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ABSTRACT Solving multiobjective optimization problems means finding the best balance among multiple
conflicting objectives. This needs preference information from a decision maker who is a domain expert.
In interactive methods, the decision maker takes part in an iterative process to learn about the interdepen-
dencies and can adjust the preferences. We address the need to compare different interactive multiobjective
optimization methods, which is essential when selecting the most suited method for solving a particular
problem. We concentrate on a class of interactive methods where a decision maker expresses preference
information as reference points, i.e., desirable objective function values. Comparison of interactive methods
with human decision makers is not a straightforward process due to cost and reliability issues. The lack
of suitable behavioral models hampers creating artificial decision makers for automatic experiments. Few
approaches to automating testing have been proposed in the literature; however, none are widely used.
As a result, empirical performance studies are scarce for this class of methods despite its popularity
among researchers and practitioners. We have developed a new approach to replace a decision maker to
automatically compare interactive methods based on reference points or similar preference information.
Keeping in mind the lack of suitable human behavioral models, we concentrate on evaluating general
performance characteristics. Such an evaluation can partly address the absence of any tests and is appropriate
for screening methods before more rigorous testing. We have implemented our approach as a ready-to-use
Python module and illustrated it with computational examples.

INDEX TERMS Decision making, interactive systems, multiobjective optimization, optimization, optimiza-
tion methods, testing.

I. INTRODUCTION
Multiobjective optimization problems represent real-life sit-
uations where a decision maker (DM) needs to find the
most preferred solution in the presence of several conflicting
objective functions. Because of this conflict, a feasible solu-
tion optimizing all objective functions simultaneously does
not exist. Instead, one can identify so-called Pareto optimal
solutions, i.e., feasible solutions, where improving any of the
objectives is impossible without impairing at least one of the
others. We need additional information for comparing Pareto
optimal solutions with each other and choosing the most
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preferred one. This information, referred to as preference
information, can be obtained from the DM.
The class of interactive multiobjective optimization meth-

ods ([16], [22], [25], [31]) has many applications in business
and industry (see, e.g., [8], [13], [32], [37]). Their main idea
is to iterate between the DM and the method until the most
preferred solution has been found. The DM provides some
preference information; the method utilizes this information
to generate one or few Pareto optimal solutions and presents
it/them to the DM. Iterations are repeated until a stopping
criterion is met. This scheme has two main advantages. First,
generating only a small number of solutions in each iteration
limits the computational cost compared to deriving a good
representation of the whole Pareto optimal set, which may
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be impossible in a reasonable time (if the problem is compu-
tationally complex). Secondly, the cognitive load set on the
DM is low because only a limited amount of information is
considered at a time.

In interactive methods, the DM can gradually understand
the relation between their preference information and achiev-
able solutions. Observing the DMs’ behavior in real-life situ-
ations has resulted in distinguishing two phases of interactive
solution processes (e.g., [25]). In the learning phase, the DM
aims at understanding the problem by exploring different
parts of the Pareto optimal set to identify a region of interest.
In the decision phase, the search concentrates on this region
to find the final solution.

There are many interactive methods for multiobjective
optimization (see, e.g., [16], [22], [23], [31]). Testing their
strengths and weaknesses and comparing the performance of
particular methods is essential for both theory development
and practical applications. By design, testing any interactive
method requires the involvement of a DM. Some papers
describe experiments with human DMs for evaluating dif-
ferent aspects of interactive methods or their components.
In those experiments, one or few test runs for each studied
method were performed with multiple (usually dozens of)
participants. Comprehensive reviews of such studies can be
found in [2] and [28].

Experimental studies of interactive methods involving
human DMs are rather fragmented due to several issues. The
first one is the high cost of involving human participants in
the experiment, limiting the amount of data obtained and
the variety of methods and research questions that can be
addressed. Secondly, it is even more costly and difficult to
hire participants who would be highly qualified experts in
the fields where the considered methods are applied. The
lack of such participants undermines the results’ applicabil-
ity to real-world cases since non-qualified participants may
behave differently during the solution process. In addition,
differences in motivation and responsibility of DMs between
experimental and real-life settings may affect the results in
unpredictable ways. Last but not least, the complexity of
human nature, and the variation of human behavior across
individuals, time spans, and test environments, make the uni-
formity of experimental settings hard to control. For example,
learning about the problem may significantly change a DM’s
behavior when using a second method, for which reason test
results with the same person when solving similar problems
may depend on the order of applying the methods.

