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ABSTRACT Since the discovery of the physical random functions and their subsequent refinement into
physical unclonable functions (PUF), a great effort has been made in developing and characterizing these
objects attending to their physical properties as well as conceiving a myriad of different examples in the
search for a better application-specificity and suitability. However, comparatively little time has been devoted
to the analysis of entropy extraction algorithms beyond the recognition of some limitations due to the
environment influencing the PUF behavior. In this article we focus on well known PUF candidates based on
ring oscillator delay, which are ideal for FPGA prototyping due to their tolerance to asymmetries in routing.
We have studied the impact that different digitization algorithms of the responses have over their security
properties. Specifically, we have analyzed the response probability distributions that arise from some popular
techniques of digitization called ‘‘compensated measuring’’ methods, highlighting their lack of uniformity
and how this might translate into cryptanalytically exploitable vulnerabilities. Furthermore, we propose a
new family of digitization schemes named k-modular that exhibit both uniformity in response distribution
and high entropy density on both physical and response space.

INDEX TERMS Compensated measuring, entropy, FPGA, hardware security, physically unclonable func-
tion, ring oscillator.

I. INTRODUCTION
The continuous growth in the capacity to store, process
and transmit digital data is radically transforming our envi-
ronment into an information ecosystem. Massive access of
everyday devices to the internet (Internet of Things, IoT) has
potential applications in areas of great importance such as
logistics, industry, health or defense [1]–[3]. However, the
distributed nature of this technology and the severe restric-
tions on power and area associated make the physical layer
of these systems a major vulnerability [4]. In this context,
physically unclonable functions (PUFs) arise as a promising
security solution, capable of providing secure storage of key
data and identification of trusted instances [5]–[7].
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approving it for publication was Ahmed M. Elmisery .

PUFs are a cryptographic primitive with security proper-
ties on the physical layer, which are of application in get-
ting a device to be robust against hardware-level, physically
invasive attacks as well as side channel attacks [8]–[10].
To achieve this goal PUFs exploit microelectronic manufac-
turing process random variations in such a way that differ-
ent physical realizations of a same design present slight yet
measurable deviations, which are impossible to control in
order to be physically replicated even by the original man-
ufacturer [11], [12]. These characteristics resemble those of
biometric security systems, which has motivated to call PUFs
‘‘a device’s fingerprint’’.

From a formal point of view, PUFs can be thought as pieces
of hardware which exhibit a response when exposed to ade-
quate stimuli called challenges. PUFs have been traditionally
classified according to the size of this challenge space as
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weak PUFs if this is small (i.e., if this can be exhausted
in polynomial or less time) or strong PUFs, if challenge
space scales faster than polynomial as a function of PUF
device physical parameters (e.g., area, number of cells, etc.).
However, it is a controversial statement, as some authors
argue that density of information in a region of space is
upper bounded by fundamental physical arguments [13] to be
asymptotically polynomial, thus deprecating this widespread
classification. Despite the formalization of both kinds of
PUF in terms of complexity theory, things are usually much
clearer in practice where PUFs classified ‘‘weak’’ present
a very limited number of possible challenges (usually only
one), while those called ‘‘strong’’ exhibit a (more or less)
straightforward mechanism to expose the instance to multiple
challenges. As a consequence, both types of PUF behave
in a dramatically different way, and thus they find applica-
tion in very different fields: weak PUFs provide a secure
key storage mechanism in which keys are re-generated from
hardware-specific features of the device rather than stored in
non-volatile memories [6], [9], whereas strong PUFs can be
used in identification/authentication protocols as well as key
generation [10], [14].

In this paper we focus on the security properties that
arise regarding the methodology chosen to turn physical
disorder into binary responses, which we will refer to as
digitization algorithms through the text. The concrete PUF
representative that we work with is the ring oscillator PUF
(RO-PUF), whichwas first proposed byGassend et al. in [12],
and exhibits a number of advantages that make it highly
convenient. First, it is an FPGA-friendly PUF that allows
fast and easily modifiable hardware implementation, as well
as straightforward interfacing via UART and PMOD ports.
Besides, RO-PUFs have been extensively studied in terms of
physical properties, and the digitization algorithms developed
to it (based on frequency comparison of identically designed
ring oscillators) are of application to a broader family of
PUF candidates, specifically, any PUF whose response is
constructed by comparing measurements, i.e., compensated
measuring -digitized PUFs, [14]. In regards of the discussion
of the previous paragraph, RO-PUFs are capable of providing
a large number of challenge-response pairs and thus might be
classified as strong PUFs. In this work we are interested in
studying the security properties of a single RO-PUF instance
in terms of the entropy delivered from it, for which we have
made use of different permutations of ring oscillators array as
challenges which altogether with a digitization scheme will
produce well defined bit strings.

Furthermore, a method based on entropy analysis has
been developed to test some popular comparison algo-
rithms reported in RO-PUF design works, highlighting their
strengths and weaknesses. Finally we propose a novel algo-
rithm that aims to compensate for unbalance in security to
performance trading-off found on previous schemes.

