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ABSTRACT This paper focuses on the algorithms design of heterogeneous green scheduling for energy
conservation and emission reduction in cloud computing. In essence, the real time, dynamic and com-
plexity of heterogeneous scheduling require higher algorithm performance; however, the swarm intelligent
algorithms although with some improvements, still exist big imbalances between local exploration and
macro development or between route (solution) diversity and faster convergence. In this paper, a greener
heterogeneous scheduling algorithm via blending pattern of particle swarm computing intelligence and
geometric Brownian motion, is proposed, based on our earlier theoretical breakthroughs on G-Brownian
motion and through a series of mathematical derivations or proofs; furthermore, in order for suitable for
the hybrid processor architecture of the scheduling management server, the algorithm is designed in parallel
with deep fusion of coarse-grained and master-slave models. A large number of experimental results are
given. Compared with most newly published scheduling algorithms, there are significant advantages of the
proposed algorithm on the dynamic optimization performance for consistent or semiconsistent and large
inconsistent scheduling instances, although with lower improvement factors for small inconsistent instances.

INDEX TERMS Heterogeneous green scheduling, swarm intelligence, particle swarm optimization (PSO)
algorithm, standard Brownian motion, G-Brownian motion (geometric Brownian motion), blending pattern.

I. INTRODUCTION
At present, the epidemic is still raging around the world,
and record breaking extreme weather is also frequent. As a
matter of fact, energy conservation and emission reduction is
a new pressing demand of cloud heterogeneous computing.
Since 2016, the annual power consumption of data centers
in China (about 120 billion KWH in 2016) has exceeded the
annual power generation of the Three Gorges Hydropower
Station (about 100 billion KWH in 2016); and there is a huge
waste of energy in China’s data centers, whose PUE (Power
Usage Effectiveness) is generally greater than 2.2 while that
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of USA is also about 1.9 in the same period. Then, around the
many theoretical or technical hot spots on green scheduling
coordination, a large number of studies or discussions have
been widely carried out [1].

In essence, the candidate solutions of the scheduling algo-
rithm correspond to the candidate schemes one to one, which
means that the real time, dynamic and complexity of het-
erogeneous scheduling optimization problems require higher
optimization performance, such as solution diversity or con-
vergence speed [2], [3].

Concretely, the improvement of swarm intelligence algo-
rithm represented by particle swarm optimization (PSO)
algorithm has been systematically carried out from different
dimensions, such as parameter selection or optimization [2],
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FIGURE 1. The original PSO proposed by Kennedy and Eberhart.

and swarm topology restructuring [3]; among them, the
fusion of different ideas is the most representative direction
currently.

(1) Inspired by thermodynamic molecular motion theory,
some studies introduced concepts such as group centroid,
acceleration and molecular force into PSO algorithm to trans-
form the particle velocity and displacement [4]–[6].

(2) Other studies refer to human adaptive learning and
other mechanisms to realize various information sharing,
so as to improve the convergence speed or show stronger
ability [7]–[9].

(3) Moreover, the representative achievements are the
effective integration of PSO algorithm and Ito process driven
by the standard Brownian motion [10].

Substantially, the PSO algorithms aforementioned in (1)
or (2), are still approximately linear optimization-dynamic-
patterns; the drive definition of the improved PSO algorithms
in (3), is reduced to a specialMarkov stochastic process with
constant expected drift rate and variance rate, also without
the generality in the dynamic swarm intelligence simula-
tion. All of them mean that the swarm intelligent algorithms
although with some improvements, still exist big imbal-
ances between local exploration and macro development or
between route (solution) diversity and faster convergence for
high dimensional multi-objective scheduling problems.

In this paper, based on our earlier theoretical breakthroughs
on G-Brownian (Geometric Brownian) motion and through
a series of mathematical derivations or proofs, a greener
heterogeneous scheduling algorithm via blending pattern of
particle swarm computing intelligence and geometric Brow-
nian motion, i.e., PSO/RdGBM, is proposed; furthermore, in
order for suitable for the hybrid processor architecture of the
scheduling management server, the algorithm is designed in
parallel with deep fusion of coarse-grained and master-slave
models.

