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ABSTRACT Mismatching removal is at the core yet still a challenging problem in the photogrammetry
and computer vision field. In this paper, we propose a coordinate embedding network (named CE-Net).
We consider the mismatching problem as a graph node classification problem, and generate node descriptors
by embedding point coordinates and aggregating geometric information from neighboring nodes based on
self-attention and cross-attention mechanism. Finally, a binary classifier is used to separate node descriptors
into two classes, namely matching inliers and outliers. Benefiting from the attention mechanism, firstly the
node descriptors can get geometric information from ‘‘good neighbors’’ (i.e., matching inliers) and keep
away from ‘‘bad neighbors’’ (i.e., matching outliers), improving the exactness of the descriptors; secondly
the node descriptors can contain the information from both intra-graph and inter-graph, improving their
distinctiveness. Experiments in testing datasets show that our proposed CE-Net achieves the state-of-the-art
performance with a precision of 0.972, an outlier recall of 0.984, and an inlier recall of 0.963. Furthermore,
CE-Net also outperforms the compared methods in real mismatching removal tasks in terms of positional
accuracy, dispersion, and number of remaining point pairs, showing great potentials in practical applications.
Our codes and data are available on https://github.com/csyhy1986.

INDEX TERMS Coordinate embedding, node classification, attention mechanism, inter-graph, intra-graph,
binary classifier.

I. INTRODUCTION
Obtaining reliable matching points between image pairs
is at the core in photogrammetry and computer vision
task [1], and yet mismatches caused by illumination condition
changes, different camera viewpoints, and object occlusion
are inevitable, which hinders the subsequent applications
of the matching results [2], [3]. Thus, a mismatch removal
process should serve as a necessary step to ensure correct
matches and improve the accuracy [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Mingjun Dai .

Mismatch removal (i.e., removing the mismatched point
which is not from the same object) is still a challeng-
ing problem because one should find an invariant trans-
formation between matching inliers which is immune to
matching outliers. This is a chicken-and-egg problem, as find-
ing the transformation first requires the identification of
all the inliers (i.e., simultaneously maximize inlier recall
and outlier recall) and vice versa [5]. Thus, most of the
mismatch removal algorithms are heuristic. Based on the
way to find the optimal transformation, existing mismatch
removal methods can be classified as handcrafted methods
and learning-based methods. Thereinto, handcrafted methods
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have two most representative implements, one is based on
RANdom SAmpling Consensus (RANSAC) [6], and the
other is based on local deformation consistency.

Handcrafted methods aim to iteratively find mathemati-
cal models that are invariant to local or global transforma-
tion between matched points. RANSAC is one of the most
representative handcrafted methods which works through
iteratively sampling to find an optimal transformation matrix
(such as affine, homography, and fundamental matrix) [7],
then uses the computed matrix to determine whether a pair
of matched points is an inlier or not. Most variants of
RANSAC, such as MLESAC [8], Guided-MLESAC [9], and
PROSAC [10], improve the sampling strategy either to obtain
a more reliable result or to accelerate the computing speed.
Nevertheless, global transformation obtained by RANSAC is
not suitable for matching points from multi-consistency [11]
or non-rigid images [12].

Unlike RANSAC-type algorithms that intend to find a
global mathematical model, other handcrafted methods argue
that the deformations of local image patches are consistent
and utilize a series of local models to approach the globally
optimal transformation. For example, Locality Preserving
Matching (LPM) [13] assumes that the local neighborhood
structures of potential matches do not vary freely due to the
physical constraints, and preserves these invariances by a set
of cost functions, and finally gets inliers by minimizing these
functions. Grid-Based Motion Statistics (GMS) [14] gives a
more relaxed assumption than LPM, it introduces smoothness
constraint into a statistic framework to separate matching
inliers and outliers, and uses grid-based implementation to
speed up computing. Whereas ‘‘bad neighbors’’ (i.e., match-
ing outliers) are essentially noise and ‘‘good neighbors’’ (i.e.,
matching inliers) are actually useful information in data min-
ing, these handcrafted mining methods cannot differentiate
‘‘good neighbors’’ from ‘‘bad neighbors.’’ Thus, if matching
inliers are surrounded by outliers, which often happens in
clustered matching points, then mining local neighbor struc-
tures is not sufficient to separate inliers and outliers.

Learning-based methods explore another way to solve the
mismatch removal problem. Inspired by GMS and LPM,
a potential match is closely related to its neighbors, therefore
a match can be described by a vector (named as descriptor)
which embeds the geometric information of its neighbors.
Then the descriptor can be fed to a classifier, such as support
vector machine or random forest, to determine whether the
match is an inlier or not. For example, learning for mismatch
removal (LMR) [15] first embeds neighborhood topology
(such as lengths and angles) of putative matches into descrip-
tors, and then uses labeled descriptors to train a two-class
classifier and applies the trained classifier to separate inliers
and outliers. While LMR has a small receptive field and
cannot mine global geometric information which is vital for
mismatching removal of clustered matching points.

