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ABSTRACT Distributed Denial-of-Service (DDoS) attacks are increasing as the demand for Internet
connectivity massively grows in recent years. Conventional shallow machine learning-based techniques for
DDoS attack classification tend to be ineffective when the volume and features of network traffic, potentially
carry malicious DDoS payloads, increase exponentially as they cannot extract high importance features
automatically. To address this concern, we propose a hybrid approach named AE-MLP that combines two
deep learning-based models for effective DDoS attack detection and classification. The Autoencoder (AE)
part of our proposed model provides an effective feature extraction that finds the most relevant feature sets
automatically without human intervention (e.g., knowledge of cybersecurity professionals). The Multi-layer
Perceptron Network (MLP) part of our proposed model uses the compressed and reduced feature sets
produced by the AE as inputs and classifies the attacks into different DDoS attack types to overcome the
performance overhead and bias associated with processing large feature sets with noise (i.e., unnecessary
feature values). Our experimental results, obtained through comprehensive and extensive experiments on
different aspects of performance on the CICDDoS2019 dataset, demonstrate both a very high and robust
accuracy rate and F1-score that exceed 98% which also outperformed the performance of many similar
methods. This shows that our proposed model can be used as an effective DDoS defense tool against the
growing number of DDoS attacks.

INDEX TERMS Distributed denial of service, DDoS, deep learning, multi-class classification, autoencoder,
MLP, CICDDoS2019.

I. INTRODUCTION
A Distributed Denial-of-Service (DDoS) attack occurs when
attackers make victims’ system/network resources unavail-
able by sending massive amounts of requests to flood the
system resources/bandwidth of the victim’s system [1], [2].
Typically, attackers exploit vulnerabilities in transport, net-
work, and application layer protocols (e.g., TCP, UDP,
HTTP, and ICMP, etc.) [3], [4] to send malicious payloads
(e.g., network packets). With the demand for Internet con-
nectivity expand rapidly to mobile devices and Internet
of Things (IoT) which is predicted to reach 500 billion
by 2030 [5], there is an increasing concern for developing
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effective DDoS defense techniques. To address this concern,
many Artificial Intelligence (AI) methods, both using tradi-
tional shallow machine learning-based and more advanced
deep neural network-based, have been proposed to demon-
strate the feasibility of suchAI-based approaches to safeguard
our networks from DDoS attacks. One of the essential tasks
in proposing the next generation of DDoS defense techniques
is with the effectiveness of feature extraction techniques.
Because it is infeasible and expensive to analyze the entire
raw network traffic samples manually among the large fea-
ture sets when not all of them provide useful information
for detecting malicious payloads. [22], [23]. Many state-
of-the-art have proposed solutions to feature extraction for
DDoS attack detection and classifications using different fea-
ture extraction methods [2], [4], [22]. Though these existing
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TABLE 1. The summary of existing ML and DL-based approaches.

shallow machine learning (ML) approaches have been shown
to achieve high detection accuracy, some limitations have
been discussed. For instance, Nguyen and Reddi [24] pointed
out the inefficiency in using ML approaches in handling
raw, unlabelled, or high dimensional data. Others [25]–[27]
indicated that the accuracy of detection degrades with
ML approaches when a large dataset requires some level
of manual feature extraction. Effective feature extraction of
network traffic samples that are most relevant to the detection
and classification task does not only increases high accuracy
but also can accelerate the execution time to analyze the data.
In this study, we propose a hybrid deep learning technique
that utilizes two deep neural network models for effective
feature extraction and accurate DDoS attack detection and
classification without human intervention. The contribution
of our proposed model is summarized as follows:
• We propose a hybrid deep learning model named
‘‘AE-MLP’’ not only to detect DDoS attacks but also
classify the attack into different DDoS attack types in
a timely manner.

• Our proposed model uses an Autoencoder (AE) to
extract the most important features from a large-scale
DDoS attack dataset. Finding the set of compressed and
reduced feature sets, most relevant to detect malicious
payload, not only improves the accuracy of detection but
can also effectively reduce expensive execution time.

• Our proposed model does not only detect potential
DDoS attacks but can effectively classify different
DDoS attack types. This classification capability can
provide an opportunity for cybersecurity professionals
to devise an optimal and relevant response strategy as
quickly as possible before disastrous damage is done by
different DDoS attack types.

