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ABSTRACT Clean energy resources, like wind, have a stochastic nature, which involves uncertainties
in the power system. Introducing energy storage systems (ESS) to the network can compensate for the
uncertainty in wind plant output and allow the plant to participate in ancillary service markets. Advance
in compressed air energy storage system (CAES) technologies and their fast response make them suitable
for ancillary services. This paper investigates the participation of a combined energy system composed of
wind plants and compressed air energy storage system (CAES) in the energy market from a private owner’s
viewpoint, including trading in energy markets and bidding for frequency regulation and reserve capacity in
ancillary service markets. Since this problem contains various uncertainties associated with market prices,
wind generation levels, and regulation signals, distributionally robust optimization (DRO) is used to model
the uncertainties and enhance the simultaneous participation of a combined wind-CAES system in day-
ahead energy and ancillary service markets. This method combines the advantages of stochastic and robust
optimization. In contrast to robust optimization (RO), the method consolidates specific statistical data to
reduce conservative results. Simulation results demonstrate the proposed model’s effectiveness in handling
uncertainties and provide a framework for investors in this area. In addition, case study analyses are applied
to assess the model’s performance and validate the coordination of a wind plant and compressed air energy
storage system in participating in a deregulated electricity market. Finally, DRO and RO are compared in
modeling the uncertainties of the optimization problem. The optimal outputs demonstrate the effectiveness
of DRO in terms of achieving higher realized profits with less conservative results.

INDEX TERMS Wind power operation, compressed air energy storage, energy market, distributionally
robust optimization, linear decision rule.

I. NOMENCLATURE
SETS AND INDICES
t Index of time.
T Set of Time.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mouloud Denai .

SUPERSCRIPTS
ch CAES charge power superscript.
d CAES discharge power superscript.
DA Day-ahead bids superscript.
e Energy market superscript.
g Generated power of wind plant superscript.
reg Regulation market superscript.
rt Real time market.
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m Regulation movement.
Ng Natural gas superscript.
sr Spinning reserve superscript.
sc CAES simple cycle operation mode superscript.
w Wind farm bid superscript.
∼ Superscript for uncertain parameter.

PARAMETERS
Emin Minimum energy capacity, MWh.
Emax Maximum energy capacity, MWh.
Estt Energy amount of CAES in the beginning of the

day, MWh.
E INT Energy amount of CAES in the end of the day,

MWh.
PCommax Maximum charging power rate of CAES, MWh.
PExpmax Maximum discharging power rate of CAES,MWh.
OC Operating cost.
HR Heat rate of CAES, GJ/MWh.
Rmil Total of absolute vaules of AGC movements,

1MW/MW .
P Power capacity, MWh.
VOM Variable operation and maintenance cost of CAES,

$/MWh.
αcall Status of spinning reserve capacity call.
βt Average energy used in regulation up or down

during hour t, MWh.
γt Market prices, $/MWh.
η Efficiency of CAES.
5Ng Price of Natural gas.

DECISION VARIABLES
PDAt Total day-ahead bid capacity at time t, MWh
Pct CAES day-ahead bid capacity at time t, MWh
Pwt Wind plant bid capacity at time t, MWh.
Pdt CAES discharge capacity at time t, MWh.
Psct CAES simple cycle operation mode capacity at

time t, MWh.
Pcht CAES charge capacity at time t, MWh.
Psc,srt CAES spinning reserve participating capacity in

simple cycle mode at time t, MWh.
Pd,srt CAES spinning reserve participating capacity in

discharging mode at time t, MWh.
Pd,regt CAES regulation participating capacity in dis-

charging mode at time t, MWh.
Psc,regt CAES regulation participating capacity in sim-

ple cycle mode at time t, MWh.
Et CAES state of charge, MWh.
α
ch,d,sc
t Binary variables for either charging, discharging

or operating in simple cycle mode at time t.

OTHERS
EP Expected value under distribution P.
gn(·) Quadratic representable functions characterizing

the distributions of random variables ccc.

L(·) Function indicating energy not served.
P A distribution of all random variables ccc.
Q A distribution of all random variables ccc and auxil-

iary variables ωωω.
Q0(·) Set of all distributions for random variables with

the given dimension.
| · | The cardinality of a set or the absolute value of a

mathematical expression.
‖ · ‖ The 2-norm of a vector.

II. INTRODUCTION
A. BACKGROUND AND PROBLEM DESCRIPTION
Wind uncertainty poses a significant challenge for wind farm
owners participating in a deregulated market. Under standard
market design (SMD), energy offers from generation owners
and price bids from retailers are submitted on a day-ahead
basis to the independent system operator (ISO), who decides
the dispatch schedule by solving an optimization problem.
Since wind energy is a non-dispatchable resource, scheduling
offers, even with an accurate forecast, is a challenge [1]. With
the need for large-scale penetration of renewable resources,
energy storage systems (ESS) would be a preferable technol-
ogy to improve wind plant performance when synchronized
with the bulk power system. This improvement is due to the
ability of ESS to absorb and deliver power to the grid quickly,
an ability which could be exploited tomitigate the uncertainty
of wind power.

There are different large-scale ESSs that could dispatch
wind energy to maximize the benefits of the arbitrage market,
such as pumped storage, chemical batteries, and compressed
air energy storage systems (CAES). Compared to pumped
storage and chemical batteries, CAES has lower investment
costs and fewer construction limits [2], [3]. Furthermore,
CAESs have longer life expectancies and higher charge and
discharge efficiencies [4]. Moreover, CAES can work as a
regular gas turbine, which is called simple cycle operation
mode. Simple cycle mode makes CAES different than the
other types of storage systems, which allows the CAES to
better follow an everyday operation schedule [5]. Currently,
the focus of related research is on fabricating and designing a
storage reservoir for a CAES to store air of a higher pressure
and to eliminate dependency on geological sites [6].