Recently, deep learning [16] is flourishing in computer
vision field and has made dramatic progress in seman-
tic segmentation [17], object recognition [18] and image

classification [19]. If coordinates of two matched points are
concatenated together to form a four-dimensional point, all
matched points will form a set of four-dimensional point
clouds, thus a semantic point cloud segmentation algorithm
(such as PointNet [20]) can be applied in solving the mis-
matching removal problem. Learning to find good correspon-
dences (LFGC) [21] network improves PointNet by applying
a context normalization in a convolutional neural network
(CNN) [22] to process each data point independently, and it is
a multi-task learning process that simultaneously minimizes
the classification loss and fundamental matrix regression loss.
Therefore, global and local geometric information can be
imbued in the network, leading to better results than PointNet.

Based on CNNs and graph embedding, graph neural net-
work (GNN) [24] is proposed to extract spatial features
and aggregate information from irregular graph data, and
it shows reliable performance in node classification [42].
Neighbor mining network (NM-Net) [23] adopts a similar
network architecture to LFGC, it mines the structures of sub-
graphs of k nearest compatible neighbors to generate matched
point descriptors. Although the structures only capture local
geometric information, NM-Net can also grasp the global
information because of its multi-layer architecture. Specifi-
cally, initial layers concentrate on local structures, while last
layers can get global information by using an aggregator (e.g.,
mean, sum).

Though deep learning based methods can obtain local and
global information, they process a pair of matched points as
a whole, that is, two coordinates of the matched point pairs
are concatenated together to feed to a network. Whereas the
two matched points in the left and right images are conju-
gated, if they are truly matched, then they will have similar
neighbors; on the contrary, their neighbors are far different.
Thus, geometric information of inner and cross images should
be synchronously included, because intra-image information
can give a precise description of the matched points like
LFGC and NM-Net, meanwhile inter-image information will
improve the distinctiveness of the description.

Therefore, if we consider matching points in the left
and right images as nodes of two graphs, the idea of
embedding both inner and cross image information in node
descriptors can be easily implemented by means of node
embedding paradigm in graph neural network (GNN) [24].
Taking the advantage of graph node embedding paradigm,
such as graph attention (GAT) network [25], graph convo-
lutional network (GCN) [26], Graph sample and aggregate
(GraphSAGE) [27], matching coordinate geometric informa-
tion can be easily embedded into node descriptors. GAT is
one of the best choices because it can aggregate intra-graph
information by self-attention and inter-graph information by
cross-attention [28], and is capable of both parallelizability
and interpretability.

Given the precise node descriptors, the mismatching
removal problem will be converted into a graph node
classification problem [29], and it can be easily solved by
numerous deep learning-based classifiers. Whereas, to the
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best of our knowledge, it is not common to deemmismatching
removal problem as a graph node classification problem, and
embed both intra-graph and inter-graph information into node
descriptors in existing studies.

To solve the mismatching removal problem and explain
how the network works, a coordinate embedding network
(CE-Net) is proposed in this paper. Compared with traditional
methods, the main contributions are in the following four
folds.

(1) We deem mismatching removal problem as a node
classification problem, and use GAT to embed geometric
information of matched points (Section II). Experiments
(Section III.B) and applications (Section III.C) show the
proposed method (CE-Net) outperforms the state-of-the-art
methods such as RANSAC, LPM,GMS, PointNet, LFGC and
NM-Net in terms of precision, recall, and positional accuracy.

(2) To improve the distinctiveness of the node descriptors,
we use cross-attention as a supplement for self-attention in
producing node descriptors (Section II.C), and ultimately
improve the recall of inliers and outliers.

(3) We give a concise explanation of GAT (Section II.C)
and visualize the process of how CE-Net takes effect
(Section III.B).

(4) The proposed CE-Net can be regarded as a gener-
alization of local deformation consistency based method
(e.g., GMS and LPM), and CE-Net can generate exact node
descriptors by aggregating geometric information of ‘‘good
neighbors’’ and ignoring that of ‘‘bad neighbors.’’

II. METHOD
Given a matching point set M = {mi = (xi, yi, xi′ , yi′ )|1 <=
i <= n}, where ci(xi, yi) and ci′ (xi′ , yi′ ) are located in the

left image and right image respectively. The mismatching
removal problem is to find a classifierC to divide the point set
M into an inlier set R and an outlier set S with the constraints
R∩S = ∅ and R∪S = M . If we considermi as a graph node,
then the mismatching problem turns into a node classification
problem and it can be solved by a deep learning algorithm
without any strain.

As a necessary process in GNN-based node classification
algorithms, node embedding plays a vital role in differentiat-
ing one node from another [30]. Especially in mismatching
removal problem, we want to learn a descriptor for every
node which comprises geometric invariance by aggregating
intra-graph and inter-graph geometric information. As the
flow chart shows in Fig. 1, if we want to know whether c5
and c5′ is a matching outlier or not, we should first con-
struct two graphs whose nodes represent the putative point
correspondences, then utilize GAT to embed their neighbor
geometric information from intra-graph and inter-graph into
node descriptors for node 5 and 5′. Once the learned node
descriptors are obtained, a certain classifier can be used to
divide thematching point setM into two subsets (i.e., an inlier
set and an outlier set), and consequently the mismatching
removal problem is solved.

