
Received October 5, 2021, accepted October 21, 2021, date of publication October 27, 2021, date of current version November 8, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3123874

The HERA Methodology: Reconfigurable Logic in
General-Purpose Computing
PHILIPP HOLZINGER 1 AND MARC REICHENBACH 2, (Member, IEEE)
1Chair of Computer Architecture, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
2Chair of Computer Engineering, Brandenburg University of Technology Cottbus-Senftenberg, 03046 Cottbus, Germany

Corresponding author: Philipp Holzinger (philipp.holzinger@fau.de)

This work was supported by the German Federal Ministry of Education and Research (BMBF) within the Founding Program
Microelectronic from Germany Innovation Driver through the Project Künstliche Intelligenz (KI)-Flex under Project 16ES1027.

ABSTRACT Due to the ongoing slowdown of Dennard scaling, heterogeneous hardware architectures are
inevitable to meet the increasing demand for energy efficient systems. However, one of the most important
aspects that shape today’s computing landscape is the wide availability of software that can run on any
system. Current applications that use accelerators, in contrast, are often especially tailored to a specific
hardware setup and therefore not universally deployable. This is particularly true for reconfigurable logic
as their internal structure requires the circuits and their integration to be designed as well. This makes them
inherently difficult to use and therefore less accessible for a general audience. Nevertheless, their balance
of flexibility and efficiency puts reconfigurable accelerators in a unique position between CPUs, GPUs, and
ASICs. Therefore, one of the main challenges of future heterogeneous systems is to foster collaborative
computing between these vastly different components while still being simple to use. Previous approaches
mostly focused on subproblems instead of a holistic view of hardware and software in the context of
commonplace usability. This paper analyzes the general demands on a reconfigurable platform and derives
their requirements regarding accessibility and security. Hereby, we investigate several key features like
hardware virtualization, system shared virtual memory, and the use of wide-spread programming paradigms.
Then, we systematically build up such a platform based on the established ROCm GPU framework and its
internal HSA standard. This new common HERA methodology is finally also demonstrated as a prototype.

INDEX TERMS Automatic synthesis, hardware/software interfaces, heterogeneous systems, reconfigurable
hardware, virtual memory.

I. INTRODUCTION
Computers are affecting almost all aspects of life nowadays.
Hereby, the steady endeavor of society for life improvements
drives innovation of new, increasingly demanding applica-
tions. This imposes a considerable burden on the hardware,
which must be able to satisfy these desires. In particular the
ongoing slowdown of Moore’s law [1] and Dennard scal-
ing [2] already cause current systems to struggle to provide
sufficient computational power at high energy efficiency [3],
[4]. To solve these problems, heterogeneous systems have
become an integral part of modern computing in academia
and industry [5]–[7]. As the challenges also increase, this
paradigm will be inevitable across all classes of computers in
the future [4], [8]. Although heterogeneous architectures offer

The associate editor coordinating the review of this manuscript and

approving it for publication was Christian Pilato .

great benefits, they are also much more difficult to handle.
In contrast to common CPUs, there is a large variety of spe-
cialized accelerators each with different mechanisms to uti-
lize them. These are often not only explicitly accounted for in
application code but also hinder the direct interaction between
them. Therefore, such executables are not universally deploy-
able to any heterogeneous system. However, in particular
the simplicity to write software that can run on practically
any CPU lead to the wide availability of applications that
sustainably shaped the computing landscape nowadays. This
is therefore a major challenge for heterogeneous systems,
which have yet to provide this ability.

One of the main pillars of such novel systems are hard-
ware reconfigurable architectures (RA) like FPGAs [9] and
CGRAs [10]. With their low-level and fine-grained reconfig-
urability, they take a unique spot in the spectrum of accel-
erators between GPUs and specialized ASICs [7], [11]–[13].

147212
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-2912-0650
https://orcid.org/0000-0002-9687-6247
https://orcid.org/0000-0001-9315-1788


P. Holzinger, M. Reichenbach: HERA Methodology: Reconfigurable Logic in General-Purpose Computing

FIGURE 1. Schematic overview of ‘‘end-to-end’’ framework components.

While GPUs are flexible and achieve a high throughput, their
power consumption is also very high [14]. On the other hand,
dedicated ASICs can offer the same performance at a much
higher efficiency, but it is impossible to integrate one for
every task thatmight potentially be executed on a system [15].
This trade-off makes reconfigurable hardware ideal for the
diverse and unpredictable set of applications running on
modern general-purpose systems [16]–[18]. Although RAs,
as a programmable solution, grant a great flexibility, their
internal structure makes this process also inherently difficult.
In addition to the overarching problems of heterogeneous
systems, not only software but also the hardware itself must
be designed by the users. This is especially complex due to
the much larger semantic gap of mapping algorithms to logic
circuits than to common programming paradigms. Although
High-Level Synthesis (HLS) tools are continuously improv-
ing to generate synthesizable code from high-level languages,
this is often not seen in a holistic way with software and other
types of accelerators such that the integration is not trivial. For
these reasons, RAs are not as accessible to a general audience
as CPUs or GPUs.

As all types of compute units have their own strengths and
drawbacks, it is inevitable to combine these vastly different
components and foster collaborative work-sharing between
them. Moreover, users should retain the ease of use that was
established by the homogeneity of CPUs while gaining the
new performance and energy benefits of accelerators. There-
fore, the main challenge of future heterogeneous systems is
the efficient integration of hardware and software into a com-
plete platform that is still simple to use for developers and end
users. This is especially important for RAs as their usage is
inherently complex. Hereby, comprehensive frameworks are
needed that encompass the whole range from user interaction
with a high-level language to the final hardware. The general
structure of such an ‘‘end-to-end’’ framework can be seen
in Fig. 1. Entry points for developers are always the user
bindings that provide a simple way to access accelerators.
Then, device drivers and hardware schedulers manage the
requested tasks and available compute resources. Finally,
an offload compiler prepares kernel functions as hardware
specific ISA kernels or bitstream roles. This structure can also
be found in the two most important industry implementations

for FPGAs, Intel’s oneAPI [19] and Xilinx’ and AMD’s new
joint technology preview of a converged FPGA and GPU
platform [20]. However, only adhering to this architecture
is not sufficient for a future-proof system as its underly-
ing properties can still hinder collaborative work. Despite
this importance of wide-spread acceptance, previous research
focused only on singular aspects like HLS or scheduling
instead of a comprehensive view.

This paper, in contrast, explores the design of future het-
erogeneous systems that encompass reconfigurable logic in
a holistic way. First, we analyze the demands on such com-
puters in a broader sense regarding aspects like accessibility
and security to derive their requirements. Hereby, we consider
several key features such as hardware virtualization, system
shared virtual memory (SSVM), and the use of wide-spread
programming paradigms. Second, we classify previous con-
cepts in literature according to their suitability for these
types of systems. Third, we present and assess the funda-
mental principles of the ROCm framework [21] and HSA
standard [22] that are used in the upcoming production-ready
joint Xilinx/AMD data center platform. Fourth, we extent
this underlying baseline system with concepts to meet the
initially derived stricter requirements for other computing
domains. As the official Xilinx/AMD platform demonstrated
only a small subset of the necessary features until now, it is
even more important to further investigate this topic and
show how future extensions and their implementation can
look like. Hereby, we also use an FPGA as the underlying
technology in the following, since they are readily avail-
able nowadays and already exhibit more and more CGRA
features through the ongoing inclusion of more coarse-
grained building blocks [10]. This further increases their
efficiency while retaining the high flexibility. Furthermore,
the high-level integration challenges of FPGAs and such
CGRAs can be similarly addressed by frameworks. This new
common methodology for reconfigurable logic in general-
purpose systems presented in our paper is called HERA and
demonstrated with a prototype.

The contributions of our paper can be summarized as:

• A new systematic requirement analysis of reconfig-
urable logic in general-purpose systems that allows
developers to comprehend how accessibility manifests
itself in software and hardware components and how
these parts interact.

• A novel classification of current end-to-end frameworks
regarding their limitations for widespread RA usage.

• A comprehensive security analysis for user logic,
which gains low-level hardware access by RAs
in general-purpose systems, as well as appropriate
mitigations.

• A new comprehensive integration methodology that
eases the adoption of RAs in new domains with stricter
requirements where they are currently not widely used.

• A prototype of such a system based on the established
ROCm framework and Xilinx FPGAs.

VOLUME 9, 2021 147213



P. Holzinger, M. Reichenbach: HERA Methodology: Reconfigurable Logic in General-Purpose Computing

FIGURE 2. General life cycle of software. Applications are developed by a
great variety of companies and individuals. These products are deployed
to customer systems with equally diverse accelerator hardware. Hereby,
the limited knowledge of all parties causes platform design restrictions.
First, it is not clear if and what kinds of accelerators are present at the
client. Second, it is not possible for all developers to coordinate their
activity due to the sheer amount. Third, users also work concurrently and
independently with these applications on their system.

The paper is structured as follows: Section II analyzes and
classifies the demands on easily accessible reconfigurable
platforms. These are compared with the capabilities of cur-
rent literature in Section III. Building upon this, Section IV
describes the general concept of such a suitable system that
maps the complete flow from user application to task exe-
cution. Its security aspects are analyzed in Section V. A
prototype realization of this with a description how it can
be implemented is presented in Sections VI and VII. Finally,
Section VIII concludes the paper.

II. REQUIREMENT CLASSIFICATION
Although the performance and energy advantages are the
main reason to use accelerators, their accessibility severely
affects the actual adoption. The concrete requirements on
frameworks depend on the domain they are used in. On the
one hand there are embedded systems (ES) where a specific
task runs in a predefined and closed environment. On the
other hand a multitude of different applications are used in
general-purpose computing (GPC) where hardware serves as
a generic computing resource. This area of use can be further
divided into large-scale HPC and cloud computing (HPCC)
and small-scale mid-range servers and personal computing
(MPC). The MPC domain in particular demands great flex-
ibility as applications of many different parties are expected
to concurrently run on a very diverse set of hardware. This
most general case, as illustrated in Fig. 2, introduces further
challenges, since all involved parties want to benefit from
specialized hardware but only have limited knowledge about
each other.Moreover, oftentimes the protection of intellectual
property and less experienced developers must also be con-
sidered. Considering these domains, frameworks can facil-
itate the accessibility of accelerator hardware by providing
several additional characteristics:

• Familiarity: Writing applications for an accelerator
must be possible in languages and paradigms developers
are already familiar with.

TABLE 1. Classification of FPGA framework features.

• Interoperability: Different accelerator classes must be
addressable with the same source code. It should not be
required to know in advance which ones are installed in
a computer. However, all available ones should be used
when it is beneficial.

• Independence: Applications from different companies
have to be able to run concurrently on the same platform.
It must not be necessary for developers and users tomake
prior arrangements. Therefore, each process can use the
hardware as if it was the only one active.

• Security: Malicious accelerator kernels must not make
the system vulnerable to information disclosure, tamper-
ing or similar threats.

• Confidentiality: Applications must be distributable as
binary executable to protect a company’s intellectual
property on their source code.

These desired capabilities are fundamentally enabled by
the underlying software and hardware stack. Therefore,
we identify the necessary features that frameworks for recon-
figurable computing should provide in general first. A sum-
mary of the following analysis can be found in Table 1. These
are then used to classify and compare previous approaches in
Section III.
The most prominent framework features are the languages

and programming models that act as user bindings for the

147214 VOLUME 9, 2021



P. Holzinger, M. Reichenbach: HERA Methodology: Reconfigurable Logic in General-Purpose Computing

hardware. Developers usually prefer those which they are the
most familiar with. This means offloading expressions must
be as close to a standard model as possible. Nowadays, the
most common open API for acceleration in heterogeneous
systems is OpenCL.While it is well known among developers
familiar with GPUs, its verbosity and separation in host and
kernel code makes it less accessible for people with little
accelerator experience. Therefore, coding styles that do not
deviate toomuch from their usual CPU code simplify offload-
ing considerably. These can be for example standardized
directive or lambda based single source approaches like C++
ParallelSTL or OpenMP [23].

Traditional offloading techniques also suffer from the
burden of manual memory management between host and
device, which usually requires explicit data movement and
visibility maintenance. However, this task is challenging for
many commonly used data structures like the pointer-rich
lists, trees, and graphs. Two program features that signif-
icantly reduce this complexity are system shared virtual
memory (SSVM) and cache coherency (CC). With accord-
ing hardware support, these concepts allow pointers to ordi-
narily allocated memory to be directly shared between CPU
and accelerators. All address translations and data visibility
updates are done by the hardware and its drivers. Therefore,
the programmer is freed from maintaining and synchroniz-
ing multiple sets of the same data, which further simplifies
development.

Although this paper focuses on FPGAs, it is important
not to break compatibility to other device types. In the best
case the same source code can be offloaded to all devices.
This feature encourages accelerator usage because the per-
formance evaluation of GPUs and FPGAs is not dependent
on a much higher development effort. Furthermore, it enables
writing applications without knowing the hardware of the
target computer. For FPGAs, this mapping from high-level
language to circuits is done with HLS. Here, it is in particular
necessary that these tools are able to generate reasonable
hardware without relying on FPGA specific pragmas, since
they are not used for other devices.

This accelerator interoperability entails further require-
ments in case a software vendor wants to keep their
application code confidential. At the present day, closed
source software is still the norm to protect intellectual prop-
erty. While the host ISA is usually stable and fixed for an
application, this is not the case for the highly heterogeneous
sector of accelerators. As a consequence, the application
binary must contain the offloaded code exclusively in a
vendor agnostic binary intermediate representation (AI).

This aspect also affects is the integration of the HLS
tool. Solutions where such kernel binaries first have to be
decompiled before passing them to an external framework
like OpenCL cause additional overhead. First, it introduces
unnecessary compilation steps by restoring a high-level rep-
resentation. Second, even recent decompilers are prone to
generate syntactically distorted or even semantically different
sources for more complex code [24]. This can impair the

results of an HLS tool. For this reason, it is favorable to elim-
inate this step and have a tightly integrated FPGA backend
that can directly process binary kernels.

To eventually execute tasks on these generated accelera-
tors, it is necessary to define a common platform. In GPC it
must be assumed that applications of various developers or
ISVs are nondeterministically started by the users of the sys-
tem. A platform must therefore provide sufficiently virtual-
ized FPGA resources to allow independent software develop-
ment and execution when utilizing them. Fully independent
processes (FIP) realize this on theOS and hardware side. This
means that the FPGA is fully transparent and application code
can treat device access as if it was the only one active. The
platform is then responsible for the virtualization at runtime
and guarantees that every task is eventually executed. In this
regard it is necessary to distinguish between large scale cloud
environments and local single node systems. Host servers of
cloud platforms usually have multiple FPGA boards installed
that can be passed to a VM as virtual resource. However,
each one is usually exclusively assigned to a single tenant
at a time [25]. In contrast, this cannot be assumed for work-
stations where similar to GPUs nowadays, only one or very
few FPGAs are realistic. Therefore, a finer grained level
of virtualization is necessary that allows sharing a single
FPGA between multiple programs. In particular, a single
process must not be able to exclusively lock a virtual FPGA
resource. Otherwise, an application can indefinitely block the
device for others although it might only rarely use it. For
this reason, reconfigurable regions may only be implicitly
assigned to a process when it actively runs kernels. The
associated bitstreams are then automatically loaded by the
runtime system on demand. To realize this FIP feature there
are two fundamental requirements. First, dynamic partial
reconfiguration (DPR) support is needed, especially if the
FPGA is divided into several regions for concurrent execution
of multiple kernels (MP). It enables exchanging function-
ality without affecting the management hardware or other
accelerator kernels running on the same FPGA. Secondly,
multiple processes must be able to concurrently dispatch
tasks (CTD) to the same FPGA. Having these properties not
only simplifies programming but also improves the overall
FPGA utilization in the system as well.