B. LITERATURE REVIEW
In the literature, several studies have focused on estimat-
ing the economic value of either CAES alone or cou-
pled with wind plants when participating in a deregulated
market [7]–[10]. An economic analysis was conducted in [7]
to evaluate CAES revenues in French regulated and deregu-
lated electricity markets. With an optimum CAES capacity
calculated for a wind plant, the daily profit from the energy
market for a whole year was evaluated based on particle
swarm optimization (PSO). Further, a sensitivity analysis was
included in [8]. An optimal dispatch algorithm using dynamic
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programming to maximize CAES’s expected profit coupled
with a wind plant in the energy market was constructed
in [9].In [10], an optimal operating model for a CAES system
participating in the ancillary service market, namely regula-
tion and reserve, is proposed to maximize profits. The whole
model was formulated using mixed-integer linear program-
ming(MILP) and solved using real-time market data. In the
research mentioned above, uncertainty associated with differ-
ent parameters in the optimization problem, such as prices,
wind power output, and deployment of ancillary services,
have been ignored. These uncertainties could significantly
affect revenue since forecasting error can fluctuate remark-
ably depending on market mechanisms and other factors
associatedwith the predictionmethod [11]. As a result, uncer-
tainty should be addressed when modeling bidding strategies
and scheduling operations for wind power generation coupled
with a CAES system.

In [12], a WP and CAES system was proposed to partici-
pate in the energy market by bidding capacity. Uncertainties
inmarket priceswere handled using adaptive robust optimiza-
tion. Stochastic optimization was used in [5] to handle the
aggregation of WP and CAES. Risk-constrained bidding was
used to participate in the day-ahead market. In [12] and [5],
the simple cycle mode of a CAES was considered, where
the CAES can work as a gas turbine when needed. However,
the papers focused on bidding in the energy market and did
not consider bidding reserve and regulation capacities in the
ancillary services market. In [13], the operation of the WP
and CAES system was optimized to maximize profits from
bidding in the day-ahead energy market and spinning reserve.
Although the stochastic approach was used to handle uncer-
tainties, the simple cycle mode of the CAES and regulation
participation were not considered in this paper. In [14], the
CAES model is proposed to reduce the operation cost of
the system considering the support of reactive power. In ref-
erence [15], an advanced adiabatic compressed air energy
storage (AA-CAES) with tri-state system is proposed and
integrated with the dispatch problem to minimize the cost of
energy. In [14] and [15], the simple cycle mode of the CAES
is not considered. In addition, the market environment, where
the system of CAES and wind plant are bidding for capacity
in the energy and ancillary services market and receiving the
regulation signals in real-time, is not considered. In addition,
the different uncertainties associated with the system are not
considered. Wind-thermal-photo-voltaic and wind-thermal-
energy storage systems were proposed to participate in the
energy market in [16] and energy spinning reserve markets
in [17]. Multi-objective optimization was proposed to maxi-
mize profit while minimizing emissions from thermal units.
Scenarios were generated and used to represent uncertainties
in market prices and renewable outputs.

Several methods have been used to deal with uncertainty in
optimization problems. In [18], stochastic programming was
used to address uncertain parameters in bidding strategies.
This approach tried to optimize expected profit considering
the exact distribution of uncertainties. This method requires

the exact probability distribution of uncertain parameters and
a huge number of scenarios. As the number of scenarios
grows, the size of the optimization function increases dras-
tically. Fuzzy optimization is another method that has been
used to handle uncertainties as proposed in [19] to model
uncertainties in a virtual power plant (VPP). This method
requires a good estimation of error in the available data and
a good definition of the system operator’s uncertainty limits.
Robust Optimization (RO) has also been used in [20] and [21]
to address uncertainty in the optimization problems. This
approach is a deterministic approach based on the structure
of an optimization that guarantees the feasibility of realiz-
ing an unpredictable parameter over a support set. However,
in this approach, it is challenging to incorporate distribution
information accurately. Further, the worst-case realization
is sometimes too pessimistic in modeling system uncertain-
ties, resulting in over-conservative solutions [3]. Two stage
chance constraint stochastic programming, a relatively robust
approach, is used in [22] for the energy hub operators to par-
ticipate in the day-ahead and real-time energy market. This
approach guarantees the probability of meeting a specific
constraint is above a certain level.

A new approach, Distributionally Robust Optimization
(DRO), overcomes the limitations of the methods mentioned
above. This kind of optimization addresses the uncertainty
associated with some parameters by utilization of an ambi-
guity set which incorporates partial distribution information
such as support sets, mean values, and variances [23]. DRO
can optimize the expected value by effectively leveraging sta-
tistical information and avoiding the presumption of knowing
the exact probability distribution of a random variable as is
the case in SP. Besides, this partial statistical information
can improve DRO’s performance and yield more optimistic
results compared to the conservatism associated with RO
problems. Due to the merit of this approach, DRO has been
used recently in different power system problems, e.g., energy
and reserve scheduling [24], [25], solving for unit commit-
ment [26], and determining the optimal allocation of wind
farms in a multi-area power system [27]. However, DRO has
not been used in handling the uncertainties of a wind plant and
CAES system when participating in the energy and ancillary
services market.

C. CONTRIBUTION
In this paper, a comprehensive framework is proposed for
coordinated bidding of a wind plant and CAES system in
order to maximize profit from participation in energy and
ancillary service markets. The main contributions of this
paper are:

1) The model is formulated as linear equations to promote
the profitability of a coordinated wind plant and CAES
system with incorporating simple cycle mode,where
the CAES works as gas turbine, and manage the bid-
ding of the system in the day-ahead energy and ancil-
lary services market.
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2) The proposed model considers the market environment
and various associated factors, including the bidding
for capacity in day-ahead market and receiving deploy-
ment signals in real-time operation. These deployment
signals are sent by the system operator to define the
need for the bidding capacity.