The main contributions of this work are: (i) we have stud-
ied the entropy regarding the digitization schemes typically
used in RO-PUF and other compensated measuring PUFs,

FIGURE 1. A three-inverter ring oscillator with enable control scheme.

(ii) we have proved that entropy scales linearly with the
size (i.e., number of oscillators) of such PUF circuit,
(iii) we have given examples of how the most common dig-
itization algorithm gives raise to dictionary-like vulnerabil-
ities due to the non-uniformity of its distribution, (iv) we
have given plausible arguments that make evident that there
exists an inverse relation between usage of resources and
cryptographic performance (in terms of entropy extraction),
and (v) we have proposed a digitization algorithm (so called
k-modular) that exhibits good trade-off between these two
aforementioned desirable properties. On the other hand, the
prime difficulty faced in this research was to handle the huge
size of challenge space which makes it hard to approximate
the outcome distribution of probability.

This paper is organized as follows: in Section II we make
an exhaustive review on the physical aspects of RO-PUFs,
Section III describes the experimental setup that has been
used to implement and evaluate our RO-PUF proposals in
FPGA. Section IV contains a description and subsequent
analysis of the results obtained in our experiments. Finally,
Section V will highlight some conclusions that might be
drawn from our work.

II. BACKGROUND
A. RING OSCILLATORS
A ring oscillator (RO) is an astable digital circuit composed
of an odd number of inverters feedbacked in a loop (Fig. 1).
Adopting a mathematical model similar to that described
in [15], we can characterize a ring oscillator delay (1) as

1 = δ0 + δgD + δlD + δgG + δlG

where δ0 is the nominal delay of an ideal ring, δgD is a
global and deterministic contribution to delay due to global
deviation from ideal conditions (i.e., temperature and voltage
supply of the whole chip), δlD is the local and deterministic
contribution due to systematic features of the oscillator (this
is, the term that comprises all the ‘‘manufacturing noise’’),
δgG is the delay caused by global Gaussian fluctuations (such
as fluctuation in temperature or voltage), and δlG is the contri-
bution of local Gaussian noise, such as EM noise influencing
the circuit pointwisely. Ring oscillator architecture allows
us to write down the expected time for the oscillator to
completeM laps as

tM =
M∑
i=1

1i = M (δ0 + δgD + δlD)

+

M∑
i=1

δgG(ti−1)+ δlG(ti−1) (1)
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FIGURE 2. RO-PUF schematic.

Since these quantities are modeled like normal distributed
variables of zero mean (note that any bias can be absorbed
by the corresponding global or local systematic contribution),
it follows

〈δG〉 = 0 =

∑M
i=1 δG(ti−1)

M
→

M∑
i=1

δG(ti−1) = 0 (2)

where 〈x〉 stands for the average of the quantity x. Thus
for large enough number of periods M we can rewrite total
oscillator delay as

tM = M (δ0 + δgD + δlD) ≡ M1 =
M
f

(3)

where f = 1/1. On the other hand, the time elapsed by a
reference clock of period δr in completing Mr oscillations
might be written as

tMr = Mrδr =
Mr

fr
(4)

If the total delay tM equals tMr then, from (3) and (4) we
have

M
f
=
Mr

fr
→ f =

M
Mr

fr (5)

SinceMr andM are natural numbersM = Mrq+r , and (5)
can be written

f =
Mrq+ r
Mr

fr =
(
q+

r
Mr

)
fr (6)

Experimental estimation of RO frequency (f̂ ) ifM oscilla-
tions are measured in Mr periods of the reference clock will
be

f̂ = qfr (7)

So deviation (e) with respect to actual frequency,

e = e (Mr ) =

∣∣∣f − f̂ ∣∣∣ = r
Mr

fr ∼ 1/Mr (8)

and thus on the limit of largeMr is

lim
Mr→∞

e = 0 (9)

This exposes the fact that resolution of measuring can be
arbitrary increased by letting the reference clock run for a
longer time.

FIGURE 3. Example of digitization scheme where one bit is extracted per
frequency comparison: only relative frequency between oscillators has
relevance.