A typical use case is a local server with a reconfigurable
accelerator that is usually shared between multiple people.
For this reason, a platform must also provide several multi-
user capabilities. Most importantly, it must allow simul-
taneous usage (SU) of the accelerator to enable efficient
working independent of others. This means the system is able
to handle several requests at a time and frees the users from
ongoing offline arrangements about its allocation. In partic-
ular, it is not sufficient if a platform forces users to initially
agree on a common bitstream (CB), since this precludes those
who have different needs from using it. Moreover, such a
system must also not rely on a virtually endless resource
pool like a cloud environment to gain this property (FA),
since the available hardware is severely limited in MPC.

VOLUME 9, 2021 147215



P. Holzinger, M. Reichenbach: HERA Methodology: Reconfigurable Logic in General-Purpose Computing

A bitstream sharing (BS) mechanism further improves the
usability in this scenario. Since synthesis operations generally
take a considerable amount of time and take up a lot of CPU
resources, they should be reduced to a minimum. Here, it can
often be assumed that programs are repeatedly executed or
that multiple applications use the same library subroutines.
Furthermore, these are also regularly run by multiple users
on the same computer. Therefore, it is beneficial that only
the first run performs synthesis and the bitstreams are then
automatically provided to the other requesters.

When dealing with low-level hardware access for users,
it is inevitable to also take security aspects into account.
While this is highly design specific and explored in greater
detail in Section V, several basic requirements need to be con-
sidered. First, bus integrity checks (BIC) must be performed
to prevent malicious accelerator kernels from bringing down
the whole system. Secondly, the administrator must be able
to selectively abort kernels (AK) without affecting other
processes running on the FPGA to prevent misuse. Thirdly,
in any case sufficient address space isolation (ASI) between
multiple processes (MP) is necessary to protect secrets in
memory. Finally, to evaluate the security capabilities of a sys-
tem and to find further design specific requirements, a com-
prehensive threat model (TM) that covers all conventional
use cases must be provided.

III. LITERATURE REVIEW
With the classification derived in Section II, it is now pos-
sible to evaluate prior research for their suitability. In this
process, a distinction must be made between two different
objectives. On the one hand, there are partial solutions that
do not attempt to approach all requirements listed in Table 1.
Instead, they only focus on specific subproblems like host-
accelerator communication protocols [49]–[54]. These are
not sufficient in themselves for widespread adoption in GPC
due to the complexity to implement the remaining system.
However, several partial solutions are still taken into account
in the following as they constitute important contributions to
their field. On the other hand, there are frameworks that cover
the entire flow from high-level language to the final hardware
and are thus ‘‘end-to-end’’ solutions. Table 2 classifies them
to the best of our knowledge with regard to the requirements
listed in Table 1. By examining the targeted domain and open
source code of these tools, we came to the conclusion that
factors that are not mentioned in their publications are highly
likely not supported. Therefore, we also consider them to be
missing (‘N’) in Table 2. In the following, these end-to-end
approaches are now investigated in more detail, organized by
features in groups of one or more columns.

The most basic capabilities of such a heterogeneous envi-
ronment are programming language and device type support.
In this context, mappings from a multitude of languages
to all common kinds of computational hardware have been
investigated before. Several toolchains use an FPGA offload-
ing concept that is not inherently reflected by a widely
known programming model. Instead, they require the devel-

oper to separately create all accelerators and their wrap-
per libraries [28], [44], [49], need additional architecture
guidance [29], [32], or use dedicated languages [35], [46].
Further approaches improve the usability by leveraging the
widespread OpenCL standard [26], [36]. Nevertheless, the
simplest and therefore preferred ones are the previously pre-
sented single source solutions. These either directly imple-
ment known standards [19], [31], [33], [39], [40], [43] or
require only trivial extensions to known languages [37], [48].
In particular, several toolchains have also demonstrated a
unified programming view of CPUs, GPUs, and FPGAs [19],
[37], [40], [47]. Therefore, the basic capabilities in this area
have been investigated and the research focus is shifting to
the efficient management of heterogeneous systems.

Although the basic language and hardware support is
important, it does not imply all required characteristics of
the underlying implementation. Yet these internal capabilities
heavily influence the programming complexity and therefore
the acceptance of FPGAs. This is most evident in the memory
management between host and accelerator. Several platforms
with SSVM and CC have been presented [19], [26], [36],
[55], [56]. However, due to the complexity to fully imple-
ment them, explicit memory maintenance remains the default
nowadays.

Another important property is the form in which applica-
tions can be deployed. In its simplest form the kernels can
be distributed as plain source code. This has the advantage
that the offloaded sections can be compiled to any supported
device after distribution. However, many companies insist
on a binary-only distribution to protect their IP. In this case
device specific bitstreams can be created and embedded into
the distributed binary. This approach requires that the target
system is known in advance or that bitstreams for all possible
devices must be generated. While this can be acceptable in
HPCC, the expected wide variety of system compositions
in MPC makes this infeasible. Despite these disadvantages,
most existing frameworks rely on one of them [19], [26], [28],
[33], [35], [36], [45], [47]. In contrast, a true GPC approach
must be able to satisfy both requirements. To solve this issue,
several tool flows have been presented that decompile CPU
assembler instructions [57], [58] and then use a third-party
OpenCL backend to target the accelerator. However, this
already highly optimized code for a specific CPU often leads
to worse results for completely different accelerator archi-
tectures. Therefore, a device independent binary intermedi-
ate representation is better suited for these use cases [22],
[59]. For FPGAs a system based on Java bytecode has been
demonstrated, but it also relies on a decompilation step [37].
Therefore, we use an own backend to directly map from
intermediate code to the target hardware.

Nevertheless, at some point this translation has to be per-
formed. For FPGAs this step involves HLS, logic synthe-
sis, and place and route. Especially the latter is very time
and energy consuming and must therefore be carried out
as rarely as possible. Previous works used shader [60] and
bitstream [38] caches to save finalized accelerator kernels

147216 VOLUME 9, 2021



P. Holzinger, M. Reichenbach: HERA Methodology: Reconfigurable Logic in General-Purpose Computing

TABLE 2. Feature matrix of end-to-end FPGA frameworks (Legend in Table 1).

for repeated use, but these implementations were only suited
for a single application. However, there are common use
cases where multiple users use the same applications and
basic libraries on a shared computer. Therefore, we present
a methodology in Section IV to provide transparent synthesis
capabilities and effectively share bitstreams betweenmultiple
users.

Finally, these applications are executed on the target
machine. In a typical use case a user is simultaneously work-
ing with several programs. It is also common that multiple
users work on the same machine. In this scenario a GPC
platform must be able to facilitate FPGA acceleration for
all concurrent tasks without expecting any prearrangement.
Therefore, sufficient virtualization of FPGA logic is nec-
essary. Most research in this area has been conducted for
cloud environments. Here, shell-role architectures [61] with
dynamic partial reconfiguration are predominantly used [62].
Hereby, shell denotes the immutable part of the FPGA logic
while a role describes a concrete instance of a reconfigurable
region. However, there are different approaches how role
functions are handled. In most approaches, virtual FPGA
regions are exclusively reserved for tenants and are not
reassigned as long as the user is paying [26], [33], [63]–
[65]. These solutions heavily rely on scale out effects of
their platform, since a user is theoretically able to claim and
lock all regions but usually lacks financial means. However,

in smaller scale MPC systems only a very limited number
of regions are available. Moreover, there is no incentive not
to occupy FPGA resources, since there are no charges in
these use cases. This means that these approaches cannot
guarantee that applications are accelerated even when the
FPGA does not actually execute tasks. Other approaches try
to solve this problem by providing a predefined accelerator
pool whose functions are only executed on demand [27], [49],
[66]. Even though this improves FPGA resource sharing, they
are no longer freely configurable for a user without adminis-
trative privileges. Therefore, these approaches partially give
up the great advantage of FPGA reconfigurability. Never-
theless, a methodology with both of these capabilities has
been presented by Asiatici et al. [35]. Here, a local processor
running an RTOS is responsible for scheduling all submitted
FPGA tasks. However, their results also show a high latency
and runtime overhead for many short accelerator invocations.
This shows that efficient FPGA virtualization is still a key
problem in GPC.

When integrating an FPGA into an MPC system, it is
essential that such a platform is secure and does not put the
traditional components at risk. Especially the low level hard-
ware access that is provided to ordinary users poses a great
risk for the remaining system. Previous research focused on
several specific issues like secure computations in roles [67],
mandatory access controls [68], ASI [35], BIC [26], [35] or

VOLUME 9, 2021 147217



P. Holzinger, M. Reichenbach: HERA Methodology: Reconfigurable Logic in General-Purpose Computing

side channel leakage of data [69]–[71]. However, an exhaus-
tive exploration of threats to an end-to-end FPGA platform
itself has not been presented yet. Therefore, this is further
analyzed in Section V to develop a secure concept.

It can be seen that FPGA frameworks have to provide a
wide variety of capabilities to foster accessibility, but pre-
vious ones typically do not do so for all of them. With the
new joint technology preview of Xilinx and AMD [20], there
is a second official accelerator class overarching framework
next to Intel‘s oneAPI implementation now [19]. In contrast
to the latter, it is based on the already established open
source ROCm ecosystem for GPUs [21]. However, only
a very limited set of features has been presented in the
FPGA demonstrator so far. These are basic task dispatch to a
fixed accelerator without HLS and dynamic reconfigurability,
SSVM over PCIe, and direct event signaling between an
FPGA and aGPU.Although these capabilitiesmark a promis-
ing first step, they are also not sufficient for the requirements
we derived in Section II.
Nevertheless, when having a closer look at the ROCm

framework, it can be seen that it in turn implements the
open HSA Foundation standard [22]. Multiple related works
based on this standard have been previously presented,
including mappings of OpenMP (GCC), OpenCL [21], C++
ParallelSTL [48], and Python [72] to address GPUs. Fur-
thermore, [54] and [73] have shown basic hardware and
runtime components to integrate FPGA accelerators. Addi-
tionally, [74] demonstrated that these cores can also be
automatically generated from the HSA intermediate lan-
guage (HSAIL)withHLS. Although all theseworks are based
on an open standard, it does not guarantee a system to meet
requirements derived in Section II as not all relevant prop-
erties are well defined. In particular, FPGA related HSA lit-
erature primarily focused on bare-metal embedded systems.
As such, OS integration, virtualization, SSVM, and security
related issues have not been considered, which makes these
solutions not suitable for GPC systems. Nevertheless, due
to the standardization, they can be used as a basis to build
up a system that is governed by the same principles as the
announced Xilinx/AMD platform. Therefore, in the follow-
ing we demonstrate how such a framework can be designed
and extended to meet the defined requirements.

IV. PLATFORM DESIGN
In general, ‘‘end-to-end’’ hardware platform frameworks
consist of five basic layers. These are application software,
language runtimes, user space library, kernel drivers, and
hardware. As such, the ROCm ecosystem [21] also contains
the components visualized in Fig. 3 that implement them.
Since Xilinx’ and AMD’s FPGA technology preview [20]
does not have all the needed capabilities to meet the require-
ments derived in Section II, we also extended ROCm to
dive deeper into the underlying protocols. Consequently,
we adhere to its fundamental mechanisms in the following
and extend it only where new FPGA specific capabilities are
needed. The implementation is explained in greater detail in

FIGURE 3. Software stack to interact with the underlying hardware.
ROCm is extended to create a common framework for GPUs and FPGAs.
Dotted, blue components are found in the classical ROCm GPU flow.
Dashed, green ones are external extensions that are possible due to a
common interface. Dotted and dashed, red ones constitute major
extensions for FPGAs. For the actual kernel dispatch the kernel driver
and user space libraries layers are bypassed. This is possible, since the
content of the memory mapped execution queues can be directly
interpreted by the hardware.

Listing 1. Example offload annotation with OpenMP as used in GCC.

Section VI on the example of the Xilinx ZynqMP and Virtex
platforms.

Starting from the uppermost layer, the application software
interacts with the hardware primarily through dedicated user
bindings. Hereby, it is always possible to employ specialized
higher level frameworks like BLAS or TensorFlow. However,
internally these usually make use of standard programming
language constructs and paradigms that can express paral-
lelism. Listing 1 illustrates this with OpenMP where the loop
is marked for accelerator offloading with a specific pragma
directive. These common methods guarantee easy accessibil-
ity and a uniform view of the heterogeneous hardware for
interoperability between different device classes.

It is then the responsibility of the underlying language
runtimes to map these function calls and annotations to lower
level hardware API calls. In the course of this, the compiler
splits the software into the host code that is executed on the
CPU and device code for the accelerators. For this purpose,
the necessary dispatch information like array pointers or

147218 VOLUME 9, 2021



P. Holzinger, M. Reichenbach: HERA Methodology: Reconfigurable Logic in General-Purpose Computing

dimensions is extracted from the language construct (e.g.
the bounds of a pragma annotated loop). Afterwards, the
respective code section is replaced with device API calls
that offload the task. Similarly, the actual kernel is compiled
into a binary intermediate representation and embedded into
the final executable. This independence of the language and
the device through an abstraction layer is crucial to easily
retarget code sections to other accelerators even after software
deployment, since it can be used for dynamic linking. While
both ROCm and oneAPI have a device agnostic API for the
host side calls, neither currently support independent binary
kernels for FPGAs. Therefore, we additionally extend ROCm
with this feature, which allows us to also demonstrate the
existing OpenMP (GCC 8) and C++ PSTL [48] frontends.
This device abstraction is implemented with the standard-

ized HSA API [22] in the user space library layer. Internally,
ROCm splits this layer into thunk (ROCT) and runtime
(ROCR). The thunk takes care of driver specifics by issuing
IOCTLs and managing sysfs entries. The overlying runtime
then provides the standardized interface that applications
are linked against. Since this layer implements the device
agnostic API, it must also be able to perform the final com-
pilation step from a device independent binary kernel to the
final executable. Therefore, we extended the interface by the
optional HSA finalization feature. However, in contrast to
GPUs, FPGAs incur very long synthesis times to generate the
final executable bitstream. For this reason, we additionally
integrate a synthesis manager (SSM) as a system daemon.
It acts as a centralized offload compiler that automatically
performs HLS and logic synthesis and caches kernels across
multiple users of a system. This sharing can be especially
effective for end-user systems, sincemultiple users often need
the same applications and this even more than once.

The next layer below consists of the operating system
kernel drivers. Their responsibility is the communication
and management of multiple processes with the hardware.
In particular, creation and destruction of dispatch queues,
signals, and page tables need to be synchronized. The main-
line Linux kernel currently implements this functionality for
GPUs inAMDGPU andAMDKFD.Due to the commonHSA
standard, an FPGA driver can use the same basic Linux user
API as ROCm GPUs. However, in contrast to them, FPGAs
are not intrinsically able to execute any task, but prior recon-
figuration is needed. Therefore, we extend the OS with an
additional mechanism in our new HPPD driver that manages
this process. It shifts the hardware resource oversight from
user to kernel such that multiple users can concurrently use
the device and still freely reprogram it. For this purpose,
language runtimes can register kernels synthesized by the
SSM that they want to subsequently use. The driver is then
capable of automatically managing dynamic reconfiguration
depending on the actually dispatched and running tasks.