• Our experimental results, comprehensively and exten-
sively evaluated, demonstrate a very high and robust

F1-score over 98% for detecting DDoS attacks
and classifying them into correct attack types. Our
results outperformed the performance of many similar
methods.

We organize the rest of the paper as follows. Section II
examines the related work. Section III provides the details
of the proposed AE-MLP model that contains the feature
extraction and classification strategies as well as the algo-
rithm involved. Section IV illustrates the details of the dataset
we used in our study and the methodologies we used for
data pre-processing. We describe the experimental results in
Section V including the experimental setup, the performance
metrics we used, performance of our proposed model, and a
comparison to other similar models. Section VI provides a
conclusion of our work and future work directions.

II. RELATED WORK
We review the existing state-of-the-art in addressing
DDoS detection and classification using Artificial Intelli-
gence techniques, both shallow machine learning and deep
learning-based neural network here. The summary of these
related works are shown in Table 1.

A. MACHINE LEARNING-BASED APPROACHES
Many classical shallow machine learning techniques have
been used for DDoS classification. The authors in [6]–[8]
presents the performance of many classic machine learn-
ing techniques, such as Naïve Bayes, Logistic Regression,
Decision Tree, Random Forest, Support Vector Machine, and
K-Nearest-Neighbour against various DDoS datasets with the
detection accuracy reaching near 99%.

Ensemble-based techniques were proposed by [9]–[11]
by utilizing different techniques involved in bagging, boost-
ing, and stacking, and the results show that some of these
techniques outperforming Random forest, Naïve Bayes,
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and KNN in detecting DDoS attacks in different application
contexts (e.g., Smart Grid, IoT).

The authors [12] propose a lightweight approach to detect
DDoS attacks aimed at resource-constrained environments
such as IoT and shows that their lightweight random forest
technique can achieve as high as 99% of detection accuracy.
Varghese and Muniyal [13] proposed a statistical anomaly
detection algorithm implemented in the data plane of Soft-
ware Defined Network (SDN) to detect DDoS attacks near
real-time as a part of an Intrusion Detection System (IDS).
Pontes et al. [14] propose an Energy-based Flow Classi-
fier (EFC) which utilizes inverse statistics to infer anomaly
scores base on labeled benign examples. The anomaly scores
are then used as classifying different DDoS attacks. Their
approach achieved 97.5% F1-score while the outcomes of
other performance metrics were not presented.

Despite often very high detection rate that achieves
99% accuracy, however, many argued [24]–[27] that the
detection accuracy degrades with the increase of the size of
dataset often containing high dimensional features. In addi-
tion, these approaches become impractical when they require
raw or unlabelled datasets that require manual feature
extraction. To address this limitation, a number of deep
learning-based neural networks that can detect DDoS attacks
have been proposed.

B. DEEP LEARNING-BASED APPROACHES
Shieh et al. [15] demonstrate a Bi-directional LSTM model
along with a Gaussian Mixture Model to detect and clas-
sify 6 different types of DDoS attacks with an accu-
racy of 98%. Sanchez et al. [12] proposed a standalone
Multi-Layer Perceptron (MLP) achieving the 99.93% accu-
racy and 99.96% F1-score. Rehman et al. [16] proposed a
Gated Recurrent Units (GRU) model to detect DDoS attack
based on CICDDoS2019 dataset. They achieved the highest
accuracy of 99.69% for reflection attacks and 99.94% for
exploitation attacks. Almaini et al. [17] proposed Kalman
Backpropagation Neural Network where the Kalman algo-
rithm is used to fine-tune weight metrics while backpropaga-
tion was utilized to tune biases. The performance evaluation
results of their proposed model achieved the performance
of 94% accuracy with a low false alarm rate (0.0952).
Samom and Taggu [18] proposed an MLP model to
detect 4 different DDoS attack types (i.e., SYN, NET,
Portmap, and UDPLag) and compares the results with other
machine learning methods. Their study uses the Chi-Squared
Function as a feature extractor to select 20 features then uses
the PCA technique for dimension reduction. Their proposal
showed that their model achieved 99.92% accuracy on the
CICDDoS2019 dataset. Though some of these existing works
appear to provide good performance near 99%, they often
only offer binary classification where it only detects whether
network traffic contains a DDoS attack or not but don’t offer
to classify what type of DDoS attack it is.