In section II, we detailedly explain how to use attention
mechanism to embed geometric information of matched
points. Section II are organized as follows: 1. Network
architecture of CE-Net is shown (Section II.A); 2. The
node embedding paradigm is introduced (Section II.B);
3. We describe coordinate embedding in detail (Section II.C),
namely using self-attention and cross-attention to embed
intra-graph and inter-graph information of point coordi-
nates into node descriptors, Section II.C includes 1) MLP

FIGURE 1. Workflow of our proposed method (CE-Net). IL and IR are the left and right images; ci and ci ′ is a matched point pair;
GL and GR are two complete graphs constructed by the matched points located in the left and right images; i and i ′ are the graph
nodes; hi and hi ′ represent node descriptors; αj→i is the directed edge weight of edge j → i ; GI is the induced graph; and GC is the
node-classified graph.
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FIGURE 2. Network architecture of CE-Net, followed by a binary classifier
using in mismatching removal. The input of the network is labeled point
pairs, and the output is the predicated labels.

layer, 2) self-attention layer, 3) multi-head attention,
4) cross-attention layer, 5) attention in batched graphs;
4. A node classifier is used to separate graph nodes (Section
II.D); 5. Loss function is presented (Section II.E).

A. NETWORK ARCHITECTURE
As shown in Fig. 2, the proposed network is composed of
two main parts: (1) a matching point coordinate embedding
net that gives every graph node a descriptor, and (2) a node
classification net that outputs a predication of the graph
nodes indicating inliers and outliers. In the following section,
we will firstly introduce the concept of graph node embed-
ding, then present a detailed description of coordinate embed-
ding, namely how to use attention mechanism to embed point
coordinates into node descriptors, and finally how to use a
binary classifier to separate graph nodes.

B. NODE EMBEDDING
The node embedding paradigm in GNN can be defined as
an iteratively updating step (t + 1) for the computation of
node-wise descriptor and edge-wise weight [31]:

α
(t+1)
j→i = φ(h

(t)
i , h

(t)
j , α

(t)
j→i) (1)

h(t+1)i = ψ(h(t)i , ρ(α
(t+1)
j→i )) (2)

where i is the destination node, j is a neighboring node of i;
αj→i is the directed edge weight of edge j→ i; hi and hj are

the descriptors of node i and j; φ is an information aggrega-
tion function defined on each edge to generate a weight by
combining the initial edge weight with the descriptors of its
incident nodes; ψ is an update function defined on each node
to update the node descriptor by aggregating its incoming
edge weight using the reduce function ρ (namely aggrega-
tor). For the information aggregation function φ, some deep
GNNs, such as GAT, GCN, GraphSAGE, are the commonly
chosen; for reduce function ρ, mean and summation functions
are among the chosen list; and update function ψ is usually a
weighted summation function.

C. COORDINATE EMBEDDING
The point coordinates are 2D vectors that can be viewed
as projections from higher vector space. Since projecting
to lower vector space may lose the expressivity, we aim to
learn the back-projective matrices which can recover the 2D
vectors’ geometric information in a way of back-projecting
these vectors to a higher dimensional space. That is to
say, by using these learned back-projective matrices we
can embed coordinate geometric information into higher
dimensional vectors. The proposed coordinate embedding
algorithm follows the node embedding paradigm, mean-
while, it considers the characteristics of imagematching point
coordinates. That is, matched points have similar neighbors
while neighbors of unmatched points are far different. Thus,
on the one hand, we learn node descriptors containing the
intra-graph coordinate information of node neighbors and
these descriptors determine whether a matched point pair is
an inlier or not; on the other hand, we embed inter-graph
coordinate information into the descriptors to improve
the distinctiveness, which can be easily separated by a
classifier.

Technologically, we use self-attention and cross-attention
to embed intra-graph and inter-graph coordinate information
respectively. Here attention mechanism [28] performs as a
double check for inliers and outliers, therefore it increases
the accuracy and recall of the proposed CE-Net. Specifically,
the attention, which depends on the learnable parameters,
can effectively prevent the generated node descriptors from
being contaminated by outliers. In the following section,
we concentrate on attention mechanism and give a detailed
explanation of the network architecture (shown in Fig. 2).

1) MULTILAYER PERCEPTRON (MLP) LAYER
The initial matched points are in R2 space, to improve their
expressivity, MLP layers are applied to expand the matched
points to Rd space [32].

2) SELF-ATTENTION LAYER
Let hi be the descriptor of node i in GL , WH be a learn-
able matrix, and qi = WHhi, K = [k1 k2 . . . kj] =
WH [h1 h2 . . . hj], where h1 h2 . . . hj are the node descriptors
of i’s neighbors (note: node i is also one of i’s neighbors) in
GL . Then we can use self-attention mechanism to generate
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directed edge weights [25], [28]:

α j→i
j∈Ni
= softmax

(
qTi K
√
d

)
= softmax

[
qTi k1
√
d

. . .
qTi kj
√
d

]
(3)

where Ni is the neighboring node set of node i, α j→i
j∈Ni

are the

directed edge weights (from i’s neighbors to i),
√
d is the scal-

ing factor and d is the dimension of hi. Finally, we can use the
directed edge weights and the neighboring node descriptors
to generate an updated descriptor of node i [25], [28]:

hi =
∑

α j→i
j∈Ni

qj =
∑

α j→i
j∈Ni

WHhj (4)