The lowest layer is the actual hardware. It is split into
an immutable shell and several freely runtime reconfigurable
areas for role accelerators. A core part of the shell is a System
Manager that organizes chip and interface status between

FIGURE 4. Overview of the task dispatch mechanism. Applications create
as many AQL dispatch queues as needed via the HSA Runtime function
calls and the driver. Tasks in the form of AQL packets can then be directly
written to memory from any device. The packet processor parses and
schedules the incoming kernels to its associated accelerators.

the driver and the hardware. However, the main point of
interaction between CPU and FPGA is a hardware scheduler
that is also located in the shell. In contrast to other standards,
the HSA model specifies a dispatch mechanism based on
memory mapped queues and event signals that are directly
processed by the accelerator hardware. An overview can be
seen in Fig. 4. Hereby, the structure of such a dispatch queue
is strictly defined as packets with a specific format (AQL)
in memory. This communication happens directly between a
language runtime and the hardware while completely bypass-
ing the driver. The necessary logic to process this protocol
on the hardware level is integrated into the hardware sched-
uler, which is thus called Packet Processor. It schedules and
supervises all tasks from all processes to this accelerator and
their associated signals. With such a component, users gain
very low-level access to a device. This is favorable for FPGAs
as HDL developers usually work with similarly basic opera-
tions. Thus, they are able to directly read and modify these
memory regions to dispatch own tasks from one accelerator
to another. This mechanism significantly reduces the dispatch
latency in general, since CPU and operating system are not
involved in a kernel launch. Furthermore, the same procedure
can also be utilized to grant FPGAs simple access to system
calls. Hereby, an application specific CPU host thread can
also act a Packet Processor that is able to handle e.g. malloc
or free requests submitted by accelerators [75].

V. SECURITY CONSIDERATIONS
A platform as described not only gives users low level access
to the hardware but even permits them to arbitrarily modify
the actual accelerator circuitries. These abilities impose a
considerable risk to the integrity of the system as a whole,
since exploits are potentially able to bypass protection rings.
This makes an FPGA a worthwhile auxiliary for attacks.
Therefore, creating a threat model is inevitable to quantify
the risks caused by an FPGA integrated in this way. Based on
this analysis, suitable mitigations to secure the system can be
developed beforehand.

A. FPGA THREAT MODEL
A GPC system generally has two groups of people. On the
one hand, there are unprivileged users like developers or

VOLUME 9, 2021 147219



P. Holzinger, M. Reichenbach: HERA Methodology: Reconfigurable Logic in General-Purpose Computing

FIGURE 5. Trust boundaries of the minimal basic hardware components
of our GPC system. Green regions cannot perform any malicious requests
by themselves and are therefore trusted. Orange components need to
process potentially insecure requests, but there are restrictions on the
type of operations that can be performed. In contrast, adversaries can
arbitrarily modify the hardware and software of red areas.

end-users that work with the system. On the other hand,
super users (SU) have privileged access for administrative
purposes. Depending on the domain of use these groups
can also overlap. This introduces two main perspectives on
security. First, users that want to use the system but do not
trust the SU itself, e.g. when sensitive data is processed in
cloud environments. In this case, it must be assumed that all
stored data can be read or modified due to the high privileges
SUs need for administration. With them, they are able to
modify the clock, capture the content of memory cells with a
configuration readback, or even change them. For this reason,
it is inevitable to always encrypt data before storing it in
any kind of memory that is contiguous enough to be able
retrieve information (e.g. DRAM or SRAM). Second, the
SUs who want to provide a secure environment and therefore
generally distrust their users. In this case, it is assumed that
attackers in a user role try to take advantage of the FPGA
platform to cause damage. This scenario is relevant for all
kinds of reconfigurable systems. However, in contrast to the
first perspective, the adversary has lower privileges here. This
implies a broad set of possible counter-measures that are
explored in the following.

To analyze the attack vectors, it is first necessary to identify
which parts can be trusted and where the boundaries of their
influence are. A segmentation of the hardware in this regard
is depicted in Fig. 5. Core of this system are the reconfig-
urable partitions, which contain the kernel accelerators that
are exchanged at runtime. As part of the concept, a user may
arbitrarily define the content of these regions. Adversaries
will use this ability to their advantage. Therefore, this logic
is generally not to be trusted. In contrast, the fixed shell is
only supposed to be modified by the trusted SU. It contains
System Manager, Packet Processor and its firmware, as well
as a bus fabric. This restriction limits the degree of influence
an attacker has over these components. However, a user space
program is still able to directly affect their behavior. This is
particularly evident in the data structures used for direct com-
munication with the hardware that are located in user space,

as described in Section IV. Therefore, the Packet Processor
firmware must handle all memory accesses necessary for
protocol parsing as well as the read values as untrusted. The
same must be assumed for memory transactions originating
from the accelerator cores, which are also routed via the shell
and CPU bus fabrics. However, the (IO)MMUs typically also
provide protection. Therefore, the bus fabric is divided into a
partially untrusted section before (device) and a trusted one
after them (host). Nevertheless, this assumes that all process
address space identifiers (PASID) are correctly set up and
cannot be altered by the user. While PASIDs are initially
assigned by the trusted driver, they need to be updated when
the process ownership of a role changes (e.g. when scheduling
a new task). This is done by the System Manager on behalf
of the Packet Processor. As a non-programmable component,
it can physically only perform a few specific actions that are
requested by its bus masters. Therefore, it is trusted as long
as the tasks can only originate from a trusted environment.

Based on these trust boundaries, it is possible to create
a full threat model. In this process we use the established
STRIDE model [76] to systematically investigate the attack
vectors. It categorizes security threats in six classes that are
separately discussed in the following. Each of them is further
broken down with the likewise established attack trees [77]
depicted in the Appendix (Fig. 10) to analyze their require-
ments. Hereby, we only consider attacks that make use of
the FPGA platform, since they extend the possibilities an
adversary has compared to a traditional system. The resulting
attacks for each goal are then assessed in Section V-B.

Spoofing is the first threat category in the STRIDE model
and describes situations in which an adversary successfully
identifies as another user. In the GPC platform use case this
is mostly used as a mean to a privilege escalation. Therefore,
we consider it a secondary goal as a step to achieve other
ones. Its most important application in our approach is the
spoofing of the PASID to authenticate as another process and
bypass address space protection checks at an IOMMU. There
are three options to perform this attack (Fig. 10h). First, some
systems might allow an untrusted reconfigurable partition
to directly set the respective selection bits at the bus fabric.
While HLS code generated by the platform itself will not
abuse this, the same is not true for specifically prepared mali-
cious bitstreams. Secondly, an adversary might also be able
to send own commands to the System Manager. As explained
before, its status as a trusted component depends on the
masters that can send requests. If a user provided accelerator
is a bus master or if driver or Packet Processor software
get compromised, this assumption does not hold any more.
An attacker would then be able to set the PASID at will
for all ordinary accelerators. However, this indirection is not
necessary if an adversary is even able to control the shell
hardware itself. This ability is also a common secondary
goal, which can be used for several types of attacks. There
are two ways to achieve it (Fig. 10k). The direct approach
tries to load an own full bitstream, which requires SU rights.
In contrast, the indirect method uses partial role bitstreams

147220 VOLUME 9, 2021



P. Holzinger, M. Reichenbach: HERA Methodology: Reconfigurable Logic in General-Purpose Computing

that are specifically prepared to also reconfigure circuits out-
side of their reconfigurable partitions. These can be loaded
by regular users. In both cases the images incorporate the
necessary logic to carry out the attack. In this third alternative
to spoof the PASID, it is used to directly modify the pins that
drive the IOMMU.

Tampering the platform is not only useful for spoofing
but is often even the primary goal of an adversary (Fig. 10c).
In general, this attack class tries to undermine the integrity
of the system. On the one hand it is performed to favorably
affect the behavior of operations. This can be seen in the pre-
viously presented modification of the shell hardware, which
severely compromises the trust in the FPGAplatform. Similar
effects can be achieved by tampering with the SSM directory
(Fig. 10j) that synthesizes and caches bitstreams on disk.
When these stored roles are modified, it leaves unsuspecting
users to execute wrong kernels or experience delays due to
forced resyntheses. On the other hand tampering attacks are
also used to falsify or delete data. The main way to exploit
the FPGA for this goal is through direct memory access to
a foreign address space (Fig. 10e). With PASID spoofing,
the first approach has already been discussed. Using this
method, it is possible to overwrite the user space data of
every process that has been bound to the IOMMU. A further
escalation can be achieved by accessing the operating sys-
tem memory (Fig. 10f). Its associated page table entries are
usually mapped into the address space of every user process
to allow faster system calls. Hereby, they are protected to be
neither readable nor writable from user mode. However, the
privilege level of a transaction is determined by the physical
bus signals. If an untrusted role or tampered shell hardware
can modify these wires, an adversary is able to additionally
perform regular transactions to kernel memory. Having this
possibility, it can be further exploited to allow read and write
accesses to arbitrary memory locations (Fig. 10g). This can
be done directly by modifying the page tables or indirectly by
escalating the privileges of the host program. Another option
to achieve this goal is present if an accelerator is not subject
to address translations and protection. This is the case if no
IOMMU is available in the system or if it is deactivated. Then
direct physical addressing can be used to access any memory
location. In any case a regular user would be able to severely
tamper with data stored on the device by using only regular
memory accesses.

Repudiation is a frequently used means to deny com-
mitting attacks. In general it is used to reject that an action
has been performed by a person. In some cases this class
brings an immediate gain, e.g. when maliciously disputing
purchases. However, in the context of an FPGA platform it
is only of lesser concern, since it does not impede security
directly. Nevertheless, having a non-repudiable system can
help an administrator to investigate other attacks. In the pro-
posed approach FPGA usage is always associated with a user
process. Therefore, it is possible to use logging techniques as
long as an attacker does not gain root privileges.

Information disclosure breaches the confidentiality of the
system, since it allows attackers to gain access to data for
that they have no permissions (Fig. 10a). The most effective
method is the previously discussed direct access to foreign
address spaces from a user process (Fig. 10e). With these
exploits an attacker can obtain data of any running process
including sensitive cryptographic keys of the operating sys-
tem. Another, although less effective, approach to collect
data is to intercept the bus fabric that is shared between
all reconfigurable partitions. With a modification of this
bus, all values read and written by accelerator cores as well
as their memory addresses can be logged. However, this
requires an attacker to be able to tamper the shell (Fig. 10k).
Alternatively, there is also a less intrusive variant that can
be carried out with only a user-defined role. It exploits that
many interconnects use a shared crossbar to reduce logic.
This causes signals to be readable for all masters although
they are only valid for one. An adversary is therefore able to
record loaded data but not the addresses it is associated with.
With both variants that intercept the bus fabric, the obtainable
data is limited to the working set that is actively used by the
accelerators. In contrast to the first method, the main memory
is not directly readable. A further restriction is imposed by
the third approach, which tries to extract remaining data of
other roles. Here, an attacker is only able to see values that a
previous kernel execution stored in the same reconfigurable
partition. This attack imposes the fundamental requirement
that neither the previous kernel nor the platform clears the
memory cell contents at a context switch. Normally these
cells are automatically initialized at reconfiguration when a
new role instantiates them. However, it has been shown that
partial bitstreams can be tampered in a way that BRAM con-
tent is not zeroed [78]. This causes data to remain in the cells.
The same is true when reconfiguration is not needed because
the current and previous tasks use the same kernel. In both
cases a malicious role can read the retained data. Contrary to
the approaches presented so far, which directly access foreign
data, there are also side-channel attacks to indirectly obtain
sensitive information. The first option is the class of power
attacks [69]. These usually monitor the power consumption
to analyze which instructions are executed and which data is
processed by other processes. Traditionally, physical access
is needed for these measurements. However, it has recently
been shown that they can also be approximated by circuits
that can be instantiated in a role [70]. This possibility opens
new realistic ways for attackers when FPGAs are integrated
into future GPC systems. Similarly cache attacks can also
be simplified. These bring a shared cache in a known state
first and then try to determine intermediate changes of other
processes by comparing access time differences. An FPGA
makes these measurements more reliable due to the ability
to instantiate precise timers and directly interact with the
coherency protocol. Therefore, these side-channel attacks
actively leverage FPGA capabilities to gain access to secret
information.

VOLUME 9, 2021 147221



P. Holzinger, M. Reichenbach: HERA Methodology: Reconfigurable Logic in General-Purpose Computing

Denial of service (DoS) attacks, by contrast, have a differ-
ent objective (Fig. 10b). This class of threats tries to reduce
the availability of the system for its users, e.g. by shutting
it down or degrading its performance. There are four levels
of severity. The first and lowest one causes worse perfor-
mance and overall responsiveness of applications. Similar to
pure CPU solutions, the FPGA platform can also be used
to excessively increase the load with pointless computations.
An adversary can provoke this in multiple ways. For example
by starting not needed synthesis jobs at the SSM, overloading
the DRAM controller and bus fabric with memory transac-
tions, or spawning useless FPGA kernels. In its worst form
these accelerator tasks contain endless loops. If the system
is not capable of preempting or terminating them, the FPGA
would have to be reset completely. The second severity level
causes the platform to be unreliable. This can happen if
an adversary tampers the metadata of the SSM directory
(Fig. 10j). In that case bitstream cache lookups might be
wrong, not working at all or not able to synthesize new
requests. This leaves the platform incapable of processing
tasks that are not already registered for execution at the driver.
In contrast to the previous two severities, the third level is able
to bring down the complete system. There are two options
to realize this threat. First, an adversary can try to deadlock
the memory subsystem, which prevents further loads and
stores. This method uses the fact that FPGAs allow users to
directly manipulate bus signals. With this ability, attackers
can issue transactions that undermine the integrity of the
underlying protocol. These can be incomplete requests or
handshakes, unsupported operation modes, or by deliberately
inducing metastability. For the second option to crash the
system it is not even necessary to directly interact with the
shell. Here, an attacker utilizes synchronized pulses of ring
oscillators (RO) to stress the power delivery network (PDN)
and generate voltage emergencies [79]. This causes timing
failures of circuitry in the same power domain outside the
untrusted reconfigurable partition. However, this concept to
influence the system on an electrical level can be even fur-
ther extended to perform attacks with the highest severity.
In this case, adversaries utilize the reconfigurability of FPGA
routing to cause a short circuit and overload the PDN [80].
Therefore, this attack is able to permanently destroy the
platform.

Elevation of privilege is the last threat class of the
STRIDE model (Fig. 10d). An adversary’s goal is to bypass
the system authentications to gain access to resources that
are restricted to users with higher privileges. One way to
realize this has already been described with the attacks to
gain access to protected OS memory from the reconfigurable
logic (Fig. 10f). However, this ability can be further uti-
lized to get system wide super user permissions. For that,
an attacker needs to find and modify the credentials in the
OS task_struct of the process that uses the accelerator.
After signaling themodification to the host process, it directly
possesses elevated privileges. An adversary is then able to
open a root shell and perform any other attack.