Elsayed et al. [19] proposed a hybrid method named
DDoSNet that combines a Recurrent Neural Network (RNN)

with an Autoencoder to detect DDoS attack at the
Software-Defined Networking (SDN) layer. The evalua-
tion result of their proposal showed that the DDoSNet
model achieved the highest performance metrics based on
Confusion Matrix but again they also offer only binary clas-
sification. Javaid et al. [20] proposed sparse-autoencoder for
feature learning and soft-max regression-based neural archi-
tecture for classification and they achieved 88.39% accuracy.
The authors in [21] automated threshold learning for anomaly
detection in an autoencoder-based model by combining it
with unsupervised learning technique isolation forest and got
88.98% accuracy. Can et al. [2] proposed DDoSNet which
utilizes an automatic Feature Selection (FS) technique based
on the context of the whole feature set then classifies them
with fully connected MLP. This proposed method achieved
91.16% precision, 79.41% recall, and 79.39% F1-score for
multi-class classification. The authors emphasized that the
limitation of their approachwas with low performance as they
were using the whole feature set for classification.

III. OUR MODEL
Our proposed AE-MLP model consists of two phases:
1) The first phase involves feature extraction via an AE;
2) The second phase involves DDoS attack type classification
via an MLP. During the first phase, we build an AE model
by using traffic samples as input to train the model. Once
AE is trained, the features from the bottleneck layer are
extracted. These extracted features from the bottleneck layer
of the AE model are fed as inputs to the second phase where
MLP uses it to classify different DDoS attack types. Figure 1
illustrates the overall approach that is used by our proposed
AE-MLP algorithm.

FIGURE 1. The overview of AE-MLP.

A. AUTOENCODER AND FEATURE EXTRACTION
Our AE is an unsupervised feed-forward neural network.
It composes of an input layer, an output layer, and several
hidden layers. It has a symmetrical pattern – the output layer
has the same number of neurons as the input layer while
any hidden layer generally has fewer neurons than the input
and output layer. The bottleneck layer, also referred to as
a latent space, is one of the hidden layers which has the
smallest number of neurons. The latent space contains the
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compressed representation of the input. Typically, the main
aim of AE is to reconstruct the input from the output, i.e.
x̂ ≈ x where x indicates the input while x̂ indicates the
output. In our approach, the input is reconstructed using
AEwhile doing so we get the hidden layer feature embedding
with the minimum number of neurons which represents a
lower-dimensional projection of input features. This hidden
layer embedding captures data characteristics in the lower
dimension, thus we have used it as input features to the
MLP classification model. To use AE as a feature extraction
engine, our model goes through the following steps.

1) ENCODING
In the encoding operation (Eφ), any input sample x is
a m dimensional vector (x ∈ Rm) and is mapped to the
bottleneck layer representation (h), as shown in Equation (1).

h = f1(w1x + b1) (1)

where w1 is the weight matrix, b1 is a bias and f1 is an
activation function.

2) DECODING
In the decoding operation (Dθ ), the bottleneck layer repre-
sentation of (h) is mapped back into a reconstruction of x,
as shown in Equation (2):

x̂ = f2(w2h+ b2) (2)

where f2 is an activation function for the decoder. w2 is the
weight matrix, b2 represents a bias and x̂ represent recon-
structed input sample.

3) LOSS FUNCTION
To minimize reconstruct error on x with non-linear functions,
the loss reconstruction (L) is calculated from Equation (3).

L(x, x̂) =
1
n

n∑
i=1

(x i − x̂ i)2 (3)

where n represents the number of training samples.

4) FEATURE EXTRACTION
The equations (1), (2) and ((3)) represent working of single
hidden layer auto-encoder where h represent bottleneck layer
feature embedding (encoding) of AE. This embedding size is
dependent on number of neurons (k) in hidden layer, in gen-
eral its size is less compare to input dimension (k � m).
AE model applies backpropagation to obtain optimal values
for the weight matrix w1 ∈ Rm×k and w2 ∈ Rk×m and
bias b1 ∈ Rm×1 and b2 ∈ Rk×1 in equations (1) and (2)
respectively to minimize the difference between input x and
output x̂. Mostly rectified linear unit (ReLU) is used as
non-linear activation function in the hidden layer. In prac-
tice, multiple hidden layers are used, where each layer
have its own encoding and decoding function described in
equation (1) and (2) respectively. In our work, we have used
hidden layer with lowest number of neurons as feature vector
for our Multi-layer Perceptron classification model.

