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ABSTRACT This paper analyses Disturbance Observer- (DOb-) based robust force control systems in
the discrete-time domain. The robust force controller is implemented using velocity and acceleration
measurements. A DOb is employed in an inner-loop to achieve robustness, and another DOb, viz. Reaction
Force Observer (RFOb), is employed in an outer-loop to estimate interaction forces and improve the
performance of force control. First, the inner-loop is analysed. It is shown that the DOb works as a phase-
lead/lag compensator tuned by the nominal design parameters in the inner-loop. The phase margin of the
inner-loop controller and the bandwidth of the velocity-based (i.e., conventional) DOb are constrained not
only by noise-sensitivity but also by the waterbed effect. This explains why we observe unstable responses
as the bandwidth of the conventional DOb increases in practice. To eliminate the design constraint due to
the waterbed effect, this paper proposes an acceleration-based DOb. Then, the robust force controller is
analysed. It is shown that the design parameters of the RFOb have a notable effect on the stability of the
robust force control system. For example, the robust force controller has a non-minimum phase zero (zeros)
when the RFOb is not properly tuned. This may cause severe stability and performance problems when
conducting force control applications. By using the stability and robustness analyses, this paper proposes new
design tools which enable one to synthesize a high-performance robust force control system. Simulations
and experiments are presented to validate the proposed analysis and synthesis methods.

INDEX TERMS Discrete-time control, disturbance observer, force control, robustness, reaction force
observer, robust stability and performance.

I. INTRODUCTION
With the significant paradigm shifts in the 21st century,
physical robot-environment interaction has become a com-
pelling demand in various engineering applications [1]–[3].
For example, while collaborative robots that can work in
an open factory setting have been established to meet the
requirements of the 4th industrial revolution, wearable robots
that can interact with human beings have been developed to
help improve the quality of life in ageing societies [2], [3].
It is a well-known fact that precise positioning is
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insufficient and high-performance force control is crucial
to safely interact with an unknown and dynamic envi-
ronment [3]–[5]. Despite many attempts, the stability and
low-performance of force control systems that interact with
unstructured environments are still challenging problems in
the fields of motion control and robotics [5].

One of the main challenges in physical interaction con-
trol is that internal disturbances, such as friction at joints,
and varying environmental dynamics may have a notable
impact on the stability and performance of force control
systems [5], [6]. To tackle this problem, various adaptive
and robust force controllers have been proposed in the lit-
erature [5]–[9]. Among them, the DOb-based robust force

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 148911

https://orcid.org/0000-0002-4528-2545
https://orcid.org/0000-0002-6930-7452
https://orcid.org/0000-0002-7979-7395
https://orcid.org/0000-0002-2558-9822
https://orcid.org/0000-0003-2297-7050


E. Sariyildiz et al.: Discrete-Time Analysis and Synthesis of Disturbance Observer-Based Robust Force Control Systems

controller has been widely adopted by researchers due to its
simplicity and efficacy [10]–[12]. It has been applied to vari-
ous engineering applications, and its superiorities over other
force control methods have been reported in many different
studies. For example, real-haptic sensation can be obtained
by using the DOb-based robust force controller [13], [14],
contact forces can be explicitly estimated without changing
the compliance of the motion control system [5], and the sta-
bility and performance of physical interaction control can be
notably improved by estimating contact forces within a large
bandwidth via the RFOb [15]. In addition, force-sensorless
contact force estimation helps reduce the size and mechan-
ical complexity of robotic systems as well as the cost of
engineering projects [12]. Compared to a force sensor, the
main drawback of this sensorless force control method is
that internal disturbances should be identified to accurately
estimate contact forces via the RFOb [10].

To implement the robust force controller, the nominal
design parameters (i.e., nominal mass and force coeffi-
cient) and the bandwidths of the DOb and RFOb should be
tuned. In general, actual mass and force coefficient values
are used in the observer synthesis [8], [12], [16]. By con-
sidering the noise-sensitivity of the controller, the band-
widths of the DOb and RFOb are set as high-as possible
to improve the performance of force estimation within a
large frequency range [12]. Several studies have been con-
ducted to enhance the bandwidth of the DOb. For example,
Katsura et al. [17] proposed a Position-Acceleration Inte-
grated Disturbance Observer, viz. PAIDO, to widen the
bandwidth of force estimation. Mitsantisuk et al. [18] and
Phuong et al. [19] used Kalman filter to suppress noise and
increase the bandwidth of the DOb.

There are two main drawbacks of the conventional design
approach which suggests that the nominal parameters of the
DOb-based robust motion controller should be tuned using
the exact plant model: i) The exact plant model (e.g., the
inertia matrix of a robotic system) may not be identified in
practice [20], and ii) The nominal design parameters can be
used to adjust the stability and performance, thus providing
extra flexibility in controller synthesis [5], [8]. Few studies
showed that not only the bandwidth but also the nominal
design parameters of the DOb and RFOb may significantly
change the stability and performance of the robust force
controller. For example, Murakami et al. and Kobayashi et al.
showed that the stability of the robust force controller can be
adjusted by tuning the nominal mass and force coefficient in
the DOb synthesis in [16], [20]. Sariyildiz and Ohnishi [8]
showed that the design parameters of the RFOb can also be
used to adjust the stability of the robust force controller.