II. RELATED WORK
The combing of related work mainly takes two threads: ¬
swarm intelligence and PSO algorithms, and  the standard
Brownian motion vs. G-Brownian motion.

A. SWARM INTELLIGENCE AND PSO ALGORITHMS
The PSO algorithm is one of the most popular swarm intelli-
gence algorithms of the computational intelligence theory in

TABLE 1. The related variables and their representative meanings.

recent years. It was first proposed by Kennedy and Eberhart
in 1995, and basically adopts the concepts of ‘‘group’’ and
‘‘evolution’ to search for the optimal solution in complex
space through cooperation and competition among particles.

At the same time, as the extension of traditional artifi-
cial intelligence, PSO algorithms have been widely applied
because of its simple principle, profound background of tradi-
tional evolutionary computing and unique high-dimensional
objective optimization performance [11]–[17].

With the deepening of application and practice, some PSO
researches focus on preserving the diversity of individuals in
swarm intelligence algorithms. Inspired by thermodynamic
molecular motion theory, the researches [4]–[6] introduced
concepts such as group centroid, acceleration and molecular
force into PSO algorithm to transform formulas such as par-
ticle velocity and displacement. In other words, according to
the distance between the particle and the center of mass, the
switching between the inductive force and the repulsive force
can be realized to control the flight direction of the particle,
and the diversity of the population can be maintained to a
certain extent.
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FIGURE 2. The blending pattern of particle swarm computing intelligence and Brownian motion.

FIGURE 3. The algorithm’s parallel design with deep fusion of coarse-grained and master-slave
models.

Other studies refer to human adaptive learning and other
mechanisms to realize various information sharing in swarm
intelligence algorithms, and then to improve the convergence
speed or show a stronger ability of later evolution compared
with the original swarm intelligence algorithms [7]–[9].

In recent years, the representative achievement of swarm
intelligence algorithm improvement is the effective fusion
of standard Brownian motion or Ito Process and PSO algo-
rithms [10]. Some experiments show that the interdisciplinar-
ity can improve the convergence speed or maintain the swarm
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FIGURE 4. The Detail information of static performance comparison results.

diversity effectively, but at the same time, it also shows the
shortcomings of the algorithm, such as the lack of stability.

B. STANDARD BROWNIAN MOTION VS. G-BROWNIAN
MOTION
Standard Brownianmotion was first proposed by British biol-
ogist R.Brown according to the random movement of pollen
on the liquid surface (1827). Later,Wiener further studied the
standard Brownian motion trajectory, and theoretically gave

its spatial measure definition and other accurate descriptions
(1918). Then, Kiyoshi Ito established the stochastic differ-
ential equation with the interference term of the standard
Brownian motion, which was widely used in the fields of
economy, management and social science; for this process,
local stochastic disturbance and macroscopic drift are two
obvious characteristics [18]–[22].

On the basis of preserving the core idea of PSO algorithm,
this study intends to derive the energetic particle swarm
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co-evolution drive equation with nonlinear expectation space
and G-Brownian motion characteristics.

The team of Academician Peng, Shige from Shandong
University, the cooperative unit of this paper, has made
world-renowned basic theoretical researches on G-Brownian
motion [23] with their unremitting efforts and systematic
theoretical advancement over the past 30 years, which are
powerful and instrumental in the field of nonlinear stochastic
analysis.

They include the uniqueness of solutions of backward
stochastic differential equations (BSDEs) (1990), the non-
linear Feynman-Kac formula for the solution correlation
between BSDEs and second-order quasilinear PDEs (1991),
nonlinear expectation theory with time consistency (2006),
G-Brownian motion definition (2007) [24], and G-Brownian
motion numerical simulation algorithm (2019) [25].