B. MULTI-LAYER PERCEPTRON NETWORK AND
CLASSIFICATION
MLP is also a feed-forward network, unlike AE its out-
put layer is equal to number of classes (p). The MLP has
input layer (our case equal to size of AE bottleneck layer),
multiple hidden layers and output layer (equal to sum of
attacks and benign classes, p = 6). Similar to AE, hidden
layer use non-linear activation function (in our case, we used
ReLU function) to extract information from input features as
shown in Equation (4)

yz = frelu(hzwj + bj) (4)

where hz represent latent space embedding from AE as
feature vector, wj is the weight matrix, bj is bias vector,
frelu non-linear activation function of hidden layer and yz is
information extracted at hidden layer of MLP.

By processing the input vector hz, the hidden layers of
MLP produce the vector yz. This vector yz is fed as input to
output layer to predict output class. The output layer mostly
use softmax function for multiclass problem. Finally, output
class (ŷ ∈ Rp) can be predicted using equation (5).

ŷ = softmax(yzwy + by) (5)

where wy and by are weights matrix and bias vector for the
output layer.

C. AE-MLP ALGORITHM
The algorithm for our proposed AE-MLP model for DDoS
attack detection and classification is shown in Algorithm 1.

In our proposed model, we use AE as a feature extraction
tool that can transform the original data (e.g., network traffic)
from the high dimensional space to the non-linear low dimen-
sional space. By doing this, the latent space at the AE now
contains the number of features that can be best represented to
detect if network traffic contains a malicious DDoS payload
and further classify what type of DDoS attack payload it
carries. To determine the best features for DDoS detection,
our AE goes through the following steps:
• Wefirst use the unsupervised learningmode of the AE to
train on the training dataset for dimensionality reduction
purposes.

• We have experimented on the number of different
AE architecture in terms of the number of input, hidden,
and output layers and corresponding hyperparameters.
The best optimized AE architecture was the one that
uses 77 encoded features as input, a single hidden layer
with 32 neurons, and the latent space that represents
the 24 features as the last hidden layer.

• The 24 features at the latent space are extracted.
The extracted features are then fed into the MLP model as

inputs and are now used to train theMLPmodel as a classifier
to detect different DDoS attack types. To classify different
DDoS attack types, our MLP goes through the following
steps:
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Algorithm 1 AE-MLP Classification
Input: Training dataset X = {x1, x2, x3, . . . , xn}
Testing dataset X ′ = {x ′1, x

′

2, x
′

3, . . . , x
′
n}

Training Label Y = {y1, y2, . . . , yn}
Testing Label Y ′ = {y′1, y

′

2, . . . , y
′
n}

Encoder Eφ ; Decoder Dθ ; MLPMδ

Output: O(ŷ′|y′)
begin

/* Phase 1: AE feature extraction */

/* Training AE in mini-batch */

φ, θ ← Initialize parameters
for number of training iterations do

sample mini-batch of k samples
{X1,X2,X3, . . . ,Xk} from X

/* Calculating loss */

V (E,D) = 1
k

∑k
i=1(Xi − Dθ (Eφ(Xi)))

2

φ, θ ← Update parameters using Stochastic
Gradient Descent of V

end
/* Phase 2: MLP Classification */

δ← Initialize parameters
/* Training MLP */

for each (x, y) ∈ (X ,Y ) do
/* get latent presentations from

trained AE */

a← Eφ(x)
/* trained MLP Mδ */

O(ŷ|y)← M δ((a), y)
δ← Update parameters using Stochastic
Gradient Descent

end
/* Testing */

for each (x ′, y′) ∈ (X ′,Y ′) do
a′← Eφ(x ′)
O(ŷ′|y′)← M δ((a′), y′)

end
end

• We use the supervised learning mode of theMLP to train
on the training dataset using the label contained in the
training dataset.