Although the DOb-based robust force controllers are
always implemented using digital controllers, they are gener-
ally analysed in the continuous-time domain due to simplic-
ity [8], [12], [19]– [21]. Continuous-time analysis methods,
however, fall-short in explaining the robust stability and per-
formance of the DOb-based motion controllers implemented
by computers or microcontrollers [22]–[24]. For example,

continuous-time analysis methods cannot explain why the
stability of the digital robust motion controller deteriorates as
the bandwidth of the conventional DOb increases [23], [24].
To improve the performance of the DOb-based robust digital
motion control systems, new analysis and synthesis methods
have been proposed in [22]–[30]. Nevertheless, the stability
and robustness of theDOb-based digital force control systems
have yet to be analysed in the discrete-time domain. There-
fore, although the robust force controller has been applied
to various engineering systems in the last three decades, the
bandwidth and nominal design parameters of the DOb and
RFOb are still tuned manually, by trial and error in practice.

To this end, this paper analyses the stability and robustness
of the DOb-based force control systems in the discrete-time
domain. By employing the discrete Bode Integral Theorem,
it is shown that the bandwidth of the conventional DOb is
limited not only by the noise-sensitivity of velocity mea-
surement systems but also by the waterbed effect. Therefore,
the robust stability and performance of the digital motion
controller deteriorate as the bandwidth of the conventional
DOb increases in practice. When acceleration measurement
is used in the DOb synthesis, the robust motion controller is
not subject to the waterbed effect. In other words, the band-
width of the acceleration-based DOb is limited by only the
noise-sensitivity of acceleration measurement systems. This
paper also shows that the mass and force coefficient terms
of the DOb and RFOb have a notable effect on the stability
and performance of the robust force controller. For example,
while increasing the nominal mass term of the DOb improves
phase-lead effect in the inner-loop, using higher values of
the identified mass term in the RFOb synthesis significantly
deteriorates the stability of the robust force controller due to
a non-minimum phase zero(s). To improve the stability of the
robust force controller, lower (higher) values of the identified
mass (force coefficient) term should be employed in the
RFOb synthesis. This paper, for the first time, clearly explains
the design constraints of the DOb-based digital robust force
control systems. Within this context, the chief contributions
of this paper are as follows.

i) By employing the generalised Bode Integral Theorem
in the discrete-time domain, this paper, for the first
time, derives the design constraints of the DOb-based
digital robust force controllers. This allows one to
explain the unexpected stability and performance prob-
lems encountered in practice.

ii) To eliminate the design constraints due the waterbed
effect, this paper, for the first time, proposes an
acceleration-based robust force controller. This allows
one to improve the stability and performance of the
robust force control system by widening the frequency
range of disturbance and contact force estimation via
the DOb and RFOb, respectively.

iii) Compared to conventional design approach, this paper,
for the first time, shows that high-performance force
control applications can be performed by tuning the
nominal design parameters of the DOb and RFOb.
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FIGURE 1. Block diagram of the conventional DOb that is implemented
by estimating the velocity state of a servo system.

This statement is proven by a theoretical explanation
and experimental verifications.

The rest of the paper is organised as follows. Section II
analyses the stability and robustness of the DOb by con-
sidering velocity and acceleration measurements in the
discrete-time domain. The design constraints of the DOb
are analytically derived. Section III analyses the robust force
control systems. It is shown that the stability and performance
of the robust force controller can be adjusted by tuning the
design parameters of the DOb and RFOb. Section IV presents
simulations and experiments to verify the proposed analysis
and synthesis methods. The paper ends with conclusion given
in Section V.

II. DISTURBANCE OBSERVER
A. CONVENTIONAL DISTURBANCE OBSERVER
Fig. 1 illustrates the block diagram of the conventional DOb
that is implemented using velocity measurement. The follow-
ing apply in this figure:

m,mn uncertain and nominal masses;
KF ,KFn uncertain and nominal force coefficients;
q, q̇, q̈ position, velocity, and acceleration;
t , tk time in the continuous and discrete domains;
Ts sampling time;
ωs sampling frequency;
gDOb bandwidth of the DOb;
I thrust current of the motor;
Fd external disturbance force;
ηV noise in velocity measurement;
ZoH Zero-order Hold;
Fdis internal and external disturbance force;
Idis internal and external disturbance current;
•̂ estimation of •;
•des desired •;
s complex Laplace variable;
z = esTs complex variable.

The conventional DOb estimates the internal and external
disturbances (e.g., friction, parameter variations, and load) of
a servo system by using the applied motor current, velocity

measurement, nominal plant model, and a low-pass filter as
illustrated in Fig. 1. The robustness of the motion controller
is intuitively achieved by feeding back the estimated distur-
bances via an inner-loop control structure [12]. The discrete
transfer function of the inner-loop from the desired accel-
eration input to the resulting motor velocity can be directly
derived from Fig. 1 as follows:

q̇ (z) = αPV (z) I (z) q̈des (z) (1)

where α = (mn KF )/
(
mKFn

)
; PV (z) =

(1+gDObTs)z−1
z−(1−αgDObTs)

is a

phase-lead/lag compensator and I (z) = Ts
z−1 is an integrator.

Equation (1) shows that the phase-lead/lag compensator
PV (z) is obtained in the inner-loop when the conventional
DOb is used in the robust motion controller synthesis. While
PV (z) is a phase-lead compensator when the design param-
eters hold α > (1+ gDObTs)−1, tuning the DOb by using
α < (1+ gDObTs)−1 results in the phase-lag compensator
PV (z) in the inner-loop. The phase-margin of the inner-loop
improves as α is increased.

