages of this
method in combination with other theories.

B. DEEP BELIEF NETWORKS (DBN)
1) THEORETICAL BASIS
DBN is composed of a several restricted Boltzmannmachines
(RBM). An RBM contains only one visible unit and one hid-
den unit. The visible and hidden layers were bidirectionally
connected. The visible layer units v = {v1, v2, · · · , vm} and
the hidden layer units h = {h1, h2, · · · , hn} are bidirection-
ally connected. As an energy-basedmodel, the variables v and
h are subject to the joint configuration as follows:

E(v, h, θ) = −
m∑
i=1

n∑
j=1

ωijvihj −
m∑
i=1

bivi −
n∑
j=1

ajhj, (30)

where θ = {ω, a, b} represents the parameters of RBM.
Then, the marginal distribution of the visual units can be
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calculated as:

P(v|θ) =
1

Z (θ )

∑
h

exp[−E(v, h, θ)], (31)

where Z (θ ) =
∑

v,h exp[−E(v, h, θ)] is the partition func-
tion. There is no connection between neurons in the same
layer, and there is a weight between any connected neurons
to indicate the connection strength. The multi-layer percep-
tron of multiple nonlinear operation hidden layers is used
to represent the input data in a distributed way, which can
learn the essential features of the dataset in the case of lim-
ited samples, and achieve high-level feature representation
and extraction of data. In classification learning, supervised
learning is usually used, and its core is to use a greedy
algorithm to optimize the connection weight in DL layer by
layer. In other words, unsupervised learning is used to train
layer-by-layer to effectively mine the fault features in the
signal to be diagnosed to ensure as much feature information
as possible when the feature vector maps to different feature
spaces. Then through the BPNN of the last layer, the weights
in the trained DBN are adjusted in reverse through supervised
learning. Generally, all layers of the DBN are considered as
a whole by using the method of random gradient descent to
minimize the network training error and optimize the fault
identification ability of DBN [106], [107].

2) APPLICATIONS
Yu et al. [108] proposed a radically data-driven fault detec-
tion and diagnosis (FDD) method based on DBN for WT.
In a wind turbine benchmark Simulink model, DBN was
compared with the existing four model-based algorithms and
four data-driven algorithms, and the superiority of DBN
for the diagnosis of WT faults was proved. In Ref. [109],
the obtained fault features were sent to the DBN for fault
diagnosis. The proposed method was compared with SVM,
SOM, BPNN andMahalanobis distance (MD) to diagnose the
same fault, and the experimental results proved that DBN is
superior to other methods. In addition, the paper pointed out
that the performance of the method could be further tested
using mixed marked and unmarked data. Liu et al. [110]
proposed a fault diagnosis method for WT gearbox based
on DBN and vibration signals. Before the vibration signals
were sent to the DBN network for learning, the data were
processed by the batch normalization method, which can
effectively reduce the probability of overfitting and improve
the convergence speed of the method. Through experiments,
the improved method performed better than ordinary DBN
and BPNN. An approach using an optimized DBN for rolling
bearing fault diagnosis was presented by Shao et al. [111].
The obtained vibration data were directly input into the DBN
network for learning. At the same time, the PSO algorithm
was used to determine the optimal number of neurons in
each hidden layer, learning rate, and momentum of the DBN.
Through a comparison with SVM and ANN based on sim-
ulation and experimental data, the accuracy and robustness
of the optimized DBN were proved. Li et al. [56] proposed

a combination method to achieve a gearbox fault diagnosis.
After the vibration signals of gearbox were processed, they
were sent to the DBN for DL to obtain high-dimensional fault
features, which were fused to the RF for fault diagnosis. The
accuracy of the method was 97.68% through 11 types of tests
under different working conditions. To solve the problem
of gradient disappearance in reverse fine tuning, improved
sigmoid units have been proposed [112]. By combining the
traditional sigmoid units with the merits of unsaturation from
leaky rectified linear units, when the absolute value of the
gradient was greater than a certain threshold value, the con-
tinuous gradient was replaced by a constant gradient to avoid
the problem of gradient disappearance. To further improve the
diagnosis accuracy, the optimized Morlet wavelet transform
was also used to process the signal, which was sent to the
DBN for learning and training. After testing, the fault diag-
nosis accuracy of this method reached 96.32%.

3) SUMMARY
DBN is a probability generationmodel. Themethod can elim-
inate the dependence on a large amount of signal processing
technologies and experience to complete the adaptive extrac-
tion of fault features, and fault diagnosis of WT. In addition,
the method has no periodic requirements for data and has
strong versatility and adaptability. Moreover, the method can
process high-dimensional, nonlinear data, which can effec-
tively avoid dimensional disasters or insufficient diagnostic
capabilities. However, this method has some shortcomings in
this method. This method is usually only capable of process-
ing one-dimensional data or one-dimensional feature signals,
but the learning effect of two-dimensional signals or feature
vectors declines, which wastes a lot of time in the forward
training process of greedy learning, and it needs to choose
the appropriate method to reduce the calculation time.

C. STACKED AUTOMATIC ENCODER (SAE)
1) THEORETICAL BASIS
SAE is similar toDBN,which is used to replace RBM inDBN
with AE (autoencoder). AE is a three-layer unsupervised
neural network that includes an input layer, hidden layer and
output layer. Generally, the number of neurons in the input
and output layers is the same, while the number of neurons
in the hidden layer is less than that in the input layer and
output layers to obtain the characteristic representation of the
input data. AE is used to achieve the maximum reduction of
data through two processes, encoding and decoding, while
minimizing the data reduction error.