B. RO-PUF
The RO-PUF architecture that we have adopted in this work
is the modification proposed by Suh and Devadas in [6].
This dates back to 2007 and further research has been made
in order to increase the number of bits, i.e., the number of
comparisons that can be made out of a fixed number of oscil-
lators such as configurable RO-PUF [16], or the more mod-
ern Transformer PUF introduced in [17]. However, we will
restrict to the original ring oscillator PUF for simplicity,
since the results of our research are of application to any
comparison-based digitization procedure and thus involve
newer RO-PUF adaptations. The core of such design is a bank
of N ring oscillators designed to be identical, together with
a measuring element capable to capture their oscillation fre-
quencies (Fig. 2). Since ring oscillators are very sensitive to
deterministic global noise caused by temperature variations,
it is a common practice to build a differential function out
of the frequency measurements. A well-known differential
function introduced by Gassend et al. consists of subtracting
the frequencies of pairs of oscillators, taking the sign of this
operation as the binary output (say, ‘‘0’’ for minus and ‘‘1’’
for plus) [12], [18]. This approach has the advantage of
showing a straightforward way to define the challenge space
in which each challenge is simply the pair of oscillators to
be compared. This differential technique is referred to as
compensated measuring in the context of PUF design prac-
tice [12], [19]. From an N cells arrangement this means that
it can deliver N (N − 1)/2 bits, however it is clear that many
of these bits will be correlated because of the transitivity
of the ordering operation which dictates that, given a set of
three oscillators a, b and c such that fa > fb and fb > fc
it implies that fa > fc (where fi stands for the oscillation
frequency of oscillator ‘‘i’’), and the bit from the comparison
of oscillators a and c (namely, the bit ac) is not random.
This means that the maximum entropy possibly delivered
by such a system is somewhat lower than N (N − 1)/2 bits;
actually we can do better in bounding the maximum entropy,
since only relative differences are of interest rather than actual
frequency measurements, so it is apparent that each oscillator
can be unequivocally labeled from 1 to N according to its
relative speed (see Fig. 3). This leads to the assertion that
the complexity of this system is that of ordering each of the
N oscillators, i.e., this PUF can be set at N ! different states,
which implies an upper bound on entropy:

S ≤ log2 N ! (10)

as stated in [6]. The problem of guessing which of all the
possible N (N − 1)/2 comparisons will deliver the maximum
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entropy is hard to make and device-dependent [10], so a
simpler approach within a specific application is to compare
fixed pairs of oscillators. From now on we will refer to this
list of fixed comparisons as the topology (T ) of the RO-PUF.
Let N 2 the set of all possible pairs,

N 2
= {(i, j) | 1 < i < N , j > i} (11)

then any topology is defined as

T ⊆ N 2 (12)

Through the rest of the text we will refer coherently to RO
arrays N of length N oscillators, and bit strings Nb of length
Nb bits as the random variables:

N = {ni ∈ N | 1 < i < N } (13)

Nb = {bi ∈ {0, 1} | 1 < i < Nb} (14)

These two concepts are made concrete through the PUF
physical instantiate, and are bounded by the definition of a
topology which can be thought as an operator acting on RO
arrays as

T (N) = Nb (15)

The application scenarios of RO-PUF comprise both its use
as either authentication or secure key storage, e.g., RO-PUF
can be used to authenticate end nodes in an IoT environment,
which requires CRP transmission through an insecure chan-
nel and thus CRP reuse is forbidden [20]; this application
makes use of a large CRP space and thus the RO-PUF design
must include a mechanism to accept different challenges.
On the other hand, the secure key storage application can
be set with a minimum number of challenge-response pairs
(maybe only one) and these might be hard-coded in the
hardware design [21].

Once a topology has been chosen (probably implemented
as an intrinsic property of the RO-PUF), it might be argued
that many potentially independent comparisons are being
ignored. This can be addressed by defining a challenge
space as the space of permutations σ (1, . . . ,N ), in the sense
that the topology defined as the subset of pairs i, j can be
applied to the permuted indices σ (i), σ (j), e.g., given a toy
model of three inverters N = 3 and a topology defined
as {(1, 2), (2, 3)} that produces two bits, we can feed this
RO-PUF with the identity permutation (1, 2, 3) and thus
obtain the response bit string (12, 23) (where ‘‘12’’ stands for
the bit resulting from comparing oscillators 1 and 2, etc); or
we could ask the RO-PUF to output a different permutation,
say (3, 1, 2) which will lead to the word (31, 12). Since the
entropy of the system is bounded by (10), this definition of a
challenge space is well behaved in the sense that the whole
performance in entropy extraction is provided by the topology
definition: a good topology (in terms of entropy extraction)
will map each challenge to a different, independent response
string and thus will deliver the theoretical maximum entropy,
while a poorly defined topology will map the challenge
space to a skewed response space. Throughout this work we

will analyze some of the most common topologies found
in the literature in terms of entropy extraction and other
security metrics, and we will propose a new topology to
address some of the flaws found. It is interesting to notice
that in the assumption of an ideal manufacturer which pro-
duces oscillators whose frequencies are uniformly distributed
through the chip, the space of RO-PUF instances matches
the challenge space defined as above (because the ordering
of any oscillators array produced by the manufacturer will
match some permutation (1, . . .N )), and thus the following
discussion is applicable to both scenarios where a large CRP
space is needed for authentication purposes, or either a single
challenge is used in a weak PUF fashion as secure storage.