Here we can give a concise explanation of the directed
edge weight αj→i. From Equation (3), we can get α j→i

j∈Ni
=

softmaxj (qTi kj/
√
d) (note qi = WHhi, kj = WHhj), that is

to say, αj→i measures the ‘‘correlation’’ of node i and j in a
WH projected linear space which is originally spanned by hi
and hj. The ‘‘correlation’’ can also be expressed as ‘‘attention
that node i gets from node j,’’ and how much attention there
depends on the learnable parameter WH which is essentially
determined by the learning task. It is the learned ‘‘attention’’
that determines how to get useful information from ‘‘good
neighbors’’ and get rid of noise from ‘‘bad neighbors.’’

To make self-attention focus on as many parts of the graph
as possible, the proposed CE-Net is built on an 8-layer graph
attention network, and to prevent from gradient vanishing, the
network backbone is a residual connection network (shown
in Fig. 2).

3) MULTI-HEAD ATTENTION
Analogous to the convolution channels in CNN, multi-head
attention is also applied in the CE-Net. Multi-head attention
allows the network to jointly attend to information from
different representation subspaces at different positions [28],
namely, multi-head attention can learn more information
from point coordinates because different heads can learn dif-
ferent geometric invariance (e.g., distance invariance, angel
invariance, and so on). As illustrated by Fig. 3, there is
a multi-head attention with 3 heads by node 5 on its five
neighbors (node 5 is its own neighbor), and we can take one
head t as an example to deduce how multi-attention takes
effect.

Let W t
H be the learnable matrix corresponding to head t ,

then node descriptor hi will be transformed into a new space
by a linear projection ofW t

H :

qti = W t
Hhi (5)

Similar to the single head attention described in
Equation (3), we can obtain an attention (i.e., directed edge
weight) in head t from node j to i:

αtj→i
j∈Ni

= softmaxj

[
(qti )

T k tj
√
d

]
(6)

FIGURE 3. An illustration of multi-head attention, different arrow colors
denote independent attention computational heads.

Aggregating neighboring information of node i, we can get
head t attention:

hti =
∑

αtj→i
j∈Ni

qtj =
∑

αtj→i
j∈Ni

W t
Hhj (7)

Concatenating all heads attention results in the final
embedding of point coordinates [25]:

hi =
T
||
t=1

hti (8)

where || denotes vector concatenation in a column order.
It can be easily verified that if the input dimension of node
descriptor is d , and the number of attention heads is T ,
then the output dimension of multi-head attention is d × T .
Specially, if we want the output dimension to be d ′, then some
additional layers, such as MLP, should be used to project the
node descriptors to Rd ′ space [32].

4) CROSS-ATTENTION LAYER
The matching nodes of the two graphs are constructed by
matching points in the image pair, thus the two matched
nodes are conjugated and their neighbors have similar
geometric distribution. Inter-graph attention, namely cross-
attention, can be applied for gathering geometric information
across two graphs. Analogous to multi-head self-attention
aggregating intra-graph coordinate information (shown in
Equation (7)), a multi-head cross-attention (as illustrated in
Fig. 4) can generate a node descriptor by gathering the neigh-
boring node descriptors:

hti =
∑

αtj′→i
j′∈Ni′

W t
Hhj′ (9)

where i′ is the matched node of i located in graph GR; Ni′ is
the neighboring nodes of i′ in graphGR; j′ is one of neighbors
of i′; αtj′→i is the cross-attention (i.e., directed edge weight)

in head t from node j′ to i.
Then, concatenating all the descriptors by Equation (8)

generates final result. CE-Net alternately uses cross-attention
and self-attention, thus giving an accurate and distinctive
description of nodes both in graph GL and GR.
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FIGURE 4. An illustration of multi-head cross-attention (3 heads) by
node 5 on the neighbors of its matched node 5′ .

5) ATTENTION IN BATCHED GRAPHS
Equation (8) gives the computing of a single node descriptor
hi by multi-head attentions, and it can be seen clearly that hi
is a d × T matrix. If a graph has n nodes, then stacking n node
descriptors obtains a d × T × n tensor. If we batch B graphs
together in training, the output ofmulti-head attention is aB×
d × T × n tensor. The detailed process can be illustrated in
Algorithm 1, using Python syntax and PyTorch deep learning
library.