B. RISK ASSESSMENT AND MITIGATIONS
With the threat model established in Section V-A, it is now
possible to design appropriate defense mechanisms. The
basic assumption is that the adversary has no root privileges
yet when using the FPGA platform to attack the system. Oth-
erwise there would be more trivial options to inflict damage.
It is then a primary responsibility of the FPGA platform to
ensure that this assumption is still true when reconfigurable
hardware is utilized. It can be seen that a major opportunity to
elevate the privileges is by having direct access to the physical
address space (Fig. 10d). This ability is highly critical, since
it not only allows attackers to modify OS data structures
but also tamper or disclose data of other users. Therefore,
it is inevitable to perform address checks when reading or
writing any memory. It can be realized through a dedicated
(IO-)MMU for every storage region that blocks unauthorized
requests.

However, this measure is only effective if correct autho-
rization is ensured by the platform. For this purpose, it is
necessary to enforce the trust boundaries established in Fig. 5.
In particular, the boundary of the untrusted region must be
protected, since an adversary is able to abuse unchecked
transactions to also threaten the availability, integrity, and
confidentiality of the system. Therefore, the platform must
synchronize all incoming signals, zero data that is not des-
tined for a reconfigurable partition, check protection bits and
modes of transactions, and time out overdue ones. This has to
be done by special hardware units in the shell that are called
System Guard in the following. Furthermore, it is necessary
that PASIDs cannot be set by user accelerators, but only by
trusted components. For this purpose, an Address SpaceMan-
ager (ASM) is inserted into the bus fabric in front of the FPGA
(IO-)MMUs. This component is directly controlled by the
System Manager and decodes bus master IDs to their corre-
sponding PASIDs. Finally, it must be ensured that these con-
figurations cannot be compromised by an attacker. Therefore,
command and data busses of the fabric are physically split
into separate interconnects, such that there are no data paths
from reconfigurable partitions to the System Manager. The
remaining masters are solely the FPGA platform driver and
the Packet Processor. Both can only be altered with elevated
privileges. Furthermore, a Packet Processor implementation
has to strictly separate privileged command transactions and
ordinary memory accesses made on behalf of user processes.

The measures presented so far protect shell and memory
from being compromised by regular usage patterns. However,
the previous analysis showed that users can still modify the
shell with partial bitstreams that do not abide to the region
boundaries (Fig. 10k). Therefore, it is inevitable to authen-
ticate all roles by a trusted party before they are loaded
(Fig. 10n). This task can be taken over by the proposed
SSM because it is responsible for synthesizing all designs.
It assigns every generated bitstream a hash-based message
authentication code (HMAC) [81] that is used by the driver
to validate authenticity and integrity of a role (Fig. 10l). This
transmission can now be considered secure, since it can only

147222 VOLUME 9, 2021



P. Holzinger, M. Reichenbach: HERA Methodology: Reconfigurable Logic in General-Purpose Computing

be circumvented in the unlikely cases that the administrator’s
secret key is revealed or if the HMAC algorithm itself is
insecure (Fig. 10i). The architectural updates presented so
far also prevent that an adversary can directly modify bit-
streams in-memory after the driver verified them. However,
it is still possible to interfere with the initial generation
by undermining the SSM integrity (e.g. by tampering with
scripts). To additionally mitigate this option it is necessary
to protect these files from write access by ordinary users.
Therefore, both SSM daemon and its cache are managed by
a separate dedicated user account that is exclusively acces-
sible by administrators. With these measures, the electrical
and design rule checks of the SSM cannot be circumvented
and authentication is enforced. This also effectively prohibits
attacks that cause electrical shorts and mitigates attacks on
the PDN by adding rules to detect ROs and delay-lines
(DL) [69]–[71], [79].

The provisions presented so far prevent an adversary from
reaching the most severe goals. However, there are several
attacks that can only be partially mitigated by the FPGA
platform. First, the mildest form of DoS attacks temporarily
exhausts common resources like reconfigurable partitions or
the bus fabric (Fig. 10b). The capability to preempt running
kernels can improve the situation, but is expensive on current
FPGA hardware and does not prevent an adversary from cre-
ating a high number of tasks.Moreover, most of the time these
attacks are not distinguishable from legitimate high load.
Therefore, the best option is to give administrators the ability
to selectively kill processes running on the FPGA without
affecting others. To further reduce the probability of misuse,
it also sensible to restrict access to reconfigurable logic and
SSM to a trusted user group (Fig. 10n). Administrators can
then easily grant and revoke these permissions. Additionally,
they should have the choice to disable the ability to synthe-
size HDL kernels, since several attacks require their greater
expressiveness compared to high-level languages (Fig. 10m).
Nevertheless, HDL based attacks are also mitigated by the
other presented means.

Another attack concerns information leakage through data
left behind in a reconfigurable partition (Fig. 10a). An FPGA
platform is able to be immune to this attack by loading a
clearing bitstream after every executed kernel. However, this
is also an expensive operation on current FPGA hardware
due to the relatively long reconfiguration times. Neverthe-
less, even if this is not done, an application can always
eliminate this issue by simply erasing its data after exe-
cution. Furthermore, the SSM enforcement initializes all
memory cells used by an attacker when reconfiguring a
region, which clears all content. This means that an adver-
sary would need to use the same kernel as the victim,
since this does not trigger a reconfiguration. Therefore,
the only way to exploit this vulnerability is to manipulate
another user to execute a malicious application. Because such
an application could also directly access the data without
involving the FPGA, we consider this attack to have a low
severity.

Finally, there are also side channel attacks possible. Com-
pared to direct ones, these methods are usually slower and
less reliable due to the necessary statistical analysis of leaked
information. However, they are suited to selectively recover
sensitive data like cryptographic keys.Mitigations often try to
make the application resistant, but there are also several mea-
sures a platform can implement. For example, as described
before, it is possible to detect ROs and DLs with the SSM.
Furthermore, it has been shown that the error rate of power
analysis attacks is significantly higher when computation
and monitoring circuits are isolated and the attacker has no
control over place and route [70]. Therefore, the shell-role
architecture and the enforced SSM usage make a successful
information disclosure less likely. There are also several tradi-
tional CPU approaches like page coloring that mitigate cache
attacks on an FPGA platform [82], [83]. Nevertheless, due to
the nature and high variety of side channel attacks, they are
hard to prevent completely and further research is required.

VI. SYSTEM IMPLEMENTATION
The technology preview of Xilinx and AMD initially demon-
strated a very limited basic system for data center PCIe
accelerators [20]. Now, with the concepts of our HERA
methodology presented in Sections IV and V, more compre-
hensive concrete implementations for various platforms can
be derived. A particularly important domain for the future
are highly integrated systems that pack CPU cores, GPUs,
and application specific hardware with reconfigurable logic
into a single package or even die. A major advantage is
their low overhead to access main memory compared to
the longer delays and higher energy consumption of tradi-
tional PCIe add-in card transceivers. This allows simpler and
more fine-grained offloading as well as greater collabora-
tion between the different compute components. Examples
of such hardware platforms are the Intel HARP SiP [84]
or Xilinx Zynq UltraScale+ MPSoC systems. Even though
the latter is nowadays used in embedded environments, its
principles can also be applied on a bigger scale to the MPC
and HPCC domains. Due to these benefits, its high level of
integration, and its simplicity, we demonstrate our HERA
methodology on this platform in the following. However,
as the concepts are universal, they can also be applied to
other reconfigurable systems. This is shown with a second
PCIe-based Xilinx Virtex design.

A. HARDWARE DESIGN
Fig. 6 shows two realizations of the outlined HERA hard-
ware architecture to provide suitable platforms for a fully
integrated ROCm system. First, we use the tightly integrated
Zynq MPSoC system in Fig. 6a as our main target. Second,
we provide a reference PCIe based Virtex UltraScale design
that can be seen in Fig. 6b. As the concept is universal, both
designs have the identical core structure with Packet Pro-
cessor, System Manager, several reconfigurable partitions as
well as the security related System Guard and Address Space
Manager.

VOLUME 9, 2021 147223



P. Holzinger, M. Reichenbach: HERA Methodology: Reconfigurable Logic in General-Purpose Computing

FIGURE 6. Structure of all needed hardware components to realize the outlined framework on Zynq UltraScale+ MPSoC and Virtex UltraScale
devices.

The main differences between the designs are the connec-
tion to the host processor and the handling of additional local
memory. These I/O couplings also define the basic require-
ments on the FPGA technology itself. First, the bus proto-
col implementations between participating components must
enable SSVM and CC. In case of our SoC, on-chip AXI and
ACE busses can be used to directly access main memory and
CPU caches. This implementation uses the one-way coherent
HPC ports. In contrast, the Virtex design always needs to
communicate with the CPU via PCIe serial links. As such it
suffers, aside from the much higher latency, from the fact that
this protocol by itself does not provide cache coherency. Fur-
thermore, to realize low overhead SSVM for user processes,
CPU, mainboard, and FPGA must additionally provide the
optional PCIe features atomic operations, Process Address
Space ID (PASID), Address Translation Services (ATS), and
Page Request Interface (PRI). Several of these features are
only available in the hardware and IP cores of the latest FPGA
generations of Xilinx and Intel and at the moment not easily
accessible from programmable logic [85]–[87]. Therefore,
our PCIe based design currently also has these limitations.
However, as demonstrated with the SoC design, our HERA
shell already has all necessary components in place such
that it can be integrated in the future. Aside from these bus
features, only Dynamic Partial Reconfiguration (DPR) capa-
bilities are needed to reconfigure partitions independently
from the static shell. As all shell components are not supposed
to change during operation, future designs can also fabricate
them as dedicated ASIC components. In this case the regions
can simply be treated as several smaller complete FPGAs
that are regularly reconfigured. As long as these basic FPGA
technology requirements are met, devices from any vendor
can be used to fully realize such a stack.

The first main hardware component of the HERA frame-
work is the System Manager. As outlined in Section V,
it is designed as a trusted component that is only accessi-
ble via the dedicated CMD interconnect. In this way it is
completely decoupled from all untrusted masters, which can
only access the data interconnect. At synthesis time of the
shell, the SSM configures several System Manager registers

with a set of essential user defined shell properties like the
number of reconfigurable partitions. These are exposed to
the driver to perform an automatic configuration at system
startup. Afterwards, it regulates the communication between
the FPGA components and the driver. This is made possible
by two further sets of registers with special functionality.
The first group is accessible from user space and implements
the so called HSA doorbell signals. Writing these informs
the Packet Processor of new work and can potentially wake
it up from energy saving modes. The second group is strictly
separated and allows only privileged hardware to exchange
command messages. These can be used on the one hand by
the driver to e.g. maintain dispatch queues, reconfigure roles,
or abort kernels. On the other hand, the Packet Processor
can e.g. signal malicious behavior of kernels, prompt process
changes in the Address Space Manager, or maintain memory
sections at local MMUs.

The second main component is the Packet Processor that
is fundamental for all HSA based systems such as ROCm.
It parses dispatch packets submitted by the language runtime,
schedules tasks, and manages accelerator cores. Generally,
when offloading tasks, a process registers one or more mem-
ory regions as queues via the user space libraries and the
driver. Then a dispatch packet that contains the parameters,
the desired kernel function, and a completion signal event
handle is written. After the Packet Processor is informed
of the task via the doorbell signal, it parses the packet and
schedules it to an accelerator core. Finally, it updates the
completion signal value when the task finished execution.
Such a dispatch from one queue to a fixed FPGA accelerator
has also been shown by [54] and in the technology preview of
Xilinx and AMD. However, this is not sufficient for a system
as envisioned in Section II as is lacks reconfigurability and
multi-user capabilities.

In our implementation the Packet Processor is realized
with an embedded 64 bit MIPS CPU. It contains several fur-
ther mechanisms to deal with concurrent requests of multiple
processes and dynamic partial reconfiguration in a secure
way. For this purpose, user kernels and their role must be
uniquely identified and registered at the Packet Processor.

147224 VOLUME 9, 2021



P. Holzinger, M. Reichenbach: HERA Methodology: Reconfigurable Logic in General-Purpose Computing

Therefore, the driver associates each of them with a unique
handle. A language runtime then passes the desired one to
the hardware along with every submitted dispatch packet.
When a kernel with an inactive identifier is parsed, it is
necessary to load its corresponding role. However, if not
enough reconfigurable partitions are available, a currently
loaded role must be exchanged with the needed new one
first. For that the Packet Processor keeps track of which
kernels were previously executed and then applies an LRU
scheme to select a reconfigurable partition for removal.
This reconfiguration request is signaled to the CPU with
an interrupt. The FPGA driver is then expected to serve it
with the mechanism described in Section VI-B. For this pur-
pose, the Packet Processor provides two additional routines.
First, deregistration removes an accelerator from schedul-
ing, instructs it to flush its data buffers, and afterwards
causes the System Guard to decouple it. Second, registra-
tion resets a newly configured core and adds it for future
scheduling.

Further extensions are needed to efficiently handle multi-
ple concurrent processes. To increase performance per watt,
accelerators should be allowed to keep data in local buffers
for delayed write-backs or reuse. However, this dirty state
cannot be directly observed by other applications, since all
processes are completely independent. This means data loss
can occur if the executing process changes without proper
handling. Therefore, the Packet Processor first informs a
core of a pending context change to perform flushes and
invalidations. This opportunity for optimization is directly
used by our tightly integrated HLS tool that leverages these
platform capabilities.

As identified in Section V, it is strictly required to separate
the untrusted regions of the accelerators from the remain-
ing system. For this purpose, we instantiate one System
Guard for every reconfigurable partition. It continuously
monitors every bus and interrupt connection between the
domains. In case it detects any errormessage from the system,
an attempted violation of a protocol, or unnecessarily stalled
handshakes, it immediately shuts down the accelerator and
completes outstanding transactions itself. Furthermore, this
action is reported to the Packet Processor, which marks the
queue fromwhere the task originated as erroneous. For severe
violations like an attempted access to other memory areas,
it additionally instructs all other System Guards that monitor
a task of this process to terminate them. Afterwards the
driver is informed and a segmentation fault is signaled to the
application.

To detect these memory access related violations and
strictly isolate processes, several further components are
needed. As these are, according to Section V, sensitive opera-
tions, they must only be handled by trusted parts of the shell.
First of all, the address space must be associated with every
bus transaction. For this purpose, the Address SpaceManager
contains a set of registers that links every component that
accesses the memory to its PASID. For every incoming trans-
action the AXI requester ID is then mapped to the currently

configured PASID. Since the bus fabric interconnection is
known, this mapping is unambiguous. Every time the Packet
Processor schedules a new task, it also initiates an update of
the corresponding PASID. This can be directly inferred from
its dispatch queue, since they are also uniquely assigned to
a process by the trusted driver. However, as parsing dispatch
packets involves handling untrusted addresses, this approach
also applies to some memory accesses of the Packet Proces-
sor itself. For this purpose, it implements two privilege levels.
The higher one can access the trusted CMD interconnect
and sets up the processing of a packet. Afterwards, it gives
up these privileges and parses it with process restricted
permissions.

