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ABSTRACT In recent decades, surveillance and home security systems based on video analysis have been
proposed for the automatic detection of abnormal situations. Nevertheless, in several real applications, it may
be easier to detect a given event from audio information, and the use of audio surveillance systems can greatly
improve the robustness and reliability of event detection. In this paper, a novel system for the detection
of polyphonic urban noise is proposed for on-campus audio surveillance. The system aggregates different
acoustic features to improve the classification accuracy of urban noise. A combination model composed
of a capsule neural network (CapsNet) and recurrent neural network (RNN) is employed as the classifier.
CapsNet overcomes some limitations of convolutional neural networks (CNNs), such as the loss of position
information aftermax-pooling, and the RNNmainlymodels the temporal dependency of context information.
The combination of these networks further improves the accuracy and robustness of polyphonic sound
events detection. Moreover, a monitoring platform is designed to visualize noise maps and acoustic event
information. The deployment architecture of the system is used in real environments, and experiments were
also conducted on two public datasets. The results demonstrate that the proposed method is superior to
existing state-of-art methods for the polyphonic sound event detection task.

INDEX TERMS Deep learning, polyphonic sound event detection, feature aggregation, monitoring platform.

I. INTRODUCTION
In real environments, visual information is generally not suf-
ficient to reliably convey what occurs in a city, for example,
a car horn in a no-honking area that is undetectable from
video streams can be detected by audio analysis systems. Fur-
thermore, abnormal events can occur at night and out of the
camera’s line of sight. In contrast, surveillance systems devel-
oped on the basis of audio analysis are not affected by changes
in lighting and they do not have blind spots. By using only
one mono microphone and one camera to integrate visual and
audio data into the scene analysis, automatic surveillance sys-
tems’ detection ability can be enhanced [1]. In recent years,
urban environment sound detection has attracted increasingly
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more attention, and has been applied to various devices,
such as audio surveillance devices [2], healthcare monitoring
devices [3], [4], urban sound analytics devices [5], and smart
home devices [6].

Although audio surveillance is critical for the detection
of urban noise in real environments, there remain numerous
problems of anomalous sound detection. One of the main
issues is that sound events are usually generated by over-
lapping and mixing a lot of diverse sources, in many cases,
multiple audio events may occur simultaneously, therefore it
is difficult to generate pure training data. Moreover, it is very
difficult to expand the number of sound categories. Further-
more, abnormal sounds will be superimposed on great levels
of background noise, in some cases, occurring far away from
the microphone, leading to very low signal-to-noise ratios
(SNRs). Urban noise detection is an important component of
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audio surveillance systems. Therefore, the focus of this article
is to detect noise on a university campus, in terms of screams,
car horns, glass breaking and firecrackers, on a university
campus.

In recent decades, substantial efforts have been devoted to
dealing with audio streams for applications including speech
recognition [7], [8] and intelligent transportation [4], [9],
[10]. The detection performancemainly depends on the use of
features and classifiers, and the main features include percep-
tual linear predictive (PLP), linear predictive coding (LPC),
log-mel spectrograms, and mel-frequency cepstral coeffi-
cients (MFCCs). In addition to the appropriate features, a sat-
isfactory classifier plays an essential role in detecting sound
events. Ordinary classifiers include non-negative matrix fac-
torization (NMF) [11], support vector machines (SVMs) [12],
Gaussian mixture models (GMMs) [13], multi-layer percep-
trons (MLPs) [14], hiddenMarkov models (HMMs) [15], etc.
The modeling ability of these traditional classification algo-
rithms is poor for complex signals, and they can only achieve
good performance on monophonic sound events. In a real
environment, due to the mixing of multiple sound sources,
sound events may occur simultaneously with partial or total
overlap. Moreover, abundant environmental noise also exists
for sound events which worsens the performance of the tra-
ditional classification models. Recent research shows that
classifiers established based on deep learning algorithms are
more effective as compared with traditional classifiers. Con-
volutional neural networks (CNNs) are one of the outstanding
deep neural network structures, in [16] a CNN was used as a
classifier, which has the ability to learn both time and fre-
quency invariances by directly processing multi-dimensional
information via global sharing. Even in a noisy environ-
ment with SNR = 0 dB, the recognition accuracy of mono-
phonic sound event detection by the proposed method still
reached 97.4% as compared with the HMM and SVM mod-
els, the accuracy of which was only 50%. However, CNNs are
characterized by difficulties in the modeling of continuous
audio streams because there is a max-pooling layer behind
each convolution layer, which leads to the loss of position
information after max-pooling. Recurrent neural networks
(RNNs) [17] achieve improved performance via the inte-
gration of historical information. In previous research [18],
by combining the advantages of both CNNs and RNNs, good
polyphonic sound event detection performance was achieved.
In this method, a CNN is used to extract low-level features
and compress the frequency axis, while an RNN enhances
partial and whole relationships by learning long-term context
information. Their combination greatly improves the perfor-
mance of lasting sound event detection. In another previous
study [19], the capsule neural network (CapsNet) architecture
was used to detect polyphonic sound events and achieved
good performance on DCASE datasets as compared with
the state-of-the-art algorithms. CapsNet can overcome some
limitations of CNNs, such as the loss of position information
after max-pooling.