3) In the context of market bidding, unlike the prior
works [12]- [21], uncertain parameters including mar-
ket prices, regulation signals, and wind generation
are modeled using distributionally robust optimiza-
tion (DRO). Incorporating statistical data for uncertain
parameters such as expectation, mean absolute devia-
tion, and variance leads to less conservative and more
practical solutions. A validation test using a Monte
Carlo simulation is proposed to present the effective-
ness of this approach in maximizing profit.

4) This work provides an explicit comparison between
the DRO and robust optimization methods in handling
uncertainties in the proposed optimization problem.
The results illustrate a preference for DRO in gener-
ating more profit while robust optimization has bet-
ter performance in handling conditional value at risk
(CVaR).

The remainder of this paper is organized as follows: Sec-
tion III presents the problem formulation for the wind plant
and CAES system combination when bidding in energy and
ancillary services market, while Section IV describes the
ambiguity set and the problem reformulation with linear deci-
sion rule approximation. Case studies and a conclusion are
provided in Sections V and VI, respectively.

III. PROBLEM FORMULATION
A. COMBINATION OF WIND FARM AND CAES
A non-sequential Power Pool market structure is adopted in
this work since it is the most commonly used and reflects the
structure of major US power markets such as PJM, NYISO,
CAISO, and ERCOT. Non-sequential markets differ from
others by simultaneously co-optimizing energy and ancil-
lary services commodities [28]. The combined Wind-CAES
will bid in day-ahead energy and ancillary service markets.
As seen in Figure (1), the construction of the CAES sys-
tem consists of a high-pressure compressor, a reservoir, and
an expander. The CAES can be charged by bids from the
day-ahead energy market and wind energy generation. Fur-
thermore, CAES offers can be generated in discharge mode
and simple cycle mode. The CAES can be used to maximize
profit by storing a part of the wind energy as pressured air in
the reservoir using a compressor when market prices are low,
and then dispatching this energy when energy prices go up
using the expander.

Moreover, the CAES will participate in the spinning and
regulation markets seeking more business opportunities to
increase its profit. If the CAES is called to deploy its spinning
or non-spinning reserve capacity in the contingency reserves
market, it will further receive payment based on real-time

FIGURE 1. Structure of a combined Wind Farm and CAES.

energy prices. Similarly, there will be another payment in
the regulation market when the CAES follows the regulation
signals, or pay-for-performance schemes, which are all mod-
eled in the objective function. Unlike other energy storage
systems, the CAES converts electricity into high pressure
compressed air using the compressor (charging). In the case
of discharging, compressed air is released to drive the gen-
erator and produce electricity. As a result, the efficiency of
CAESmust be quantified, and heat flow and energy rate must
be involved.

B. OBJECTIVE FUNCTION AND CONSTRAINTS
Operations of the wind-CAES system are assumed to be self-
scheduling, i.e., the owner is willing to sell or purchase a
bid quantity at the considered market’s marginal prices. Also,
they are handled in this work as a price-taker, which means
bids will not influence the market clearing price. The objec-
tive function and the constraints are expressed as follows:

max
∑
t∈T

γ et .P
DA
t + γ

sr
t .(P

d,sr
t + Psc,srt )+ γ regt .(Pd,regt

+Psc,regt )+ γ rtt .α
sr
call .(P

d,sr
t + Psc,srt )+ γ reg,mt Rmil

(Pd,regt + Psc,regt )− OC (1)

subject to:

αcht + α
d
t + α

sc
t ≤ 1 ∀t (2)

PDA = Pwt + P
c
t ∀t (3)

Pct = Pdt + P
sc
t − P

ch
t ∀t (4)

0 ≤ Pwt ≤ P
g
t ∀t (5)

− PCommax ≤ P
c
t ≤ P

Exp
max ∀t (6)

0 ≤ Pcht ≤ α
ch
t P

Com
max (7)

Pυt + P
υ,sr
t + Pυ,regt ≤ αυt P

Exp
max ∀t υ = d, sc (8)

0 ≤ Pυt ∀t (9)

0 ≤ Pυ,srt ∀t (10)

0 ≤ Pυ,regt ≤ Pυt ∀t (11)

Estt = E INT t = 1 (12)

Emin ≤ Et −
Pdt + P

d,reg
t + Pd,srt

ηd
∀t (13)

Et + Pcht ηch ≤ Emax ∀t (14)
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Et+1 = Et + Pcht ηc −
(Pdt + α

sr
callP

sr,d
t )

ηd

OC = (Pdt + P
d,sr
t .αsrcall + 2.βt .P

d,reg
t ).(HRd .5Ng (15)

+ VOMd )+ (Psct + P
sc,sr
t .αsrcall + 2.βt .P

sc,reg
t )

(HRsc.5Ng
+ VOM sc)+ Pcht .VOM

ch (16)

The first part of the objective function (1) includes energy
arbitrage revenue of the wind farm and CAES from the
day-ahead energy market. The second is the CAES’s capacity
revenue from participating in spinning reserve when working
in discharge mode or simple cycle mode. The third part is
the payment for providing capacity to the regulation market.
As aforementioned in the market structure, the fourth part
is an extra payment based on real-time prices for the called
capacity in the reserve market. The pay-for-performance
structure is modeled in the fifth part. The last part is the
operation cost, expressed as operation cost during discharge
mode, simple cycle mode, and charge mode. The operation
cost is shown in constraint (16) as a function of the natural
gas price and the variable operation and maintenance costs
of the CAES in discharging and simple cycle modes, and as a
function of only the variable operation and maintenance costs
in charging mode.