The data busses with annotated process information can
now be checked by further components. In the ZynqMP
design we utilize the integrated SMMU and its Translation
Buffer Units (TBU) to realize both platform security and
SSVM support. The pages used for translation are directly
selected by a so called Stream ID when memory transactions
from FPGA to DRAM pass through. This ID is defined by the
mapping of the Address Space Manager. The associated page
tables are maintained by the FPGA driver that is explained
in Section VI-B. An equivalent setup can also be applied to
the PCIe design and its IOMMU for main memory accesses
when the necessary PCIe features are present in the FPGA.
However, as it also contains shared local memory, an addi-
tional MMU is needed to protect this area. For this purpose,
the Packet Processor provides memory allocation and deal-
location services that simultaneously set up the matching
MMU segment entries. If any of these units detects an access
violation, it is reported to the System Guard, which takes the
appropriate steps to terminate the process.

B. KERNEL DRIVER
The functionality provided by the hardware is managed by
a dedicated FPGA driver (HPPD). Due to the common HSA
mechanisms, both AMDKFD and HPPD can share the same
IOCTLs and mmap parameters. To offload tasks to an accel-
erator, the FPGA/GPU character device is opened first to get
access to the platform functionality. Then, the enumerated
system composition that is exported to user space via sysfs
is parsed to find a suitable device. Afterwards, an IOCTL is
used to create a dispatch queue for this specific device. Lastly,
a doorbell signal as explained in Section VI-A is mmapped
into user space. Now a dispatch packet can be sent via the
standard HSA protocol and its content is directly interpreted
by the Packet Processor.

For this memory-mapped submission it is necessary to
provide access to virtual user space memory for the FPGA
hardware. Therefore, the SMMU driver has been adapted to
support the Stream ID scheme presented in Section VI-A.
Every time a new process opens the HPPD character device,
a unique PASID is assigned and bound to a context bank of
the SMMU. This shares all page tables of the calling process
between CPU MMU and SMMU. The SMMU driver addi-
tionally registers a notifier to be informed of changes to the

VOLUME 9, 2021 147225



P. Holzinger, M. Reichenbach: HERA Methodology: Reconfigurable Logic in General-Purpose Computing

FIGURE 7. Sequence diagram of a simplified execution flow. The language runtime finalizes and loads the desired kernel via the HSA runtime. The
latter call registers the role at the driver and assigns a unique identifier to the kernel object of the executable. The task can then be dispatched with
the usual HSA mechanism. If a currently not configured kernel is inserted into the queue, the Packet Processor raises an ‘‘accelerator fault’’. The
driver then replaces an accelerator with a suitable new one.

memory mapping of the process. With this notification TBU
TLBs are invalidated when necessary. Then, the associated
Stream IDs are assigned to this context bank. From now on,
all current and future virtual addresses of this process can be
translated by the SMMU. This enables true zero-copy capa-
bilities when passing memory pointers to the accelerators.
Additionally, the SMMU driver is able to restore swapped
out pages at runtime by handling context faults caused by
ongoing FPGA transactions.

A fundamentally new aspect for FPGAs, in contrast
to GPUs, is the reconfigurability. An overview over the
mechanism that realizes it in the HERAmethodology is visu-
alized in Fig. 7. First, a language runtime registers the partial
bitstreams of all kernels that can be potentially used by the
process at HPPD via sysfs. Internally the HMAC hash value
is calculated to verify the authenticity and integrity of the role
as explained in Section V-B. Furthermore, this hash acts as
a fingerprint of the kernel. If it has already been registered
by any process, only one instance is stored in kernel space.
In every case, a unique kernel identifier is returned to the
user process. Hereby, all processes get the same handle if they
register the same bitstreams. It is referenced in subsequent
HSA kernel dispatch packets such that the Packet Processor
can identify the needed accelerator. This reduces the number
of partial reconfigurations needed and therefore improves
performance. As explained in Section VI-A, the hardware
raises an ‘‘accelerator fault’’ when a dispatch packet with a
not loaded identifier is parsed. Upon receiving this interrupt,
HPPD checks if a role with this identifier has been registered.
If not, the queue is shut down and the associated application
is notified. Otherwise, the driver reconfigures the system in
three steps. First, the evicted accelerator is deregistered by
calling the Packet Processor routine. Then, the FPGA Man-
ager driver programs the partition with the new compatible
role. Finally, the new accelerator is registered and execu-
tion of the dispatch packet is automatically resumed. With
this method, the reconfiguration procedure is completely

managed by the hardware and driver layer. Therefore, mul-
tiple concurrent processes are completely independent and
can behave as if they were the only one running. Furthermore,
a user is not able to lock the FPGAwithout actually executing
a task. For this reason, an application kernel will eventually
be executed.

C. USER-SPACE COMPONENTS
Although the device drivers for GPUs and FPGAs share
several aspects of the Linux kernel user space API, they
are not identical due to the different architectures. There-
fore, a further user-space layer is necessary to abstract these
details and enable simpler access to device functions. This
layer is designed as a device agnostic library that creates a
uniform view of the platform and that can be dynamically
linked against. To span a wide range of hardware, the HERA
methodology extends the ROCmGPU ecosystem [21] and its
implementation of the HSA runtime API [22] similarly to the
joint technology preview of Xilinx and AMD [20]. Due to
the common standard, new classes for FPGA devices can be
seamlessly integrated.

One drawback of FPGAs is that synthesizing bitstreams
costs multiple orders of magnitudemore time and energy than
compiling a GPU kernel. This also means that a simple GPU-
like just-in-time compilation of executables at runtime would
incur a significant delay. However, limiting the synthesis pro-
cess to the developer PC also has significant disadvantages.
It requires the exact knowledge of the target systems before-
hand at development time. Furthermore, supporting even a
low number of different FPGAs and configurations would
make deployed executables extraordinarily big as bitstream
sizes are often in the order of MB. These options limit one of
the biggest strengths of FPGAs, their reconfigurability and
customizability. Therefore, we propose another solution as
a compromise. We run a user overarching system daemon
called SSM on the client PC. It provides HLS and synthe-
sis capabilities as well as a bitstream cache to application

147226 VOLUME 9, 2021



P. Holzinger, M. Reichenbach: HERA Methodology: Reconfigurable Logic in General-Purpose Computing

software. The system administrator initially installs it with
a freely chosen platform configuration file that specifies the
desired FPGA setup like the number of reconfigurable par-
titions. SSM then automatically creates a hardware design
with the correct System Manager settings that can be used
by the driver and synthesizes the static shell bitstream. If an
application kernel is now finalized (Fig. 7) for the FPGA,
only the very first call of any user and any library causes a
synthesis to get dynamic role bitstreams that optimally match
the administrator selected configuration. This is in particular
effective considering that popular high-level frameworks like
BLAS and TensorFlow are typically simultaneously used by
many applications and users of a system. However, even this
first call can cause an inconvenient delay of several minutes
at runtime. For this reason, it is advisable for developers to
include this call in their application installer where longer
waiting times are already expected by users.With this method
any kernel can be quickly looked up in the cache at runtime
and the high flexibility is preserved.

For this bitstream caching mechanism to work, it must
be fully transparently integrated into the stack. That means
creating an FPGA executable from device independent inter-
mediate code must use the same interfaces as for a GPU.
For this reason, the language runtime invokes at application
runtime the standard finalize kernel procedure of the HSA
API as seen in Fig. 7. When an FPGA is selected as the
target, the offloaded kernel code is then sent to the SSM
daemon via UNIX domain sockets. Otherwise, a standard
compiler for e.g. the CPU or GPU is used. The sockets
are automatically created at every system startup when the
daemon loads the shell selected at installation into the FPGA.
The very first invocation then causes an HLS and synthesis
run that generates VHDL code and the role bitstreams for the
FPGA platform configured by the administrator. Afterwards,
the HMAC of these role bitstreams is calculated and jointly
stored on disk according to the security requirements in
Section V-B. To identify the offloaded kernel for further uses,
its intermediate code is also hashed and stored as a reference
for subsequent fast lookups without synthesis. In any case,
the location of the finalized role bitstream is returned. The
language runtime then uses the HSA API to register it at
the FPGA driver and to load it into a device executable as
depicted in Fig. 7. As the roles of a kernel are identical for all
applications and users, HPPD is also able to savememory and
reduce reconfigurations by combining duplicate registrations
into a single handle.

SSM’s so called finalizer that generates FPGA executa-
bles from intermediate kernel code consists of two parts.
It has a general HLS tool and an FPGA specific synthesis
and P&R tool. To provide HLS capabilities, we integrated
and improved the program presented in [74] to more effec-
tively use this desired platform. For example, it includes
optimizations for typical GPU code, considers information
about memory channels and speed, and uses process change
and visibility notices from the Packet Processor to cache
data. Furthermore, different degrees of vectorization are

automatically tested to find a good fit for the available space
selected by the administrator through the number of reconfig-
urable partitions. As a result of this process, a role bitstream
for every reconfigurable partition is generated. This number
can be reduced with bitstream relocation techniques to only
a single one for all [88]. However, since current P&R tools
for the FPGAs in our demonstrator give no guarantees for
its functional correctness whatsoever, we leave it as a future
option. Instead, we rely on bitstream compression to reduce
their size and reconfiguration time.

D. LANGUAGE MAPPING
With an established device independent API, it is possible
to write generic language mappings. At that, every program-
ming language has its own constructs to express parallelism
and therefore its own language runtime. Their purpose is to
map higher level language features to fundamental operations
that can be compiled on either host CPU or accelerator device.
One commonly known example is the C++ STL that defines
basic algorithms.While these have been serial for a long time,
parallelized versions haven been added as of C++17. Further
common ones are the parallel pragmas in OpenMP or by
concept OpenCL itself. As these descriptions of parallelism
are generic, they can be mapped to any device, e.g. with
a thread pool on the CPU, a GPU, or an FPGA. This has
the great benefit that developers only have to interact with
a language they are familiar with and that is the best suited
for the application. The specific accelerator API is hidden,
even though it is also device independent. Furthermore, their
code can be executed on any device, even if it was not a
target during development. This is especially beneficial for
FPGAs as they are more specialized than and not as preva-
lent as GPUs nowadays. However, one peculiarity of current
HLS design for FPGAs is its wide-spread use of pragmas
to provide more guidance about the hardware to the HLS
tool. Since this kind of optimization is device specific and
there is a high probability that many applications do not use
them, holistic toolchains must not rely on its usage. Instead,
the automatic design space exploration of HLS tools will
become more important in the future to get more traction
in less the specialized domains of use. Nevertheless, both
approaches are not mutually exclusive. Pragmas open up
additional opportunities for developers that want to optimize
their code for FPGAs in particular.

These language constructs need to be interpreted by the
compiler and mapped to the function calls of the device
independent API. Hereby, only one runtime for all devices has
to be developed for a language, since it can subsequently be
used for any device type. This makes previous approaches for
GPUs in general also suitable for use with our FPGAmethod-
ology [21], [48], [72]. Internally the HSA standard defines a
grid based execution model similar to CUDA. Therefore, the
compiler and language runtime extract this grid information
from the parallelization language construct at compile time.
This is particularly simple for languages like OpenCL that
already use this scheme, such that only a simple function

VOLUME 9, 2021 147227



P. Holzinger, M. Reichenbach: HERA Methodology: Reconfigurable Logic in General-Purpose Computing

mappingwrapper is needed. Generally, the source code is first
automatically split into a host and device part [31], [48], [72].
The device code represents the kernels that are actually exe-
cuted on the accelerator. This part is cut out of the initial host
source and replacedwith the necessary API function calls that
enumerate all available devices, select a target accelerator,
and orchestrate the dispatch. As PCIe devices usually also
have faster accessible local on-board memory, compilers can
additionally insert topology query, allocate, and copy HSA
API operations to use it. Combined with the actual source
that the developer wrote for the host, this constitutes the code
for the CPU. Both host and device code are then compiled
into the final executable. Hereby, the latter is only lowered
to a device independent intermediate ISA like SPIR-V [59]
or HSAIL [22] and not yet the final accelerator ISA. This
device agnostic ISA ensures the software interoperability.
The compilation step itself establishes the initially required
source code confidentiality. Both host and device parts are
then combined into a fat binary executable that is shipped to
customers.

At the client computer the executable can then simply be
run, since all relevant accelerator offloading functions have
already been embedded. The installed user space components
of Section VI-C then generate the final device code in the
finalization step. In case of an FPGA, this includes the
role bitstream synthesis that matches the shell configuration
selected by the customer administrator. If this step fails for
example because even the smallest degree of vectorization
generates too large accelerators, either language runtime or
application code can fall back to another installed device. This
is for example done by the existing OpenMP and PSTL run-
times [48] to automatically execute on the CPU if no accel-
erator is usable. Similarly, a runtime also decides when and
if finalizations for multiple devices are run in parallel. The
existing ones again simply sequentially block until a suitable
device is found. Nevertheless, with this concept developers
can work independently from the target system while the
benefits of FPGA flexibility is still taken advantage of.

VII. DEMONSTRATOR
A. BENCHMARK SETUP & LIMITATIONS
In the following we demonstrate a prototype of our HERA
system. Due to its early development status, it is not intended
to give final performance numbers but to show the applica-
bility of the overall concept. This HERA methodology can
then for example also be used to extend other ecosystems for
future domains of use like the also HSA-based joint technol-
ogy preview of Xilinx and AMD. Similar to their prototype,
we also demonstrate kernel dispatches over an integrated
ROCm environment. However, we additionally show how
our extensions improve the concept such that the system is
capable of ensuring the functional requirements of future
systems derived in Section II.

For our main demonstrator we use the low-cost Ultra96
board that is based on the Xilinx Zynq MPSoC platform
as shown in Section VI-A. It features a tightly integrated

TABLE 3. Tested algorithms.

CPU/FPGA system on a single die where the components
share a coherent interconnection structure similar to what can
be found in current x86 CPU/GPU SoCs [89]. It allows us to
run a fully operational Debian Linux with a 4.19 kernel on
it. These features make it a suitable test platform for our pur-
poses despite its original embedded use case. Additionally,
we provide a PCIe based Xilinx VCU108 Virtex UltraScale
design as shown in Section VI-A as a hardware reference for
expansion card type systems. Due to its hardware limitations
regarding CC and SSVM, it can only feature a subset of the
HERA methodology and is therefore not presented as a full
demonstrator. Nevertheless, since the central components are
the same and only the connection to the host needs to be
updated, the relative values still give a good indication of our
methodology.

We set up several machines to test our concept. First, the
developer PC with the VCU108. Second, the ARM based
Ultra96 as the client PC where the applications were even-
tually run. One drawback of this embedded platform was that
there is no Vivado support for ARM. That means it was not
possible to directly finalize the kernels to bitstreams on this
device. However, without loss of generality, we circumvented
this issue by setting up an additional auxiliary x86 machine
to create all bitstreams. It also runs an SSM instance and
synchronizes its cache directory with the counterpart on the
Ultra96. As a result, we could prepopulate the cache similar
to what would have been done with a regular software instal-
lation as described in Section VI-C. No changes to the actual
application source code were needed despite this indirection.
Therefore, our setup behaved from a user and programmer
perspective identical to systems where both are done on the
same PC.