In this article, a new method, namely the combination of
Capsule and RNN, CapsNet-RNN, is proposed. The capsule
network contains two parts, namely a convolution layer and
a capsule layer. The capsule layer can overcome the loss of
position information after max-pooling, and the convolution
layer is used to learn local information. Finally, the RNN
models the temporal dependency of context information.
Further, to apply the proposed model to real environments,
this article proposes a system that uses sensor nodes to
capture urban noise. The audio signals are then introduced
into the CapsNet-RNN network, which classifies the noise
with a variety of labels, including ‘‘car horn,’’ ‘‘glass break-
ing,’’ ‘‘scream,’’ ‘‘gun_shot,’’ etc. Ultimately, noise maps and
acoustic event information are visualized by the monitoring
platform. The classification model contains two sections,
consisting of feature extraction and classification. The aggre-
gation of multiple frequency features and filter features is
employed in feature extraction, and the proposed combina-
tion of MFCCs and log-mel spectrograms can achieve higher
classification accuracy. The architecture of the classifier con-
tains a convolution layer, a capsule layer [20], and a recurrent
layer. The convolution layer extracts the original information
of acoustic feature aggregation and inputs it into the capsule
layer. The capsule layer learns partial information and makes
appropriate predictions for the final classification. Finally,
the recurrent layer adds context information for the entire
classification process. Fig. 1 presents the framework of the
proposed system.

The main contributions of this research can be summarized
as follows:

(1) A newmodel for polyphonic sound event detection that
combines CapsNet and an RNN is proposed.

(2) The aggregation of different acoustic characteristics is
used as features, and extensive experiments were carried out
on DCASE Challenge datasets.

(3) A novel system that includes 100 sensor nodes was
deployed to monitor the noise and events on a real-life uni-
versity campus.

(4) A monitoring platform is designed to visualize real-
time noise maps and acoustic event information.

The rest of this article is organized as follows. Section II
gives a detailed introduction to the proposed method and its
rationale. In Section III, the hardware and software used in
the proposed system are introduced, and the implementa-
tion steps of the proposed system are described. Section IV
presents the experimental results and discusses the details
of each experiment. Finally, this research is summarized in
Section V.

II. METHODOLOGY
The system this research provided aims to detect audio events
from background sounds, and then to use the classifiers to
classify them intoM categories. There are twomain processes
in the proposed algorithm, namely feature extraction and
polyphonic detection. In the feature extraction process, the
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FIGURE 1. The framework of the proposed system.

FIGURE 2. The process of feature extraction.

audio signal is converted into a time-frequency formwith two
dimensions, such as a feature vector xt ∈ RF×T , whereF rep-
resents the frequency bands and T represents the total frame
length in the feature map. In this article, MFCCs and log-mel
spectrograms are integrated to compose a synthetic feature.
The mel-frequency is proposed on the basis of the character-
istics of human hearing, and it has a nonlinear relationship
with Hz frequency. The combination of MFCCs and log-mel
spectrograms further improves the detection accuracy. The
following sections introduce the processes of the designed
model for audio analysis, and the terms include: (1) the
extraction of MFCCs and log-mel spectrograms, (2) fea-
ture aggregation, and (3) classification. Moreover, a detailed
explanation of CapsNet-RNN is provided.

In actuality, the connection of human hearing with the
frequency of the sound heard is nonlinear. To better research
audio signals, mel-scale filter banks use the linearly-spaced
frequency to imitate the human auditory system. The audio
features extracted by such filter banks can better represent
the sound characteristics. Fig. 2 shows the feature extraction
processes of MFCCs and log-mel spectrograms, and the gen-
eration steps are described in it.

FIGURE 3. MFCC (a) and log-mel spectrogram (b).

FIGURE 4. FML feature sets.

A. FEATURE AGGREGATION
Acoustic characteristics are important factors in classification
tasks, and they affect the performance of environmental audio
event recognition. Different acoustic features can describe
sound signals from different angles. Many experiments have
shown that the effective aggregation of features is able to
improve the classification performance to a large extent. The
log-mel spectrogram is obtained by mel-scale filter banks; it
imitates the human auditory system and describes the global
information of the spectrum of the audio signal and can
visually reveal the differences between sounds. MFCCs are
the result of the cosine transform of the real logarithm of
the short-term energy spectrum expressed on amel-frequency
scale and MFCCs have been proved to proven to have supe-
rior efficient. AnMFCC and log-mel spectrogram are respec-
tively shown in Figs. 3 (a) and 3 (b).
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FIGURE 5. The framework of environmental sound classification.