Algorithm 1 Coordinate Embedding by Using GAT
Input: CL , CR (CL and CR are coordinates of matched
points in the left and right image, respectively), Ls
(sequences of attention layer notations)
Output: updated node descriptors of GL and GR
def attention (Q, K , H ):
s = torch.einsum (‘BdTn, BdTn->BTnn,’ Q, K )/d∗∗.5
alpha = torch.nn.functional.softmax (s) # alpha is B ×
d × T × n since the graph is complete and the head number
is T
return torch.einsum (‘BTnn, BdTn->BdTn,’ alpha, H )
HL , HR = torch.nn.Linear (CL), torch.nn.Linear (CR) #
using MLP to improve the expressivity
for L in Ls:
if L == ‘cross’:
S0, S1 = HR, HL
if L == ‘self’:
S0, S1 = HL , HR
d0, d1 = attention (HL , S0, S0), attention (HR, S1, S1)
d0, d1 = torch.nn.Linear (d0), torch.nn.Linear (d1)
HL , HR = (S0 + d0), (d1 + S1)
return HL , HR

D. NODE CLASSIFIER
CE-Net gives an accurate description of nodes in the two
graphs, while before a classifier is applied in node classifica-
tion, the two graphs should be fused into one graph. As shown
in Fig. 1, we induce a graph GI with an identical structure to
GL andGR [2], and its node descriptors are the concatenation
of the matched node descriptors. Formally, if i and i′ are a pair
ofmatched graph nodes coming fromGL andGR respectively,
then the two matched nodes induce a node I of GI , and node

I has a descriptor of ‖(hi, hi′ ) . If i and j are connected in
GL (i′ and j′ are connected in GR), I and J are connected in
GI . Once the induced graph is constructed, we use a binary
node classifier to classify the graph nodes, i.e., partition the
nodes into two sets, with one only containing outliers and
another only containing inliers. The architecture of the binary
classifier is as below.

FIGURE 5. The architecture of the binary classifier. IN and BN are short
for instance normalization [33] and batch normalization [34] respectively,
ReLU is rectified linear unit [35].

By using the binary classifier shown in Fig. 5, every node
descriptor is reduced to a number: if a number is smaller than
0, then its corresponding node which represents a putative
point correspondence indicates an outlier, otherwise, it indi-
cates an inlier.

E. LOSS FUNCTION
The proposed network is trained in a supervised manner,
and binary cross-entropy loss function is used to calculate
the deviation between output predication of node mi and the
ground truth label li [41]:

L(ω) =
1
n

n∑
i=1

piE(li,F(mi, ω)) (10)

where ω is the learnable parameters; pi is an adaptive weight
to balance the number of inliers and outliers; F is the pro-
posed network, and F(mi, ω) outputs the predication of mi;
E is a binary cross entropy function. As is shown next, the
simple while effective way can achieve even better results.

III. EXPERIMENTS
To demonstrate the effectiveness of CE-Net, we firstly
implement the algorithm through PyTorch deep learning
library [36], and then train and test the network in a sim-
ulated matching point set. Finally, we apply CE-Net and
learned parameters in practical mismatching removal tasks,
and give comparison results of the current state-of-the-art
methods such as RANSAC, LMP, GMS, LFGC, NM-Net and
PointNet.

A. LEARNING DATA
The learning data is derived from aerial triangulation tasks.
The points are first extracted and matched by SIFT [1],
and then these matched points are used to compute external
orientation elements of images by a least square method.
To guarantee all the matched points are inliers, these matched
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point pairs are filtered by a back projection threshold (0.25
pixel) using external orientation elements. We view these
inliers as a part of the learning dataset, and simulate out-
liers by considering geometric distribution pattern of outliers
which arise from feature-based matching.

In the feature-based matching results, most matching out-
liers lie near clusters of matching points. Clustered matching
points mean poor image textures, and the matching results
are prone to be contaminated by noise, discontinuity and
occlusion [3]. To simulate the actual situation as much as
possible, we first randomly choose a number (0.35-0.60) as
the outlier rate, and then divide outliers into two categories,
one near the matching point clusters (clustered outliers for
short), and another uniformly distributed (uniform outliers for
short).

Algorithm 2 Simulating Training Data (Python Style)
Input: a pair of error free matched point set PL and PR,
image area IA
Output: training data sets CL and CR
CL , CR = PL , PR
n = length (PL) # number of matching point pairs
n_to = random (0.35, 0.60) ∗ n # number of total outliers
n_co = random (0.60, 0.75) ∗ n_to # number of clustered
outliers
n_uo = n_to - n_co # number of uniform outliers
k = random (15, 30) # number of clusters to be partitioned
Cs = Kmeans (PL , k) # clusters partitioned by K-means
algorithm
CS , AS = filter (Cs, 0.02 ∗ IA) # filtering clusters with
a threshold of MCC area of 0.02 ∗ IA, and returning the
filtered clusters and their corresponding MCC areas
TA = sum (AS ) # summation of the MCC areas
for c_l, a in zip (Cs, AS ):
s_n = (a/TA) ∗ n_co # number of simulated outliers

determined by MCC area
c1 = gen_uni_outliers (s_n, c_l) # generating uniform
outliers within MCC of c_l
c_r = get_matched_points (c_l, PR) # getting matched

cluster of c_l in PR
c2 = gen_uni_outliers (s_n, c_r) # generating uniform
outliers within MCC of c_r
CL .append (c1)
CR.append (c2)
c1, c2 = gen_uni_outliers (n_uo, PL), gen_uni_outliers
(n_uo, PR)
CL .append (c1)
CR.append (c2)

To add clustered outliers, we first randomly choose a num-
ber as the rate of clustered outliers (0.60-0.75), and then use
the K-means algorithm [37] to detect 15-30 matching clusters
(the number of matching clusters is also randomly chosen).
For every matching cluster, we calculate its minimum
circumscribed circle (abbreviate to MCC) and the circle’s

area, if the area is smaller than 1/50 of the image area, we add
evenly distributed outliers within the circle (the number of
outliers is proportional to the area of the circle).