According to this, the evaluation of every permutation will
give raise to a space of bit strings (responses) whose distribu-
tion will depend on the chosen topology [22]. We will refer
to the probability of a response as the chance of extracting a
concrete outcome if a permutation is randomly picked and
evaluated. Thus, the security properties of each topology
might be characterized attending to some statistical metrics
over the responses probability distribution. There are a num-
ber of popular metrics that are useful to characterize security
properties in cryptographic systems depending on the adver-
sarial model (i.e., the information an adversary is supposed
to posses from the system): Shannon entropy (S) measures
the minimum number of bits required by a system to label
every state [23]; min-entropy (s) can be thought as a measure
of the best chance an adversary has in guessing the key at one
try (and furthermore, its superiority over Shannon entropy as
security metric has been claimed by some authors) [24], [25];
and guesswork (G) measures the mean time needed to break a
key in a dictionary attack (i.e., a kind of ‘‘brute force attack’’
in which the illegitimate key candidates are tried out from the
most probable to the least) [26]. Nevertheless, in this work
we have mainly attached to the Shannon entropy (and some
related curves) as a measure of ‘‘cryptographic-goodness’’,
since this metric is well studied and widespread through
the literature [27]–[31]. Entropy is defined on the response
probability distribution pT (Nb) as

ST = −
∑
Nb

pT (Nb) log2 [pT (Nb)] (16)

where

pT (Nb) =
‖{N | T (N) = Nb}‖

N !
(17)

and ‖.‖ stands for set cardinality.
In the following, we will use square brackets, S [N] to

indicate ‘‘the entropy of the response space spanned by the
whole set of oscillator arrays, {N}’’.

In practice, the previous discussion leaves two main design
options which are most popular through literature:
• The 1-out-of-k masking was introduced by Suh and
Devadas in [6] as a way of obtaining uncorrelated bits
and increase the robustness of the system against envi-
ronmental variations. In this approach, the set of N
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FIGURE 4. Representation of a topology as the number of used
comparisons (dashed squares) out of all possible comparisons (green
squares). These two examples show: (a) the 1-out-of-2 topology
(1st oscillator is compared to 2nd, 3rd to 4th and so on) and (b) the N-1
topology (1st is compared to 2nd, 2nd to 3rd, 3rd to 4th and so on) for a
set of N = 6 oscillators.

oscillators is divided into groups of k oscillators. One bit
is obtained out of each group by comparing only the pair
of oscillators whose frequencies are further apart (which
reduces the probability of a bit flip event in the case that
environmental changes affect the frequency of oscilla-
tors). In this work we will attach to the simplest form of
masking using k = 2; we will refer symbolically to this
1-out-of-2 masking as N/2 topology; this constructions
will provide N/2 bit length responses out of an array of
N oscillators (see the schematic representation of this
topology in Fig. 4.a) [6], [10], [32].

• The ‘‘N − 1’’ topology which we will refer to as Nr1 ,
where only neighboring oscillators are compared yield-
ing N − 1 bit responses (Fig. 4.b) [33], [34].

In the next subsections we will introduce these topologies,
as well as the caseN 2 in which all possible comparisons are
taken into account. Finally, we will propose a novel family
of topologies named ‘‘k-modular’’ (referred asN 2

/k ) that are
introduced in Section IV.

III. EXPERIMENTAL SETUP
In this work we are interested in the security properties that
arise from a RO-PUF architecture depending on the digiti-
zation technique selected to turn a set of N oscillators into
a bit string. In orde to perform such analysis. In this work
we have implemented a set of ring oscillators in an FPGA
model xc7z020 mounted on a development board PYNQ-Z2,
which includes a 125MHz clock signal inputted to the FPGA.
The ring oscillator architecture consists of three inverters in
a loop plus an AND gate which provides enable control.
The frequency of a ring oscillator is measured by estimating
its period; this is done by comparing the number of cycles
looped by the ring oscillator (M) in Mr cycles of the refer-
ence clock, while maintaining the system at constant (room)
temperature and voltage. Afterwards the quotient M/Mr is
easily transformed into frequency multiplying by the factor
f = M × 125/Mr MHz (where the factor 125 stands for the
frequency of the reference clock measured in MHz).

According to (8) the maximum possible error due to lap
counting will be e = fr/Mr , however at some point Gaussian

FIGURE 5. (a) Implementation of measuring system in FPGA. (b) Zoom to
matrix of ring oscillators. (c) Scheme of an oscillator implemented using
three LUTs.

FIGURE 6. Spatial distribution of frequencies throughout the matrix of
oscillators in FPGA.

noise will become dominant (notice that Gaussian fluctua-
tions are expected to behave like ∼ 1/M1/2

r ). In our experi-
ments where we tookMr = 107 reference laps the resolution
of measurement is ∼ 1.25 × 10−5MHz, while the smallest
standard error measured in the RO matrix arrangement was
±0.01MHz, so it is clear that our reference time is enough to
measure deterministic features of RO properly.