Equation (1) also shows that the robust motion controller
is unstable when αgDOb > 2ωs and exhibits oscillatory
response when ωs < αgDOb < 2ωs. To achieve good stability
by placing the discrete pole of PV (z) between 0 and 1,
the design parameters of the DOb should be tuned using
αgDOb < ωs. In other words, the model-plant mismatch and
the bandwidth of the conventional DOb have upper bounds
due to the stability constraint. Without degrading the stability,
the phase margin and robustness of the motion control system
can be improved (i.e., higher values of α and gDOb can be
used in the design of the DOb) by increasing the sampling
frequency ωs. However, this generally leads to cost increase
in motion control systems.

The sensitivity and complementary sensitivity functions of
the robust motion control system can be similarly derived
from Fig. 1 as follows:

SV (z) =
z− 1

z− (1− αgDObTs)
(2)

TV (z) =
αgDObTs

z− (1− αgDObTs)
(3)

where SV (z) and TV (z) are the sensitivity and complemen-
tary sensitivity functions of the conventional DOb in the
discrete-time domain, respectively.

Equation (2) shows that the magnitude of the sensitiv-
ity function |SV (z)| decreases at low frequencies (i.e., the
robustness against disturbances improves) as higher values
of α and gDOb are used in the DOb synthesis. This, however,
makes the robust motion controller more sensitive to the
noise in velocity measurement because the complementary
sensitivity function is suppressed less at high frequencies as
shown in (3). The trade-off between the robustness against
disturbances and the noise-sensitivity of the conventional
DOb is well-known in the literature [12].

In addition, improving the robustness against disturbances
at low frequencies by increasing the design parameters α and
gDOb may result in a high-sensitivity peak at middle/high
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frequencies in the conventional DOb-based robust motion
control systems. This phenomenon is called waterbed effect
in the literature and can be analysed by employing the Bode’s
integral equation [31], [32]. If the Bode Integral Theorem
is applied to the motion control system shown in Fig. 1
in the discrete-time domain, then the following equation is
obtained.
π∫
−π

ln |SV (z)| dωTs=−2π ln

∣∣∣∣1+ lim
z→∞

αgDObTs
z− 1

∣∣∣∣=0 (4)

where ω represents frequency, z = ejωTs and j2 = −1 [32].
Equation (4) shows that as |SV (z)| is decreased at

low frequencies by increasing the design parameters of α
and/or gDOb, the peak of the sensitivity function becomes
larger at higher frequencies to hold the Bode’s integral
equation. The robust motion controller may suffer from the
waterbed effect if the nominal plant model and the bandwidth
of the DOb are not properly tuned. This explains why we
observe unstable responses as the bandwidth of the con-
ventional DOb is increased in practice [17], [23], [24]. The
waterbed effect brings another constraint (called robustness
constraint in this paper) on the design parameters of the
conventional DOb.

It is noted that the robustness constraint on the design
parameters of the conventional DOb cannot be derived by
conducting analysis in the continuous-time domain. To prove
this statement, let us again use the Bode’s integral equation.
If the Bode Integral Theorem is applied to the conventional
DOb-based robust motion controller in the continuous-time
domain as recommended in [8], then the following equation
is obtained.

∞∫
0

log (|SV (s)|) dω = −
π

2
αgDOb (5)

where SV (s) = s
s+αgDOb

is the sensitivity function of
the conventional DOb in the continuous-time domain, and
s = jω is the complex Laplace variable [8].

Since the right side of (5) gets smaller as the robustness
against disturbances is improved by increasingα and/or gDOb,
the Bode’s integral equation can hold without exhibiting a
high-sensitivity peak. In other words, the continuous-time
analysis shows that the conventional DOb-based robust
motion controller is not subject to the waterbed effect and
good robust stability and performance can be achieved for
all values of α and gDOb. In fact, the stability of the
DOb implemented by digital controllers deteriorates as α
and gDOb are increased [23], [24]. Continuous time analy-
sis methods, therefore, fall-short in explaining the dynamic
behaviours of the conventional DOb-based digital robust
motion control systems in practice.

The design constraints on the bandwidth of the DOb and
plant-model mismatch become more severe when the plant
includes time-delay [33]. This, for example, occurs when the
DOb is applied to teleoperated robotic systems [34]. For the

sake of brevity, time-delay problem is not considered in this
paper. Reader is referred to [33] for the design constraints of
the DOb-based robust control systems with time-delay.

B. ACCELERATION-BASED DISTURBANCE OBSERVER
Let us now consider a DOb that is implemented by estimating
the acceleration state of a servo system rather than velocity.
The block diagram of the acceleration-based DOb is illus-
trated in Fig. 2. In this figure, ηA represents the noise in
acceleration measurement, and the other parameters are same
as defined earlier.

FIGURE 2. Block diagram of the DOb that is implemented by estimating
the acceleration state of a servo system.

The discrete transfer function from the desired acceleration
input to the resulting motor acceleration can be similarly
derived from Fig. 2 as follows:

q̈ (z) = αPA (z) q̈des (z) (6)

where PA (z) =
(1+gDObTs)z−1
(1+αgDObTs)z−1

is a phase-lead/lag com-
pensator when acceleration measurement is used in the
DOb synthesis.

Equation (6) shows that PA (z) is a phase-lead (phase-
lag) compensator when the design parameters of the
acceleration-based DOb is tuned by using α > 1 (α < 1).
The phase margin of the system can be similarly improved by
increasing α. The acceleration-based DOb, however, is stable
for all values of α and gDOb. Therefore, there is no stability
constraint on the design parameters of the DOb when it is
synthesised using acceleration measurement.