A natural way of addressing some of these issues is to
simulate the DM’s responses to conduct experiments without
humans. We refer to this as an artificial DM (ADM). This
ADM should provide preference information in a format
that is appropriate for the tested methods. Thus, different
types of methods may require constructing different ADMs.
In this regard, we can classify interactive methods into two
types [22], [31]: non-ad hoc methods, where the DM can
be easily replaced with a utility or value function, and ad
hoc methods, where such a replacement is problematic.

We can test non-ad hoc methods using utility or value func-
tions (see, e.g., references in [3] and [36]), but a large class
of ad hoc methods has been left behind, among them the
important class of reference point-based methods (see, e.g.,
[39], [41]). Researchers and practitioners use such methods
widely (see, e.g., [23], [43]), and this imbalance is this paper’s
motivation.

Reference point-based interactive methods utilize pref-
erence information provided as desirable aspiration levels
forming a reference point and possibly reservation levels
forming another reference point (or weights of objectives).
Expressing preference information in this way is in line with
the concept of ‘‘satisficing’’ ([30], [40]), which is regarded
as cognitively undemanding for the DM. However, creating
an ADM that expresses preference information in terms of
reference points is not a trivial task. Furthermore, unlike util-
ity functions or preference relations, which have been stud-
ied from the behavioral perspective, reference point-based
preference models lack formal theories connecting them with
human psychology.

In some works, the interaction between the DM and the
method is simulated for testing purposes (see, e.g., [7], [20],
[33]). However, only in a small number of papers simulation
algorithms are proposed, which are suitable for testing refer-
ence point-based methods. In [34], a reference point in each
iteration is set relative to the Pareto optimal objective vector
obtained in the previous iteration. The new reference point is
obtained using the gradient of a value function. In [35], the
reference point is selected among modified objective vectors.
The value function is used for selecting one of them. In [44],
the reference point is obtained as a solution to a computation-
ally complex problem. In [27], reference points are generated
by adjusting aspiration levels in each iteration, considering
priorities of objectives, and involving randomness. Refer-
ence [4] generates reference points based on particle swarm
optimization. In [1], an artificial DM is developed for simulta-
neous comparison of several interactive reference point based
evolutionary multiobjective optimization methods. Different
mechanisms are proposed for the learning and the decision
phases to generate reference points. Furthermore in [15],
reference points are generated to test a specific interactive
method for solving a bi-objective inventory routing problem.

So far, none of the mentioned approaches has been applied
or further elaborated outside the scope of the article where
it was first presented. A possible reason may be the lack of
a formal model of the ADM per se. Without such a model,
it is hard to tell to what extent test results are related to the
actual performance of methods in real-life settings. Because
of the difficulties with testing reference point-based methods,
publications of newmethods never include performance eval-
uations. All mentioned works on method comparisons were
conducted post-factum, in some cases years after the methods
had been first proposed.

In this paper, we develop a new ADM to test and compare
reference point-based interactive methods without human
involvement. We derive the ADM’s behavior from some
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rational assumptions about utilizing information provided by
the method. The ADM cannot fully replace human DMs due
to the lack of comprehensive behavioral models and diffi-
culties in formalizing the desirable properties of interactive
methods [2]. However, it allows evaluating some performance
characteristics which are relevant in the decision-making
context. Similar to using the Pareto dominance relation for
removing inadequate solutions, our ADM can be used as a
preliminary filter before the final comparison of interactive
methods involving humans.

As mentioned, e.g., in [2], better means for comparing and
assessing interactive methods are needed. We address this
challenge and summarize our main novel contributions as
follows:
• We introduce a new ADM for comparing interactive
reference point-based methods. Except for the type of
preference information, it does not set any other limita-
tions to the nature of the methods compared. Thus, our
ADM enables comparing ad hoc methods and, in this
respect, fills a gap in the literature.

• We build the ADM on rational assumptions utilizing
information that methods compared provide. This
enables evaluating how well methods support the explo-
ration of the objective space.