Since the CAES system can only operate in charge, sim-
ple cycle, or discharge mode at a specified time, constraint
(2) limits overlapping operations where αcht , α

d
t and αsct are

binary variables. Constraint (3) implies the hourly day-ahead
bids as a function of wind plant bids and CAES bids.
As shown in constraint (4), CAES bids integrate the three
operation modes. Constraints (5) and (6) limit wind plant
and CAES bids to their maximum and minimum capacities.
Constraint (7) restricts the CAES’s charging power to its
maximum and minimum limits. Similarly, (8), (9), and (10)
constrain injected power from the CAES, in discharge or
simple cyclemode, to its power capacity limits. Bidding in the
regulation market should be less than or equal to the energy
market bid (11). In addition, the CAES needs to have some
energy to prepare itself for the next day (12). The energy
constraints of the CAES are stated in (13) and (14). Constraint
(15) describes the dynamic behavior of the CAES.

IV. PROBLEM REFORMULATION USING
DISTRIBUTIONALLY ROBUST OPTIMIZATION
A. UNCERTAINTY AND COMPACT MATRIX FORMULATION
Generally, in the day-ahead electricity and ancillary service
markets, participants are required to submit their bids several
hours before the start of the operating day. For instance,
NYISO requires participants to bid and offer for the following
day at 5 AM of the current day [29]. The gap between the
bidding time and the operation day can be from 19 to 43
hours, resulting in a highly uncertain wind forecast. Fur-
thermore, bidding will depend on other uncertain forecasts
such as market prices, spinning reserve, and AGC signals.
As a result, a two-stage distributionally robust optimization
is proposed to schedule bid decisions in the first stage. Then,

in the second stage, decisions related to the CAES and wind
plant operation are made after the uncertainties have been
uncovered. Hence, the extracted solution of the two-stage
DRO optimization is a single one-stage policy with corrective
actions made in response to system uncertainties [30].

The uncertain parameters and the decision variables are
defined to express the problem (1) compactly. The presen-
tation of the compact matrix formulation is to simplify the
analysis of the reformulation using DRO. Throughout the
reformulation, matrices and vectors are expressed by bold
lowercase letters, while entries of matrices and vectors are
represented by regular letters with subscripts denoting the
indices. The decision variables in the objective function (1)
are {Pwt ,P

d
t ,P

sc
t ,P

ch
t ,P

d,sr
t ,Psc,srt ,Pd,regt ,Psc,regt , αcht , α

d
t ,

αsct } while the uncertain parameters are {Pg, γ e, γ sr , γ reg,
γ reg,m, γ rt , αsrcall,Rmil}. In the first stage, decision variables
{αcht , α

d
t , α

sc
t } are determined before the realization of future

uncertainty which is represented by xxx ∈ R|K|, where K is
the set of all decision variables. The second stage’s deci-
sion variables {Pwt ,P

d
t ,P

sc
t ,P

ch
t ,P

d,sr
t ,Psc,srt ,Pd,regt ,Psc,regt }

are expressed by a vector yyy, which are determined
over an ambiguity set G. Hence the objective (1) and
constraints (2)-(16) are of the form:

min sup
P∈G

EP
{
L(xxx, c̃cc)

}
(17)

s.t. AxAxAx ≤ bbb (18)

xxx i ∈ {0, 1} ∀i ∈ B ⊆ {1, n} (19)

with AAA ∈ R|V |×|K| and bbb ∈ R|V |; where V is the set
of all constraints. The function L(xxx,ccc) is determined in the
second-stage with the effect of uncertain parameters, and this
function is expressed by

L(xxx,ccc) = min fff Tyyy (20)

s.t. EEE(ccc)+ TyTyTy ≤ qqq(ccc) (21)

In this expression, fff ∈ R|K|, EEE(ccc) ∈ R|V |×|K|, TTT ∈
R|V |×|K|, and qqq(ccc) ∈ R|V |. Constraints of the second stage
problem are included as an inequality constraint which is
suggested by (21) where the right-hand-side matrix EEE(ccc) and
the left-hand-side vector qqq(ccc) are influenced by the uncertain
parameter ccc. The matrix EEE(ccc) and vector qqq(ccc) are expressed
as the following linear affine equations:

EEE(ccc) = EEE0
+

∑
m∈M

EEEcmcm (22)

qqq(ccc) = qqq0 +
∑
m∈M

qqqcmcm (23)

B. AMBIGUITY SETS
The uncertain parameters of the objective function (1) are
modeled using an ambiguity set G that defines a family of
distributions [31]. Wind uncertainty can be modeled in the
ambiguity set using the expressions (24)-(27).

P
{
P̃gPgPg ∈W

}
= 1 (24)
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EP
{
˜Pgt
}
= P̄gt , ∀t ∈ T (25)

EP
{
|P̃gt − P̄gt |

}
≤ φwt , ∀t ∈ T , (26)

EP
{
(P̃gt − P̄gt )2

}
≤ λwt , ∀t ∈ T (27)

The first constraint (24) guarantees that the uncertainty
associated with wind power generation is bounded using a
support set W . Similar to conventional robust optimization,
the support setV is fixed to its lower and upper bound by (28):

W =
{
PgPgPg|Pg−t ≤ P

g
t ≤ P

g+
t , ∀t ∈ T

}
(28)

The second constraint (25) indicates that the generalized
moment of EP

{
˜Pgt
}
is P̄gt . The inequality constraint (26)

implies that the mean absolute deviation of P̃gt is not higher
than φwt . Lastly, the variance in (27) is less than or equal to
the constant λwt . Obviously, equations (24)-(27) characterize
statistical measures such as expectation, mean absolute devi-
ation, and variance, which could be estimated using historical
data without the need for an exact probability distribution as
is the case in stochastic programming.

The statistical distribution measures of market prices are
modeled in the ambiguity set using the constraints (29)-(32).
Note that these constraints are generalized for all uncertain
market prices in the problem.