The Bode integral equation of the DOb-based robust
motion control system shown in Fig. 2 is as follows:

π∫
−π

ln |SA (z)| dωTs = −2π ln

∣∣∣∣1+ lim
z→∞

αgDObTsz
z− 1

∣∣∣∣
= −2π ln |1+ αgDObTs| (7)

where SA (z) = z−1
(1+αgDObTs)z−1

is the sensitivity function of

the acceleration-based DOb [31].
Similarly, the magnitude of the sensitivity function |SA (z)|

decreases (i.e., disturbance attenuation improves) at low
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frequencies as α and/or gDOb are increased. This, how-
ever, does not result in a high sensitivity peak in the
acceleration-based DOb. Since the right side of (7) gets
smaller with higher values of α and/or gDOb, the Bode’s inte-
gral equation can hold without exhibiting a high sensitivity
peak. Therefore, the robust motion controller is not subject to
the waterbed effect when acceleration measurement is used
in the DOb synthesis.

Compared to the conventional DOb, the design parameters
of the acceleration-based DOb are not influenced by the
stability and robustness constraints. Nevertheless, neither α
nor gDOb can be freely tuned in practice. Since the com-
plementary sensitivity function given in (8) is suppressed
less as α and/or gDOb are increased, the robust motion con-
troller becomes more sensitive to the noise in acceleration
measurement. Thus, the trade-off between the robustness
against disturbances and the noise-sensitivity of the robust
motion controller determines the design constraints of the
acceleration-based DOb.

TA (z) =
αgDObTsz

(1+ αgDObTs) z− 1
(8)

where TA (z) is the complementary sensitivity function of the
acceleration-based DOb

III. DISTURBANCE OBSERVER-BASED ROBUST FORCE
CONTROL
A. ACCELERATION-BASED ROBUST FORCE CONTROLLER
Fig. 3 illustrates the DOb-based robust force control system
which is implemented using acceleration measurement. The
following apply in this figure.

mi identified motor mass;
KFi identified force coefficient;
gRFOb bandwidth of the RFOb;
CF proportional gain of the force controller;
Fref force reference;
Fext contact force;
Denv damping of the environment;
Kenv stiffness of the environment;
Fi (tk) identified disturbance force;
eF (tk) force error, i.e., Fref (tk)− F̂ext (tk).

and the other parameters are same as defined earlier.
The robust force controller is synthesised by employing

the DOb and RFOb in the inner- and outer-loop, respectively.
The DOb improves the robustness of the force control system
by suppressing disturbances, such as friction and load, in the
inner-loop. The contact force is estimated by using the RFOb,
which is simply synthesised by subtracting the identified
disturbances from a DOb, in the outer-loop. Since the RFOb
can explicitly estimate contact forces within a large frequency
range, it provides better stability and performance than force
sensors in physical interaction control [8], [15]. Moreover,
force-sensorless contact force estimation has several advan-
tages, such as reducing cost, in engineering applications. The
accuracy of contact force estimation is, however, directly

FIGURE 3. Block diagram of the DOb-based robust force control system
that is implemented using acceleration measurement.

influenced by the identification of disturbances. The reader
is referred to [5], [8], [35] for further details on the robust
force control systems implemented by the RFOb and force
sensors.

The open-loop transfer function of the robust force con-
trol system (i.e., the transfer function between eF (tk) and
F̂ext (tk)) can be derived from Fig. 3 as follows:

LA (z) = ĈF
Tsz
z− 1

8L (z)8A (z) (9)

where ĈF = CFmigRFObβ is the open-loop force con-
trol gain in which β =

(
mn KFi

)
/
(
mi KFn

)
; 8L (z) =

(1+gDObTs)z−1
(1+gRFObTs)z−1

is a phase-lead/lag compensator; and (10),
as shown at the bottom of the next page, where δ =
α/β = (mi KF )/

(
mKFi

)
, ω0 =

√
Kenv/m, ξ =

Denv/2ω0m, ωn = ω0
√
1− ξ2 and ρ = e−ξω0Ts(

cos (ωnTs)+
(
ξ/
√
1− ξ2

)
sin (ωnTs)

)
.

Equation (9) shows that there is an integrator in the
open-loop transfer function of the robust force control sys-
tem. Therefore, the robust force controller can remove the
steady-state error in force regulation. This equation also
shows that the phase-lead/lag compensator8L (z) can be used
to adjust the stability and performance of the robust force
controller. 8L (z) is a phase-lead (phase-lag) compensator
when the robust force controller is synthesised by using
gDOb < gRFOb (gDOb > gRFOb), and the phase margin of the
robust force control system improves as gRFOb is increased.
In addition to the integrator and phase-lead/lag compen-

sator, the open-loop transfer function of the robust force
control system includes the second-order transfer function
8A (z) given in (10). The dynamics of 8A (z) changes not
only by the design parameters of the robust force controller
but also by the impedance of environment. Let us consider
the transfer function 8A (z) in detail because it has a notable
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effect on the stability and performance of the robust force
control system.

Equation (10) shows that the poles of 8A (z) move from
e−ξω0Ts+jωnTs to 0 and ρ as α and/or gDOb are increased.
The imaginary parts of the poles become larger as the stiff-
ness (damping) of the environment increases (decreases).
To suppress the oscillatory poles of 8A (z) when the servo
system physically interacts with a stiff environment, we need
to use higher values of α and/or gDOb in the DOb synthesis
and increase the sampling frequency. However, the design
parameters of the robust force control system and sampling
frequency cannot be freely tuned due to practical constraints
such as the noise of accelerometers and the computing power
of processors.