• We offer an open Python implementation of the ADM,
which makes it easily accessible. With it, a) people pub-
lishing new interactive methods can compare the new to
old ones, and b) people looking for a suitable method for
a problem at hand can filter viable candidate methods.

This paper is organized as follows. In the next section,
we summarize basic concepts used, including a general
scheme of interactive methods. In Section III, we present our
ADM together with concrete guidelines for connecting it with
a method and conducting tests. We present some exemplary
results of computational tests in Section IV and conclude in
Section V with a discussion.

II. MULTIOBJECTIVE PROBLEM AND REFERENCE
POINT-BASED METHODS
We consider multiobjective optimization problems formu-
lated as follows:

minimize (f1(x), . . . , fk (x))T

subject to x = (x1, . . . , xn)T , (1)

with decision vectors x ∈ S ⊆ Rn, where S is a nonempty
compact set of feasible solutions, k ≥ 2 is the number of
objective functions, and fi : S → R, i = 1, . . . , k are
the objective functions. For any x ∈ S, the vector f(x) :=
(f1(x), . . . , fk (x))T ∈ Rk consisting of objective (function)
values is called an objective vector, Rk is referred to as the
objective space, and Rn as the decision space. The image of
S in the objective space is defined by f(S) = {f(x) : x ∈ S}.
Solving the problem means finding a feasible solution,

which is the most preferred for the DM – a person or a
stakeholder who knows the substance of the problem, can

provide preference information, and is responsible for the
final solution. The DM compares feasible solutions solely
based on their objective vectors, and from the DM’s point of
view, solving the problem is equivalent to finding the most
preferred objective vector in f(S).
Since the DM prefers smaller objective values to larger

ones, the search of the most preferred solution is limited to
the set of Pareto optimal solutions

P =
{
x ∈ S :

(
f(x)+ Rk

−

)
∩ f(S) = ∅

}
,

where Rk
− = {z ∈ Rk

: z 6= 0, zi ≤ 0 for all i = 1, . . . , k}.
The objective vector f(x) corresponding to a Pareto optimal
solution x is called a Pareto optimal objective vector, and the
set of all such objective vectors is referred to as the Pareto
front.

Let us also define an ideal objective vector and a nadir
objective vector , respectively, as z? = (z?1, . . . , z

?
k )
T where

z?i = minx∈P fi(x), i = 1, . . . , k , and znad = (znad1 , . . . , znadk )T

where znadi = maxx∈P fi(x), i = 1, . . . , k . Note that calculat-
ing the ideal objective vector is reduced to separate minimiza-
tion of each objective function in S. The nadir objective vector
is more difficult to obtain, so it is usually estimated (see, e.g.,
[9], [22] and references therein).

Most reference point-based interactive multiobjective opti-
mization methods1 fit into the following core structure (e.g.,
GUESS method [6], an interactive evolutionary approach
[10], the NIMBUS method [24], [26]; see also references in
[23], [25]).
Step 0. Initialization of the method. Present some informa-

tion about the problem to the DM.
Step 1. Ask the DM to specify preference information as a

reference point.
Step 2. Generate one or several Pareto optimal solutions by

minimizing method-specific subproblems in S and
present the solution(s) to the DM.

Step 3. Ask the DM if one of the previously generated solu-
tions is satisfactory as a final solution to the problem.
If yes, stop; otherwise, go to Step 1.

Steps 1–3 represent one iteration. Step 0 is the initial-
ization step, and the requirement to present problem-related
information to the DM varies across methods. Some of them
approximate the ideal and the nadir objective vectors to give
the DM some idea of the ranges of objectives among Pareto
optimal solutions. Other methods derive an initial Pareto
optimal solution that the DM needs to express preferences in
the first iteration. Without loss of generality, we assume that
the information presented to theDM in Step 0 includes at least
approximations of the ideal and nadir objective vectors.