Lower eigenvectors cannot adequately characterize audio
events for neural network-based classification tasks. The
aggregation of MFCCs and log-mel spectrograms can distin-
guish and supplement the sound signal from the global spec-
trum information, thereby further improving the detection
robustness and reliability in several real applications. LetFML
denote the linear aggregation of features, and via the same
feature extraction method presented in a previous study [16],
all audio streams are converted into 44100 Hz monophonic
wave files and normalized to the range [−1, 1] to ensure the
same dynamic range. The STFT is calculated with a frame
size equal to 40ms and 50% overlap, after with a 40-bandmel
filter bank is performed to compute the mel band energies.
The dimension of FML is T × 60, where T is the number
of frames in a sample, there are 60 frequency bins of input
features, and the image of the combined features is displayed
in Fig. 4.

B. CLASSIFICATION MODEL
This section provides a detailed explanation of the proposed
model, which consists of the following three components. (1)
The convolution layer is used to extract low-level features and
compress the frequency axis via pooling; (2) the capsule layer
is composed of PrimaryCaps and EventCaps. The essence of
PrimaryCaps is a convolutional layer, which is mainly used
to prepare for EventCaps, and the output of EventCaps is a
vector whose size represents the probability of events; (3)
the recurrent layer is employed to study temporal context
data and reckon the likelihood of event activity. Fig. 5 shows
the overview of the proposed model, and the hyperparameter
settings of each layer are exhibited in Table 1.

1) CONVOLUTION LAYERS
TheCNN can directly processmulti-dimensional information
and extract local features. In this study, to extract low-level
features, three convolution layers are employed, and each
layer is followed by a max-pooling layer. On the convolution
layers, there are 256 filters of size 3× 3 with two dimensions,
and the setting of the stride is 1. In addition, a temporal size
of T is maintained by the same-padding technique. In the
following convolution, to improve the speed and stability of
neural network training, the feature maps are normalized by
batch normalization. The output is then adjusted with the rec-
tified linear unit (ReLU) function [21] for nonlinear mapping,

and the following presents the mapping relationship.

f (x) = max (0, x) . (1)

The three max-pooling layers are only employed to reduce
the dimension of the frequency axis, and the temporal dimen-
sion remains unchanged. Moreover, the sizes of the pooling
kernels are set to 1 × 3, 1 × 2, and 1 × 2. By applying these
settings appropriately, the size of the spectrum is decreased
from the input M = 60 to M = 20 → 10 → 5 after the
respective pooling layers. Regarding the input feature maps,
FML ∈ RM×T is input into the convolution layers for local
feature extraction, whereM represents the spectral dimension
of the input feature, while T refers to the temporal length. The
output of the convolution layers is FML ∈ RN×M ′×T , where
N represents the number of two- dimensional filters whileM ′

refers to the spectral dimension after the max-pooling layer.

2) CAPSULE LAYER
The capsule layer contains PrimaryCaps and EventCaps. The
main idea of the capsule is to overcome the limitations of
CNNs, such as the information loss after max-pooling. While
the neurons of traditional neural networks are scalar, the
capsule is a vector, and it can represent diverse attributes of
a specific entity. The vector outputs (capsules) incorporate
all the information detected in the input. In PrimaryCaps,
there is a convolution capsule layer that has 32 channels, and
each channel contains 8D capsule vectors. It is considered
that through a group of weights, the lower-level capsules
of PrimaryCaps can be linked to the higher-level capsules
of EventCaps via the use of a dynamic routing mechanism.
Moreover, the output of PrimaryCaps is RG×T , where G
represents 8D vectors with 32 channels.

The EventCaps layer is controlled by dynamic routing, the
procedure of which is shown in Fig. 6. Recalling the original
formulation in a previous study [22], the specific calculation
process is as follows:

ûj|i = W ijui, (2)

sj =
∑

i
cijûj|i, (3)

vj =
‖ sj ‖2

1+ ‖ sj ‖2
sj
‖ sj ‖

, (4)

where ûj|i stands for the prediction vectors, W ij stands for
transformation matrices, ui represents the output of low-level
capsule i, and cij are the coupling coefficients between the
capsule i and the capsule j, which are within the lower layer.
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TABLE 1. The hyperparameters used in the proposed approach.

FIGURE 6. Dynamic routing.

All outputs ûj|i are then accumulated to obtain sj, as given
by (3). Equation (4) is the squashing function, which trans-
forms the size of the vector to the probability within the
interval (0,1).