P
{
γ̃γγ ∈ P

}
= 1 (29)

EP {γ̃t } = γ̄t , ∀t ∈ T (30)

EP {|γ̃t − γ̄t |} ≤ φ
p
t , ∀t ∈ T , (31)

EP
{
(γ̃t − γ̄t )2

}
≤ λ

p
t , ∀t ∈ T (32)

The first constraint (29) ensures that random market prices
are bounded using a support set, P . The support set P is
defined with its lower and upper bounds by equation (33).

P =
{
γγγ | γ−t ≤ γt ≤ γ

+
t , ∀t ∈ T

}
(33)

The constraints (30)-(32) represent the expectation, the
mean absolute deviation, and the variance, which could be
determined from historical market price data.

Considering the unpredictable behavior of reserve deploy-
ment and regulation signals, we adopted a similar proce-
dure [28] to handle them. For reserve deployment uncertainty,
the worst-case scenario of the historical data is introduced,
where the uncertainty of regulation signals are ignored due to
their negligible effect. A compact matrix that provides for all
the mentioned constraints is expressed as follows:

G=

P ∈ Q0

(
R|M|

)
:

c̃cc ∈ R|M|
P
{
c̃cc ∈ C

}
= 1

EP {c̃m} = c̄m, ∀m ∈M
EP
{
gn(c̃cc)

}
≤ µn,∀n ∈ N

 (34)

The uncertain parameters (24) and (29) are combined in
the vector c̄̄c̄c, where M is the set of distributions in RM.
The following constraint in (34) implies that all distributions
of the random vector c̄̄c̄c are within a support set C, which
includes all the support sets (28) and (33). The third constraint

in (34) is the expected value of random variables, which
is a generalized form of the constraints (25) and (30). The
last constraint in (34) characterizes distribution information
of uncertainties via gn(c̃cc, which is a compact form of the
absolute deviation and variance. The expected value of gn(c̃cc)
expresses the all inequality constraints (26), (31), (27), (32),
where the constants φwt , λ

w
t , φ

p
t , and λ

p
t are represented byµn.

Due to the difficulty of estimating the expectation of each
function gn(c̃cc) under uncertain distributions, the proposed
problem is too complicated to be solved. To derive a tractable
formulation, a set of auxiliary variables is included in the
ambiguity set to address the functions’ upper bound.

A new joint family of distributions denoted by Q is intro-
duced for both the random and auxiliary variables. The sup-
port set is extended to (35).

C̄ =

(ccc,ωωω) ∈ R|M| × R|N | :
ccc ∈ C
gn(ccc) ≤ ωn, ∀n ∈ N
ωn ≤ sup

ccc∈C
gn(ccc),∀n ∈ N


(35)

The extended support set implies that the function gn(ccc)
is bounded from the top by ωωωn. Hence, the expected value
in (35) cannot hold unless the fourth line in (34) is satisfied.
Since the support set C is composed of linear expressions(24)
and (29) and the function gn(ccc) is either quadratic or lin-
ear defining various moment information, these functions
are converted into the following second-order cone con-
straints [27]. Accordingly, a dual formulation can be derived
simply in the next subsection.

C̄ =
{
(ccc,ωωω) ∈ R|M| × R|N | : ‖FFF rccc+HHH rccc ≤ hhhr‖

≤ aaaTr ccc+ sss
T
r ωωω + er , r ∈ R

}
(36)

with FFF r ∈ RVr×|M|, HHH r ∈ RVr×|N |, and hhhr ∈ RVr , where
Vr is the row number for the r th constraint, and the set of
all constraints representing the extended support set C̄ are
indicated by R. The modified support set C̄ and ambiguity
set Ḡ are used to reformulate a tractable expectation problem
in the next subsection.

C. REFORMULATION BASED ON GENERALIZED LINEAR
DECISION RULE APPROXIMATION
In a two-stage DRO optimization problem, extracting an
explicit expression of the exact optimal solution is generally
intractable, since the worst-case expectation of L(xxx, c̃cc) must
be determined by solving the recourse policy in (20)-(21)
under realization of all uncertainties within the support set
Ḡ [32]. This issue is addressed by using affine decision rules
(ADR), which in turn will make the recourse decision y to
be affinely modified with the uncertainties [33]–[36]. In this
work, the decision rule function ȳk is affected by uncertain
parameters ccc and auxiliary variablesωωω, which are formulated
as:

ȳk (ccc,ωωω) = y0k +
∑

m∈Mk

yckmcm +
∑
n∈Nk

yωknωn, ∀k ∈ K2

(37)
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The subset Mk and Nk consist of random and auxiliary
variables that modify the decision ȳk for each hour. Therefore,
for the day ahead, 24-hours, 24 subsets are included in this
work. A further generalization of the affine decision rule ȳk
is expressed as:

ȳyy = yyy0 + YYY cccc+ YYYωωωω (38)

where yyy0 ∈ R|K | denotes constant terms, and YYY c, YYYω are
coefficient matrices, and their entries are defined by (39)
and (40), the affine coefficient terms that are respectively
associated with ccc and ωωω.

Y ckm =

{
yckm, if m ∈Mk

0, if m ∈M \Mk
∀k ∈ K2 (39)

Yωkn =

{
yωkn, if n ∈ Nk

0, if n ∈ N \Nk
∀k ∈ K2 (40)

By substituting an affine decision rule approximation for
the actual recourse decision yyy of each uncertain realization,
an approximated formulation of the two-stage DRO problem
can be derived as follows:

min sup
Q∈Ḡ

EQ
{
fff Tyyy(c̃cc, ω̃ωω)

}
(41)

s.t. AxAxAx ≤ bbb (42)

EEE(ccc)+ TTTȳyy(ccc,ωωω) ≤ qqq(ccc), ∀(ccc,ωωω) ∈ C̄ (43)