At the same time, these preliminary works are also the
valuable basis of strict theoretical derivation or proof of this
topic.

III. AN ENERGIZED HETEROGENEOUS MULTIMODAL
OPTIMIZATION ALGORITHM
Generally, in the original PSO proposed by Eberhart and
Kennedy, the updated position (xit+1) and velocity (vit+1)
of any particle, as the optimization-dynamic-equations, are
defined as Equation (1) and Equation (2).

vit+1 = ωv
i
t + c1r1(pbest

i
− xit)+ c2r2(gbest t − x

i
t) (1)

xit+1 = xit + v
i
t+1 (2)

In Equation (1), the first part of the formula is called
the memory item, where ω represents the inertial motion,
that is, the influence of the past position on the present;
the second part is called self-cognition, where c1r1 indicates
that the direction of motion of particles comes from their
experience; and the third part is called group cognition, where
c2r2 reflects the cooperation and information sharing between
particles (see Fig. 1).

A. THE ENERGIZED OPTIMIZATION-DYNAMIC-
EQUATIONS DRIVEN BY G-BROWNIAN MOTION
In this paper, based on the core idea of original PSO algorithm
(such asmemory, self-cognition and social cognition) defined
as Equation (1) and Equation (2), the particle swarm evolu-
tion equation is expanded to the geometric Brownian motion
model with nonlinear G-expectation, as is more general-
ized than the standard Brownian motion with the invariable
expected drift rate or the variance rate.

Then, shown as Fig. 2, a series of strict theoretical deriva-
tion or proof is key, including the update representation of
particle swarm displacement, denoted as xit+1 ∈ �T , and the
relevant bounded Lipschitz function definition based on the
space, denoted as ξ (X) ∈ Lip(�T ).

In other words, once the update representation of parti-
cle swarm displacement, the spatial description of the parti-
cles’ Brownian motion and the relevant bounded Lipschitz

The PSO/RdGBM Algorithm

Step 1: Initialize the iteration (ι) and the subgroups, each
subgroups of k particles;

Step 2:
Step 3: Randomly initialize the velocity and the position

of the particle i;
While (ι < ιmax) and (other termination criteria
are not satisfied)

Step 4: Do in parallel for each island /∗Obtain coarse-
grained model, one of parallel and distributed
models ∗/

Step 5: ι = ι+ 1;
Step 6: For each particle in the subgroups /∗Obtain

master-slave model, another
parallel model ∗/

Step 7: Velocity update via Equation (1) and
make it act on the current Particle i;

Step 8: Apply the Equation (3) and Equation (4) to
denote the spatial representation of the
continuous path (displacement update) of
the Particle i;

Step 9: Apply the Equation (5), Equation (6)
and Equation (7) to define the related
bounded Lipschitz functions based on the
space;

Step 10: Sort the particles in the subgroups in a
decreasing order of fitness values, and save
the fittest particle in the external memory;

Step 11: Perform local search strategies;
Step 12: End For
Step 13: If ι = τ (migration interval) then
Step 14: Create 9δ for the current subgroups;
Step 15: Send 9δ to the neighboring subgroups;
Step 16: Receive 9δ from the neighboring

subgroups;
Step 17: Construct the founding subgroups 4;
Step 18: Select k particles into 4;
Step 19: Replace the subgroups 9δ with 9τδ ;
Step 20: End If
Step 21: End Do in parallel
Step 22: End While
Step 23: Output the best particle.

function definition based on the space, are obtained, then
the particles are accompanied by G-Brownian motion for the
more intelligent optimization swarm.

The related variables and their representative meanings are
shown in Table 1.

1) THE UPDATE REPRESENTATION OF PARTICLE SWARM
DISPLACEMENT
By Equation (1), the PSO algorithm can be regarded as
an Ito process driven by Brownian motion and drifting
toward ‘‘two’’ attractors, which are the best position ever
for Particle i until the given moment t+1(pbest i) and the
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TABLE 2. Famous unimodal and multimodal test problems.