The coupling coefficients are determined by applying the
softmax function as follows:

cij =
exp(bij)∑
k exp(bik )

, (5)

bij ← bij + ûj|i · vj, (6)

where bij is the initial log-prior probabilities, the value of
which is set to 0 so that cij has the same initial value, and
coupling coefficients bij are then recomputed on the basis of
the similarity between the prediction vector ûj|i and the output
of the high-level capsule vj. The softmax function makes sure
that the value of cij is between 0 and 1; accordingly, cij is the
possibility that the lower layers send their outputs to the high-
level layer. The output of EventCaps isRK×G′×T , whereG′ is
a 16D vector andK stands for the number of event categories.
Margin loss function: The coupling coefficients cij are

controlled by an independent margin loss, which is defined
for each category k:

Lk = Tk max(0,m+− ‖ vk ‖)2

+ λ(1− Tk ) max(0, ‖ vk ‖ −m−)2, (7)

where Tk is the indicator function, and when the classK event
exists, Tk = 1; otherwise, it is equal to 0. Moreover, m+,
m−, and λ are super parameters that are respectively set to
0.9, 0.1, and 0.5. The total loss is calculated by summing the
losses of all the output capsules. The Margin loss function is
mainly optimized for cij. In the full connection layer of the
RNN, the binary cross-entropy loss function is used for the
final optimization.

3) RECURRENT LAYERS
Manyworks [23]–[25] have proven that temporal dependency
is significant in detecting sound events. In this research,
an RNN is used to add the unique position relationship of
sound events by learning the temporal context information.
After the capsule layer, the output RK×G′×T is reshaped to
R(K×G′)×T in each frame. The sequence is transformed to the
sequence of recurrent feature vectors zt :

zt = [hbt ⊕ hft ]Wz + bz, (8)

hft = H(xt ,h
f
t−1), (9)

hbt = H(xt ,h
b
t+1), (10)

where hft and hbt are respectively the forward and backward
hidden state vectors ofRH ,H is the size of the recurrent unit,
⊕ indicates vector concatenation, Wz is a weight matrix, the
size of which is set to R2H×2H , and bz ∈ R2H is the bias
term. Moreover,H stands for the hidden layer function of the
recurrent layer. The output of the GRU layer is composed of
the context information of the entire sequence, which is input
into a time distributed dense layer and two completely linked
layers, which have the sigmoid activation function, to obtain
the likelihood of the events. RK×T is the final output, where
K represents the probability of sound occurrence at time t .

III. DEPLOYMENT ARCHITECTURE
The proposed system is presented in Fig. 7, and is primar-
ily composed of a remote server, solar panels, and wireless
sensor nodes, each of which contains an acoustic sensor,
a wireless transmission module, and an embedded processing
board. Sound events and noise are collected via the sensor
nodes by the endpoint detection algorithm; this algorithm is
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FIGURE 7. The overview of the proposed system.

written for the Android platform, and the detailed information
of the software interface is shown in the figure. The collected
audio is transmitted to and stored in the database of the remote
server via the 4G network. Each piece of uploaded audio data
contains its number, GPS information, time, decibel value,
and storage address, as shown in Figure 8. Currently, inter-
net attack activities are becoming increasingly more serious.
To ensure the proper running of the server and the proposed
model, the methods discussed by Ravi in [26] were intro-
duced, namely DGA-Based Botnets and DNS Homographs
Detection. The algorithm improves the resilience and robust-
ness of the proposed system, thereby effectively avoiding the
threat of internet attacks.

One hundred sensor nodes were deployed to monitor
the noise and events on a university campus. According
to the actual needs, these points were mainly arranged at
the main roads, teaching buildings and gates, as shown
in Fig. 9.

FIGURE 8. Information about the sound collected by the proposed
system.

In the proposed system, an audio event with SNR = 20 dB
can be detected. A set of 100 sensor nodes, R =

{ri|i = 1, . . . , 100}, was deployed around the campus. The
distance between these sensor nodes was m meters, and the
height from the ground was h meters.
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FIGURE 9. The deployment of sensor nodes around the university campus.

Two factors affected the choice of the distance m and the
height h, including the distance d from the sensor node where
the sound occurs, as well as the sound level of the target events
that are intended to be spotted. The coverage capabilities of
the sensor nodes were investigated by computing the SNR of
the sound, which is defined as

SNR = LS (d0)− A(d), (11)

where LS (d) is the intensity level of the sound event at a
reference distance d0 from the sensor nodes. The factor A(d)
is the attenuation according to the ISO standard 9613-2 [27],
consisting of atmospheric absorption, geometrical difference,
ground effects and shielding through barriers. The following
equation presents the calculation process:

A(d) = Adiv(d)+ Aatm(d)+ Agr(d)+ Abar(d). (12)

These factors are determined by the specific environment.
In particular,

(1) Adiv(d) is the geometrical divergence. In actual scenar-
ios, a sound source spreads evenly in all directions; this can
be represented by a sphere, which is calculated as

Adiv(d) = 20 log
d
d0
+ 11. (13)

In certain circumstances, every time the distance from the
source is doubled the intensity level will be reduced by 6 dB;

(2) Aatm(d) is the attenuation caused by the atmospheric
absorption (in decibels), and can be calculated as follows:

Aatm =
α · d
1000

, (14)

where α is the atmospheric attenuation coefficient, which is
determined by the frequency, the environmental temperature,
and the comparative humidity of the air. For the calculation of
environmental noise levels, α should be established based on
average values determined by the surrounding weather range;