Given the dataset {xi, yi}mi=1 with m samples, the repre-
sented features hi are defined as:

hi = fθ (xi) = σf (ωT · xi + b), (32)

where σf is the activation function of the encoder network,
and θ = {ω, b} is the training parameters of the encoder
network. The reconstructed sample x̂i can be obtained by the
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decoder network, which is expressed as follows:

x̂i = gθ ′ (hi) = σg(ω
′T
· hi + b′), (33)

where σg is the activation function of the decoder network,
and θ ′ = {ω′, b′} represents the training parameters of the
decoder network. In order to reconstruct the original input
as well as possible, the optimization objective of AE focuses
on minimizing the error between the input samples and the
reconstructed ones by:

min
θ,θ ′

L(xi, x̂i) =
1
2m

m∑
i=1

‖xi − x̂i‖2. (34)

The gradient descent algorithm is still utilized for the net-
work training of theAE. In the pre-training stage, with the aim
of minimizing the input and output errors, each AE is trained
one by one until all the AE are trained, and then the weights
and offsets between each layer of AE are adjusted through
reverse fine-tuning to extract high-dimensional features from
low-dimensional data. However, in the process of reverse
fine-tuning, there are problems of gradient disappearance and
gradient diffusion [107]. TheDAE is a variation of theAE and
is an improvement that can deal with the gradient diffusion
problem.

2) APPLICATIONS
a: FAULT DIAGNOSIS APPLIED TO THE GEARBOX OF WT
Chen et al. [113] introduced a fault diagnosis method based
on rotor current for doubly fed induction generators WT
drivetrain gearboxes using frequency analysis and a deep
classifier. The processed data were sent to the SAE to extract
the deep representative features, and then the multiclass SVM
was used for fault diagnosis. Experiments demonstrated that
the proposed method achieves a more considerable improve-
ment than traditional diagnostic methods. In Ref. [114],
to solve the problem of few gearbox failure samples, amethod
based on generative adversarial networks (GANs) was pro-
posed. Based on the existing fault samples, a new fault sample
with similar data distribution was generated by using the
GAN algorithm, and used in SDAE training together with the
previous fault samples. By comparing the trained fault diag-
nosis model with SDAE, SAE, BPNN, SVM and ELM, the
validity of the proposed method was proved. Yu et al. [115]
presented a method based on selective deep SDAE with neg-
ative correlation learning (NCL) for gearbox fault diagnosis.
The acquired signal was used for forward learning by SDAE
followed by reverse fine tuning with NCL, and then the fault
diagnosis was completed by the PSO-optimized integrated
learning algorithm. By comparing SDAE-NCL with DBN,
BPN, SVM, KNN, and RF, the validity of this method was
proved. The acquired signal is usually accompanied by a
large amount of noise, and the common method can only
learn from the data of a specific noise level. To overcome
this problem, the AE was trained by the noise level to
form stacked multilevel-denoising autoencoders (SMLDAE)
[116]. Through experimental analysis, it can be seen that

SMLDAE has advantages over MLP, SAE, and SDA, but the
paper pointed out that the method of increasing multi-level
noise needs to be improved, and the method cannot deal with
unbalanced data.

b: FAULT DIAGNOSIS APPLIED TO THE BEARING OF WT
Lu et al. [117] proposed a fault diagnosis method for rotary
machinery components using an SDA-based health state
identification method. The obtained data were sent to the
SDA for the fault diagnosis. By comparing with SVM andRF,
it can be seen that the proposed method has many advantages,
but at the same time, a large number of samples are needed to
further verify the limitations of this method and optimize the
DL structure. To improve the accuracy of fault diagnosis and
recognition, an intelligent fault diagnosis approach based on
sparse deep neural networks was introduced [118]. The data
received from the four different states were learned by SAE,
and the established diagnosis network was verified by exper-
iments, and the results showed that the diagnostic accuracy
of the proposed method was 98%. Shao et al. [119] proposed
a method to improve the fusion of the depth features. The
obtained signals were sent to the DAE and the output results
were sent to the CAE (contracting auto encoder) to further
extract fault features. Then the extracted fault features were
fused in the LPP (locality preserving project) to improve the
feature learning ability, and the fused features were sent to
softmax for fault diagnosis. Compared with BP and SVM,
this method was proven to be effective, and exhibited better
performance than the standard CNN.

3) SUMMARY
SAE is a discriminant generation model. Compared with
DBN, this method lacks the strict requirements of layer
parameterization, and can achieve high-performance fault
diagnosis results through a small amount of sample data and
an appropriate classification basis. SDAE can overcome the
gradient diffusion problem in the process of backward fine
tuning, and it is easier to understand the internal learning
process than DBN. However, there are some limitations to
this method. Because the number of encoders used should be
determined according to different working conditions, when
the number of encoders is too large, the training time of
the model increases, along with an increase in the risk of
overfitting, and there is no clear rule to measure the selected
results.