With this setup we developed implementations with three
different programming paradigms (OpenCL, OpenMP, and
PSTL) for the algorithms listed in Table 3. As accelerators
should eventually also be easily usable by more inexperi-
enced developers, we did not use highly optimized standard
benchmarks. Instead, we focused on simple algorithms of
several common basic operations. Furthermore, we relied on
the SSVM and cache coherency features provided by the
platform to further simplify the code. The biggest benefit of
this approach is gained by algorithms that use sophisticated
dynamically allocated data structures like the binary tree
of algorithm 7. It allowed us here to forgo complex own
memory management for the accelerator device and use the
same data structure as the host CPU. Combined with the

147228 VOLUME 9, 2021



P. Holzinger, M. Reichenbach: HERA Methodology: Reconfigurable Logic in General-Purpose Computing

TABLE 4. Programmable logic utilization of system components.

familiar programming paradigms, we could directly annotate
the reference CPU code. This demonstrates the very simple
and non-intrusive offloading capabilities of the concept.

The OpenCL code was compiled with an LLVM based
toolchain [21]. OpenMP used the HSAIL backend of main-
line GCC 8 and C++ PSTL used the extended GCC pre-
sented in [48]. All of them were initially not used for FPGA
targets but only for GPUs. Nevertheless, the device agnostic
HSA API allowed us to repurpose them. Due to language
restrictions and the feature set state of the compilers, it was
not always possible to intuitively formulate all problems. For
example C++ PSTL currently does not have a notion of 2D
or 3D operations like OpenCL. The remaining variants were
compiled with their respective language frontends into binary
accelerator independent kernels. When inspecting these ker-
nels, we noticed that even with -O3 only the LLVM compiler
optimized the device intermediate code. The existing GCC
frontends left this task to the finalizers on the client PC.
As earlier passes of common optimizations can reduce the
application binary size and finalization time, we decided to
perform them on our own to e.g. additionally inline functions
and combine redundant instructions.

These steps are always performed on the developers PC to
generate the application executable that is distributed to the
end-users. It does not contain any FPGA specific operations
such that it could also be executed on other HSA compatible
systems that i.e. only contain a GPU. The binary is then
deployed to the client PC that has been configured and set
up according to the user preferences. Thereafter, we executed
all test cases to conduct the measurements.

B. RESOURCE UTILIZATION
The hardware platform itself is composed of the basic com-
ponents introduced in Sections IV, V-B, and VI-A. Table 4
shows their resource utilization with Vivado 2020.1 in dif-
ferent configurations relative to the size of the Ultra96. The

TABLE 5. Programmable logic utilization of shell configurations.

absolute numbers for the VCU108 are similar, but the FPGA
contains 7.6×more programmable logic. Core of every shell
are the Packet Processor (PP) and System Manager (SM).
They communicate with driver and applications to dispatch
tasks to the accelerator cores. As fixed components their
size does not dependent on any configurable parameter like
the number of reconfigurable partitions. It is therefore well
suited for cases where processes work concurrently on many
cores. For security and usability reasons three further com-
ponents are needed. The first one is the System Guard (SG)
that monitors the bus between untrusted core and shell. It is
needed once for every reconfigurable partition with as many
busses as AXI masters of the partition. Second, the Address
Space Manager (ASM) that assigns the PASIDs and is also
present once in all designs. Its number of busses is equal
to the number of memory channels. The third component
is the Memory Management Unit (MMU) that protects the
local board memory from unauthorized accesses. It is only
needed once in the VCU108 design, since the Ultra96 does
not have local memory and the main memory is protected by
the SMMU. Its number of busses is equal to the number of
on-board memory channels. In general, these three compo-
nents scale linearly in size, but they are often not needed in
their biggest configurations. The FPGAs on both Ultra96 as
well as VCU108 for example only support memory access
with up to two channels. With these low numbers of busses
their impact on the overall design utilization is very low.How-
ever, they can even be used for the up to 32 memory channels
of current High Bandwidth Memory (HBM) FPGAs.

These basic hardware components can then be automat-
ically configured and integrated by the SSM daemon into
a complete FPGA design on the client PC. This process
is customized by the system administrator by providing a
configuration file according to the needs of this working
environment. Possible options are for example the number
of reconfigurable partitions (RP), the number of AXI bus
masters per core, or the number of memory channels. In the
followingwe selected one channel for theMPSoC and two for
the PCIe design with one AXI bus master for every RP. With
these basic settings we synthesized several shell instances.
Their resulting resource utilization is listed in Table 5. First
of all, it can be seen that our PCIe design was much bigger

VOLUME 9, 2021 147229



P. Holzinger, M. Reichenbach: HERA Methodology: Reconfigurable Logic in General-Purpose Computing

TABLE 6. Programmable logic utilization of roles of algorithms in Table 3.

than the MPSoC one. This was caused by the additional soft
logic components for the PCIe endpoint, DMAunits, memory
controllers, channel access interleaver, MMU, and partial
reconfiguration access port. These are either not needed or
implemented as ASIC parts in the MPSoC. Therefore, the
reduced MPSoC design can be seen as the core part of our
HERA methodology. It not only utilized less than 15% of the
Ultra96 resources, but it was also significantly smaller than
the mandatory logic to bring up a PCIe board design. Second,
when increasing the number of RPs, only a small fraction of
the resources for one RP was needed for every new one. This
was due to the fact that most components in Table 4 are not
replicated and the SG that was, had an insignificant impact
on the size. The major part of the increase could be attributed
to more complex AXI bus fabric interconnects. This was
dependent on the bus width of the memory controller. Since
the PCIe design used four times wider 512 bit busses than
the MPSoC, its increases were bigger. In general, it can be
seen that with more than 84% free resources our static shell
forms a cost-effective entry point to the accelerator hardware.
Furthermore, additional logic of bigger FPGAs of the same
type can almost completely be used for further function
offloading.

In the following we selected the MPSoC design with two
RPs and a lower RP resource occupation ratio for further
tests, since this allowed a faster generation of role bitstreams.
Although the synthesis delay at runtime can be largely
avoided with the methods presented in Section VI-C, they
could occasionally happen if developers do not update their
installers. Therefore, we chose a less dense designwith bigger
RPs to present a more convenient option and a lower bound
on the performance values. This is ultimately a matter of
preference for the administrator as a trade-off between more
compute power and faster finalization times on the client PC.
We then finalized all algorithms of Table 3 into their

respective role bitstreams for our selected design. The uti-
lization of the resulting accelerator cores is listed in Table 6.
In accordance to the original definition, we from now on refer
to the operation as ‘‘algorithm’’ and to ‘‘the application logic

TABLE 7. Runtime overhead of FPGA ROCm [µs].

itself’’ [61] in hardware as ‘‘role’’. Furthermore, an offloaded
code section is called ‘‘kernel’’. All tested roles needed less
than 16% of the FPGA resources. This allowed a compara-
tively fast synthesis in the range of several minutes. However,
OpenMP and PSTL roles were in general up to 14% bigger
than their OpenCL counterparts. This was directly caused by
the code generated by the external GCC language frontends
and not a language intrinsic impairment. Both instantiated
parameter and lambda expression capture call stacks in reg-
ular memory and only passed the stack pointer via dedicated
kernarg memory. Since this stack is not distinguishable
from real data for the HLS backend, it requires an accelerator
to fetch the real pointers from there first. While this is not
an issue for instruction based accelerators as only a few
additional load instructions are used, it requires additional
logic to be synthesized for FPGA hardware. In contrast,
the OpenCL paradigm itself requires kernel arguments to be
explicitly passed with dedicated setArg() methods and is
translated as such by the compiler. These stricter kernarg
properties allowedHLS tool and PP to optimize its usage with
extra registers. Nevertheless, even for OpenMP and PSTL
multiple accelerator cores could be instantiated in parallel.
Since the number of CPU cores and FPGA capacity can vary
widely in GPC systems, we limited both to one core per
process to make them more comparable in the following.

C. PERFORMANCE
When offloading these kernels, the overall runtime of an
application is composed of twomain parts. There is a constant
overhead of the environment and the performance of the
actual kernel execution on the accelerator. The first factor is
mostly independent of the role as it has to be equivalently
done for all. This can be further separated into a general
offload setup time to prepare the dispatch and a task execution
overhead for packet processing and signaling at runtime.
These influences are itemized in Table 7. It compares the run-
time of several operationswhen the user was interacting with
the bare driver and hardware to a version where the ROCm
user-space components were used. Hereby, the cost of an
operation can be assigned to several categories depending on
how often it has to be done. First, global initialization is only
done once for every process. It enumerates all devices and sets
up the whole library. Then users create a queue to dispatch

147230 VOLUME 9, 2021



P. Holzinger, M. Reichenbach: HERA Methodology: Reconfigurable Logic in General-Purpose Computing

AQL packets. This is done at least once per device whereby
multiple allow out-of-order processing. On this queue any
kind of kernel can be dispatched, but their roles must be
individually looked up at the daemon and registered at the
driver. When this is done, users create completion signals
and set up kernel arguments. While this is needed once
per dispatch, the allocated structs are reusable. Therefore,
they can be used without additional cost for multiple queues
and packets if the function signature matches. Finally, the
packet itself can be dispatched and processed. These costs are
incurred at runtime and as such need to be taken into account
of for every offloading operation. They can potentially be
higher if the role is not configured such that a reconfiguration
is triggered.

Although Table 7 shows that ROCm as a middleware
library generally increases the runtime of operations, it only
does so for initialization and setup tasks that are executed
once. These costs are not critical runtime costs but can be seen
as additional time to first launch an application. Therefore,
they amortize over longer application lifetimes. Furthermore,
these delays mainly arise from increased bookkeeping efforts
for larger systems that e.g. provide error handling with auto-
matic memory deallocation. For that reason, it also has the
beneficial aspect of increased program stability and comfort.

The by far largest delay to set up kernel offloading is
currently the registration of roles at the driver. In this process,
the partial bitstreams for both RPs have to be transferred
from the persistent storage to kernel space. The speed of
the storage medium therefore has a bigger influence on this
number. In case of the Ultra96 board, this is an SD card,
which slowed down the process. All uncompressed bitstreams
have the same combined size of 3.86MB for every role in
Table 6. This lead to a registration time of 35.0ms. With bit-
stream compression, we could reduce their size by 23.5% to
2.96MB with a small standard deviation of only 12.638 kB.
As expected, the registration was in this case with 25.6ms
also up to 26.7% faster. Therefore, the time to transfer the data
to the kernel has a big influence on this setup time. A further
additional factor is introduced by the HMAC to validate the
SSM origin, as explained in Section V-B. It is by definition
performed in two steps [81]. First, the bitstream is appended
to the key that is XORed with the inner padding and hashed.
Length extensions of Merkle-Damgård hash functions like
SHA256 cost linearly more time due to the block processing.
Since the padded key is always orders of magnitude smaller
than the bitstreams, its overhead compared to a regular hash
that would be needed to find duplicate registrations, is not sig-
nificant. Then, the result is appended to the key that is XORed
with the outer padding and hashed again. This hashing is
completely new, but since the result of the first step is only
the output length of the hash function itself and much smaller
than the bitstreams, it is again a negligible cost. Our measure-
ments confirmed that this HMAC calculation was indeed less
than 0.1% slower than the regular hashing. For this reason,
we do not consider this security update a relevant time factor
for any typically used hash function when registering roles.

FIGURE 8. AQL packet throughput with parallel dispatches over multiple
queues.

FIGURE 9. Work item per cycle throughput improvement of FPGA
offloading relative to CPU only execution.

Furthermore, the resulting handle can generally be used for
an arbitrary number of offloading invocations and is therefore
only a one time cost.

Once registered, a role must still be loaded into a partition
of the FPGA. This reconfiguration sequence was transpar-
ently carried out by our ‘‘accelerator fault’’ mechanism at
runtime. It took on average 7.4ms for our uncompressed
1.93MB roles. When switching to compressed bitstreams,
it could be reduced by 17.5% to 6.1ms for 1.46MB. This
shows that the biggest part was again spent by data transfer
from DRAM to Configuration Access Port and the FPGA
configuration itself. Therefore, newer FPGA generations are,
according to recent industry trends, expected to significantly
speed up this process.

Nevertheless, this reconfiguration mechanism is only trig-
gered if the role is currently not loaded. This happens for
example when it has been previously evicted from the FPGA
area. Usually, the dispatch latency at runtime is merely 11µs
for every offloaded task. This value includes the complete
round-trip time for a vector copy kernel with one element
from CPU dispatch until the completion signal event is
received. Since this kernel is very lightweight, it puts the
most stress on the Packet Processor and is therefore a worst
case scenario. Compared to the most comprehensive prior
approach, we could improve their stated runtime manager
overhead of 185 µs by a factor of 16 [35]. Fig. 8 shows the
overall packet throughput when these kernels were concur-
rently dispatched over up to 16 queues. In this case, the Packet
Processor had to switch queue contexts when packets from
different ones were to be processed. This further increased

VOLUME 9, 2021 147231



P. Holzinger, M. Reichenbach: HERA Methodology: Reconfigurable Logic in General-Purpose Computing

the stress on the accelerator hardware. As a result, the packet
throughput decreased by 32.2% for 16 concurrent queues.
However, even in this casemore than 55 000 kernel dispatches
per second were processed. This shows that the direct com-
munication of a language runtime with the hardware offers a
low latency interface with only a small overhead on the tightly
coupled MPSoC platform. This high throughput makes it
suitable for multi-user systems.

The second factor that influences the offloading efficiency
is the runtime of the actual kernel on the accelerator core.
It is determined by the memory access performance and the
quality of the circuit the HLS tool generates. Our concept as
presented in Section VI-A includes up to four components
in addition to the bus fabric interconnects in the data path to
memory.

On the programmable logic (PL) side, we used the SG,
ASM, and for designs with local memory the MMU as pre-
sented in Table 4. These components increase the access
latency by a constant of 2, 0, and 4 cycles respectively but
do not directly affect the throughput. This delay could impair
the performance of latency sensitive accelerators, which typ-
ically use low burst lengths and few outstanding transactions.
However, these are comparatively already more limited by
the usually much higher DRAM access latency. Furthermore,
the roles generated by the SSM also mainly transferred mul-
tiple bigger chunks at once. Therefore, this impact was not
significant.

On the processing system (PS) side of the MPSoC design,
we used the SMMU to translate and check virtual addresses.
These translations happen either in the distributed TLBs
(TBU), the central TLB (TCU), or through a full page table
walk (PTW) depending on TLB hits or misses. As it is located
in a different clock domain than the PL, the exact delays
depend on their ratio and the exact timing. For 533MHz PS
and 100MHz PL reference clocks, we measured a 1 cycle
delay for a TBU lookup, 34 cycles for the TCU, and 75
cycles if a full PTW is needed. These delays resulted in a
performance decrease of 1.0% for a 5 × 5 stencil, 2.2% for
a matrix-vector multiplication, and 1.2% for a tree traversal
with 100 000 nodes. This overhead of the tested memory
access patterns is sufficiently small to still be acceptable.
Therefore, the thus established SSVM is suitable to ease
programming and make copy operations to device memory
not needed any more.

A further factor is the cost of cache coherence. It is realized
by the HPC AXI ports in the PL and the cache coherent
interconnect (CCI) on the PS side. While this is a conve-
nient feature, specifically Xilinx’ ZynqMP implementation
has been shown to noticeably reduce the performance [90].
We also confirmed this for our system with even slower
LPDDR4 DRAM by setting up a benchmark with two AXI
masters. The frequency was set to 214MHz such that 80%
of the theoretical Ultra96 DRAM throughput was requested
per port. When our up to 64 kB test data resided in the cache,
only 45% of the theoretical DRAM bandwidth for reads and
15% for writes were measured. By contrast, when the data

was not present in same test case, 74% for reads and 84% for
writes could be achieved. In comparison, the non-coherent
HP ports always delivered 82% for reads and 85% for writes.
Therefore, a certain degradation due to the coherency is to
be expected for the currently available ZynqMP FPGAs.
However, we also assume that this overhead will be smaller in
future generations, similar to current x86 multi-core designs.