(3) Agr(d) represents the ground effect, and mainly refers
to the interference or influence of the sound reflected by
the ground on the sound transmitted directly from the sound
source. To compute Agr(d), hr and hs are respectively con-
sidered the receiver height and the source height of the
sensor nodes. According to a relevant standard [26], the
sound source is divided into three parts: 1) the source region
(with a size of 30 · hs ), the attenuation of which is As,
2) the middle region, which determines the attenuation Ar ,
and 3) the receiver region (with a size of 30 · hr ) around
the receiver, which determines the attenuation Am. The total
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FIGURE 10. The SNR value with respect to (a) the distance m and
(b) height h.

ground attenuation can then be computed as

Agr = As + Ar + Am. (15)

At the frequency of 4 kHz, As and Ar can be calculated by
the following equation:

Ar = As = 1.5 · (1− G). (16)

For hard ground, the value ofG is equal to 0. Therefore, the
values of As and Ar are equal to 1.5. Am can then be calculated
by the following equations:

Am(d) = 3 · q(d) · (1− G), (17)

where

q(d) =


0 d ≤ 30(hs + hr )

1−
30(hs + hr )

d
d > 30(hs + hr )

 . (18)

(4) Abar(d) represents screening by barriers. In the scenar-
ios considered in this study, this attenuation was neglected
because the experiments were conducted on the roads of the
campus.

To determine the appropriate distance m and height h,
a series of experiments were carried out. Fig. 10 depicts the
attenuation of the SNR with the distance m and the height h,
from which it can be concluded that when the SNR is about
10 dB, the distance is 7 m and the height is 2 m. Therefore, for
the deployment of the sensor nodes, m = 7 m and h = 2 m
were selected.

To better monitor noise and sound events on the campus,
Java was used to write a noise monitoring display platform,
which directly displays the classification results obtained by
the proposed algorithm. The time, place, class, and decibel
size of the sound event are visualized by the noise platform.
When an event with SNR ≥ 20 dB occurs, the sensor nodes
are able to detect the event, and the landmarks on the noise
graph will pulse briefly. The specific visualization of the
monitoring platform is presented in Section IV.

IV. EXPERIMENTAL RESULTS
This part introduces the experimental data and the experimen-
tal setup, including the evaluation metrics used in the field of
polyphonic sound event recognition [28], [29]. To verify the
reliability of the proposed method, experiments were carried
out in two scenarios. (1) An experiment was carried out on

publicly available datasets, and the experimental outcomes of
the proposed approach provided were then compared with the
results of existing state-of-the-art approaches. (2) An analysis
was conducted on actual life scenarios; this research’smethod
and constructed system were applied to the real-life campus
environment, and real-time data were analyzed. In the last,
an analysis was conducted on the classification outcomes of
the system, and the information of the noise and events were
mapped to the monitoring platform.

A. THE DATA-SET
To evaluate on the performance of the proposed approach,
it was assessed on two public datasets, namely the TUT
Sound Events 2016 and TUT Sound Events 2017 datasets,
which were the datasets adopted in the DCASE chal-
lenge [30], [31]. The outcomes were compared with the
outcomes of the greatest state-of-the-art methods offered by
the challenge organizers. Each network model was optimized
by the use of a random search tactic [32]. The datasets are
described as follows.

The TUT Sound Events 2016 dataset contains two daily
environments, namely ‘‘home’’ (indoors) and ‘‘residential
area’’ (outdoors). These two acoustic scenes are considered as
two separate subsets and used for human activity monitoring
and household monitoring in daily life. The audio samples
from 16 independent sound event classes were randomly
selected and artificially mixed. Each mixed audio sample is
about 4-7 min long, and the total length of the audio samples
in the dataset is about 10 hours. All the audio is mono with a
resolution of 24 bits and a sampling rate of 44.1 kHz. In the
scenario of the residential area, there are seven types of sound
events, and the sound event categories are mainly associated
with birds singing and cars passing by. In the scenario of the
home, there are 11 categories.

Each scenario in the TUT Sound Events 2016 dataset
was split into two sub-datasets, including a development
set and an evaluation set. In this research, the dataset was
divided based on the number of total samples available; the
development set consisted of approximately 70% of the total
samples, while the evaluation set consisted of 30% of the total
samples. In addition, data division was also conducted on the
development set, the output was four folds of training and
testing data for cross-validation during the training process,
and each recoding was employed just once as testing data.
The process is shown in Fig. 11.

The TUT Sound Events 2017 dataset consists of recordings
of acoustic scenes of traffic and human activities on a street
and is used to detect audio events associated with human
and abnormal situations. The dataset contains a total of
121 min of audio data and includes six different sound events,
namely ‘‘people speaking,’’ ‘‘people walking,’’ ‘‘children,’’
‘‘large vehicle,’’ ‘‘brakes squeaking,’’ and ‘‘car.’’ There are 24
recordings in the dataset, each of which is about 3-5 min long,
and the recordings were sampled at 44.1 kHz and a resolution
of 24 bits. The data division for cross-validation was the same
as that for the TUT Sound Events 2016 dataset.
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FIGURE 11. Database partitioning into training and evaluation sets.