FIGURE 5. Performance estimation of the solutions of different
algorithms summarized for twelve instances.

historical optimum location of the particle swarm until the
given moment t+1(gbest t) where c1r1 and c2r2 are the drift
coefficients.

Then the spatial representation of the continuous path
(displacement update) of Particle i, which is denoted by the
following Equation (3), can be obtained.

dX i
t = vitdt +

∧
µX i

tdt + ω(t)X
i
t(dt)

H (3)

2) THE SPATIAL DESCRIPTION OF THE PARTICLES’
BROWNIAN MOTION
The research team of Academician Peng has made a batch
of basic theoretical research results which are internationally
renowned and have been shown to be powerful tools in the

FIGURE 6. The averaged efficiency improvements of the PSO/RdG
BM

algorithm regarding the consistency classification.

field of financial mathematics by virtue of nearly 30 years
of unremitting efforts and systematic and solid theoretical
advancement.

And these preliminary works, represented by the
unique proof of solutions of backward stochastic dif-
ferential equations (BSDES), the nonlinear Feynman-
Kac formula for the correlation between BSDES and
second-order quasilinear PDES solutions, and the non-
linear expectation theory with time consistency, are also
the precious strict theoretical derivation or proof basis of
this topic.

Following that, the space of Particle i with Brownian
motion, can be denoted as Equation (4).

∧

X i
t+1 = (1+

∧
µ )X i

t + ω(t)X
i
t + v

i
t+1 (4)
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TABLE 3. Statistical values of the methods for the 30-variable unimodal/multimodal benchmarks functions (F1-F10).

3) THE RELEVANT BOUNDED LIPSCHITZ FUNCTION
DEFINITION BASED ON THE SPACE
Following that, the related bounded Lipschitz functions based
on the space are defined as Equation (5), Equation (6) and
Equation (7),

Lip(�T )={ϕ(Bt1 , · · · ,Btk ) : k ∈ N, 0= t0 < · · · < tk≤T ,

ϕ ∈ Cb,Lip(Rk×d )} (5)

where t ∈ [0,T ] and Cb,Lip(Rk×d ) denotes the space of
bounded and Lipschitz functions on Rk×d .

ξ (X) = ϕ(Bt1 , · · · ,Btk ) : k ∈ N, 0 = t0 < · · · < tk ≤ T ,
ϕ ∈ Cb,Lip(Rk×d ), (6)

ξ (X) =



Bt0 = b0
1

0(H+0.5)
Btk − Bt0

= ×{

∫ 0

−∞

[|tk − 0|H−0.5 − |0|H−0.5]d(B(0))

+

∫ 0

−∞

|tk − 0|H−0.5d(B(0))}


(7)

4) THE ENERGIZED OPTIMIZATION DYNAMICS DRIVEN BY
THE BROWNIAN MOTION OF PARTICLE SWARM
To summarize briefly, the optimization-dynamic-equation of
particle swarm driven by the Brownian stochastic motion
with nonlinear expectation, is well defined in Equation (4),
Equation (5), Equation (6), and Equation (7), respectively,
in order for a more generalized co-evolution of the particle
swarms.
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B. ALGORITHM DESCRIPTION
In this paper, in order for suitable for the hybrid proces-
sor architecture of the scheduling management server, the
algorithm is designed in parallel with deep fusion of coarse-
grained and master-slave models (see Fig. 3).

Following that, the algorithm can be described as follows

IV. EXPERIMENT RESULTS AND DISCUSSION
In this section, all the experiments have been carried out at
national supercomputing center in jinan, china.

A. SIMULATOR AND SIMULATION PARAMETERS

To ensure that the comparison between the algorithms is
fair, there are not any special requirements for parameter
setting between different methods; in other words, the general
parameter values of the PSO algorithm are set normally.