The schematic implemented in the FPGA as well as the
construction of a ring oscillator using the FPGA look up
tables (LUTs) is shown in Fig. 5. For this work we have
implemented a matrix of 34 × 23 RO which oscillate at an
average frequency of f̂ = 463.93MHz. The distribution
of frequencies shows some degree of correlation in the fre-
quency spatial distribution, in the sense that nearby oscilla-
tors, specifically oscillators within the same column, seem to
run at close frequencies, see Fig. 6.
In the present study we are focused on the security prop-

erties arising from the choice of digitization method only,
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FIGURE 7. Scheme of the evaluation procedure designed to obtain the
probability distribution associated to each topology.

and thus we want to save our results from hardware imple-
mentation flaws such as spatial correlation. To achieve this,
we design an evaluation procedure that randomize the actual
frequency measurements by picking a random subset of
N oscillators. The N values will be used to simulate a
N -oscillator RO-PUF, which is then evaluated according the
dictation of a given topology. This process is iterated to gen-
erate a histogram that approximate the underlying probabil-
ity distribution associated to an ideal N-oscillators RO-PUF
operating under a given topology (Fig. 7). PUF instance
responses are generated in post processing by randomly pick-
ing subsets of N oscillators from the whole set, and com-
paring them under the dictation of a given topology T for
different permutations (challenges). This process is iterated
for various values of N to study how the distributions change
depending on the number of oscillators.

IV. RESULTS
A. COMPARE ALL PAIRS: N 2N 2N 2 TOPOLOGY
This is the trivial topology in which all possible comparisons
are made to build the response bit string. Digitization process

FIGURE 8. Entropy delivered by N 2 topology equals the maximum
theoretical possible.

FIGURE 9. Response histograms under topology N 2 with: (a) N = 4 and
(b) N = 5 oscillators.

is carried out by exhausting all possible comparisons in the
matrix of oscillators, thus N (N −1)/2 bits are deployed. This
way of extracting strings from the RO-PUF is infrequent in
the literature, since it suffers from a high bit correlation due
to the transitivity of ordering. However, since the state space
contains all possible comparisons that can be made out of
an N oscillators matrix, any other topology construction will
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FIGURE 10. Comparison scheme of N/2 topology.

FIGURE 11. Response histograms under N/2 topology for N oscillators:
(a) N = 8 and (b) N = 18.

span a smaller state space, thus SN 2 ≥ ST . This still stands
even if topology Tmax deploys the maximum entropy, thus it
necessarily follows

SN 2 (N ) = log2 N ! (18)

This is clearly pointed out in the strong agreement between
experimental entropy estimation (red markers) and theoreti-
cal bound (solid line) in Fig. 8, where the interpolation curve
has been extended to the real domain using the Legendre’s
gamma function: N ! → 0 (N + 1).
The distribution of bit strings that arise according to

N 2 topology for different number of oscillators is shown
in Fig. 9. These histogram leaves a large number of blank
spaces throughout the PUF image y ∈ [0, 2N (N−1)/2

− 1],
which is nonetheless expected because bit correlation pre-
vents 2N (N−1)/2

− N ! states from being visited. However it
is interesting that the system is uniformly distributed over the
remaining N ! values.

FIGURE 12. Entropy delivered by N/2 topology against the number of
oscillators: it remarkably escalates as the responses bit-length.

B. COMPARISON WITHOUT REPETITION: N/2N/2N/2 TOPOLOGY
In this topology the array of N available oscillators ni |Ni=1
is digitized by comparing two adjacent oscillators without
repetition (see Fig. 10):

N/2 (N) 3 bi/2 =
{
0 if ni+1 > ni
1 otherwise

(19)

This scheme (altogether with others that generalize to
1-out-of-kmasking in which one bit is produced out of k ≥ 2
different oscillators) are the most commonly found in PUF
literature [6]. It produces N/2 bit words, thus a large amount
of entropy is paid in the trade-off between security profi-
ciency and environmental robustness. Unfortunately, since
switching activity can be correlated to the number of oscil-
lators in the matrix, this system will also suffer from a poor
performance mark [35]. However, absolute no cell repetition
translates into no bit correlation at all, and thus entropy per bit
scoring tends to 100%, which arises as a guarantee of good
resistance to cryptanalysis (notice the plain distribution of
measured responses shown in Fig. 11).

In Fig. 12 we have plotted entropy against different size of
the oscillator arrays. The linear interpolation curve is justified
as follows:

We define the composition operation, ‘‘◦’’, on ROs arrays
as

X ◦ Y ←− T (X ◦ Y) = T (X) , T (Y) ∀ T (20)

where the comma separator (,) stands for mere juxtaposition
of either ring oscillators arrays or bit strings.

On the basis of the well-known entropy property of joint
systems, S(X ,Y ) ≤ S(X ) + S(Y ), with equality happening
if and only if both subsystems are independent [36], the next
property can be derived for the composition operation defined
above,

ST [X ◦ Y ] = ST [X]+ ST [Y ] (21)
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FIGURE 13. Comparison scheme for Nr1 topology.