B. EXPERIMENTAL SETUP
In this research, all the experiments were carried out by the
use of a computer equipped with Intel R© CoreTM I7-6800K
processor, the Windows 10 platform, an NVIDIA 1080TI
GPU, and 32 GB RAM. The feature extraction and classi-
fication algorithms were completed via learning libraries in
the Python language, including Librosa, Sklearn, and Ten-
sorFlow. The detection accuracy of the proposed model is
directly affected by the setting of the hyperparameters. Thus,
to determine the most appropriate hyperparameters, a random
search tactic was first used to determine the best number of
layers of the network model. According to the methods used
in previous research [33], [34], a series of experiments were
carried out to obtain the best hyperparameters. Because the
CapsNet-RNN model includes convolution layers, capsule
layers, and recurrent layers, the performance of the convolu-
tion layer is closely related to the size and number of filters.
In the experiments, the number of filters was respectively set
to 128, 256, and 512, and the filter size was respectively set
to 3 × 3 and 5 × 5. The same parameters used in a previous
study [35] were set for the capsule layer. For the recurrent
layers, the numbers of hidden units were respectively set to
64, 128, and 256, and the learning rate was within the range of
0.001 to 0.5. Regarding the activation functions, the sigmoid,
tanh, and ReLU activation functions were selected for the
experiments. All experiments were optimized by the ADAM
optimizer, and the categorical cross-entropy loss function
was used. The experiments were run on the GoogleAudioSet
dataset [36], [37] for 500 epochs with a batch size of 64.
This dataset is often used to evaluate environmental sound
recognition methods. Four common environmental sounds
in this dataset were selected, namely: ‘‘car horn,’’ ‘‘glass
breaking,’’ ‘‘screams,’’ and ‘‘gun_shots,’’ each of which has
about 1,000 pieces of data. All the audio is mono with a
resolution of 24 bits and a sampling rate of 44.1 kHz. For
the entire data set, the training set and test set were ran-
domly divided according to the ratio of 8:2. Based on the
experimental results, the performance of the model was good
when the number of filters was 256 and the filter size was
3× 3. Further, for the recurrent layers, the use of fewer hidden
units was found to have a good effect on the attack detection
rate. The model with 64 hidden units performed better than

the others; when the number of hidden units was increased
from 64 to 256, the attack detection rate decreased.Moreover,
many studies [38], [39] have shown that a lower learning-rate
has a better effect. In this experiment, when the learning-
rate was 0.001, the detection accuracy was better than that
of the model with other learning-rates; with the increase of
the learning-rate, the performance of the model fluctuated
due to overfitting. Regarding the activation function, the per-
formance of ReLU was found to be better than that of the
tanh. However, because the main work in the present study is
multiclass classification, the sigmoid activation function was
used for the fully connected layer. The final hyperparameter
settings of each layer are exhibited in Table 1. To avoid
the issue of overfitting, an early stopping strategy [40] was
employed during training. Batch normalization was then used
to accelerate the convergence and reduce the network sensi-
tivity of the network to the initialization weights, and after
each convolutional layer, a loss rate of 0.25 was employed.

The generally recognized measurement indicators pro-
posed by Mesaros and Heittola were used in this study, and
include the F1-score (F1) and error rate (ER), both of which
are based on segments. On the basis of the activity represen-
tation, the intermediate statistics were computed as below:

True positive (TP): it refers to the number of events
detected not only in the system output, but also in the anno-
tation;

False positive (FP): it refers to the number of events
detected only in the system output;

False negative (FN): it refers to the number of events
detected only in the annotation;

Substitutions (S(t)): it represents the number of events A
that the system misjudged A as B;

Insertions (I (t)): it refers to the number of events detected
only in the system output and also did not belong to S(t);
Deletions (D(t)): it refers to the number of events originally

in the annotation that the system did not misjudge and that
were not correctly detected by the system.

Moreover, F1 is the harmonic average value of precision
(P) and recall (R). The following formula group presents the
specific calculation process.

P =

∑
TP∑

TP+
∑
FP
, (19)

R =

∑
TP∑

TP+
∑
FN

, (20)

F1 =
2P · R
P+ R

. (21)

The indicator ER was computed by calculating the inter-
mediate statistics over the entire evaluation set. Therefore,
the total ER can be computed according to the following
equation:

ER =

∑T
t=1 S(t)+

∑T
t=1 I (t)+

∑T
t=1D(t)∑T

t=1 N (t)
, (22)

where N (t) stands for the total number of active sound events
from the annotations, and T represents the sum of segments t.
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The performance of the approach proposed in this research
was evaluated via different conditions, namely different fea-
tures, different classifiers, and different methods. Mean-
while, several experiments were performed on two public
datasets, namely the TUT Sound Events 2016 and TUT
Sound Events 2017 datasets.