D. RECURRENT NEURAL NETWORKS (RNN)
1) THEORETICAL BASIS
Fig. 6 shows a typical RNN schematic diagram. RNN has
both internal feedback and feedforward connections between
processing units. The internal feedback connection can main-
tain the state of the hidden nodes and provide memory for
the network. The output of the network is not only related
to the current input, but also to the internal state of the
previous network, reflecting good dynamic characteristics.
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FIGURE 6. Typical RNN schematic diagram.

The output Ot and the value of hidden layer St can be cal-
culated as:

Ot = g(V · St ), (35)

St = f (U · Xt +W · St−1), (36)

where t is the moment,U ,V ,W are parameters of the system
network, Xt represents the instance vector. In the whole train-
ing process, the same parameter W is used at each time. The
RNN fully considers the association between samples, which
is reflected by the connections between neural networks.
Generally, the neurons of RNN have the same weight and
offset, and the RBM or AE can be utilized for pre-training
to initialize the network parameters. Then, the output error
of each sample is calculated, and the network parameters
with the accumulated error are trained [120]. However, in the
process of each feedback, some information is lost. When the
time accumulated to a certain extent, the initial information
degenerated and the gradient vanishing effect appeared.

2) APPLICATIONS
As an improvement on RNN, the most widely used RNN
is the LSTM neural network, which solves the problem of
gradient disappearance in the reverse fine-tuning process of
RNN. Because some faults occur slowly and usually require
an extended period, conventional methods are challenging to
deal with such problems, but LSTM can take advantage of the
hidden long-term dependencies in the data. The LSTM net-
work structure is similar to a typical neural network structure
and can be divided into an input layer, a hidden layer, and an
output layer, which correspond to input gates, hidden gates,
and output gates in the network. By controlling the gate,
the degree of disturbance of the saved information with the
new incoming information can be controlled, and the network
assigns corresponding weights and offsets to the currently
saved value and the new input value.

To detect faults that occurred at the appropriate time,
Talebi et al. [121] presented a robust fault detection sys-
tem (FDS) of wind energy conversion systems (WECS) based
on dynamic neural networks. By utilizing a comprehensive
dynamic model that contains both the mechanical and elec-
trical components of the WECS, an FDS was suggested
by applying a dynamic RNN. The proposed FDS detects

faults of different sensors and pitch actuators. By employ-
ing an adaptive threshold, FDS robustness was achieved.
Because the inherent defect of RNN may cause the phe-
nomenon of gradient disappearance, the LSTM network was
used to overcome this defect [122]–[124].The acquired sig-
nals were processed and then sent to the LSTM for train-
ing, and the fault diagnosis was performed by making full
use of the spatial and temporal dependencies in the sig-
nals. In Ref. [124], it was pointed out that CNN could be
used as a data preprocessing process to enhance the fault
diagnosis capability of the LSTM method. In Ref. [125],
the SCADAdatawere divided into several intervals according
to the variance, and then the corresponding LSTM networks
were trained for each interval. Subsequently, the trained net-
work was used to diagnose the main components of WT, and
then the state of WT was evaluated. Although the advantage
of this method is that it can evaluate the state of WT, it takes
much more time to build multiple models, and it needs to
be optimized by other algorithms. In Ref. [126], a residual
signal was generated by learning the original signal through
LSTM, and then the residual signal was sent to the RF for
fault diagnosis. Compared with the other four model-based
algorithms and four data-driven algorithms, this algorithm
was proven to be effective. However, the proposed algorithm
requires a large amount of fault data when it is implemented
and cannot update the model automatically.

3) SUMMARY
The hidden neurons in the RNN network not only receive the
output of the upper layer, but also receive feedback from the
neurons of this layer, and can process data of infinite length.
Owing to the different structures of the feedforward neural
network, it is possible to diagnose slow-developing faults by
hiding long-term dependencies in the data. Moreover, it is
challenging to deal with the problem of gradient disappear-
ance in the recursive process, but LSTM as an improvement
of RNN can solve the problem of gradient disappearance.
However, the trade-offs between new input information and
current state information require further study, and there are
no clear rules on how to choose the optimal number of hidden
neurons and the appropriate RNN structure. If the choice
is not appropriate, the network may be unstable, turbulent,
or chaotic.

E. SUMMARY OF DL
From the above analysis, it can be seen that the DL can
directly obtain high-dimensional and in-depth representative
features from the original data, which solves the issues of
the TML and ANN methods caused by fault feature selection
which depends on the manual experience. The summary of
applications of DL toWT fault diagnosis is shown in Table 3.
Moreover, the high-quality diagnosis results in the cited lit-
erature have shown that the deep features learned by deep
networks contain more diagnostic information than the TML
and ANN, and the DL-based models gain better generaliza-
tion ability. In addition, the DL-based methods are totally
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TABLE 3. The summary of applications of DL to WT fault diagnosis.

data-driven, which means those models could automatically
recognize all different fault types if the training dataset is
sufficient.