Concerning the particular case ofN/2 topology, any oscil-
lators array might be splitted into two juxtaposed subsys-
tems such that they will be independent one to each other
because every oscillator is used only once, N/2 (X,Y) =
N/2 (X) ,N/2 (Y). Regarding definition (20) this can be writ-
ten

N/2 (X,Y) = N/2 (X ◦ Y)

↓

SN/2 [X,Y ] = SN/2 [X ◦ Y ] (22)

And using (21) this leads to the linearity of entropy
function

SN/2 [N] = SN/2 [X]+ SN/2 [Y ] ∀X,Y | X,Y = N

(23)

C. COMPARISON WITH REPETITION OF ONE
OSCILLATOR: Nr1Nr1Nr1 TOPOLOGY
In this latter scenario, which was introduced by Maiti et al.
in [33], the system is maintained under reasonable environ-
mental resistance while deploying an entropy of approxi-
mately N bits. In this scheme every comparison involves a
new oscillator, thus measurements will not be trivially corre-
lated due to transitivity over triads as in the previous case (see
Fig. 13)

Nr1 (N) 3 bi =
{
0 if ni+1 > ni
1 otherwise

(24)

In this case the responses will be N − 1 bits long, however
it is interesting that some bit correlation still exists because
of the digitization algorithm: there are some RO-PUF chal-
lenges (i.e., some permutations of the N oscillators array)
such that the resulting adjacent-comparing produces the same
bit string. In order to provide an example of this collision
scenario and the correlation that it implies we have examined
the behavior of a three oscillators long array (see Fig. 14).
These might be labeled from 1 to 3 according to each relative
frequency (such as Fig. 3). Since any realization of this
PUF instance will correspond to some ordering, any possible
PUF outcome will be specified by a permutation of (1, 2, 3).
The table in Fig. 14 shows all possible challenge and its
corresponding PUF output. From this example it is apparent
that, after extracting a first bit (say, ‘‘0’’) the probability of
getting a second bit is not uniform: obtaining a ‘‘1’’ is more
probable (66%) than obtaining a ‘‘0’’ (33%). This fact reveals

FIGURE 14. Toy example of Nr1 topology for N = 3: (a) all possible
realizations of such a RO-PUF. (b) Histogram of the RO-PUF responses,
which exhibits evident non-uniformity.

FIGURE 15. Response histograms under topology Nr1 for N oscillators:
(a) N = 4, (b) N = 5, (c) N = 6 and (d) N = 10.

a fundamental shortcoming of this security structure, and
it is remarkably caused by the digitization algorithm only,
no matter the physical properties of the device holding this
architecture.

In Fig. 15 we have plotted the histograms resulting of
various distinct number of oscillators N , which shows how
this effect is amplified as the response length increases; this
collision probability can be used by an adversary to gain
advantage over the RO-PUF solution by exposing illegiti-
mate key candidates to the PUF interface in a ‘‘better-than-
random’’ checkout. The entropy delivered by this topology
against the length of the oscillator array is shown in Fig. 16.
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FIGURE 16. Entropy delivered by Nr1 topology against the number of
oscillators. Its progression law can be proved to be linear, which allows
for extrapolation.

In regards of the interpolation model, pretty much of the
argument given in the previous section stands here: given
a system N composed of N oscillators whose elements are
numbered from 1 to N as usual, this system can be separated
into two sub systems X and Y , of lengths X and Y such
that X + Y = N . No matter what permutation happened to
instantiate the N PUF system, the oscillators within each sub
array can be re-numbered from 1 to X and 1 to Y respectively,
according to discussion in Fig. 3. Unlike the previous case,
now Nr1 (X,Y) 6= Nr1 (X) ,Nr1 (Y) because there are
two oscillators in each sub-string (namely, the ‘‘frontier oscil-
lators’’: last oscillator inX and first one inY ) that interact one
to each other. However, these are the only connection between
both sub-strings indeed: all the remaining bits produced by
Nr1 are independent. Thus the operation of Nr1 on the
juxtaposed string X,Y is almost that on the whole system N
in the absence of this ‘‘interaction bit’’. Of course this bit will
not be independent because the actual realizations of X and
Y sub-arrays will constraint the frontier oscillator candidates,
and thus uncertainty of this single bit will be lesser than unity:
call this bit’s contribution to entropy u and let it be (by now)
a function of the subsystems sizes,1 u = u (X ,Y ). This lets
us write the entropy of the whole system N as

SNr1 [N] = SNr1 [X]+ SNr1 [Y ]+ u (X ,Y ) (25)

and using (21),

SNr1 [N] = SNr1 [X ◦ Y ]+ u (X ,Y ) (26)

Equivalently we could decompose the system in two dif-
ferent sub-arrays, N = X ′,Y ′ which drives to

SNr1 [N] = SNr1
[
X ′ ◦ Y ′

]
+ u

(
X ′,Y ′

)
(27)

1Notice that every subsystem of the same size is equivalent, since only
relative ordering of the system members is relevant.

TABLE 1. Number of operations needed to find a random key in brute
force attack and dictionary attack on Nr1 topology. Non uniformity on
responses distribution leads to effective dictionary attack.