C. COMPARISON OF DIFFERENT FEATURES
A total of six state-of-the-art features were selected for the
experiment, three of which were the short-time Fourier trans-
form (STFT), MFCCs, and the log-mel spectrogram, For the
STFT, the audio signals were generated with a sampling rate
of 44.1 kHz, and the STFT was calculated with a frame
overlap of 50% and a frame size of 40 ms. For each frame,
the STFT was calculated on 1024 points, and the dimension
was 80× 513. The other three features were the aggregations
of the MFCCs, the log-mel spectrogram, and the STFT; the
aggregation of the MFCCs and log-mel spectrogram was
FML , the aggregation of the MFCCs and STFT was FMS ,
and the aggregation of the log-mel spectrogram and STFT
was FLS . In the experiments, to compare the performance of
various features performances in the same situation, the same
classifiers for CapsNet-RNN were used for all the features.
Table 2 reports the results on the TUT Sound Events 2016
and TUT Sound Events 2017 datasets.

Both the F1 and ER values for FML achieved relative
improvements as compared to the use of any other features.
The performance of the aggregated feature FML achieved the
highest F1 value of 70.21 and ER value of 0.4 using the
TUT Sound Events 2016 dataset, while respective values of
81.35 and 0.57 were achieved on the TUT Sound Events 2017
dataset. In addition, the results indicate that the aggregation
of the MFCCs and log-mel spectrogram highlights the class
discrimination ability. Moreover, the performances of the
three individual input features, namely the MFCCs, log-mel
spectrogram, and STFT, were worse than the performances
of the aggregated features.

D. COMPARISON OF VARIOUS CLASSIFIERS
In this experiment, the performances of various classifiers
were compared in the same situation, and the aggregated
feature FML was used for the six different classifiers. Table 1
displays the parameter settings of CapsNet-RNN The param-
eter settings of the other classifiers, including the SVM,CNN,
RNN, CRNN, and CapsNet classifiers, were optimized with
a random search strategy, and the main parameters were set
as follows. SVM: sigmoid kernel function, one-vs-rest multi-
class training; CNN: five convolutional layers and the ReLU
activation function; RNN: two layers with a bidirectional
gated recurrent unit and a time-distributed fully-connected
(dense) layer; CRNN: three convolutional layers and a recur-
rent layer with a bidirectional gated recurrent unit; CapsNet:
only feature detector (convolution layers) and capsule layers.
Table 3 reports the outcomes of the different classifiers.

As presented in Table 3, on the TUT Sound Events 2016
dataset, the CapsNet-RNN network achieved respective

TABLE 2. The results obtained by different features.

TABLE 3. The results of different classifiers.

improvements of the F1 and ER values of 4.61% and 11%
as compared with CapsNet, and improvements of 7.88% and
9%, respectively, on the TUT-Sound Events 2017 dataset.

The best results of the DCASE 2017 Challenge were
F1 = 41.7% and ER = 0.79, and those for the DCASE 2016
Challenge were F1 = 66.4% and ER = 0.48. In contrast,
the combination of the proposed model and the new features
FML was found to greatly improve the performance. These
findings imply that after the inclusion of temporal context
information, the performance of the model achieved a relative
improvement in detecting polyphonic sound events. In the
cases of the CNN and other classifiers, there was only a
slight performance improvement due to the loss of position
information.

E. COMPARISON OF DIFFERENT METHODS
The method proposed in this study was compared with exist-
ing up-to-date methods, and the five compared systems are
described as follows:

MFCC-CNN [18]: the model contains three convolutional
layers, and the feature is MFCCs;

MFCC-CRNN [18]: the model includes three convolu-
tional layers and a bidirectional GRU layer;

Binaural STFT-CapsNet [19]: the feature is a binaural
STFT and the classifier is an original CapsNet network that
only includes a feature detector and capsule layers;
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TABLE 4. The results of different methods.

Log-Mel-CapsNet [19]: the feature is a log-mel spectro-
gram, and the classifier is an original CapsNet network;

Binaural Mel energy-CRNN [41]: the model uses a CRNN
as the classifier, and the binaural mel energy spectrogram as
the input feature;

Log-Mel-CRNN [41]: the classifier is CRNN and the input
feature is a log-mel spectrogram.

The results reported in previous studies [18], [41] are the
best results achieved in the DCASE Challenge. According to
the experimental results reported in Table 4, CapsNet [19]
outperformed the results in [18], [41]. This indicates that
CapsNet can overcome the limitations of CNNs, such as
information loss after max-pooling. The proposed method
combination of CapsNet and an RNN which yielded the best
results and achieved the largest (F1, ER) improvements of
(10.41%, 11%) and (33.5%, 23%), respectively. The RNN is
used to add the unique position relationship of sound events
by learning the temporal context information, as temporal
dependency has proven to be important in the sound event
analysis task.