For the uniform outliers, we simply add outliers uniformly
distributed within the image pairs. The simulating algorithm
is presented in Algorithm 2.

To enhance the generalization ability of neural networks
and avoid overfitting, we collect aerial image matching
results of 38 surveying areas, more than 40 thousand
stereo images and about 8 million matching points. These
images are captured at different angles, and contain common
topographies such as mountains, hills, buildings, rivers, farm-
lands and so on (details are shown in Table 1). Then the learn-
ing dataset is shuffled and divided into three irrelevant groups
(the division ratio is 8:1:1), that is, training dataset, validating
dataset and testing dataset. We use training dataset to train the
learnable parameters of the network, use validating dataset
to adjust hyper parameters such as the choice of optimizer,
learning rate, training batch size, and so on, and use the testing
dataset to verify the effectiveness of the proposed CE-Net.

TABLE 1. Learning dataset classification.

B. TRAINING AND TESTING
For training parameters of the proposed CE-Net, the training
optimizer is Adam [38], the learning scheduler is a cosine
annealing schedule. In the cosine annealing schedule, the
initial learning rate is 0.001, the warm restart period is 60,
and the minimum learning rate is set to 10−5. The training
batch size is set to be 32, and the training epoch is 60. The
head number of the attention is 2, and the number of GAT
layers is 4, and parameter d used in MLP layer is 64. At the
final epoch of the training, the learned model is saved. Then,
the model is loaded in the network and tested in the testing
dataset. For the compared algorithms, the parameters settings
are shown in Table 2.

We adopt three commonly used criteria to verify the effec-
tiveness of the proposed method:

p = cp/n
ri = ci/ni
ro = co/no (11)
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TABLE 2. Details of the comparison method settings.

where p is the precision, cp is the number of correct pred-
ications of inliers and outliers (note: if the label of a point
pair is an inlier, and the predication output is greater than 0,
then we count this predication as a correct one. Likewise,
if the output predication of an outlier is less than 0, then the
predication is also a correct one), n is the number of total
point pairs; ri is the recall of the inlier, ci is the number
of correct predications of inliers, ni is the number of total
inliers; ro is the recall of outliers, co is the number of correct
predications of outliers and no is the number of total outliers.
Precision is used to evaluate the overall effectiveness, ri
and ro are used to evaluate the recalling ability of inliers
and outliers, respectively. The comparison results are listed
in Table 3.

As shown in Table 3, apart from RANSAC, deep learning-
based methods generally outperform hand-crafted methods,
and our proposed CE-Net ranks the first in all the three
criteria.

RANSAC utilizes random sampling technology to gener-
ate the minimal samples and find the maximal consensus, and
the epipolar constraint computed by RANSAC is a univer-
sal geometric constraint in two view geometry of a pinhole
camera. Thus, RANSAC can distinguish most of the true
correspondences from false ones and obtain the precision
higher than 92%, inlier recall higher than 96% and outlier
recall higher than 90%.

Both LPM and GMS basically belong to neighbor-
supported methods, LPM finds neighbors by Euclidean dis-
tance while GMS by a predefined grid. Therefore, the two
methods have similar results in precision (about 0.62) but
different performances in inlier recall and outlier recall. GMS
may confront with classification problem when processing
images captured at different angles, as matched points some-
times are not in a same grid and cannot give supports to their
neighbors, resulting in a lower inlier recall than LPM (about
0.38, the worst result among the compared methods). More-
over, LMPhas the problem in differentiatingmismatcheswith
small displacements, leading to a lower outlier recall (about
0.42, the worst outlier recall in the experiments).

TABLE 3. Comparison results of CE-Net and RANSAC, LMP, GMS,
PointNet, LFGC and NM-Net (the best result in each column is shown in
green, and the worst in red).

LFGC performs better than NM-Net though these two
methods are both derived from PointNet (LFGC is about
1% higher than NM-Net in precision and inlier recall, and
they are equal in outlier recall). LFGC tries to find the
optimal parameters by minimizing both binary classification
error and regression error of fundamental matrix, and it is a
multi-task learning scheme. As fundamental matrix is suit-
able for describing geometric relationship of matched points
of aerial images, LFGC has better performances. NM-Net
has slightly worse results than LFGC though it applies some
new measures to overcome the drawbacks of Point-Net, such
as mining geometric information of neighboring points, and
using a series of residual connected convolution layers to
expand its receptive field.

Next, we randomly choose an image pair from the test-
ing dataset, and visualize self-attention and cross-attention
weights in several selected layers of CE-Net. As shown in
Fig. 6, the opacity of edges between matching points is
directly proportional to the self-attention edge weight αtj→i
in Equation (6) and the cross-attention edge weight αtj′→i in
in Equation (9).