At the same time, DL has some flaws:

(a) There is no uniform rule for the selection of the num-
ber of hidden layers in the DL structure and the number
of neurons in each hidden layer. If the selection is not rea-
sonable, it not only increases the computational complex-
ity of the method, but also reduces the diagnostic accuracy
of the algorithm. Typically, the number of hidden layers is
given according to different problems combined with human
experience. Although it can achieve good results, it is not
necessarily the best. Although, the number of neurons in each
layer is currently selected by an optimization algorithm, but
the optimization effect needs to be further improved.
(b) The training and testing sets used in the current methods
are obtained from the same dataset, and the distribution of
data structures in these two datasets is generally consistent.
When a trained diagnosis model is used to diagnose the fault
of a similar component with a different distribution of data,
its diagnostic accuracy generally decreases.
(c) Most DL learning processes are essential black-box
problems. It is impossible to clearly indicate the type of
learning process inside. Only by clearly understanding the
DL learning process can we improve some of the deficiencies
in the learning process, so that the algorithm can improve the
diagnostic accuracy by reducing the computational complex-
ity. Although some visualization tools can show the learning
effect of DL through each hidden layer, its effect still needs
to be further improved.
(d) Although DL has high diagnostic accuracy in fault
diagnosis, there is still a risk of error diagnosis. Conse-
quently, multimodal information should be considered in data

learning, which could further improve the accuracy of fault
diagnosis.

V. TRANSFER LEARNING (TL)
In previous methods, training sets and testing sets for model
training and diagnosis are usually under the same working
conditions. Moreover, they are subject to the same data dis-
tribution and have the same feature space, which is quite dif-
ferent from the actual situation. Because the data acquired in
WT are usually nonlinear and non-stationary, the distribution
of data for fault diagnosis and the distribution of training
information for model training are frequently inconsistent,
even though DL has achieved high diagnostic accuracy and
is robust in troubleshooting. However, when the trained DL
diagnostic network is used to diagnose a fault problem that
has never been learned, the diagnostic accuracy is signifi-
cantly reduced. To solve the above issues, researchers intro-
duced TL into the fault diagnosis of WT. A basic fault classi-
fication schematic diagram of the TL is shown in Fig.7.

FIGURE 7. Typical feature-based TL applied for fault classification.

A. THEORETICAL BASIS
The current TL methods mainly can be divided into four
types:
(a) Instance-based TL. Part of the source domain data can
still be used in the target domain by overweighting and
training;
(b) Feature-based TL. Fault features from the source domain
are encoded and transferred to the target domain to improve
the learning effect;
(c) Parameter-based TL. The target and source domains
share the same model parameters or the same a priori dis-
tribution;
(d) Relevant knowledge-based TL. The source and target
domains have the same or similar data distributions. The
trained fault model can be used to maintain high diagnostic
accuracy for similar problems under different diagnostic con-
ditions. Moreover, TL can diagnose mechanical components
based on known fault diagnosis models that do not have
sufficient fault samples.

B. APPLICATIONS
1) FEATURE-BASED TL
Kandaswamy et al. [127] introduced an approach to improve
TL accuracy by reusing SDAE. Data were learned through
SDAE to complete the fault diagnosis for different data distri-
butions and various tasks. The experiments demonstrated that
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the TL of high-dimensional features cannot only reduce the
computational complexity of fault diagnosis, but also achieve
higher diagnostic accuracy. However, the problem of negative
transfer in the TL process needs to be solved. Shen et al. [128]
presented a bearing fault diagnosis based on SVD feature
extraction and TL classification. Using auxiliary data, the
target data and additional data were given different weights
by the TrAdaBoost algorithm, and then the TL algorithm was
used for fault diagnosis. In this process, the negative transfer
was avoided by similarity judgments, and the accuracy of
the diagnosis was improved while reducing the computa-
tional complexity. Tong et al. [129] introduced a bearing fault
diagnosis method under variable working conditions based
on domain adaptation using feature-based TL. The dataset
of normal and faulty bearings was obtained through the fast
Fourier transformation of raw vibration signals under various
conditions. Then, the marginal and conditional distributions
were reduced simultaneously between the training data and
testing data by refining pseudo test labels based on the maxi-
mum mean discrepancy and domain-invariant clustering in a
common space. Finally, a transferable feature representation
for the training data and testing data was obtained. Experi-
mental results showed that this method is superior to other
traditional methods.In Ref. [130] a fault diagnosis method
for rolling bearings based on a sparse denoising autoen-
coder (SDAE) for deep feature extraction combining TL was
proposed to improve the accuracy of bearing fault diagnosis.
The bearing vibration signal in the time domain was trans-
formed into the frequency domain, and the joint geometrical
and statistical alignment was introduced to deal with the
deep feature samples to reduce the domain discrepancy both
statistically and geometrically. Additionally, the k-nearest
neighbor classification algorithm was used to complete the
fault diagnosis of rolling bearings under variable working
conditions. To solve the problem of gear fault diagnosis, the
fault features under known and unknown working conditions
were selected by means of transferring feature analysis to
minimize the difference between domains, which ensures
that the data features remain unchanged while the data scale
is reduced [131]. The selected fault features were used for
fault diagnosis using the SVM. The effectiveness of this
method was illustrated by comparison with PCA, kernel PCA
(KPCA), locally linear embedding (LLE) and factor analysis
(FA).Wang et al. [132] presented a heterogeneous TLmethod
based on stack sparse autoencoders (SSAE) for fault diag-
nosis. The data in the source and target domains were rep-
resented by heterogeneous features of different dimensions,
which were sent to the same feature space through different
AE. The similarity degree of the two domains was judged
according to the center distance between the domains, and
then the difference between the data was reduced by using
the maximum mean error. The final results were diagnosed
by SVM and performed better than the TML approaches
when there was little labeled data in the target domain.
Ren et al. [133] proposed a fault diagnosis method
based on VMD multiscale permutation entropy (MPE) and