Famous unimodal andmultimodal test problems are shown
in Table 2. They are roughly divided into unimodal func-
tions with changing variables, and multimodal functions
with fixed or changing variables; and they are used to
verify the static optimization performance of the differ-
ent methods, where unimodal functions can assist in the
global convergence validation and multimodal functions can
test the ability of the local search or averting premature
convergence.

B. EXPERIMENTAL RESULTS AND ANALYSIS
In this subsection, the multi-objective optimization perfor-
mance comparison between the different methods including
the static and dynamic optimization performance results anal-
ysis, is given.

1) STATIC OPTIMIZATION PERFORMANCE RESULTS
ANALYSIS
The unimodal or multimodal statistical optimization
results of BLPSO [4],GEPSO [8],SPSO [9],OJPSO[10] and
PSO/RdGBM, are shown as Table 3. It can be found that
the quality of the solutions obtained by the PSO/RdGBM
approach is higher than BLPSO [4],GEPSO [8],SPSO [9],
and OJPSO [10].

Shown as Fig. 4, the 3-D shapes of some selected func-
tions with obvious differences in the response surface, the
convergence corves of five methods(BLPSO [4], GEPSO [8],
SPSO [9], OJPSO [10] and PSO/RDG

BM), and 2-D OR
3-D convergence details of the PSO/RDG

BM algorithm,
are given.

From Fig. 4, it can be seen that for the unimodal or multi-
modal functions, the PSO/RDG

BM algorithm can quickly seek
out the globally optimal solutions at the early co-evolutionary
stage, while the others (BLPSO [4], GEPSO [8],SPSO [9],
AND OJPSO [10]) FAIL TO MAKE IT.

2) DYNAMIC OPTIMIZATION PERFORMANCE RESULTS
ANALYSIS
Here, to compare the dynamic optimization performance of
different algorithms, twelve classic instances of heteroge-

neous computing and cloud scheduling proposed by [26] are
used.

Fig. 5 summarizes the averaged efficiency improvements
of the solution of PSO/RdGBM over that of BLPSO [4],
GEPSO [8], SPSO [9], and OJPSO [10], for each dimension
and heterogeneity model.

Shown as Fig. 6, for semiconsistent instances or for
consistent instances, the averaged efficiency preponderance
of the PSO/RdGBM approach over the other four methods
(BLPSO [4], GEPSO [8], SPSO [9], and OJPSO [10]) is
obvious. Lower improvement factors are obtained for small
inconsistent instances, but for large inconsistent instances, the
advantage significantly increase.

V. CONCLUSION
As the extension of traditional artificial intelligence, PSO
algorithms representing the swarm intelligence algorithms of
the computational intelligence theory, have been widely used
in heterogeneous multimodal optimization.

Although with some improvements, the PSO algorithms
are mostly linear optimization-dynamic-models; and the
PSO algorithm integrated with Ito process driven by the
standard Brownian motion, is reduced to a special Markov
stochastic process with constant expected drift rate and vari-
ance rate, also without the generality in the dynamic swarm
intelligence simulation.

In this paper, based on the core idea of original PSO
algorithm (such as memory, self-cognition and social cog-
nition) and the strict theories such as nonlinear stochastic
analysis, a greener heterogeneous scheduling algorithm via
blending pattern of particle swarm computing intelligence
and geometric Brownian motion, is proposed, to achieve the
balance of ‘‘local exploration and macro development’’ or
‘‘route diversity and faster convergence’’.

Then, the evaluation indicators can be divided into two
categories: static and dynamic optimization performance.
A large number of experimental results are given. Com-
pared with most newly published scheduling algorithms
(BLPSO [4], GEPSO [8], SPSO [9], and OJPSO [10]),
there are significant advantages of the proposed algorithm
on the dynamic optimization performance for consistent or
semiconsistent and large inconsistent scheduling instances,
although with lower improvement factors for small inconsis-
tent instances.
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