CE-Net achieves the best results among all the compared
algorithms (1% higher in precision and approximately 2%
higher in inlier recall than that of LFGC) for the usage
of multi-head attention in embedding point coordinates.
Through observation of the visualization of attention pat-
terns across layers (Fig. 6), we can find the reasons of these
improvements as follows: (1) Attention mechanism tries to
aggregate geometric information of ‘‘good neighbors,’’ which
can get rid of adverse impacts of ‘‘bad neighbors.’’ As it
can be seen from Fig. 6, regardless of a checked point is an
inlier or not, most of its connected neighbors are in green
color. This means most of its attentive neighbors are inliers,
thus the generated descriptors avoid being contaminated by
irrelevant outliers. Since attention mechanism is governed by
the learnable projection matrices, these matrices can project
descriptors of inliers to a vector space which leads to a
highly similarity of a vector. On the contrary, descriptors
of outliers are randomly distributed and cannot be aligned
by any projection matrix. (2) Cross-attention enhances the
expression of self-attention. As shown in Fig. 6, self-attention
gets information within images, meanwhile, cross-attention
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FIGURE 6. Visualization of attention patterns across layers. For an image pair randomly chosen from the testing dataset, we mark all the
outliers with red dots and all inliers with green dots. We check the attention of four pairs of matched points (two are outliers marked
with big red circles and others are inliers marked with big green circles) located in left and right images respectively. We visualize
self-attention (within images) and cross-attention (cross images) weights of the selected layers, varying the edge opacity with αt

j→i and

αt
j ′→i . (a)∼(d) indicate Layer0(Self-attention), Layer1(Cross-attention), Layer6(Self-attention) and Layer7(Cross-attention), respectively.

obtains information across images and improves the distinc-
tiveness of the node descriptors, which increases the outlier
recall. (3) Different heads focus on different parts of images
and form different geometric invariance, improving the

performance of the proposed CE-Net. Taking self-attention of
layer 0 as an example, head 0 looks at the left direction while
head 1 look at the upper direction, and other heads also have
this similar characteristic. (4) The attention initially attends
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FIGURE 6. (Continued.) Visualization of attention patterns across layers. For an image pair randomly chosen from the testing dataset,
we mark all the outliers with red dots and all inliers with green dots. We check the attention of four pairs of matched points (two are
outliers marked with big red circles and others are inliers marked with big green circles) located in left and right images respectively.
We visualize self-attention (within images) and cross-attention (cross images) weights of the selected layers, varying the edge opacity
with αt

j→i and αt
j ′→i . (a)∼(d) indicate Layer0(Self-attention), Layer1(Cross-attention), Layer6(Self-attention) and

Layer7(Cross-attention), respectively.

numerous points all over the image (as seen in self-attention
of layer 0 and cross-attention in layer1), and gradually
focuses on specific neighbors (as seen in self-attention of
layer 6 and cross-attention in layer 7). This progressive pro-
cess enables node descriptors to contain geometric infor-
mation from coarse to fine, improving the precision of the
mismatching removal. In conclusion, all these four aspects
contribute to the improvements of CE-Net.

C. APPLICATIONS
We apply our proposed CE-Net algorithm in real mismatch-
ing removal tasks, the following is a demonstration of the
detection results of one image pair.

Fig. 7 shows mismatching removal results of a randomly
chosen pair of oblique images in one of our aerial photo-
metric tasks. SIFT keypoints are first extracted in the image
pairs, then these keypoints are matched by nearest neigh-
bor searching without the distance ratio test [1]. As shown
in Fig. 7, among these compared algorithms, the proposed
method achieves precision of 0.960 (192/200), inlier recall
of 0.920 (81/88), and outlier recall of 0.991 (111/112), which
is similar to the results shown in testing dataset.

We also select aerial imagematching results of four survey-
ing areas as the real task dataset. As shown in Table 4, to make
the dataset more representative, we choose aerial images that

TABLE 4. Details of the real task dataset.

include two main collecting way of images (i.e., oblique and
vertical), and four main contents (i.e., hills, farmlands, lake
and urban buildings). The images are matched with SIFT
algorithm without taking any mismatching removal measures
apart from ratio test. There are more than 6,300 pairs of
images and more than one million pairs of points in the real
task dataset, and it is sufficient for evaluating the comparison
methods.

To demonstrate the effectiveness of the proposed CE-Net,
we compare our method to RANSAC, LPM, LFGC, NM-Net.
GMS and PointNet are not included, for there are no enough
point pairs in about 10% of the filtered results to conduct
the subsequent comparisons. For the filteredmatching results,
we compute their dispersion, point pairs numbers, and posi-
tional accuracy in every image pair. Dispersion is estimated
as in [39] and the lower, the better. Positional accuracy is the
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FIGURE 7. Demonstration of mismatching removal results. The matched point pairs linked by green lines are inliers, and point pairs
linked by red lines are outliers. (a)∼(h) indicate Ground truth, RANSAC, LPM, GMS, PointNet, LFGC, NM-Net and CE-Net, respectively.

maximal epipolar distance [7] and computed as follows: first,
we calculate a fundamental matrix by eight-point method [7];
then, we use the matrix to compute the epipolar distances
of the matched points in the left and right images; finally,
we adopt the maximal distances as the positional accuracy.
We use boxplots to show the reliability and stability of these
methods, and results are shown in Fig. 8.