• We have experimented on the number of different MLP
architectures. The best optimized MLP architecture was
the one that uses 5-layers – 1 input layer, 3 hidden layers,
and 1 output layer.

• The activation function ‘‘relu’’ was used for hidden lay-
ers while ‘‘softmax’’ function was used at the last output
layer for classification.

IV. DATA AND METHODOLOGIES
In this section, we provide the details of the data we used for
our study, the methodology we employed for data processing,
and the workflow of our proposed model. The CIC-DDOS
dataset has two datasets, training and testing datasets, respec-
tively. As seen in Figure 2, we first use only the training

FIGURE 2. AE-MLP classification.

dataset after applying a number of data pre-processing tech-
niques such as data cleaning, removing irrelevant features,
label encoding, and normalizes the dataset by scaling them
to fit in the range of [0, 1]. After pre-processing the train-
ing dataset, we fit the dataset into our proposed model for
AE training and subsequent feature extraction. The extracted
features are then fed into the MLP. Another training by MLP
proceeds to train the MLP model. Once our proposed model
is well trained, we use the testing dataset first fed into the
AE for the feature extraction using the hyperparameters that
were trained during the AE training phase, the extract features
then are fed into the trained MLP for a classification task to
categorize different DDoS attack types.

A. CICDDoS2019 DATASET
In this study, we use CICDDoS2019 [4] dataset that has been
widely used for DDoS attack detection and classification. The
dataset contains a large amount of up-to-date realistic DDoS
attack samples as well as benign samples. The total number
of records contained in CICDDoS2019 is depicted in Table 2.

TABLE 2. The number of records in CICDDoS2019.

Each record of the dataset contains 88 statistical features
(e.g., timestamp, source and destination IP addresses, source
and destination port numbers, the protocol used for the attack,
and a label for a type of DDoS attack). The training dataset
contains a total of 12 different DDoS attacks (i.e., NTP, DNS,
LDAP, MSSQL, NetBIOS, SNMP, SSDP, UDP, UDP-Lag,
WebDDoS, SYN, and TFTP) while only 7 DDoS attacks
are included in the testing dataset (i.e., PortScan, NetBIOS,
LDAP, MSSQL, UDP, UDP-Lag and SYN). The details of
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FIGURE 3. DDos attacks categorization and hierarchy [4].

the date and number of records collected for different DDoS
attack types are present in Table 3.

TABLE 3. Daily label of data collection.

These DDoS attacks cover two different categories,
some belong to Reflection-based and others belong to
Exploitation-based.

1) REFLECTION-BASED ATTACKS
The attackers of the DDoS attack in this category typically
send malicious network packets sent to reflector servers with
the source IP address set to target the victim’s IP address so
that the victim is overwhelmed to send an enormous number
of response packets. These attacks are typically carried out
through application layer protocols. In terms of our CICD-
DoS2019 dataset, any traffic with the (application layer) pro-
tocol defined for MSSQL, SSDP, NTP, TFTP, DNS, LDAP,
NetBIOS, and SNMP be reflection-based attacks.

2) EXPLOITATION-BASED ATTACKS
The attackers of the DDoS attack in this category exploit
a particular protocol used in the network, transport, and
application level of the Open Systems Interconnection (OSI)
model or TCP/IP 5-layer model. Transport layer protocols
such as TCP or UDP are typically used to overwhelm the
victim’s IT resources (e.g., SYN flood, UDP flood, and UDP-
Lag) by sending a massive number of TCP or UDP pack-
ets. The dataset labeled with SYN, UDP, and UDP-lag in
CIDDDOS2019 belongs to this category. The DDoS attack
categorization is seen in Table 3

In our study, we use 5 DDoS attack types (i.e., LDAP,
MSSQL, NetBIOS, SYN, UDP) and benign traffic samples
to train and test our proposed model. The high-level descrip-
tion of the nature of the DDoS attack used in our study is
summarised as follows.
• LDAP Attack: In this DDoS attack, an application
layer protocol, Lightweight Directory Access Proto-
col LDAP) typically used to obtain a human-readable
URL (e.g., google.com), is exploited by an attacker
to send requests to a publicly available but vulnerable
LDAP server to generate large responses.