Based on this analysis of the memory data path, we exe-
cuted several applications with our role accelerators of
Table 6 on the system. Fig. 9 shows the increase in work item
throughput per cycle over a pure CPU equivalent for these
roles. It can be seen that all roles improved the efficiency of
the application even though offloading itself entailed a fixed
runtime overhead. As our previous tests showed a decreased
memory throughput due to the Xilinx’ cache coherency
implementation, we also compared them to a VCU108 equiv-
alent. Hereby, we used the one RP variant of the PCIe design
in Table 5 and moved all data to local memory before-
hand. Furthermore, we instantiated the exact same amount
of computational resources as on the MPSoC, even though
much more logic and memory bandwidth was available, to
make them directly comparable. It could be seen that even
the kernels with the highest (algorithm 2 OCL) and lowest
(algorithm 6 OCL) benefit on the MPSoC platform, had an
equally significant performance increase of 74.0% and 90.4%
respectively. This shows again that efficient memory subsys-
tems are important for future tightly integrated heterogeneous
platforms.

Nevertheless, the overall offloading efficiency was for the
most part determined by the quality of the circuit the HLS
tool [74] generated, despite its less mature development state
and the complete omission of pragmas. It took advantage of
the HSA grid structure generated by the frontend compiler to
exploit both data and instruction parallelism. Combined with
their guarantees about data alignment that were inserted into
the intermediate code, it enabled for example to automatically
vectorize data access and form larger bursts. As developers
annotate offloadable regions for any accelerator in the high-
level source code, it can usually be assumed that kernels
have this higher degree of data parallelism, since they are
also suitable for e.g. GPUs. Furthermore, this common set
of characteristics defined by the languages can ease per-
formance portability across device classes for developers.
When comparing the programming paradigms among each
other, it can be seen that the OpenMP and PSTL derived
roles were 2.1% slower than their OpenCL counterparts. This
effect was caused by their more complex parameter transfer
that also increased their resource utilization. However, this
decrease was in the same small range as the SSVM overhead
and therefore not crucial. This makes these programming
paradigms from a performance perspective also suitable for
kernel offloading.

All in all, these presented aspects of our HERA method-
ology show that a unified GPU and FPGA environment has
indeed the potential to considerably simplify programming
of heterogeneous systems in various domains. Moreover,

147232 VOLUME 9, 2021



P. Holzinger, M. Reichenbach: HERA Methodology: Reconfigurable Logic in General-Purpose Computing

FIGURE 10. Attack trees that characterize the platform security.

VOLUME 9, 2021 147233



P. Holzinger, M. Reichenbach: HERA Methodology: Reconfigurable Logic in General-Purpose Computing

FIGURE 10. (Continued.) Attack trees that characterize the platform security.

we demonstrated that a framework as previewed by Xilinx
and AMD can be extended to also fulfill stricter requirements
in future MPC use cases. Since the underlying HSA standard
is the same, we expect their future production-ready plat-
forms to show similar characteristics.

VIII. CONCLUSION
In this paper we analyzed the requirements of FPGA systems
in the general-purpose computing domain and how these
were previously approached. Based on this, we explained
how several techniques like hardware virtualization, system
shared virtual memory, and the use of wide-spread program-
ming paradigms can be combined to build up future FPGA
systems. Hereby, a special focus was also placed on the topic
of security where we created a comprehensive threat model
and applied risk mitigations. Based on the established ROCm
ecosystem for GPUs, we derived a common methodology
called HERA to build up heterogeneous systems. Finally,
a prototype implementation thereof for the ZynqMP and
Virtex platforms has been demonstrated.

The presented methodology and results can guide plat-
form developers in academia and industry to design systems
that are energy efficient as well as accessible. Furthermore,
as it shares a common basis with the joint converged GPU
and FPGA runtime technology preview of Xilinx and AMD,
we could also showcase its extensibility for future midrange
and personal computing use cases.

APPENDIX
ATTACK TREES
The attack trees used in Section V that characterize the
platform security can be seen in Fig. 10. Dashed, blue root
nodes are primary goals of attackers. Dotted, green nodes
represent secondary goals, which enable reaching the primary

ones. Child nodes represent options that can be taken to
achieve a goal. Boxes that contain multiple sub-boxes require
all to be fulfilled. Several possible attacks are mitigated by
either introducing new conditions (red boxes with alternating
dots and dashes) or removing options (red arrows with the
same stroke). Dotted violet arrows signalize fully mitigated
possibilities.

REFERENCES
[1] G. E. Moore, ‘‘Cramming more components onto integrated circuits,’’

Proc. IEEE, vol. 86, no. 1, pp. 82–85, Jan. 1998.
[2] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and

A. R. LeBlanc, ‘‘Design of ion-implanted MOSFET’s with very small
physical dimensions,’’ IEEE J. Solid-State Circuits, vol. JSSC-9, no. 5,
pp. 256–268, Oct. 1974.

[3] R. S. Williams, ‘‘What’s next? [The end of Moore’s law],’’ IEEE Comput.
Sci. Eng. Mag., vol. 19, no. 2, pp. 7–13, Mar. 2017.

[4] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, andD. Burger,
‘‘Dark silicon and the end of multicore scaling,’’ in Proc. 38th Annu. Int.
Symp. Comput. Archit. (ISCA), 2011, pp. 365–376.

[5] T. El-Ghazawi, E. El-Araby, M. Huang, K. Gaj, V. Kindratenko, and
D. Buell, ‘‘The promise of high-performance reconfigurable computing,’’
Computer, vol. 41, no. 2, pp. 69–76, Feb. 2008.

[6] L. T. Su, ‘‘Architecting the future through heterogeneous computing,’’ in
IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2013, pp. 8–11.

[7] A. DeHon and J. Wawrzynek, ‘‘Reconfigurable computing: What, why,
and implications for design automation,’’ in Proc. Design Autom. Conf.,
Jun. 1999, pp. 610–615.

[8] N. S. Kim, D. Chen, J. Xiong, and W.-M. W. Hwu, ‘‘Heterogeneous
computing meets near-memory acceleration and high-level synthesis in the
post-Moore era,’’ IEEE Micro, vol. 37, no. 4, pp. 10–18, Aug. 2017.

[9] R. Tessier, K. Pocek, and A. DeHon, ‘‘Reconfigurable computing architec-
tures,’’ Proc. IEEE, vol. 103, no. 3, pp. 332–354, Mar. 2015.

[10] M. Wijtvliet, L. Waeijen, and H. Corporaal, ‘‘Coarse grained reconfig-
urable architectures in the past 25 years: Overview and classification,’’ in
Proc. Int. Conf. Embedded Comput. Syst., Archit., Modeling Simulation
(SAMOS), Jun. 2016, pp. 235–244.

[11] J. Fowers, G. Brown, P. Cooke, and G. Stitt, ‘‘A performance and energy
comparison of FPGAs, GPUs, and multicores for sliding-window appli-
cations,’’ in Proc. ACM/SIGDA Int. Symp. Field Program. Gate Arrays
(FPGA), 2012, pp. 47–56.

147234 VOLUME 9, 2021



P. Holzinger, M. Reichenbach: HERA Methodology: Reconfigurable Logic in General-Purpose Computing

[12] X. Niu, T. C. P. Chau, Q. Jin, W. Luk, and Q. Liu, ‘‘Automating elimination
of idle functions by run-time reconfiguration,’’ in Proc. IEEE 21st Annu.
Int. Symp. Field-Program. Custom Comput. Mach., Apr. 2013, pp. 97–104.

[13] D. Chen and D. Singh, ‘‘Invited paper: Using OpenCL to evaluate the
efficiency of CPUS, GPUS and FPGAS for information filtering,’’ in Proc.
22nd Int. Conf. Field Program. Log. Appl. (FPL), Aug. 2012, pp. 5–12.

[14] J. Cong, Z. Fang, M. Lo, H. Wang, J. Xu, and S. Zhang, ‘‘Understanding
performance differences of FPGAs and GPUs,’’ in Proc. IEEE 26th Annu.
Int. Symp. Field-Program. Custom Comput. Mach. (FCCM), Apr. 2018,
pp. 93–96.

[15] E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra, G. Venkatesh, and D. Marr,
‘‘Accelerating binarized neural networks: Comparison of FPGA, CPU,
GPU, and ASIC,’’ in Proc. Int. Conf. Field-Program. Technol. (FPT),
Dec. 2016, pp. 77–84.

[16] F. B. Muslim, L. Ma, M. Roozmeh, and L. Lavagno, ‘‘Efficient
FPGA implementation of OpenCL high-performance computing appli-
cations via high-level synthesis,’’ IEEE Access, vol. 5, pp. 2747–2762,
2017.

[17] C. Kachris and D. Soudris, ‘‘A survey on reconfigurable accelerators for
cloud computing,’’ in Proc. 26th Int. Conf. Field Program. Log. Appl.
(FPL), Aug. 2016, pp. 1–10.

[18] M. Qasaimeh, K. Denolf, J. Lo, K. Vissers, J. Zambreno, and P. H. Jones,
‘‘Comparing energy efficiency of CPU, GPU and FPGA implementa-
tions for vision kernels,’’ in Proc. IEEE Int. Conf. Embedded Softw. Syst.
(ICESS), Jun. 2019, pp. 1–8.

[19] Intel Corporation. Intel FPGA SDK for OpenCL: Programming
Guide. Nov. 2019. [Online]. Available: https://software.intel.com/sites/
default/files/oneAPIProgrammingGuide_5.pdf

[20] Xilinx. (Nov. 2020). AMD and Xilinx Demonstrate Converged ROCm
Runtime Technology Preview. [Online]. Available: https://forums.xilinx.
com/t5/Xilinx-Xclusive-Blog/AMD-and-Xilinx-Demonstrate-Converged-
ROCm-Runtime-Technology/ba-p/1175091

[21] Advanced Micro Devices. (Apr. 2016). ROCm—A New Era in Open
GPU Computing. [Online]. Available: https://gpuopen.com/compute-
product/rocm/

[22] HSA Foundation. (May 2018). HSA Specification Version 1.2. [Online].
Available: http://www.hsafoundation.com/standards/

[23] M. Martineau, S. McIntosh-Smith, and W. Gaudin, ‘‘Evaluating OpenMP
4.0’s effectiveness as a heterogeneous parallel programming model,’’ in
Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshops (IPDPSW),
May 2016, pp. 338–347.

[24] N. Harrand, C. Soto-Valero, M. Monperrus, and B. Baudry, ‘‘The strengths
and behavioral quirks of Java bytecode decompilers,’’ in Proc. 19th
Int. Work. Conf. Source Code Anal. Manipulation (SCAM), Sep. 2019,
pp. 92–102.

[25] Amazon.com. Amazon EC2 F1-Instances. Accessed: Dec. 6, 2019.
[Online]. Available: https://aws.amazon.com/ec2/instance-types/f1/

[26] Xilinx. (Nov. 2019). Vitis Unified Software Platform. [Online]. Available:
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_
2/ug1400-vitis-embedded.pdf

[27] I. Stamelos, E. Koromilas, C. Kachris, andD. Soudris, ‘‘A novel framework
for the seamless integration of FPGA accelerators with big data analytics
frameworks in heterogeneous data centers,’’ in Proc. Int. Conf. High Per-
form. Comput. Simul. (HPCS), Jul. 2018, pp. 539–545.

[28] S. Mavridis, M. Pavlidakis, I. Stamoulias, C. Kozanitis, N. Chrysos,
C. Kachris, D. Soudris, and A. Bilas, ‘‘VineTalk: Simplifying software
access and sharing of FPGAs in datacenters,’’ in Proc. 27th Int. Conf. Field
Program. Log. Appl. (FPL), Sep. 2017, pp. 1–4.

[29] M. Rabozzi, G. Natale, E. Del Sozzo, A. Scolari, L. Stornaiuolo, and
M. D. Santambrogio, ‘‘Heterogeneous exascale supercomputing: The role
of CAD in the exaFPGA project,’’ in Proc. Design, Autom. Test Eur. Conf.
Exhib. (DATE), Mar. 2017, pp. 410–415.

[30] J. Korinth, J. Hofmann, C. Heinz, and A. Koch, ‘‘The TaPaSCo open-
source toolflow for the automated composition of task-based parallel
reconfigurable computing systems,’’ in Proc. 15th Int. Symp. Appl. Recon-
figurable Comput. Cham, Switzerland: Springer, 2019, pp. 214–229.

[31] L. Sommer, J. Korinth, and A. Koch, ‘‘OpenMP device offloading to FPGA
accelerators,’’ in Proc. IEEE 28th Int. Conf. Appl.-Specific Syst., Archit.
Processors (ASAP), Jul. 2017, pp. 201–205.

[32] D. Pnevmatikatos, K. Papadimitriou, T. Becker, P. Böhm, A. Brokalakis,
K. Bruneel, C. Ciobanu, T. Davidson, G. Gaydadjiev, K. Heyse, and
W. Luk, ‘‘FASTER: Facilitating analysis and synthesis technologies
for effective reconfiguration,’’ Microprocessors Microsystems, vol. 39,
nos. 4–5, pp. 321–338, Jun. 2015.

[33] B. Ringlein, F. Abel, A. Ditter, B. Weiss, C. Hagleitner, and D. Fey, ‘‘Sys-
tem architecture for network-attached FPGAs in the cloud using partial
reconfiguration,’’ inProc. 29th Int. Conf. Field Program. Log. Appl. (FPL),
Sep. 2019, pp. 293–300.

[34] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, ‘‘Enabling
FPGAs in hyperscale data centers,’’ in Proc. IEEE 12th Int. Conf. Ubiqui-
tous Intell. Comput., IEEE 12th Int. Conf. Auton. Trusted Comput., IEEE
15th Int. Conf. Scalable Comput. Commun. Associated Workshops (UIC-
ATC-ScalCom), Aug. 2015, pp. 1078–1086.

[35] M. Asiatici, N. George, K. Vipin, S. A. Fahmy, and P. Ienne, ‘‘Virtualized
execution runtime for FPGA accelerators in the cloud,’’ IEEE Access,
vol. 5, pp. 1900–1910, 2017.

[36] Intel Corporation. (Dec. 2018). Intel FPGA SDK for OpenCL:
Programming Guide. [Online]. Available: https://www.intel.com/content/
dam/altera-www/global/en_US/pdfs/literature/hb/opencl-sdk/aocl_
programming_guide.pdf

[37] J. Fumero, M. Papadimitriou, F. S. Zakkak, M. Xekalaki, J. Clarkson,
and C. Kotselidis, ‘‘Dynamic application reconfiguration on heterogeneous
hardware,’’ in Proc. 15th ACM SIGPLAN/SIGOPS Int. Conf. Virtual Exe-
cution Environ. (VEE), 2019, pp. 165–178.