Equation (10) also shows that the transfer function 8A (z)
has a zero between -1 and 1 and the relative degree of the
open-loop transfer function is one when the exact values of
mass and force coefficient are used in the RFOb synthesis
(i.e., δ = 1, or mi = m and KFi = KF ). As the force control
gain CF increases, the stability of the robust force control
system deteriorates because the closed-loop pole of the force
controller moves towards infinity. The stability constraint on
the force control gain limits the bandwidth of the robust force
control system. When the exact mass and force coefficient
values are not used in the RFOb synthesis (i.e., δ 6= 1), the
transfer function8A (z) has two zeros and the relative degree
of the open-loop transfer function is zero. Each closed-loop
pole of the robust force control system converges to a finite
value (i.e., to an open-loop zero) as the force control gain
CF is increased. However, the stability of the robust force
controller significantly changes by the design parameter δ.
When δ > 1, the open-loop transfer function has a zero out-
side the unit circle. The non-minimum phase zero degrades
the stability of the robust force controller and results in new
design constraints such as a strict limitation in force control
bandwidth. To achieveminimum phase zeros, the robust force
controller should be synthesised by using δ < 1 (i.e., mi < m
and/or KFi > KF ) and

δ <
e−2ξω0Ts + 2e−ξω0Ts cos (ωnTs)+ 1

2 (1+ ρ)
(11)

As shown in (9) and (11), the dynamics of environment has
a notable effect on the stability and performance of the robust
force controller. To conduct high-performance force control
applications in practice, the force control gain should be tuned
by considering environmental impedance as shown in Fig. 7
in Section IV [5].

B. CONVENTIONAL ROBUST FORCE CONTROLLER
The robust force controller can be similarly synthesised
by using the conventional DOb as shown in Fig. 4.

FIGURE 4. Block diagram of the conventional DOb-based robust force
control system that is implemented using velocity measurement.

The open-loop transfer function of the conventional
DOb-based robust force control system can be derived from
this figure as follows:

LV (z) = ĈFβ
Tsz
z− 1

8L (z)8V (z) (12)

where 8V (z) = 8Vn (z)
/
8Vd (z) in which

8Vn (z)

= z3 −
(
2e−ξω0Ts cos (ωnTs)+ δe−ξω0Tssinc (ωnTs)

)
z2

+

(
e−2ξω0Ts + 2δe−ξω0Tssinc (ωnTs)

)
× z− δe−ξω0Tssinc (ωnTs) (13)

8Vd (z)

= z3 −
(
2e−ξω0Ts cos (ωnTs)

−αgDObTse−ξω0Tssinc (ωnTs)
)
z2

+

(
e−2ξω0Ts − αgDObTse−ξω0Tssinc (ωnTs)

)
z (14)

where sinc (ωnTs) = sin (ωnTs)/ωnTs.
Equation (12) shows that the open-loop transfer function

LV (z) includes the same open-loop force control gain, inte-
grator, and the first order phase-lead/lag compensator of
LA (z) given in (9). Therefore, similarly, the steady-state error
can be removed in force regulation and the phase margin
of the force control system can be adjusted by tuning the

8A (z) =
(1− δ) z2 −

(
2e−ξω0Ts cos (ωnTs)− δ (1+ ρ)

)
z+ e−2ξω0Ts − δρ

(1+ αgDObTs) z2 −
(
2e−ξω0Ts cos (ωnTs)+ αgDObTsρ

)
z+ e−2ξω0Ts

(10)
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bandwidths of the DOb and RFOb. However, the dynamics
of the robust force control systems illustrated in Fig. 3 and
Fig. 4 are different due to the transfer functions of 8A (z)
and 8V (z).

As αgDObTs increases, two poles of 8V (z) move from
e−ξω0Ts±jωnTs to 1 and ∞ while its third pole stays at zero.
To achieve stable poles for LV (z), smaller sampling time is
needed for higher values of α and gDOb. This is consistent
with the inner-loop design constraint αgDOb < ωs derived
in Section II. In addition, using smaller sampling time yields
less oscillatory poles for the transfer function 8V (z) when
the motion control system physically interacts with a stiff
environment.

The zeros of 8V (z) move from 0 and e−ξω0Ts±jωnTs

to 1, 1 and ∞ as δe−ξω0Tssinc (ωnTs) increases. Similarly,
the conventional DOb-based robust force control system
has non-minimum phase zeros if the design parameters are
not properly tuned. For example, increasing δ results in a
non-minimum phase zero. To improve the stability of the
robust force control system, δ and the sampling time Ts
should be decreased, particularly when contacting with a stiff
environment.

It is noted that although 8V (z) is different from 8A (z),
the open-loop transfer functions LV (z) and LA (z) have very
similar dynamic characteristics. For example, both of the
robust force control systems have a non-minimum phase
zero(s) for high values of the control parameter δ, and the
open-loop transfer functions have more oscillatory poles as
the sampling time and environmental stiffness increase. How-
ever, the design constraints of the conventional DOb-based
robust force control system are stricter than that of the
acceleration-based robust force control system.