• NetBIOS Attack: In this DDoS attack, Network Basic
Input/Output System (NetBIOS) is exploited by an
attacker which sends spoofed ‘‘Name Release’’ or
‘‘Name Conflict’’ messages to a victimmachine in order
to refuse all NetBIOS network traffic.

• MSSQL Attack: An attacker exploits the vulnerabili-
ties in Microsoft Structured Query Language (MSSQL)
where the attacker pretended to be a legitimate MSSQL
client by executing the scripted requests using a forged
IP address to the MSSQL Server to appear as coming
from the target server.

• SYN Attack: The SYN flood attack exploits the TCP-
three-way handshake by sending a massive number of
repeated SYN packets to the target machine until the
server crashes/malfunctions.

• UDP Attack: In the UDP flood attack, UDP packets are
sent to random ports on the target machine at a very
high rate. As a result, the available bandwidth of the net-
work gets exhausted, system crashes and performance
degrades. The firewall protecting the target server can
be exhausted as a result.

B. DATA PRE-PROCESSING
In this section, we discuss the methodologies we used to
process our dataset to feed into our proposedAE-MLPmodel.

1) DATA CLEANING
The original dataset contained 88 features. As suggested
by [17], we also removed the features not contributing to
detect DDoS attacks. These include the feature such as
‘‘Unnamed’’, ‘‘Flow ID’’, ‘‘Source IP’’, ‘‘Destination IP’’,
‘‘Source Port’’, ‘‘Destination Port’’, ‘‘Timestamp’’, ‘‘Flow
Bytes’’, ‘‘Flow Packets’’, and ‘‘SimilarHTTP’’. After the
exclusion of these 10 features, we have 78 features to work
with. Following the recommendation of the work by [18],
we further cleaned up the values containing NaN (not a
number), blank, and infinity values to set 0.

2) LABEL ENCODING
We had to substitute the categorical labels as deep models
only operate on float/numeric values. One categorical value
we had to convert was the attack label (i.e., benign and
the five attack types). We used a 6-bit feature vector to
indicate different labels, for example [1, 0, 0, 0, 0, 0] indi-
cates benign, [0, 1, 0, 0, 0, 0] indicates LDAP attack type,
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and [0, 0, 1, 0, 0, 0] indicates MSSQL attack, etc. With an
additional 6 feature vectors added, we had a total of 83 fea-
tures (i.e., 77 representing the original features plus 6 features
for an attack label).

3) DATA NORMALIZATION
The CICDDoS2019 datasets contain some features with very
high variance in terms of value between the minimum and the
maximum (e.g., ‘‘Flow Duration’’, ‘‘Flow IAT Std’’, ‘‘Flow
IAT Max’’, ‘‘Bwd IAT min’’). We applied a normalization
strategy to eliminates the impacts of big variance of the values
across the features thus reduces the execution time for model
training and improving accuracy. There are several widely
used methods to perform feature scaling, including Z Score,
standardization, normalization. As proposed by [16], we use
MinMax-based normalization for our feature scaling. This
method maps the original range of each feature into a new
range with Equation (6)

Zi =
Zi − min
max − min

(6)

where Zi donates all the normalized numeric values ranging
between [0-1]; max and min donates the maximum and min-
imum values from all data points.

V. EXPERIMENTAL RESULTS
In this section, we provide the details of the experiment
including the environment setup, analysis of results, and
discussion.

A. EXPERIMENT SETUP
Our experiments were carried out using the following system
setup shown in Table 4.

TABLE 4. Implementation environment specification.

To evaluate the performance of our proposedmodel, we use
the classification accuracy, precision, recall, and F1 score as
performance metrics. Table 5 illustrates the confusion matrix,
where:
• True Positive (TP) indicates anomalous traffic correctly
classified as anomalous.

• True Negative (TN) indicates normal traffic correctly
classified as normal.

• False Positive (FP) indicates normal traffic incorrectly
classified as anomalous.

• False Negative (FN) indicates anomalous traffic incor-
rectly classified as normal.

Based on the aforementioned terms, the evaluation metrics
are calculated as follows.

TABLE 5. Confusion matrix.

True Positive Rate (also known as Recall) estimates the ratio
of the correctly predicted samples of the class to the overall
number of instances of the same class. It can be computed
using Equation (7). Higher TPR ∈ [0, 1] value indicates the
good performance of the machine learning model.