Systems X ◦ Y and X ′ ◦ Y ′ are equivalent, for both consist
of the same number of oscillators,

X + Y = N = X ′ + Y ′ (28)

and span the same number of bits,

Xb + Yb = X − 1+ Y − 1

= N − 2

= X ′ + Y ′ − 2

= X ′ − 1+ Y ′ − 1

= X ′b + Y
′
b (29)

Thus SNr1 [X ◦ Y ] = SNr1
[
X ′ ◦ Y ′

]
, and equating (26)

to (27) we have

u (X ,Y ) = u
(
X ′,Y ′

)
∀X ,Y (30)

Once it has been proved that the increment of entropy is
constant with the addition of new oscillators to the array,
it is evident that the entropy function ofNr1 topology grows
linearly with N ,

SNr1 (N ) ∼ N (31)

DICTIONARY ATTACK ON Nr1 TOPOLOGY
This topology, despite the introduction of a new physi-
cal oscillator to every comparison, must be treated care-
fully because the digitization algorithm gives raise to
non-uniformities in the probability distributionwhich are sen-
sible to be exploited by an adversary, as stated before. As an
example we have performed an easy dictionary attack over a
series of PUF responses, i.e., an optimal brute force search
where guessing candidates are chosen consistently with the
probability distribution of this scheme (see Fig. 17). This
experiment consists of three different stages: in the first place
we construct and reorder the histogram of the N -oscillators
distribution using a subset of the experimental data. After-
wards, we use a different subset of data to generate a number
of PUF responses (in this case 104 numbers). Finally we try to
find out each PUF response by two differentmethods: random
guessing and dictionary attack. The average number of trials
needed to find all the responses for some N are shown in
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FIGURE 17. Visualization of a dictionary attack on Nr1 topology: the
response distribution of N = 5 oscillators in (a) is re-sort in descending
order of probability, such that illegitimate keys chosen from left to right
in (b) minimize the time required to break this security system.

FIGURE 18. Ratio between the number of trials needed to break RO-PUF
for brute force attack / dictionary attack in topologies Nr1 and N/2 .

Table 1. In Fig. 18 we have plotted the ratios ‘‘random’’ to
‘‘dictionary’’ for PUF responses of different bit length under

FIGURE 19. Comparison scheme for an array of N = 12 oscillators under
N 2
/k topology: (a) k=3, (b) k=4.

topologies Nr1 and N/2 . This makes clear how Nr1 non-
uniformity speeds up the searching, thus weakening the PUF
further than expected despite an apparently efficient use of
physical resources. This is merely an example of how digi-
tization has an impact on security properties beneath circuit
architecture; other ways of exploiting this lack of uniformity
can be imagined, e.g. bit correlation might be used to support
modeling attacks, etc.

D. TOPOLOGY N 2
/kN 2
/kN 2
/k

Although we have just seen an approach where good entropy
and entropy-related quantities might fail in proving a system
to be secure due to poor distribution uniformity, entropy still
stands as a lower bound to guesswork. Thus, this shortcoming
can be bypassed if the production of entropy (relative to
physical properties of the PUF, in this case the number of
oscillators) happens to be enough to compensate for the bit
correlation.

Driven by this idea we have combined the benefits of
avoiding repetition in oscillator comparison as much as pos-
sible (a task where the 1-out-of-k masking performs good),
while keeping a high entropy per oscillator rate (such as
the case of comparing all possible pairs). Putting these two
constructions together gives raise to the k-modular (N 2

/k )
topologies family. These are constructed by taking apart the
array of ring oscillators in N/k groups of k oscillators; each
group will be treated like an independent RO-PUF of N = k
oscillators, and will be evaluated in anN 2 fashion to produce
k(k − 1)/2 bits. Thus, the total number of bits extracted
from this topology in N (k − 1)/2 bits. Since every group is
unconnected to the rest, the total entropy deployed by this
system will be SN 2

/k
= N/k × log2 k!. It is noticeable that

the topologies referred as N 2 and N/2 are particular cases
of N 2

/k for k = N and k = 2 respectively. In this work we
have focused on k = 3 and k = 4 -modular properties (see
the schematic representations in Fig. 19), whose probability
distributions for different N -long arrays are shown in Fig. 20.
It exhibits a similar shape as that of N 2 topology, where
all possible states are visited with the same probability (yet,
the states space is smaller than 2Nb which leads to some
‘‘white spaces’’ in the histograms). However, it suffices to
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FIGURE 20. Responses histograms under N 2
/k topology for N = 12

oscillators: (a) topology N 2
/3 and (b) topology N 2

/4 .

prevent exploitation from distribution variability such as the
dictionary attack exemplified in the previous section.

E. COMPARISON BETWEEN TOPOLOGIES
The Shannon entropy -related quantities that we have used to
characterize each topology security properties are:

• Shannon entropy per oscillator rate (S/N ) [29], [31] as a
measure of the system performance in terms of resource
consumption, since power consumption is related to
switching activity [35], which grows with the number
of oscillators.

• Shannon entropy per bit rate (S/Nb) [9], [27] as a mea-
sure of the resistance that the system is capable to exhibit
to cryptanalysis.