The above conservative formulation yields a lower bound
than the expected profit gained from the wind-CAES combi-
nation. A semi-infinite representation can be written for the
inner supreme as follows:

sup
∫
C̄
fff T ȳ(ccc,ωωω)df (ccc,ωωω) (44)

s.t.
∫
C̄
cmdf (ccc,ωωω) = c̄m, ∀m ∈M (45)∫

C̄
ωndf (ccc,ωωω) ≤ µn, ∀n ∈ N (46)∫

C̄
f (ccc,ωωω) = 1 (47)

f (ccc,ωωω) ≥ 0, ∀(ccc,ωωω) ∈ C̄ (48)

The equations (41)-(43) are reformulated into the robust
optimization problem below, which is derived by dualizing
the semi-infinite representation (44)-(48).

min ρ + c̄ccTηηη +µµµTβββ (49)

s.t. AxAxAx ≤ bbb (50)

ρ + cccTηηη +ωωωTβββ ≥ fff T ȳyy(ccc,ωωω), ∀(ccc,ωωω) ∈ C̄ (51)

EEE(ccc)xxx + TTTȳyy(ccc,ωωω) ≤ qqq(ccc), ∀(ccc,ωωω) ∈ C̄ (52)

ρ ∈ R,ηηη ∈ R|M|,βββ ∈ R|N |− (53)

Constraints (45), (46), and (47) are expressed by the dual
variables ηηη, βββ, and ρ, respectively. reaching a classic robust
optimization problem with a tractable polyhedral uncertainty

set C̄, which can be represented as the following robust
counterpart:

min ρ + c̄ccTηηη +µµµTβββ (54)

s.t. AxAxAx ≤ bbb (55)

ρ − fff Tyyy0 +
∑
r∈R

(
hhhTr πππ

0
r + erζ

0
r

)
≥ 0 (56)

∑
r∈R

(
FFFTr πππ

0
r − ζ

0
r aaar

)
= ηηη − YYY cfff (57)

∑
r∈R

(
HHHT
r πππ

0
r − ζ

0
r sssr
)
= βββ − YYYωfff (58)

‖πππ0
r‖ ≤ ζ

0
r , ∀r ∈ R (59)

πππ0
r ∈ RVr , ζ 0r ∈ R+, ∀r ∈ R (60)(
EEE0xxx + yyy0

)
v
≤ q0v +

∑
r∈R

(
hhhTr πππ

v
r + erζ

v
r

)
,

∀v ∈ V2 (61)∑
r∈R

(
FFFTr πππ

v
r − ζ

v
r aaar

)
m
= (dddm −EEEmxxx)v −

(
TYTYTY c

)
vm ,

∀m ∈M, ∀v ∈ V2 (62)∑
r∈R

(
HHHT
r πππ

v
r − ζ

v
r sssr
)
m
= −

(
TYTYTY c

)
vm ,

∀m ∈M, ∀v ∈ V2 (63)

‖πππ0
r‖ ≤ µ

0
r , ∀r ∈ R (64)

πππvr ∈ RVr , µvr ∈ R+, ∀r ∈ R,∀v ∈ V2 (65)

ρ ∈ R,ηηη ∈ R|M|,βββ ∈ R|N |− (66)

The constraints (56)-(60) are the reformulation of the con-
straint (51) after dualizing the extended ambiguity set C̄. The
vectors πππ0

r and µ0
r are denoted for dual variables. In the

same manner, by considering dual variables πππmr and µmr ,
constraints (61)-(65) are derived from themth constraint (52).
The robust counterpart of the formulated two-stage operation
problem is a convex second-order cone programming prob-
lem. After applying the affine decision rule, linear optimiza-
tion programming might be conservative, resulting in a much
lower computational burden than the original two-stage opti-
mization problem. Based on a case study, the effectiveness of
the proposed model is demonstrated in the next section.

V. CASE STUDIES
A. CASE STUDY DESCRIPTION
A producer was assumed to own and operate a 32MW wind
plant and a 15MWhCAES. The optimal bidding strategy was
determined based on a two-stage DRO approach. Historical
market and operational data were taken from the NYISO
website [37]. Historical wind power data for a hypothetical
wind power plant located in New York was used, available
on the NREL website [38]. The constants of the ambiguity
sets were calculated using historical data for each hour of the
operating day and were included to solve the DRO problem.
The characteristics of the CAES were obtained from [5]. The
two-stage DRO problem was solved using an IBM ILOG
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FIGURE 2. Day-ahead dispatch in the energy and ancillary services
markets.

CPLEX solver in the MATLAB programming language, and
the PC used had an Intel Core 7 CPU (2.5 GHz) and 8.0 GB
RAM.

B. COORDINATED AND UNCOORDINATED BIDDING OF A
WIND PLANT AND CAES SYSTEM USING DRO
The optimal bidding strategy for coordinated and uncoordi-
nated participation of the wind plant and CAES in energy and
ancillary service markets using DRO can be determined as
shown in Figs. 2 and 3. Bids were obtained for both cases
based on the worst-case expected total wind generation Pg
and other uncertain prices. For the demonstration, the CAES
bids were added to the wind plant bids for the uncoordinated
case and the results were compared to the coordinated bids,
as shown in Fig. 2. It is clear that in the coordinated case more
power is dispatched over a number of hours, starting from
hour 8 to the end of the day. This was because, due to the
flexibility of coordinated bids, the CAES was able to store
wind energy until it was able to take advantage of a period
when prices were higher. The CAES operation demonstrated
in the first graph of Fig. 3 illustrates the CAES bids in the
coordinated case. The CAESwas charged by wind plant from
hours 2 to 5 since prices were low and extra charging capacity
was taken from the energy market. In contrast, the second
graph of Fig. 3 shows that in the uncoordinated case, the
CAES was charged by the market, and the wind plant was
forced to sell its power when prices were low.