feature-based TL for WT. Aimed at the problem that the
source and target domains data belong to different working
conditions, the proposed method reduces the difference in
data distribution between the source and target domains by
minimizing the covariance between them through a linear
transformation matrix. The experiment showed that the pro-
posed covariance alignment (COVAL) of fault features has
higher accuracy in rolling bearing multi-state classification
under variable working conditions as compared with other
methods. Qian et al. [134] constructed a novel deep transfer
network (DTN) for rotating machine fault diagnosis with
working condition variations, which combines auto-balanced
high-order Kullback-Leibler (AHKL), smooth conditional
distribution alignment (SCDA), and weighted joint distri-
bution alignment (WJDA). Extensive experimental evalua-
tions through 18 TL cases demonstrated its validity, and
further comparisons with the state of the arts also vali-
dated its superiority. In order to overcome the weaknesses
of the Gaussian kernel-induced maximum mean discrepancy
(GK-MMD), Yang et al. [135] proposed a distance metric
called polynomial kernel-induced MMD (PK-MMD). Com-
bined with PK-MMD, a diagnosis model was constructed to
reuse diagnosis knowledge from one machine to the another.
The proposed methods were verified by two TL cases, and
the results showed that the PK-MMD-based diagnosis model
presented better transfer results than other methods.

2) PARAMETER-BASED TL
In Ref. [136], a network fault diagnosis model was estab-
lished by sampling the data of the source domain, and the
same operation was performed on the target domain data,
which were then used to update the established network
diagnostic model parameters, finally, and a small number of
samples were obtained from the target domain tested. The
results indicated that the method can reduce the network
training time and improve the network diagnostic accuracy
under the premise of a modest number of samples. In Ref. [5],
[137], [138], the CNN was combined with TL to complete
the fault diagnosis under different speeds and loads. First,
the two-dimensional signal obtained by processing the source
domain signal was sent to the CNN for network training,
which contains a measure that does not change owing to the
change in the working state. The CNN was updated with the
signal of the target domain to adapt to the fault diagnosis
under the new working state. The experiments demonstrated
that the accuracy of the method mentioned in Ref. [137]
reached 99.8%. In Ref. [13], the two-dimensional signals
obtained after processing were subjected to diagnosis and
testing of the network through AlexNet-based TL CNN,
and the learning process was visualized using t-SNE during
network training. The experimental results showed that the
fault diagnostic accuracy of this method was 99.89%, which
was higher fault diagnosis accuracy than that of CNN, DAE,
DBN, and SVM. In Ref. [14], a fault diagnosis model using
the SVM based on known samples was established, when
there was a change in the diagnostic data, the fault features
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of the data before and after the change were placed in the
same feature space. Moreover, a parameter to determine the
degree of dependence on the existingmodel was set according
to different parameter values to update the kernel function
matrix in the SVM until the model could adapt to the new
data distribution. Experiments conducted on toy data and real
datasets showed that the proposed method could adapt to
data change, and it provides a good transition from the old
detection rule to the new one, which is obtained using the
new data set only when the number of samples gathered from
that new one is large enough. In addition, some TL methods
that combine parameter-based TL and feature-based TL have
also been applied. These methods usually first modify some
existing deep network models, then add a domain adapta-
tion layer to the network, and finally perform joint train-
ing. In Ref. [139], a novel domain adversarial transfer net-
work (DATN) was proposed to handle large distribution dis-
crepancies across domains. First, hierarchical representations
were learned from the source and target domains with two
asymmetric encoder networks. Then, the network weights
learned in the source tasks are transferred to improve the
training on the target tasks. Finally, the difference between the
source and target distributions is minimized by domain adver-
sarial training. The experimental results on two fault datasets
demonstrated that the proposed method achieves excellent
accuracy which outperforms other algorithms. In Ref. [140],
an optimal ensemble deep transfer network (OEDTN) is pro-
posed for rolling bearing fault diagnosis with unlabeled data,
which takes advantage of parameter TL, domain adaptation
and ensemble learning. Experiments on three bearing test rigs
were carried out, and the results showed that the proposed
method was more effective than the existing methods.

3) INSTANCE-BASED TL
Wen et al. [141] presented a new deep TL method based on
the SAE for fault diagnosis. For the fault diagnosis of differ-
ent bearing conditions, an SAE fault diagnosis network based
on the source domain data was first established, and then
the discriminate penalty of the training data and the testing
data was minimized by the maximum mean discrepancy to
update the fault diagnosis network with the target data. The
method obtained more potential features by using unmarked
third-party data, and the diagnostic accuracy of the operation
was 99.82% through experiments under different operating
conditions. Moreover, the final diagnostic accuracy was pro-
portional to the standard deviation of the data. To address
the problem of sufficient labeled samples in the laboratory
equipment and a small number of unlabeled samples from
actual machines, a TL method for intelligent fault diagnosis
was presented [142]. First, the labeled samples were utilized
to train the domain-shared CNN model, and the multi-kernel
maximum mean discrepancy was then applied to minimize
the error in the learning characteristics of the laboratory data
and actual data. Subsequently, a pseudo label is generated
for the actual unlabeled data to diagnose the fault through
the domain shared classifier, and the validity of the method

was proved experimentally. Xie et al. [143] introduced a
TL strategy for rotating machinery fault diagnosis based
on cycle-consistent generative adversarial networks (GAN).
The characteristic of the network was that it could generate
new samples similar to the original data through the training
process. When the distributed adaptive signals were unified
in all states, the samples generated under different working
conditions could be approximated successfully. Based on the
fault classifier established for learning the known samples,
cycle-consistent GANs were used to generate different sam-
ples for different working states and improve the established
classifiers to adapt to the fault diagnosis under different work-
ing conditions.