[38] M. Papadimitriou, J. Fumero, A. Stratikopoulos, and C. Kotselidis,
‘‘Towards prototyping and acceleration of Java programs onto Intel
FPGAs,’’ in Proc. IEEE 27th Annu. Int. Symp. Field-Program. Custom
Comput. Mach. (FCCM), Apr. 2019, p. 310.

[39] M. Knaust, F. Mayer, and T. Steinke, ‘‘OpenMP to FPGA offloading pro-
totype using OpenCL SDK,’’ in Proc. IEEE Int. Parallel Distrib. Process.
Symp. Workshops (IPDPSW), May 2019, pp. 387–390.

[40] S. Lee and J. S. Vetter, ‘‘OpenARC: Open accelerator research com-
piler for directive-based, efficient heterogeneous computing,’’ in Proc.
23rd Int. Symp. High-Perform. Parallel Distrib. Comput. (HPDC), 2014,
pp. 115–120.

[41] S. Lee, J. Kim, and J. S. Vetter, ‘‘OpenACC to FPGA: A frame-
work for directive-based high-performance reconfigurable computing,’’
in Proc. IEEE Int. Parallel Distrib. Process. Symp. (IPDPS), May 2016,
pp. 544–554.

[42] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,
S. Brown, and T. Czajkowski, ‘‘LegUp: High-level synthesis for FPGA-
based processor/accelerator systems,’’ in Proc. 19th ACM/SIGDA Int.
Symp. Field Program. Gate Arrays (FPGA), 2011, pp. 33–36.

[43] J. Choi, S. Brown, and J. Anderson, ‘‘From software threads to parallel
hardware in high-level synthesis for FPGAs,’’ in Proc. Int. Conf. Field-
Program. Technol. (FPT), Dec. 2013, pp. 270–277.

[44] Maxeler Technologies. (Jun. 2013). Programming MPC Systems.
[Online]. Available: https://www.maxeler.com/media/documents/
MaxelerWhitePaperProgramming.pdf

[45] N. Trifunovic, H. Palikareva, T. Becker, and G. Gaydadjiev, ‘‘Cloud
deployment and management of dataflow engines,’’ in Proc. 1st Int. Work-
shop Next Gener. Cloud Archit., Apr. 2017, pp. 5:1–5:6.

[46] S. S. Huang, A. Hormati, D. F. Bacon, and R. Rabbah, ‘‘Liquid metal:
Object-oriented programming across the hardware/software boundary,’’
in Proc. 22nd Eur. Conf. Object-Oriented Program. Berlin, Germany:
Springer, 2008, pp. 76–103.

[47] J. Auerbach, D. F. Bacon, I. Burcea, P. Cheng, S. J. Fink, R. Rabbah,
and S. Shukla, ‘‘A compiler and runtime for heterogeneous computing,’’
in Proc. 49th Annu. Design Autom. Conf. (DAC), 2012, pp. 271–276.

[48] P. Jääskeläinen, J. Glossner, M. Jambor, A. Tervo, and M. Rintala,
‘‘Offloading C++17 parallel STL on system shared virtual memory plat-
forms,’’ in Proc. Int. Conf. High Perform. Comput. Workshops. Cham,
Switzerland: Springer, 2018, pp. 637–647.

[49] W. Wang, M. Bolic, and J. Parri, ‘‘PvFPGA: Accessing an FPGA-based
hardware accelerator in a paravirtualized environment,’’ in Proc. Int. Conf.
Hardw./Softw. Codesign Syst. Synth. (CODES ISSS), Sep. 2013, pp. 1–9.

[50] K. Vipin and S. A. Fahmy, ‘‘DyRACT: A partial reconfiguration enabled
accelerator and test platform,’’ in Proc. 24th Int. Conf. Field Program. Log.
Appl. (FPL), Sep. 2014, pp. 1–7.

[51] M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner, ‘‘RIFFA
2.1: A reusable integration framework for FPGA accelerators,’’ ACM
Trans. Reconfigurable Technol. Syst., vol. 8, no. 4, pp. 1–23, Sep. 2015,
Art. no. 22.

[52] K. H. Tsoi and W. Luk, ‘‘Axel: A heterogeneous cluster with FPGAs and
GPUs,’’ in Proc. 18th Annu. ACM/SIGDA Int. Symp. Field Program. Gate
Arrays (FPGA), 2010, pp. 115–124.

[53] M. Weinhardt, A. Krieger, and T. Kinder, ‘‘A framework for PC applica-
tions with portable and scalable FPGA accelerators,’’ in Proc. Int. Conf.
Reconfigurable Comput. FPGAs (ReConFig), Dec. 2013, pp. 1–6.

VOLUME 9, 2021 147235



P. Holzinger, M. Reichenbach: HERA Methodology: Reconfigurable Logic in General-Purpose Computing

[54] M. Reichenbach, P. Holzinger, K. Häublein, T. Lieske, P. Blinzer, and
D. Fey, ‘‘Heterogeneous computing utilizing FPGAs,’’ J. Signal Process.
Syst., vol. 91, no. 7, pp. 745–757, May 2018.

[55] P. Vogel, A. Marongiu, and L. Benini, ‘‘Lightweight virtual memory sup-
port for zero-copy sharing of pointer-rich data structures in heterogeneous
embedded SoCs,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 7,
pp. 1947–1959, Jul. 2017.

[56] P. Vogel, A. Marongiu, and L. Benini, ‘‘Exploring shared virtual memory
for FPGA accelerators with a configurable IOMMU,’’ IEEE Trans. Com-
put., vol. 68, no. 4, pp. 510–525, Apr. 2019.

[57] M. Damschen, H. Riebler, G. Vaz, and C. Plessl, ‘‘Transparent offloading
of computational hotspots from binary code to Xeon Phi,’’ in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), 2015, pp. 1078–1083.

[58] H. Riebler, G. Vaz, T. Kenter, and C. Plessl, ‘‘Transparent acceleration
for heterogeneous platforms with compilation to OpenCL,’’ ACM Trans.
Archit. Code Optim., vol. 16, no. 2, pp. 14:1–14:26, Apr. 2019.

[59] K. Group. (Jan. 2019). SPIR-V, Extended Instruction Set, and
Extension Specifications. [Online]. Available: https://www.khronos.
org/registry/spir-v/

[60] S. Narayanan, N. Haemel, and J. A. Bolz, ‘‘Application load times by
caching shader binaries in a persistent storage,’’ U.S. Patent 20 140 043 333
A1, Feb. 13, 2014.

[61] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constan-
tinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray,
and M. Haselman, ‘‘A reconfigurable fabric for accelerating large-scale
datacenter services,’’ in Proc. ACM/IEEE 41st Int. Symp. Comput. Archit.
(ISCA), Jun. 2014, pp. 13–24.

[62] A. Vaishnav, K. D. Pham, and D. Koch, ‘‘A survey on FPGA virtualiza-
tion,’’ in Proc. 28th Int. Conf. Field Program. Log. Appl. (FPL), Aug. 2018,
pp. 131–137.

[63] O. Knodel, P. Genssler, F. Erxleben, and R. Spallek, ‘‘FPGAs and the
cloud—An endless tale of virtualization, elasticity and efficiency,’’ Int. J.
Adv. Syst. Meas., vol. 11, nos. 3–4, pp. 230–249, 2018.

[64] J. Zhang, Y. Xiong, N. Xu, R. Shu, B. Li, P. Cheng, G. Chen, and
T. Moscibroda, ‘‘The Feniks FPGA operating system for cloud com-
puting,’’ in Proc. 8th Asia–Pacific Workshop Syst., Sep. 2017, pp. 1–7,
Art. no. 22.

[65] S. Byma, J. G. Steffan, H. Bannazadeh, A. Leon-Garcia, and P. Chow,
‘‘FPGAs in the cloud: Booting virtualized hardware accelerators with
OpenStack,’’ in Proc. IEEE 22nd Int. Symp. Field-Program. Custom Com-
put. Mach. (FCCM), May 2014, pp. 109–116.

[66] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, and K. Wang,
‘‘Enabling FPGAs in the cloud,’’ in Proc. 11th ACM Conf. Comput. Fron-
tiers, May 2014, pp. 1–10, Art. no. 3.

[67] K. Eguro and R. Venkatesan, ‘‘FPGAs for trusted cloud computing,’’
in Proc. 22nd Int. Conf. Field Program. Log. Appl. (FPL), Aug. 2012,
pp. 63–70.

[68] F. Hategekimana, J. M. Mbongue, M. J. H. Pantho, and C. Bobda, ‘‘Secure
hardware kernels execution in CPU+FPGA heterogeneous cloud,’’ in
Proc. Int. Conf. Field-Program. Technol. (FPT), Dec. 2018, pp. 182–189.

[69] G. Provelengios, D. Holcomb, and R. Tessier, ‘‘Characterizing power
distribution attacks in multi-user FPGA environments,’’ in Proc. 29th Int.
Conf. Field Program. Log. Appl. (FPL), Sep. 2019, pp. 194–201.

[70] M. Zhao and G. E. Suh, ‘‘FPGA-based remote power side-channel
attacks,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2018,
pp. 229–244.

[71] C. Ramesh, S. B. Patil, S. N. Dhanuskodi, G. Provelengios, S. Pillement,
D. Holcomb, and R. Tessier, ‘‘FPGA side channel attacks without physical
access,’’ in Proc. IEEE 26th Annu. Int. Symp. Field-Program. Custom
Comput. Mach., Apr. 2018, pp. 45–52.

[72] S. K. Lam, A. Pitrou, and S. Seibert, ‘‘Numba: A LLVM-based Python
JIT compiler,’’ in Proc. 2nd Workshop LLVM Compiler Infrastruct. (HPC
LLVM), New York, NY, USA, 2015, pp. 7:1–7:6.

[73] W. Bauer, P. Holzinger, M. Reichenbach, S. Vaas, P. Hartke, and
D. Fey, ‘‘Programmable HSA accelerators for Zynq UltraScale+MPSoC
systems,’’ in Proc. Euro-Par, Parallel Process. Workshops. Cham,
Switzerland: Springer, 2018, pp. 733–744.

[74] P. Holzinger, M. Reichenbach, and D. Fey, ‘‘A new generic HLS approach
for heterogeneous computing: On the feasibility of high-level synthesis in
HSA-compatible systems,’’ in Proc. 18th Int. Conf. Embedded Comput.
Syst., Archit., Modeling, Simulation, Jul. 2018, pp. 18–27.

[75] W. H. Wen-Mei, Heterogeneous System Architecture: A New Compute
Platform Infrastructure. San Mateo, CA, USA: Morgan Kaufmann, 2015.

[76] F. Swiderski and W. Snyder, Threat Modeling. New York, NY, USA:
Microsoft Press, 2004.

[77] B. Schneier, ‘‘Attack trees,’’Dr. Dobb’s J., vol. 24, no. 12, pp. 21–29, 1999.
[78] A. Wild and T. Güneysu, ‘‘Enabling SRAM-PUFs on Xilinx FPGAs,’’ in

Proc. 24th Int. Conf. Field Program. Log. Appl. (FPL), Sep. 2014, pp. 1–4.
[79] D. R. E. Gnad, F. Oboril, and M. B. Tahoori, ‘‘Voltage drop-based fault

attacks on FPGAs using valid bitstreams,’’ in Proc. 27th Int. Conf. Field
Program. Log. Appl. (FPL), Sep. 2017, pp. 1–7.

[80] I. Hadžić, S. Udani, and J. M. Smith, ‘‘FPGA viruses,’’ in Field Pro-
grammable Logic and Applications. Berlin, Germany: Springer, 1999,
pp. 291–300.

[81] H. Krawczyk, M. Bellare, and R. Canetti, HMAC: Keyed-Hashing for
Message Authentication, document RFC2104, New York, NY, USA, 1997.

[82] J. Shi, X. Song, H. Chen, and B. Zang, ‘‘Limiting cache-based side-
channel in multi-tenant cloud using dynamic page coloring,’’ in Proc. 41st
Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. Workshops (DSN-W),
Jun. 2011, pp. 194–199.

[83] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and
R. B. Lee, ‘‘CATalyst: Defeating last-level cache side channel attacks in
cloud computing,’’ inProc. IEEE Int. Symp. High Perform. Comput. Archit.
(HPCA), Mar. 2016, pp. 406–418.

[84] H. Schmit and R. Huang, ‘‘Dissecting Xeon+FPGA: Why the integration
of CPUs and FPGAs makes a power difference for the datacenter: Invited
paper,’’ in Proc. Int. Symp. Low Power Electron. Design, New York, NY,
USA, Aug. 2016, pp. 152–153, doi: 10.1145/2934583.2953983.

[85] Xilinx. DMA/Bridge Subsystem for PCI Express V4.1. Accessed:
Aug. 26, 2021. [Online]. Available: https://www.xilinx.com/support/
documentation/ip_documentation/xdma/v4_1/pg195-pcie-dma.pdf

[86] Xilinx. UltraScale+ Devices Integrated Block for PCI Express V1.3.
Accessed: Aug. 26, 2021. [Online]. Available: https://www.xilinx.com/
support/documentation/ip_documentation/pcie4_uscale_plus/v1_3/pg213-
pcie4-ultrascale-plus.pdf

[87] Intel Corporation.PCIe Intel FPGA IP. Accessed: Aug. 26, 2021. [Online].
Available: https://www.intel.com/content/www/us/en/programmable/
products/intellectual-property/ip/interface-protocols/m-pci-express-
protocol.html

[88] A. Lalevée, P.-H. Horrein,M.Arzel,M.Hübner, and S. Vaton, ‘‘AutoReloc:
Automated design flow for bitstream relocation on Xilinx FPGAs,’’ in
Proc. Euromicro Conf. Digit. Syst. Design (DSD), Aug. 2016, pp. 14–21.

[89] Intel Corporation. Intel Processor Graphics Gen11 Architecture.
Accessed: Aug. 16, 2021. [Online]. Available: https://software.intel.com/
content/dam/develop/external/us/en/
documents/the-architecture-of-intel-processor-graphics-gen11-r1new.pdf

[90] S. W. Min, S. Huang, M. El-Hadedy, J. Xiong, D. Chen, and W.-M. Hwu,
‘‘Analysis and optimization of I/O cache coherency strategies for SoC-
FPGA device,’’ in Proc. 29th Int. Conf. Field Program. Log. Appl. (FPL),
Sep. 2019, pp. 301–306.

PHILIPP HOLZINGER received the master’s
degree in computer science from Friedrich-
Alexander University Erlangen-Nürnberg (FAU),
Germany, in 2017. He is currently a Researcher
with the Chair of Computer Architecture, FAU.
His research interest includes the design of het-
erogeneous system architectures with a focus on
reconfigurable and near-memory computing.

MARC REICHENBACH (Member, IEEE) received
the Diploma degree in computer science from
Friedrich Schiller University Jena, Germany,
in 2010, and the Ph.D. degree from Friedrich-
Alexander University Erlangen-Nürnberg (FAU),
Germany, in 2017. From 2017 to 2021, he worked
as a Postdoctoral Researcher with the Chair of
Computer Architecture, FAU. Since 2021, he has
been heading the Chair of Computer Engineering,
Brandenburg University of Technology Cottbus-

Senftenberg (BTU), Germany, as a Substitute Professor. His research inter-
ests include novel computer architectures, memristive computing, and smart
sensor architectures for varying application fields.

147236 VOLUME 9, 2021

http://dx.doi.org/10.1145/2934583.2953983