TPR(Recall) =
TP

TP+ FN
(7)

False Positive Rate (FPR) presents the proportion of data
points correctly classified as anomalous, which can be calcu-
lated in Equation (8).

FPR =
FP

FP+ TN
(8)

Precision (Pre) measures the quality of the correct predic-
tions. Mathematically, it is the ratio of correctly predicted
samples to the number of all the predicted samples for that
particular class as shown in Equation (9). Precision is usually
paired with Recall to evaluate the performance of the model.
Sometimes pair can appear contradictory thus comprehensive
measure F1-score is considered.

Precision =
TP

TP+ FP
(9)

F1-Score computes the trade-off between precision and
recall. Mathematically, it is the harmonic mean of precision
and recall as shown in Equation (10).

F1 = 2×
(
Precision× Recall
Precision+ Recall

)
(10)

Accuracy (Acc) measures the total number of data samples
correctly classified, as shown in Equation (11).

ACC =
TP+ TN

TP+ TN + FP+ FN
(11)

The area under the curve (AUC) computes the area under
the receiver operating characteristics (ROC) curve which is
plotted based on the trade-off between the true positive rate
on the y-axis and the false positive rate on the x-axis across
different thresholds. Mathematically, AUC is computed as
shown in Equation (12).

AUCROC =
∫ 1

0

TP
TP+ FN

d
FP

TN + FP
(12)

The training parameters are shown in Table 6.

B. PERFORMANCE OF OUR PROPOSED MODEL
We used 5% of the original CICDDoS2019 dataset from
the day one collection for training as it was not feasible
to use the full dataset due to performance consideration.
Figure 4 shows the PCA and latent space visualizations of the
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TABLE 6. Training parameters.

FIGURE 4. The PCA visualization of training set and latent space
visualization (bottleneck layer of AE) of training set.

training dataset. In the PCA visualization, it is very difficult
to identify different clusters of attacks, while the latent space
components can identify most clusters. This exploratory anal-
ysis suggests that the latent space embedding better captures
the features in a lower dimension.We can think of latent space
as a coordinate system in which similar points are placed
together. Therefore, feature embedding from the hidden layer
of AE is more suitable for classification than raw features,
as can be seen from the classification results. We would
also like to point out that although the PCA components
do not show a complete picture of the feature space, they
still increase the interpretability of the data. From Figure 4,
it is visible that there is no balance in the number of traffic
samples between benign (red color) and DDoS attack (other
colors) as the number of benign is significantly less.

Our model used 80% of this data as the training dataset
to fine-tune the model while 20% was used as a validation
dataset to fine-tune the model’s hyperparameters. We used
5% of the original CICDDoS2019 dataset for each subset
from the day two collection as the testing dataset.

In our study, we limit the classification of benign
and 5 DDoS attacks - LDAP, MSSQL, NetBIOS, SYN, and
UDP – during the testing phase to avoid any implication of
biases due to an imbalanced dataset.

The plots in the top layer of Figure 5 show the PCA visual-
ization of the distribution of data points of each test dataset in
their raw form. As it is shown in the PCA visualization, there
are more samples of DDoS attacks compared to the benign
samples at each set - the similar pattern of data distribution we
witnessed in the training dataset. The plots in the bottom layer
of Figure 5 show the distribution of data points of each test
set at the bottleneck layer of the trained AE which eventually
becomes the inputs to the MLP model. As can be seen in the

latent space visualization, there are distinct clusters around
benign and each DDoS attack type. The size of the data points
(i.e., number of features) that represent the benign and each
DDoS attack type appear to be similar across all subdatasets.
The detection and classification performance based on the
performance metrics of Accuracy, Precision, Recall and
F1-score on the five different DDoS attack types are shown
in Table 7.

TABLE 7. Performance metrics on different DDoS attack types.

All different sub-datasets show very similar trends of the
performancemetrics which confirms that our proposedmodel
does not overfit/underfit. Closely observing the performance
metrics of each DDoS attack type, almost all DDoS attack
types achieved above 97% classification accuracy. The Net-
BIOS attack type however showed the highest accuracy rate
very close to almost 100%.