V. ANALYSIS IN REAL-LIFE SCENARIOS
The proposed method was applied to a university campus to
monitor environmental noise and audio events. The details of
the deployment architecture were provided in Section II. The
system was used to monitor four classes of events, including
‘‘car horn,’’ ‘‘scream,’’ ‘‘gun shot,’’ and ‘‘glass breaking,’’
and all other noise was considered as the background. In the
real campus environment, there are a variety of sound sources
at various distances from the sensor nodes; therefore, sig-
nals with diverse intensities and SNRs can be obtained. The
proposed model was trained on the GoogleAudioSet dataset.
During the experiment, the audio stream contained 100 car
horn events, 89 scream events, 95 gun shot events,90 glass
breaking events and 50 background events. Table 5 presents
the recognition outcomes. The average F1 value reached
94.86%, and the average ER was only 5.4%.

The t-SNE algorithm [42] is a non-linear dimen-
sionality reduction visualization method that can map

FIGURE 12. The scatter plot of the feature FML.

TABLE 5. The identification results in real-life scenarios.

high-dimensional data to a two-dimensional plane. To visual-
ize the feature-learning process step by step, intermediate out-
puts were extracted from each neural network block. Fig. 12
shows the scatter plot of the features extracted from FML by
the CapsNet, which indicates that the input data FML became
more separable after the proposed network was applied for
different sound categories.

In Fig. 13 (A), the identification process of an audio stream
is introduced in detail. The output of each layer of the network
model was described in Section II. The output vector zi of
recurrent layers contains historical contextual information of
the entire sequence, and then the output of the CapsNet and
zi are then combined via a residual network to improve the
system performance. Finally, the model obtains the identifi-
cation result related to time.
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FIGURE 13. (A) The overview of proposed CapsNet-RNN. (B) Input features (a), ground truth (b) and prediction of CRNN (c) and CapsNet-RNN (d) from
a sequence of test examples from real-time database.

FIGURE 14. The monitoring platform.

As shown in Fig. 13(B), to better observe the output of
CapsNet-RNN, a 5s long audio stream was selected from the
real-time database for analysis. According to the design of
the output layer, the output of each model is displayed frame
by frame. The figure presents the comparison of the event
activity probabilities of CapsNet-RNN and the baseline sys-
temCRNN [18]. All possible sound events in the audio stream
are ‘‘car horn,’’ ‘‘scream,’’ ‘‘gun_shot,’’ ‘‘glass breaking,’’
and ‘‘background.’’ It can be seen from the figure that the
sound of glass breaking lasts for almost the whole sequence,
and the proposed model CapsNet-RNN could correctly detect
almost all of it; in contrast, the CRNN model resulted in a
large amount of loss of the sound of glass breaking. When

a car horn and glass breaking occurred simultaneously, the
overlap of the two different sound events led to the judgment
error of the CRNN, which interpreted the car horn as a scream
(as indicated by the red box in the figure). For CapsNet-RNN,
the distinction of the polyphonic sound events is obvious,
which indicates that the proposed model has a strong ability
to distinguish mixed sound sources.

Finally, as shown in Fig. 14 a monitoring platform was
developed to visualize the information of the audio events
and background. On the map of the monitoring platform, 100
sensor nodes were labelled according to their actual locations.
The colored circles represent the values of the noise, and
interpolation was performed between two sensor nodes to

VOLUME 9, 2021 147911



L. Luo et al.: System for Detection of Polyphonic Sound on University Campus Based on CapsNet-RNN

form a linear distribution. On the map’s left side, there is
a column that displays the detailed data on sound events,
including the location, event, and time. The data about the
detected audio events, including the locations, events, and the
times of occurrence, can be visualized throughout the day.
When the system detects an audio event, the landmark will
pulse briefly, and the event information will be shown in the
left column.

VI. CONCLUSION
A novel audio detection system was designed in this study,
and a total of 100 wireless sensor nodes were deployed to
monitor abnormal events on a university campus in real-
time. In the proposed system, audio streams are collected
by wireless sensor nodes, and are then identified and classi-
fied via the proposed CapsNet-RNN network. A monitoring
platform was also developed to display the detailed sound
event information and indicates when and where abnormal
events occur on the campus. In addition, the system can be
used for long-term open-air monitoring as it is characterized
by low cost, and its power is supplied by a solar panel. The
proposed system can also be combined with existing video
surveillance equipment for the monitoring of abnormal audio
on roads to achieve complementary advantages. To evaluate
the performance of the proposed approach for polyphonic
audio event detection, detailed experiments were conducted
on two public DCASE datasets, and in comparison with the
existing algorithms, the proposed method performed better.
In a real-life scenario on a university campus, the average
F1 value of the proposed model reached 95.1%, and the ER
value was only 5.2%. In future research, the proposed system
will be applied on a highway to detect accidents to ensure
that emergency teams can intervene quickly. Moreover, the
architectural advantages of the proposed recognition algo-
rithm will be improved to be better adapted to polyphonic
audio.
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