In Table (1), realized profits for coordinated and uncoordi-
nated bidding of thewind plant and the CAESwere calculated
based on real data. As shown in Table (1), the expected
worst-case profits and the realized profits were determined
for both cases. The expected worst-case and the realized
profit were higher for the coordinated bids than the uncoordi-
nated bids, which demonstrates the CAES’s effectiveness in
enhancing profits when integrated with a wind plant.

C. COMPARISON OF USING DRO AND ROBUST
OPTIMIZATION FOR COORDINATED BIDDING OF A WIND
PLANT AND CAES SYSTEM
Two cases are introduced in this section to fully illustrate
how much better the performance of coordinated bidding
using DRO is than the performance of coordinated bidding

FIGURE 3. Compression and expansion of the CAES in coordinated mode
in the first graph and in uncoordinated mode in the second graph.

TABLE 1. Profit comparison of wind plant and CAES coordinated and
uncoordinated bids using DRO in energy (E) and ancillary services (AS)
markets.

FIGURE 4. Case 1: coordinated bids/offers in day-ahead energy market.

using robust optimization. Case 1 considers the energymarket
alone, which has fewer uncertain parameters, and Case 2 uti-
lizes the energy and ancillary service markets. This analysis
will show a clear picture of how DRO outperforms robust
optimization in dealing with uncertainty. A comparison of
DRO and robust optimization of the day-ahead bids for Case 1
is illustrated in Fig. 4. Using RO results in more conservative
bids compared to using DRO, as is shown in Hours 1, 2, 3,
6, 9, 11, 14, 18, and 22. This is because robust optimization
generates bids based on worst-case scenarios without consid-
ering any statistical data.
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FIGURE 5. Case 1:CAES behavior in energy market using DRO in the first
graph and using Robust Optimization in the second graph.

FIGURE 6. Case 2: coordinated bids/offers in day-ahead energy and
ancillary service markets.

FIGURE 7. Case 2: CAESs behavior in energy and ancillary service markets
using DRO in the first graph and using Robust Optimization in the second
graph.

Similarly, Fig. 5 represents a slight difference in CAES
behavior when participating in the energy market using DRO
(a) and using robust optimization (b). At Hour 1, instead of
discharging power at the rate of 1 MW/h using RO, when
using DRO, the CAES stored energy, switching to simple
cycle mode to provide more power. Fig. 6 and 7 represent
in Case 2 coordinated system bids in energy and ancillary
service markets. In this case, it is remarkable how the DRO’s
ambiguity sets helped improve bid behavior in the day-ahead
market as shown in Fig. 6, and participation in spinning
reserve and regulation markets as presented in Fig. 7.

TABLE 2. Profit comparison of wind plant and CAES coordinated bids
using DRO and Robust Optimization.

TABLE 3. Validation test comparison between DRO and robust
optimization using Monte Carlo simulation.

DRO and robust optimization bid scheduling are compared
in Table (2). Expected worst-case profit and realized profit,
which are calculated after the working day, are determined for
the two markets using two-stage DRO. Similarly, worst-case
profit and realized profit after the working day are calculated
using robust optimization for each case. According to real-
ized profits, robustness is guaranteed for both cases. How-
ever, incorporating statistical data yields better results for
DRO than the more conservative ones of robust optimization.
In additions, robust optimization bids according to worst-case
wind power generation, resulting in higher deviations from
actual wind power generation in the real time market.

D. VALIDATION TEST COMPARISON BETWEEN DRO AND
ROBUST OPTIMIZATION BASED BIDDING STRATEGY
USING MONTE CARLO SIMULATIONS WITH CONSIDERING
THE CONDITIONAL VALUE AT RISK
Additionally, a Monte Carlo simulation was applied to the
two cases and the profits of the combined wind-CAES sys-
tem using DRO and RO were compared. Wind plant power
output was assumed to follow a Gaussian distribution [39].
Similarly, Gaussian distributions were considered for market
prices [40]. Accordingly, 1000 scenarios were generated for
wind power generation, market prices, and reserve call sig-
nals to apply a validation test after bid submission. Profits
were calculated for all the scenarios, and then the average
profit was presented. The validation test was necessary to see
the effectiveness of bid-based DRO compared to bid-based
robust optimization in the scenarios generated from histori-
cal data. DRO and robust optimization were used to deter-
mine bids based on expected worst-case and worst-case wind
power generation. As a result, in reality, there was extra power
generated that could have been sold in the hour-ahead market
at real-time prices, affecting the total profit.

A complete validation test comparison for the two cases is
shown in Table (3). The total expected profits gained from
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FIGURE 8. Coordinated Bids/Offers in day-ahead energy and ancillary
services markets.

FIGURE 9. CAES behavior in energy and ancillary services markets With
simple cycle operation mode in the first graph and Without simple cycle
operation mode in the second graph.

participating in the energy market alone using DRO were
higher than robust optimization by 5.8%. Considering the
ancillary service market in the DRO and robust optimization
problems added an extra $608.5 and $512 to the total profit,
respectively. As a result, the gain using DROwould be higher
by 7%. The third and fifth columns indicate the conditional
value at risk (CVaR), which is the expected shortfall that
measures and quantifies the tail risk associated with the 5%
of all the scenarios generated from the bounded sets, without
considering statistical measures. Robust optimization has a
better CVaR because it produces the worst case scenario and
its results are conservative against bounded sets.

E. COMPARISON OF COORDINATED BIDDING WITH AND
WITHOUT THE SIMPLE CYCLE MODE OF THE CAES
Since the distinguishing difference of CAES compared to
other energy storage systems is CAES’s ability to operate in
simple cycle mode, this section illustrates the performance
and profit of coordinated bidding with and without simple
cycle mode. Fig. 8 represents day-ahead bids for the two
cases. Incorporating simple cycle mode enhanced the bid
curve at Hours 1, 2, 6, 10, 12, 13, 15, 16, 17, and 24. Also,
as seen in the first graph of Fig. 9, at Hour 1, when the CAES
did not have enough power, the CAES changed to simple
cycle mode to exploit the benefit of high price, which was not
the case in the second graph of Fig. 9. Furthermore, adding

FIGURE 10. The state of charge (SOC) for the CAES with and without
simple cycle operation mode during the operation time horizon.