IV. SIMULATIONS AND EXPERIMENTS
A. SIMULATIONS
Let us first consider the robust stability and perfor-
mance of the conventional and acceleration-based DObs.
Fig. 5 illustrates the frequency responses of the phase-
lead/lag compensator and the sensitivity and complementary
sensitivity functions of the conventional DOb-based robust
motion control system illustrated in Fig. 1. Fig. 5a shows
that the phase-margin of the inner-loop can be adjusted by
tuning the nominal design parameters. The phase margin of
the system improves by simply using higher values of α in
the DOb synthesis. Figs. 5b and 5c illustrate the sensitivity
and complementary sensitivity functions. As either α or gDOb
increases, the sensitivity function becomes smaller and the
robustness against disturbances improves at low frequencies
(see Fig. 5b). However, the noise of velocity measurement
is suppressed less and the peaks of the sensitivity and com-
plementary sensitivity functions dramatically increase for the
high values of α and gDOb (see Fig. 5c). The sensitivity peaks
not only excite the disturbances at high frequencies, such
as noise, but also degrade the robust stability of the motion
control system. For example, as shown in Section II, the

FIGURE 5. Frequency responses of PV (z), SV (z), and TV (z) when
m = 0.025, KFn = KF = 0.675, and Ts = 0.5× 10−3.

conventional DOb-based robust motion controller is unstable
when αgDOb > 2ωs. Therefore, the plant-model mismatch
and the bandwidth of the conventional DOb are limited by the
waterbed effect in addition to the noise-sensitivity of velocity
measurement systems.

Fig. 6 illustrates the frequency responses of the phase-
lead/lag compensator and the sensitivity and complementary
sensitivity functions of the acceleration-based DOb illus-
trated in Fig. 2. The phase margin of the robust motion
controller can be similarly improved by increasing α in the
DOb synthesis (see Fig. 6a). Fig. 6b and 6c show that the
waterbed effect is not observed and good robust stability
and performance can be achieved for all values of α and
gDOb when the robust motion controller is implemented using
the acceleration-based DOb. However, increasing the design
parameters α and/or gDOb still degrades the noise-sensitivity
of the robust motion controller because the complementary
sensitivity function is suppressed less at high frequencies
(see Fig. 6c). The robustness of the acceleration-based
DOb is limited by only the noise-sensitivity of acceleration
measurement systems in practice.

Let us now consider the stability of the DOb-based robust
force control system. The root-loci of the conventional and
acceleration-based robust force controllers are illustrated for
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FIGURE 6. Frequency responses of PA(z), SA(z), and TA(z) when
m = 0.025, KFn = KF = 0.675, and Ts = 0.5× 10−3.

different control parameters and environmental impedance
in Figs. 7, 8 and 9. As the control gain CF is increased,
the closed-loop discrete poles of the robust force controller
move from the open-loop discrete poles indicated by ‘x’
to the open-loop discrete zeros indicated by ‘o’. The unit
circle represents the stability region of the discrete controller.
In other words, the robust force control system is stable when
all of the closed-loop discrete poles are inside the unit circle.

First, it is assumed that the servo system physically inter-
acts with a relatively soft environment (Kenv = 275N/m),
and the robust force controller is synthesised by using
the phase-lag compensators in the inner- and outer- loop
(i.e., α < 1 and gDOb > gRFOb) and the exact values of mass
and force coefficient in the RFOb synthesis (i.e., δ = 1).
Fig. 7a shows that the robust force controller has under-
damped poles for a small value of CF , and the closed-loop
poles move outside the unit circle as the force control gain
increases. In other words, oscillatory stable response can
be achieved for a limited force control bandwidth. Fig. 7b
shows that the stability of the robust force control system
can be improved by using the phase-lead compensators in
the inner- and outer- loop (i.e., α > 1 and gDOb <

gRFOb). However, not only the control parameters but also

FIGURE 7. Root-loci of the acceleration-based robust force control
system with respect to CF when m = 0.025, KFn = KF = 0.675, δ = 1
and Denv = 1.25.

the environmental impedance changes the stability of the
robust force control system. For example, as the stiffness of
the environment (Kenv) increases, the stability deteriorates
even if the phase-lead compensators are employed in the
robust force controller synthesis (see Fig. 7c). The stability
of contact motion with a stiff environment can be improved
by increasing the sampling frequency and the bandwidths
of the DOb and RFOb as shown in Fig. 7d. However, this
generally increases cost because of higher computing power
and more precise measurement system requirements in the
implementation of the robust force controller.

So far, the exact mass and force coefficient values are
used in the RFOb synthesis (i.e., δ = 1). Since the relative
degree of the open-loop transfer function is one when δ = 1,
a closed-loop pole moves towards the zero at infinity and
the stability of the robust force control system deteriorates
as CF increases (see Fig. 7). When the RFOb is synthesised
using δ 6= 1, the relative degree of the open-loop transfer
function becomes zero and the closed-loop poles converge
to finite values (i.e., to the open-loop zeros) as CF increases
(see Fig. 8) The stability of the robust force control sys-
tem, however, significantly changes by the design parame-
ter δ. Fig. 8a shows that the stability of contact motion with
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FIGURE 8. Root-loci of the acceleration-based robust force control
system with respect to CF when m = 0.025, KFn = KF = 0.675,
gDOb = 250, gRFOb = 500, Kenv = 2750, Denv = 1.25 and Ts = 1× 10−3.

FIGURE 9. Root-loci of the conventional robust force control system with
respect to CF when m = 0.025, KFn = KF = 0.675, Kenv = 2750,
Denv = 1.25 and Ts = 1× 10−3.

a stiff environment can be improved without requiring high
sampling rate and large bandwidths of the DOb and RFOb
when the robust force controller is tuned by using δ < 1.
However, Fig. 8b shows that the stability deteriorates by the
non-minimum phase zero when δ > 1.

The root-loci of the conventional DOb-based robust force
control system are illustrated in Fig. 9. The stabilities of both
conventional and acceleration-based robust force control sys-
tems have some identical characteristics. For example, while
the phase-lag compensators similarly degrade the stability of
the robust force control systems as shown in Figs. 7a and 9a,
setting the control parameter δ smaller than 1 improves the
stability as shown in Figs. 8a and 9b. However, the design
constraints of the conventional DOb-based robust force con-
troller are stricter than that of the acceleration-based robust
force controller. For example, Fig. 9a shows that the robust
force control system has non-minimum phase zeros even if
the control parameter δ is equal to 1.