It can be seen clearly that our proposed CE-Net and
RANSAC dominate the mean positional accuracy (MPA),
and all these methods output approximately equal dispersion
and number of remaining point pairs. Specifically, CE-Net
has the best MPA qualified with competitive dispersion and

number of remaining point pairs in the first two experiments.
As can be seen from Fig. 8(a) and 8(b), the MPA of CE-Net is
0.36 pixel and 0.38 pixel in the first two experiments respec-
tively (note: the average pixel size of the experimental images
is 0.005 millimeter), and the short interquartile range of the
boxplot shows a small accuracy variation, which indicates the
stability of the proposed CE-Net. In the last two experiments
RANSAC performs slightly better than CE-Net. The reason
is that there is a small number of matching point pairs in the
third experimental images (main contents are lake), and these
matched points are clustered in lake islands. Our proposed
learning-based method therefore cannot aggregate sufficient
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FIGURE 8. Performance of the mismatching removal algorithms in terms of positional accuracy, dispersion and number of remaining points.
The left-most figure in every row shows positional accuracy, the middle shows dispersion, and the right-most shows number of remaining point
pairs. The numbers in green are mean values of the corresponding items. The results are (a) BA, (b) MSC, (c) RIVER and (d) OBL_45.

geometric information to produce precise node descriptors,
which leads to a slightly lower performance compared to
RANSAC. Besides, the overall matching precision of SIFT

is higher than 0.75 [40] in typical image pairs, which is very
suitable for processing by RANSAC. In addition, the images
used in the fourth experiment are oblique images, whereas,
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most of the training point pairs are vertical images, which has
a slightly negative influence on the generalization of CE-Net.
Overall, the proposed method is still reliable as MPA of SIFT
is about 0.5 pixel [40] and CE-Net promotes theMPA to about
0.2 pixel (0.001 millimeter).

D. ABLATION EXPERIMENTS
To clarify the performance of self-attention and cross-
attention in mismatching removal, we use a self-attention-
only network and a cross-attention-only network. In the
coordinate embedding network (CE-Net), the two networks
are modified by replacing the cross-attention layer with
self-attention layer and replacing self-attention layer with
cross-attention layer, respectively. And the two networks are
tested by the same datasets in Section III.A and the same
setups in Section III.B, the experimental results are listed
below:

TABLE 5. Comparisons of different attention networks (the best result in
each column is shown in green, and the worst in red).

It can be seen clearly that the alternate use of self-attention
and cross-attention (i.e., our proposed CE-Net) obtains the
best results. The self-attention-only network has the worst
outlier recall, and the cross-attention-only network has the
worst precision and inlier recall. The comparison results are
in accord with the conclusions drawn in Section II.C, that
is, the self-attention aggregates intra-graph information to
determine whether a matched point pair is an inlier or not (as
shown in Table 5, the self-attention-only network has a better
inlier recall); the cross-attention aggregates inter-graph infor-
mation to improve the distinctiveness of node descriptors,
thus nodes can be more easily separated into inlier and outlier
by a classifier, which increases the outlier recall (as shown in
Table 5, the cross-attention-only network has a better outlier
recall).

To examine the influence of diversity and amount of the
training data on the performance of the proposed method,
we collect a bigger training dataset, this dataset has more
than 63,000 image pairs (i.e., about double amount of the
original training dataset in Section III.A). Because almost
all the image pairs rise from vertical photogrammetry, and
the main contents are farmlands and hills, thus diversity
of the dataset does not increase. By following the testing
setups of Section III.B and using the same testing dataset in
Section III.A, the result is as follows:

We also apply the newly trained network in real mismatch-
ing removal tasks of Section III.C, and the following is the
result of positional accuracy:

It can be seen from Table 6 and Fig. 9 that more training
data can really improve the overall precision and recalls of

TABLE 6. Experimental result of CE-Net with the new training dataset
and the same testing dataset.

FIGURE 9. Comparisons of positional accuracy in real tasks.

CE-Net, and the training dataset diversity also has enormous
influence on the performance. The new dataset contains more
vertical images of hills and farmlands, therefore the positional
accuracies of BA and MSC are further improved; while for
RIVER andOBL_45, because of additional training data con-
taining fewer lake images and oblique images, their positional
accuracies have limited improvement.

IV. CONCLUSION
We have presented a deep learning based method for mis-
matching point pair removal. The method converts the mis-
matching problem into a node classification problem, and
encodes both intra-graph and inter-graph information into
node descriptors based on node embedding paradigm. Owing
to self-attention and cross-attention used in the process of
node embedding, the proposedmethod (CE-Net) outperforms
RANSAC, LPM, GMS, PointNet, LFGC, NM-Net in pre-
cision, outlier recall, and inlier recall in the testing dataset.
Furthermore, it also yields a better performance than the
compared methods in real task dataset in terms of positional
accuracy, dispersion, and number of remaining point pairs.

Since our method is a data-driven method, its performance
is limited by the diversity and amount of the training data.
Our training dataset is not perfectly balanced as the number
of vertical images is about four times more than that of
oblique images, which results in a small defect in mismatch-
ing removal of oblique images. In addition, attention-based
networks sometimes have many layers that require a time
and memory-consuming training. In the future, we will focus
on collecting a more balanced dataset and training a shallow
network without weakening the effectiveness.
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