In Fig. 23 we have plotted: a) entropy per oscillator rate
(S/N ) and b) entropy per bit (S/Nb) against the string length
of PUF responses, for the topologies studied: N 2 (black),
N/2 (red), Nr1 (blue), N 2

/3 (green) and N 2
/4 (magenta).

The points in these figures are interpolated by solid lines in
agreement with the arguments given above: N/2 topology is
interpolated according to Fig. 16, SN/2 = 0.5N , which leads
to rates S/N = 0.5 bits per oscillator (red curve in Fig. 23.a),
and S/Nb = 1 bits per bit response (red in Fig. 23.b). On the
other hand, topology Nr1 is linearly extrapolated beyond
the experimental measurements supported by the arguments
given in Section II as SNr1 = 0.9N −0.8. On the asymptotic

FIGURE 21. Entropy delivered by N 2
/3 topology against the number of

oscillators. Progression is linear on N as expected.

FIGURE 22. Entropy delivered by N 2
/4 topology against the number of

oscillators. Progression is linear on N .

limit of large N , S/N ∼ 0.9 bits per oscillator (blue line
in Fig. 23.a), and S/Nb ∼ 0.9 bits per bit response (blue in
Fig. 23.b).
For the remaining analyzed topologies N 2 and N 2

/k with
k = 3 and k = 4, we dispose theoretical interpolation curves
whose excellent agreement with experimental data is plotted
in Figs. 8, 21 and 22 respectively. In the limit of large N ,
entropy rates of N 2 can be stated making use of Stirling’s
formula, SN 2/N ∼ log2 N (black line in Fig. 23.a) and
SN 2/Nb ∼ log2 N/(N − 1)→ 0 (black line in Fig. 23.b).
Regarding the proposed new topologies, N 2

/3 behaves like
SN 2

/3
/N ∼ 0.86 bits per oscillator (green line in Fig. 23.a),

which happens to be the same as entropy per bit rate (green
line in Fig. 23.b), whileN 2

/4 topology exhibits a nice trade-off
between both quantities, delivering SN 2

/4
/N ∼ 1.15 bits per
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FIGURE 23. Entropy densities for every studied topology against the
response length for: (a) entropy per oscillator rate, (b) entropy per bit
rate. Experimental data are represented with points, and interpolation
curves with dashed lines.

oscillator (magenta in Fig. 23.a) and SN 2
/4
/Nb ∼ 0.76 bits per

bit-response (magenta in Fig. 23.b).
Finally for the sake of completeness, we have estimated the

Hamming intra-distance as a measure of reliability, which is
defined as

µintra =
1

No. repetitions

No. repetitions∑
i<j

HD
(
Nb

i,Nb
j
)

(32)

where HD stands for the Hamming distance, which is the
number of different symbols between two strings.

The results provided in Table 2 have been obtained through
one thousand frequency measurement repetitions (using the

TABLE 2. Average Hamming intra-distance µintra measured for the
studied topologies (within the same physical FPGA).

same technique stated in Section III); afterwards the PUF
response has been generated to each corresponding topology
in order to obtain approximately 64 bits, which implies using
a different number of oscillators depending on the topology.
This analysis shows that the reliability of the PUF is not
derated by the introduction of the new topologies (as would
be expected since these metrics only depend on the physical
properties of the circuit), which allows us to conclude that the
proposed digitization schemesN 2

/3 andN
2
/4 do not introduce

artifacts in the production of bit-strings.

V. CONCLUSION
In this work we have analyzed the outcome probability distri-
bution of a ring oscillator PUF implemented in FPGA, on the
light of the digitization algorithms only. All the methods
studied, referred here as topologies of the PUF, belong to
an extremely popular set of digitization techniques known
as compensated measuring, which allow for both obtain a
binary response intrinsically, as well as strengthen the secu-
rity system against environmental undesired influences. The
parameters of the experiments performed to characterized
these algorithms were the topology (T ), and the number of
oscillators (N ) which compose the RO array of the PUF (or
equivalently the bit-length of the responses,Nb, which is fixed
given a topology). All measurements were carried out at room
temperature and constant voltage. In regards to the metrics
used, we have characterize each (T ,N ) couple according to
its density of entropy per oscillator (S/N , as a quantification
of the performance in terms of consumption of resources,
i.e., power and area) and entropy per bit-response (S/Nb, as a
measure of security proficiency). Also, a cryptanalytic exper-
iment was conducted on the popular Nr1 topology to make
explicit the existence of weaknesses regarding digitization
algorithms only.

The most remarkable aspect of the topologies studied is
the behavior of entropy-related metrics for large Nb, since
practical cryptological applications would lay on the asymp-
totic limit of these. At this respect, it is clearly pointed
out that there is an inverse relation between efficient use
of resources and security potential (which, in retrospective,
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seems a very natural trade-off). Regarding this, our proposed
topology family (particularly the N 2

/4 one) occupies a cen-
tral position in both plots, which highlights its potential to
gather the best of both worlds and makes it a promising
candidate for the practice of compensated measuring PUF
design, furthermore, these conclusions clear the way for a
study on hardware performance and machine learning attacks
robustness.
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