TABLE 4. Profit comparison of wind plant and CAES coordinated bids
using DRO with and without simple cycle operation mode.

simple cycle operationmode to the CAESmodel increases the
coordinated system’s options to seek more business opportu-
nities. The dynamic behavior of the CAES (with and without
simple cyclemode) is shown in Fig. 10. ACAES participating
in an ancillary services market using simple cycle mode
yields better performance and less risk since when an ISO
sends capacity deployment signals to the wind-CAES system
controller, it has more stored energy during each hour of the
operation horizon.

Table (4) represents the expected worst-case profit and the
realized profit after the operation day for coordinated system
bids with and without simple cycle mode. A considerable
amount of profit is added when the CAES operates in simple
cycle mode. This remarkable gain spotlights the CAES sys-
tem and makes it preferable to other energy storage systems.

F. THE EFFECT OF CAES CAPACITY SIZE ON THE
WORST-CASE EXPECTED PROFIT
Different CAES capacity sizes were introduced to the case
study, to evaluate the influnce of CAES size on the hedging
assigned to the wind plant used in this work. The worst-case
expected profit was determined for each CAES size, starting
from 5 to 60 MWh. Accordingly, modifications were carried
out to the compression, expansion, and stat capacity with an
equivalent rate of the CAES air reservoirs. The worst-case
expected profits for each of the considered CAES capacities
with and without simple cycle operation mode are shown in
Figure (11). It is notable that as CAES capacity size increases
in the two cases, a higher rate of profit accrues to the CAES
using simple cycle operation mode. It is reasonable since
increasing of the power rate of simple cycle mode will reduce
its relative operation cost. Thus, determining the optimal size
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FIGURE 11. The influence of the CAES size on the profit.

of the CAES will result in greater efficiency and generate an
optimal profit for the coordinated system.

VI. CONCLUSION
In this paper, coordinated bidding in a deregulated elec-
tricity market has been proposed by a combined system
composed of wind plants and compressed air energy storage
system. Simulation results showed that coordinating those
two resources could improve profits while considering dif-
ferent constraints. CAES simple cycle mode was considered,
where the CAES can work as a gas turbine when needed.
This operating mode improved the profits more than ignor-
ing it. Distributionally robust optimization was proposed to
address uncertainties associated with wind plant power out-
put, market prices, and regulation signals by incorporating
ambiguity sets. Accordingly, an optimal bid scheduling strat-
egy was obtained in energy and ancillary service markets.
Comparison between robust optimization and DRO-based
bidding strategies demonstrated that DRO gives rise to less
conservative results and higher profit than robust optimiza-
tion. This is due to the ability of DRO to incorporate statis-
tical measures using historical data. Such an ability makes
DRO preferable for the application of bidding capacity in
the electricity market since ambiguity set can be generated
using a wide range of ambiguous distribution information,
allowing decision-makers to choose the uncertainty set based
on the availability of historical data and their preference
for solution robustness. However, robust optimization has a
better-expected shortfall, yielding solutions that are determin-
istically robust to realizations of uncertain parameters in a
certain set.

Future work could focus on improving the real-time bid-
ding strategy of the CAES-wind plant with considering uncer-
tainty associated with the hour ahead market. In order to
enhance the utilization of wind power and reduce the overall
cost of CAES, the optimal size of the CAES based on the
proposed strategy could be investigated. One remaining issue
for future work is determining the bidding strategy of the
CAES-wind plant when it is a price maker.

APPENDIX
In classic robust optimization, the worst-case solution is
determined based on the uncertainty sets. Therefore, the fol-
lowing generic min-max problem is solved using RO:

min
xxx∈X

max
c̃cc∈C

{
L(xxx, c̃cc)

}
(67)

s.t. g(xxx, c̃cc) ≥ 000 (68)

L and g are the objective and constraints, respectively. The
uncertainties are molded using variable c̃cc which, belongs to
the set C where xxx is a vector of decision variables which
belong to set X.

This paper adopted the work in [1] to extract uncer-
tainty sets for C. The scalar constant α is determined
based on the budget of uncertainty 0 which is con-
sidered to be equal to one in our paper. Thus, the
worst case optimal solution can be determined by solv-
ing the RO problem for the decision variables (DV)
{Pwt ,P

d
t ,P

sc
t ,P

ch
t ,P

d,sr
t ,Psc,srt ,Pd,regt ,Psc,regt } and uncertain

parameters (UP){Pg, γ e, γ sr , γ reg, γ reg,m, γ rt }. as follows:

min
DV

max
UP

∑
t∈T

−[γ et .P
DA
t + γ

sr
t · (P

d,sr
t + Psc,srt )+ γ regt

·(Pd,regt + Psc,regt )+ γ rtt · α
sr
call · (P

d,sr
t + Psc,srt )

+γ
reg,m
t Rmil(P

d,reg
t + Psc,regt )− OC] (69)

The constraints of the wind-CAES system are defined
previously in the objective and constraints section; see (2) to
(16). The uncertainty sets of market prices and wind plant
generation are defined as follows:

Pκ =
[
(1− ακ )γγγ κ , (1+ ακ )γγγ κ

]
, κ = (e, sr, reg, rt)

(70)

W =
[
(1− αg)PgPgPg, (1+ αg)PgPgPg

]
(71)

After moving the objective function to the constraints by
an epigraph reformulation and taking the dual of the inner
maximization subproblem, the problem is converted into
a tractable MILP formulation. Then, the problem can be
solved in MATLAB using the intlinprog solver and YALMIP
toolbox.
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