Figure 6 illustrates the exact number of records classified
for different performance metrics for five DDoS attack types
based on the confusionmatrix. Similar to the results presented
in Table 7, the DDoS attack type ‘‘SYN’’ has the most num-
ber of TPR where the number of FPR is almost negligent
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FIGURE 5. The top layer shows PCA visualization of test datasets where axes indicate principal components of PCA embedding. The bottom layer
shows latent space projection of test datasets through the bottleneck layer of trained AE where axes indicate latent space components of
projection. (•: benign, •: LDAP, •: MSSQL, • NetBios, •: Syn, •: UDP).

FIGURE 6. Performance of classification on different DDoS attack types based on confusion matrix.

(around a few hundred records misclassified). In comparison,
the DDoS attack type ‘‘MSSQL’’ shows the worst perfor-
mance where there is a large number of FPR that goes beyond
thousand records.

The average performance metrics of Accuracy, Pre-
cision, Recall, and F1-score on different sub-datasets
are shown in Table 8. The number of traffic samples

contained in different sub-dataset differ from >960,000
(i.e., subdataset 1) to close to a million (i.e., subdataset 6).
Regardless of the number of traffic samples, the different sub-
dataset show a very similar pattern across all 6 subdatasets.
The accuracy is in the range of 97% and 98% while the
similar pattern in the Precision, Recall, and F1 scores are
shown.
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TABLE 8. Average performance on six subdatasets.

FIGURE 7. Performance based on AUC-ROC metric.

TABLE 9. Comparison to other similar methods.

Figure 7 shows the AUC-ROC depicted on different DDoS
attack types across all 6 subdatasets. The AUC-ROC value
is more than 0.99 in all DDoS attack types in all subdatasets

which confirms that our proposed AE-MLP model is highly
effective in detecting and classifying different DDoS attack
types with very high TPR while FPR stays very low.
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C. COMPARISON TO OTHER SIMILAR METHODS
Table 9 shows the performance comparison of our proposed
AE-MLP model with other similar methods both from shal-
low machine learning and deep learning-based neural net-
work approaches. As the results show, our approach shows
the best performance in terms of all aspects of performance
metrics reaching the average of 98.34% accuracy while the
precision, recall, and F1-score all remain very competitive
at 97.91%, 98.48%, and 98.18% respectively. In general,
shallow machine learning approaches do not perform as well
as deep learning-based counterparts unless they are extended,
for example, Data Jungle proposed by Rajagopal et al. [28]
which combines several decision trees to achieve a higher
accuracy rate. A deep learning-based approach using a stan-
dalone classifier, such as LSTM, CNN, and MLP tends
to achieve more than 90% accuracy and demonstrate that
they are suitable to provide an effective classifier to detect
and classify different DDoS attack types. In the realm of
hybrid approaches, AE combined with a shallow machine
learning-based classifier such as using linear regression or
an isolation forest tends to work less than when two deep
learning models are combined like ours.

VI. CONCLUSION
In this study, we show that DDoS attacks can be detected
and classified with high accuracy using the combination of
deep learning-based techniques. Our proposed hybrid model
AE-MLP consists of an Autoencoder (AE) and a Multi-layer
Perceptron Network (MLP). The AE in our proposed model
extracts the most important and relevant features to find mali-
cious DDoS network payloads from a large-scale network
traffic sample. The compressed and reduced features pro-
duced by the AE model is then fed to the MLP to effectively
classify different DDoS attack types. This hybrid approach
is not only effective in detecting DDoS attacks in a timely
manner but is also effective in classifying what DDoS attack
family the detected DDoS payload belongs to. Our proposed
model can be an effective DDoS defense tool to detect a
massively growing number of DDoS attacks in recent times.
Our proposed model, comprehensively and extensively tested
against many subsets of large DDoS attack samples, demon-
strates high performances against many performance met-
rics such as Precision (97.91%), Recall (98.48%), F1-score
(98.18%), and Accuracy (98.34%) which outperformedmany
other similar methods.

We have plans in place to apply different types of intrusion
attack samples (e.g., Android-based malware samples [30] or
ransomware [31], [32]) and other dataset samples from other
applications (e.g., indoor air quality (IAQ) [33]–[37], medical
annotations) to test the generalizability and practicability of
our model.
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