FIGURE 10. Experimental setup.

B. EXPERIMENTS
Force control experiments were performed by using the servo
system illustrated in Fig. 10. The experimental setup was
built by using Maxon RE25 DC motor, ESCON 50/5 motor
driver, DCT22 tachometer to measure the speed of the motor
shaft, and Memsic CXL04GP3 accelerometer to measure the
acceleration of the linear guide. A PC with a Linux operating
system and 2 kHz sampling rate were employed to perform
the real-time motion control experiments. Kyowa’s LUR-A-
200NSA1 load cell was used in the performance evaluation
of force control. The mass and force coefficient of the servo
system were 0.6kg and 25.1 N/A, respectively, and the lead
of the ball screw was 2mm in the experiments.

Let us start with presenting the performance limitation of
traditional force control systems. Fig. 11a illustrates the force
control experiment of the traditional force controller which
is implemented using a simple Proportional (P) controller.
It is clear from this figure that the traditional force controller
can provide very limited performance due to various distur-
bances, such as friction and backlash of drivetrain, exerting on
the servo system in practice. The force control performance
can be significantly improved by employing either the con-
ventional or the acceleration-based robust force controller as
illustrated in Figs. 11b and 11c.

Before presenting how the design parameters of the
observers change the dynamic response of the DOb-based
robust force controllers, let us first verify the performance of
the proposed acceleration-based robust force control system
illustrated in Fig. 3. Kyowa’s load cell was similarly attached
to the servo system as recommended in [35] to verify the
accuracy of the RFOb. Fig. 12 illustrates the force regulation
and trajectory tracking control experiments. When the exact
mass and force coefficient values were used in the RFOb
synthesis (i.e., δ = 1), external forces were accurately
estimated as illustrated in Figs. 12a, 12c and 12e. This is
consistent with the general design approach recommended
in [9], [12]–[22], [33]. Figs. 12b and 12d show that although
the exact mass and force coefficient values were not used
in the robust force controller synthesis (i.e., δ 6= 1), the
RFOb accurately estimated external forces. However, the
accuracy of force estimation deteriorated as the frequency of
external force increased as shown in Fig. 12f. This is expected
because the effect of the RFOb’s design parameters on the
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FIGURE 11. 2Hz force trajectory tracking control experiment when the
force controllers are synthesised using CF = 1, gDOb = 200, gRFOb = 400,
α = 2, δ = 1, and Ts = 0.5× 10−3.

accuracy of force estimation becomes more dominant when
the external forces change faster. Compared to the general
design approach, Fig. 12 shows that we can tune the mass and
force coefficient terms of the RFOb to adjust the stability and
performance of the robust force controller while achieving
accurate force estimation.

Let us now consider the stability of the DOb-based robust
force control systems. Fig. 13 illustrates the force regulation
control experiments when different values of nominal mass
(i.e., different values of α and β) were used in the robust
force controller synthesis. Figs. 13a and 13b show that the
robust force controller became unstable when the design
constraint of the conventional DOb given in Section II was
violated (i.e., αgDOb > 2ωs). The acceleration-based robust
force controller was, however, stable for all values of the
design parameter α as shown in Figs. 13c and 13d. Therefore,
higher phase-margins can be obtained in the inner-loop when
the DOb is implemented using acceleration measurement.
Although there is no stability constraint on the design param-
eters of the acceleration-based DOb, Fig. 13d shows that

FIGURE 12. Force control experiments when the acceleration-based
robust force controller is synthesised using gDOb = 200, gRFOb = 400,
α = 2, CF = 1 and Ts = 0.5× 10−3.

higher overshoot and oscillatory force control responses were
observed when α was increased. This is expected because
Section III shows that the open-loop force control gain ĈF
increases when higher/lower values of nominal mass/force
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FIGURE 13. Force control experiments when the conventional and
acceleration-based robust force controllers are synthesised using
gDOb = 500, gRFOb = 500, δ = 1, CF = 0.6, Ts = 1× 10−3 and the
different values of α.

coefficient (i.e., higher values of α and β) are used in the
robust force controller synthesis. It is clear from this figure
that the inner-and outer-loop control parameters should be
properly tuned to fulfill high-performance force control tasks.

As shown in Sections II and III, the stability and per-
formance of the robust force controller can be adjusted by
tuning the phase-lead/lag compensators in the inner- and
outer- loop. This is illustrated in Fig. 14. When the phase-lag
compensators were synthesised using α < 1 and gDOb >
gRFOb in the inner- and outer- loop, respectively, the robust
force controller exhibited higher overshoots and oscillatory
force control responses as the force control gain CF was
increased (see Figs. 14a and 14b). We could achieve stable
contact motion within a limited force control bandwidth, and
the robust force controller became unstable when CF = 3.
Figs. 14c and 14d show that the stability and force control
bandwidth of the robust force controller were improved by
using the phase-lead compensators (i.e., α > 1 and gDOb <
gRFOb) in the inner- and outer- loop. Without exhibiting

FIGURE 14. Force control experiments when the acceleration-based
robust force controller is synthesised using δ = 1, Ts = 0.5× 10−3 and the
phase-lead/lag compensators in the inner- and outer- loop.

high- overshoots and oscillations, the servo system performed
stable contact motion for all values of the force control gain
CF ≤ 3.