C. SUMMARY OF TL
Because WT operate under variable conditions, the speed
of the main shaft and the load of the blades are continually
changing. In the past, the data of the training and testing sets
in the fault diagnosis method obey the same distribution, but
this does not meet the actual working conditions. Applying
TL as a fault diagnosis method ensures that the designed
method still maintains a high diagnostic accuracy for fault
diagnosis under variable working conditions. A summary of
the applications of TL for WT fault diagnosis is presented
in Table 4.

TABLE 4. The summary of applications of TL to WT fault diagnosis.

Moreover, for some new fault problems, in the case of
a small sample using the previous diagnostic knowledge,
it is possible to quickly adapt to changes in the data in a
short time, thereby enabling fault diagnosis. However, in the
TL process, negative transfer learning usually occurs. The
existing methods often use the maximum average difference
to suppress negative transfer learning, and the establishment
of a third-party data can also avoid negative transfer learning
and improve TL effects simultaneously. Because the collected
data are usually unmarked for the newly created fault prob-
lem, this is not very helpful for the domain sharing classifier.
The current method adds a pseudo label to the data, but the
diagnostic accuracy of the method needs to be improved.
The current TL method can only diagnose faults under dif-
ferent working conditions for the same fault problem and
cannot diagnose faults between different machines. The real-
ization of the transfer of fault diagnosis knowledge between
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machines is a research direction, and how to use the existing
fault samples for fault diagnosis is also a research field when
a new fault problem occurs without any fault samples.

VI. DISCUSSIONS
This paper summarizes the applications of ML in the fault
diagnosis of WT and analyzes the advantages and disadvan-
tages of various methods as shown in the Appendix.

For TML, SVM and its variants are the most widely used
methods. Because the classic SVM is only suitable for dealing
with the two classification problems, the real fault diagnosis
is a multi-classification problem. Hence, it is necessary to
make some improvements to the classic SVM to meet the
requirements of practical problems. In Ref. [24], [32], the
rough neighborhood set, manifold learning, and PCA algo-
rithms were used to select the most relevant fault features,
which can reduce the calculation time and improve the fault
accuracy in the process of fault diagnosis. Different methods
were applied to optimize the kernel parameters and penalty
factors in the SVM to speed up the fault diagnosis. LSSVM
and RVM, as variants of SVM, both improve the calculation
efficiency of SVM [6], [20], [27], [33]. In Ref. [34], it fuses
heterogeneous information to solve the misalignment prob-
lem in WT, and the t-SNE method was utilized for dimension
reduction. In Ref. [29], the fault features of the collected
data were used to form a two-dimensional vector for model
training. By selecting the appropriate penalty factor and ker-
nel function parameters to optimize the SVM, the diagnosis
model can have a higher diagnostic accuracy.

In terms of DT, the C4.5 algorithm was used in Ref. [35],
[36] and the J48 algorithm was used in Ref. [37], [38] to
diagnose the faults of WT. The Bayesian method can realize
fault diagnosis by minimizing the risk of the sample condi-
tions. In Ref. [40], three Bayesian diagnosis models based on
SCADA were established and compared with other methods
to demonstrate the effectiveness of Bayesian diagnosis. The
problem of signal transmission is solved and the data after
transmission is reconstructed using sparse Bayes combined
with other methods [41]. In Ref. [44], the state transition
probability matrix was obtained using the Bayes method
for fault diagnosis. The results showed that the method can
predict faults 33 days in advance on average. In Ref. [42], [43]
and [46], [47], different types of Bayesian classifiers were
constructed according to a conventional Bayesian splitter in
combination with specific problems. However, the diagnostic
networks need to know the prior probability when they are
applied. As for the HMM, the prediction of the next time state
is completed only by the data of the current state. In Ref. [50],
the semi-hidden Markov model was used to learn the fault
features, and the posterior probability was tested to determine
whether there was a fault in WT. In Ref. [52], the influence
of the outliers in the data was reduced, making the HMM
more sensitive to the fault characteristics. HMM usually uses
the posterior probability to diagnose faults, but the posterior
probability cannot be directly measured. Therefore, it is gen-
erally obtained indirectly through Bayes’ theorem.

The RF is established on the basis of DT, and the diagnosis
is completed by learning the same fault problem with mul-
tiple learners. In Ref. [55], the attributes were optimized by
the GA in Ref. [58], [59], the fault features were screened
using the correlation coefficient and Gini index respectively.
In Ref. [63], the high-dimensional features of the DBM were
fused by RF to diagnose the fault. The experiment showed
that the diagnostic accuracy of this method was 97.68%.
However, the selection and optimization of the learners are
very important for the accuracy of the diagnosis in this
method. The CA uses the membership degree between sam-
ple and cluster center to diagnose faults. The FCM algorithm
was utilized in Ref. [60], and kernel FCM was used in [61]
to improve the diagnosis accuracy by optimizing the cluster
center. In Ref. [59], [62], [63], and K-means CA was applied.
In Ref. [62], K-means CAwas applied to deal with the outliers
in the data. In Ref. [63], the historical data obtained were
grouped by the K-means CA to establish the corresponding
model for fault diagnosis, but this method needs to optimize
the selection of the clustering center.