Last, let us show how the design parameter δ influences
the stability and performance of the robust force controller.
Fig. 15 illustrates the force regulation control experiments
when the different values of δ were used in the robust
force controller synthesis. To achieve good stability, the
acceleration-based robust force controller was synthesised by
using the phase-lead compensators in the inner- and outer-
loop. Figs. 15a and 15b show that the non-minimum-phase
zero had a notable effect on the stability and force control
bandwidth of the robust force controller when the RFOb was
tuned using δ > 1. Although the phase-lead compensators
were employed in the robust force controller synthesis, high-
overshoots and oscillations were exhibited when CF < 3.
The robust force controller was unstable when CF ≥ 3.
Figs. 15c and 15d show that using δ < 1 in the RFOb
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FIGURE 15. Force control experiments when the acceleration-based
robust force controller is synthesised using α = 3, gDOb = 200,
gRFOb = 400, Ts = 0.5× 10−3 and the different values of δ.

synthesis significantly improved the stability and force con-
trol bandwidth of the robust force controller. Stable contact
motion was performed without exhibiting high- overshoots
and oscillatory force control responses for all values of the
force control gain when CF ≤ 3.

C. DISCUSSION ON RESULTS
While traditional force controllers, such as a P-controller,
provide limited performance in force control, the DOb-based
robust force controller can precisely follow force reference
trajectories by suppressing disturbances as shown in Fig. 11.
However, the stability and performance of the robust force
controller significantly change by the design parameters of
the DOb and RFOb. For example, if the identified inertia
and force coefficient are not properly tuned, then there is
a strict limitation on the bandwidth of force control due
to a non-minimum phase zero(s) (see Figs. 8 and 15).
Another example is that the stability of the robust controller
can be improved by adjusting the phase-lead effect in the
inner- and outer- loop via α, gDOb and gRFOb (see Fig. 14).

The design parameters of the observers have a notable effect
on the stability and performance of the robust force controller.
It is, therefore, essential to understand how the dynamic
response of the robust force controller changes by the design
parameters of the DOb and RFOb.

As shown in Fig. 6, the nominal design parameters and the
bandwidth of the conventional DOb are limited not only by
noise-sensitivity but also by the waterbed effect. The latter
design constraint can be eliminated by employing accelera-
tionmeasurement in the observer synthesis as shown in Fig. 7.
In theory, acceleration-based DOb allows us to improve the
robustness against disturbances in the inner-loop and increase
the frequency range of contact force estimation in the outer-
loop. In practice, the bandwidths of the DOb and RFOb
are, however, limited by the noise sensitivity of accelera-
tion measurement systems. This paper presents promising
experimental results for the acceleration-based robust force
controller in Figs. 12 – 15.

Compared to the conventional design approach, this paper
shows that high-performance contact force estimation can
still be obtained when the identified mass and force coef-
ficient terms are different than the exact parameters of the
servo system (see Figs. 12b, 12d and 12f). This enhances
the flexibility in controller synthesis by allowing us to use
the identified mass and force coefficient terms as control
parameters. For example, Fig. 15 shows that the stability of
the robust force controller can be improved by using lower
values of the identified mass in the RFOb synthesis.

In addition to the design parameters of the DOb and RFOb,
environmental impedance has a notable effect on the stability
and performance of the robust force controller. For example,
Fig. 7 shows how the stability deteriorates as the stiffness
of environment increases. This problem can be tackled by
employing an adaptive control algorithm which tunes the
design parameters of the robust force controller for changing
environmental impedance. For the sake of brevity, adaptive
force control is not discussed in this paper. Reader is referred
to [5] for an example of the DOb-based adaptive robust force
controller.

V. CONCLUSION
The DOb-based robust motion control systems are always
implemented using computers and microcontrollers. Yet they
are generally analysed and synthesised in the continuous-time
domain due to simplicity. Although continuous-time analysis
methods are useful to explain the asymptotic behaviours of
the DOb (e.g., the higher the bandwidth of the observer, the
more the disturbance suppression increases at low frequen-
cies), they fall-short in explaining the robust stability and per-
formance of the digital robust motion control systems. This
paper shows that the conventional DOb-based digital robust
motion controller is subject to the waterbed effect. Therefore,
the stability of the robust motion controller deteriorates as the
bandwidth of the conventional DOb increases. To tackle this
problem, this paper proposes the acceleration-based DOb.
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Conventionally, the exact values of mass and force coeffi-
cient are used in theDOb andRFOb synthesis. The bandwidth
of the observer is set as high as possible to improve the
performance of disturbance and external force estimation.
One of the main drawbacks of this design approach is that
the exact dynamic model of a motion control system (e.g.,
the inertia matrix of a robot manipulator) cannot be identified
in many engineering applications. It is, therefore, essential
to understand how the design parameters of the DOb and
RFOb influence the stability and performance of the robust
force control systems. For example, the non-minimum phase
zero notably deteriorates the stability of the robust force
controller when δ > 1 (see Figs. 15a and 15b). Another main
drawback is that the conventional design approach does not
allow us to adjust the stability and performance of the robust
force controller by tuning the design parameters of the DOb
and RFOb. However, this paper shows that the stability of
the robust force controller can be improved by using higher
(lower) values of the mass term in the DOb (RFOb) synthesis
(see Figs. 14 and 15).

Although the DOb has been applied to various motion
control applications in the last three decades, the control
parameters are generally tuned by trial and error. This paper
shows that the control parameters of the DOb and RFOb
significantly change the stability and performance of the
robust force controller. To safely conduct high-performance
motion control applications in practice, new design tools
that systematically tune the control parameters of the
DOb-based digital robust motion control systems should be
developed.
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