For ANN, fault samples are learned by connecting the
weights of the neurons and adjusting the thresholds of the
neurons. As the most widely applied ANN, BPNN completes
the construction of a fault diagnosis network by forward
propagation and backward fine-tuning. In Ref. [69], [71],
various optimization algorithms, and the LM algorithm were
utilized to optimize the weight and threshold value in BPNN
to improve the convergence speed and diagnosis accuracy.
The defect that it is easy to converge to the local optimal
value is overcome as well. ELM is an improved algorithm
for BPNN, and the connection weights between the input
layer and hidden layer and the threshold of the hidden layer
neurons were set randomly and not updated. In Ref. [77],
a dual-ELM diagnosis model was proposed, with one of
the two ELMs used for counting and the other was used
to determine the possible fault type. In Ref. [74], a hierar-
chical ELM was established, and the diagnostic accuracy of
this method was improved by 5%-10% as compared with
other methods. In Ref. [78], an online sequential extreme
learning machine (OS-ELM) method was proposed to realize
online fault diagnosis. Moreover, this method can adapt to
the new fault diagnosis by increasing the number of hidden
layer neurons. Compared with BPNN, ELMhas improved the
diagnosis effects comprehensively.

The RBF network has a strong learning ability and
can realize global optimization, but the method requires
a high-quality fault samples. SOM is a competitive learn-
ing network, and the output results are displayed in a
two-dimensional plane. Therefore, this method can be used
as a visual method. However, its computational complexity
is high, and when there are new faults, the entire network
needs to be reconstructed. ART is also a type of compet-
itive learning network. It can diagnose faults by similar-
ity between neurons, and it is also an incremental learning
method that can learn new faults by increasing the number of
neurons.
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Regarding the DNN, fault feature acquisition and fault
diagnosis are integrated to eliminate the defects of human
experience on the selection of fault features. The CNN
reduces the complexity of the fault diagnosis by convolution
and pooling. Combining CWT with CNN results in a fault
diagnosis accuracy of 99.11% [102], and combining DWT
with CNN promoted the fault diagnosis accuracy to a level of
99.3% [10]. Moreover, the LNP algorithm was used to visu-
alize the CNN learning process [97]. Ref. [96] reported an
algorithm that can reduce the training time by 80% without
affecting the diagnosis accuracy. These methods extend the
application scope of CNN.

The DBN is composed of a series of RBM, which
realizes forward training through a greedy algorithm, and
then performs reverse fine-tuning for the weights of DBN.
In Ref. [111], PSO was used to optimize the number of
hidden neurons and the learning rate in the DBN. Improved
sigmoid units were applied to solve the problem in which the
gradient of the DBN disappears during the reverse fine-tuning
process [112].

Similarly, SAE is made up of several AE stacks, and its
training process is similar to that of the DBN. In Ref. [116],
an SAE was proposed to extract data containing multiple
noise levels. In Ref. [118], SAE was used to learn bearing
vibration signals, and the diagnosis accuracy reached 98%.
In Ref. [119], the high-dimensional fault features were fused
by locality preserving projection (LPP) to improve the learn-
ing ability. The RNN can maintain the state of the system at
the last moment while receiving the external inputs. As the
most widely used network in RNN, LSTM networks have
been used to solve the problem of gradients disappearance
in the reverse fine-tuning stage [122]. In Ref. [126], the
high-dimensional features obtained by LSTMwere sent to the
RF for fault diagnosis. Although the application of the DNN
algorithm greatly improves the accuracy of fault diagnosis,
at present the learning process of each stage of the DLmethod
cannot be understood, which is actually a ‘‘black box’’
problem.

TL solves the defect in which the diagnosis accuracy
decreases when the existing diagnostic methods are applied
to other similar problems. In feature-based TL, some auxil-
iary data were used in Ref. [128] to avoid negative transfer
during the learning process. In Ref. [129]–[132], the fault
features of the source and target domains were sent to the
same feature space using different methods, and the discrep-
ancy between the source domain and the target domain was
reduced by selecting appropriate feature variables for fault
diagnosis. In the parameter-based TL, SVM and SDAE were
utilized to establish the TL model in Ref. [11], [127], but a
negative transfer learning problem occurs in both methods.
In Ref. [4], [13], [137], [138], the CNN was used to learn
the data of the source domain, and then the trained model
was modified by the sample of the target domain so that the
fault diagnosis cloud be performed in the new environment.
The final diagnostic accuracy for bearing fault diagnosis
was 99.8% [137]. For the instance-based TL method, the

laboratory fault samples were first learned to establish a
diagnostic network, and then the TL was used to generate a
pseudo label for the unmarked target domain data for fault
diagnosis [142]. In Ref. [143], cycle-consistent GANs have
been to create more target domain samples for fault diagnosis.
In Ref. [141], third-party unlabeled data were used to obtain
more potential features to further improve the diagnostic
accuracy. The experimental results showed that the diagnostic
accuracy of the method was 99.82%.

Although TL can expand the application scope of existing
knowledge, there is occasionally a negative transfer phe-
nomenon in the process of TL, and the application of the
existing fault diagnosis model to other machinery fault diag-
nosis needs further research.

Normally, condition monitoring of WT can be considered
as a pattern recognition problem that consists of three phases
namely, feature extraction, feature selection, and feature clas-
sification [38]. In this review, different methods related to
the phases of fault diagnosis are shown in Fig. 8. Most
TML and ANN methods focus on the feature classifica-
tion phases. They usually combine with traditional signal
processing approaches, such as EMD and wavelet trans-
form to extract features and then send them to TML or
ANN for faults classification. DL and TL can include the
phases from feature extraction to feature classification so that
this type of methods can achieve fault diagnosis from end
to end.

Following the development of TML, ANN, DL and TL, the
intelligent fault diagnosis methods have released the human
labor and demonstrated the potential of automatically recog-
nizing WT fault patterns with great accuracy. From TML to
TL, the performance of intelligent fault diagnosis methods
has been improved. However, several challenges still exist in
current studies.
(a) As is well known, the high diagnostic accuracy of the
ML-based methods relies on the huge amount of data and
the thousand times of training. The training process usually
requires a long period of time to obtain satisfactory per-
formance if it starts from zero. However, in real industrial
scenarios, the diagnosis method is required to be active as
soon as possible. Therefore, a method to reduce the calcu-
lation time of the training of the ML-based fault diagnosis
models needs to be studied in the future. For this issue,
two research interests are recommended for future research.
1) It is necessary to propose a method that can determine
the trade-off between the complexity of the model, such as
the number of hidden layers in the network and the number
of neurons in each hidden layer, and the time consumption
of the training. 2) The pre-trained model in the experimental
environment could be leveraged to release the burden caused
by training from zero.
(b) With the development of ML technologies, the DL-based
fault diagnosis methods have become themainstream of intel-
ligent diagnostic methodologies. Although the unparalleled
feature extraction ability of DL and its end-to-end diagno-
sis process have indeed facilitated intelligent algorithms for
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FIGURE 8. The distribution diagram of the ML methods applied for WT fault diagnosis.

WT fault diagnosis, the drawback of the black box for deep
hierarchical networks still impedes the application of
DL-based diagnosis methods in real-world scenarios. The
diagnosis results of DL are mainly based on the estima-
tion of sufficient data and thousands of experimental trials
rather than a strictly theoretical background. Therefore, the
diagnosis results of DL lack strict prior constraints and the
physical meaning of the parameter and the extracted fea-
tures of those models can hardly be explained. However, the
diagnosis of WT is a serious process that requires diagnostic
methods to be highly reliable. Improving the interpretabil-
ity of DL-based methods is an important future research
direction.
(c) For different types of WT, their internal structures are
usually different, and they usually work under time-varying
conditions. Therefore, the WT diagnosis models constructed
by traditional ML, ANN and DL could hardly be well lever-
aged in all machines because of the different data distri-
butions. To bridge this gap, TL provides intelligent fault
diagnosis with a promising way. However, the inherent issue
of negative transfer has rarely been discussed in the current
work for WT fault diagnosis. Because of the high cost of
data collection and the harsh operating environment, it is
difficult to organize sufficient data in all domains. Therefore,
the design of a specific TL-based paradigm for WT diagnosis
that can reduce the negative transfer caused by limited data in
different domains is worth investigating in future research.
(d) The working conditions ofWT vary in many ways, so the
degradation mode of the gearbox is not fixed. Studying and
classifying the infinite working conditions as the limited
degradation mode is a potential way to solve this type of

problem. Wind speed, load, current and other information
can reflect changes in working conditions. Identifying the
degradation mode dynamically by multi-sensor self-mapping
under changing working conditions still needs to be further
investigated.

VII. CONCLUSION
Fault diagnosis for WT is critical in terms of improving
the economic profits of wind farms and maintaining safe
operation. ML has shown a great potential for fault diagnosis
of the key components of WT, such as gearbox, bearing,
blade, etc. Moreover, the condition monitoring of WT has
the characteristics of big data, and is thus more suitable for
ML-based fault diagnosis.

In this paper, we review several typical ML methods
for the fault diagnosis of WT from the perspectives of
theoretical fundamentals and practical applications. By intro-
ducing TML, such as SVM, DT and HMM, the diagnos-
tic approaches are able to automatically recognize the fault
patterns of WT. However, these methods still rely on arti-
ficial feature extraction, which requires significant human
labor and expert knowledge. To this end, the ANN is uti-
lized to adaptively learn the health states of WT because
of its multi-layer perceptron architecture, whereas the shal-
low network of ANN limits its performance. With the rapid
development of ML, the DL-based fault diagnosis methods
have becomemainstream owing to their end-to-end diagnosis
process and the performance with high accuracy. It should be
noted that the successes of DL-based diagnosis models are
subject to the situation of sufficient labeled samples which
is probably impractical in real-world scenarios. To bridge
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TABLE 5. Comparison of different ML methods for WT fault diagnosis.

this gap, TL is introduced to WT fault diagnosis mission by
transferring the diagnosis knowledge gained from one task
to another. Finally, this paper discusses the challenges of the
current WT fault diagnosis and provides several potential
prospects for future research. We believe that this review will
provide a comprehensive reference to related researchers.

APPENDIX
See Table 5.
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