Reference point-basedmethods derive Pareto optimal solu-
tion(s) in each iteration by solving scalarized problems.
A special class of such problems is based on achievement
scalarizing functions (ASFs) [40], [41]. There are many vari-
ants of ASFs (see, e.g., [39]–[41]) and different ways of

1This core structure is also valid for many other interactive multiobjective
optimization methods.
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expressing preference information in terms of ASF parame-
ters (see, e.g., [19], [21]). All ASFs proposed in the literature
can be divided into two types with respect to their number
of parameters: either one or two k-dimensional vectors. Both
types involve a reference point composed of aspiration lev-
els for k objectives: zasp =

(
zasp1 , . . . , zaspk

)
. The aspiration

levels represent desirable objective function values. ASFs
of the second type incorporate another vector of k com-
ponents: either positive weights of objectives λ1, . . . , λk ,
or reservation levels forming a second reference point zres =(
zres1 , . . . , z

res
k

)
, where zresi > zaspi , i = 1, . . . , k . Reservation

levels represent objective function values the DM prefers to
avoid.

We consider the following subproblem involving an ASF:

minimize max
i=1,...,k

λi
(
fi(x)− z

asp
i

)
+ ρ(x)

subject to x ∈ S, (2)

where ρ(x) is a linear augmentation term for ensuring Pareto
optimality of any derived solution.2 If vector zres is provided,
then according to [18], [19], weights can be calculated by

λi = 1/
(
zresi − z

asp
i

)
, i = 1, . . . , k. (3)

Another popular approach to specifying weights is by
using the formula

λi = 1/
(
znadi − ẑi

)
, i = 1, . . . , k, (4)

where ẑi = z?i − µ, i = 1, . . . , k, are components of a
so-called utopian objective vector, andµ is a negligibly small
positive number. Our approach to replace a DM can provide
preference information in any form suitable for either of ASF
types described above.

To summarize the interaction between the DM and any
reference point-based method focusing on the exchange of
information, from the method’s point of view, the DM is
involved at four different occasions:
• in Step 0, the method passes the initial information about
the problem, which includes the ideal and the nadir
objective vectors, to the DM;

• in Step 1, the method receives preference information
from the DM;

• in Step 2, the method passes to the DM the set of derived
Pareto optimal solutions;

• in Step 3, the method receives from the DM a signal to
stop the solution process.

It is natural to assume that the DM saves the information
about all previously derived Pareto optimal solutions in a
solution pool. This allows the DM to select the most preferred
solution from among those derived in the last iteration and
from among previously obtained solutions.3

2A small augmentation term ensures that a solution to (2) is properly
Pareto optimal [40], a property stronger than Pareto optimality. For simplic-
ity, we do not use it in this paper. It can be added to any ASFwithout affecting
the validity of the results.

3Note that few methods include this option explicitly; among those are,
e.g., [17], [24].

III. THE DESIGN OF THE ADM
TheADM is characterized by a choice function, which selects
a set of most preferred objective vectors from any given set
of Pareto optimal objective vectors. It can be interpreted as a
steady, complete model of the ADM’s preferences. To make
this model operational, we represent it as a value function at
the expense of imposing some assumptions. Such a repre-
sentation is common among other approaches to automated
testing of interactive methods ( [3], [34]–[36]).

It is realistic to assume that we cannot directly apply the
choice function of the ADM to locate the most preferred
objective vector (otherwise, there would be no need to use
an interactive method). However, the ADM can apply the
choice function for selecting the most preferred objective
vector among any finite, explicitly given set. Communication
with the interactive method is the only means of obtaining
information about the problem. The ADM constructs knowl-
edge about the Pareto optimal set to efficiently utilize this
information and uses it to guide the search.

We structure the ADM in three parts and describe them in
the following three subsections. The parts are the value func-
tion characterizing the ADM’s preferences (the steady part),
the representation of knowledge about the Pareto optimal
set (the current context), and the mechanism for generating
preference information based on these two (the preference
generator). This structure is borrowed from [27], which fact
constitutes the only similarity with the reference.

A. THE STEADY PART
The choice function characterizing an ADM is (see,
e.g., [29]):

C : 2R
k
→ 2R

k
. (5)

Since it is only applied to choosing from finite sets, we rede-
fine the function domain as the set of all finite subsets of Rk

without loss of generality:

C : R→ R, (6)

where R =
{
Y ⊂ Rk

: |Y | <∞
}
, Y are sets of objective

vectors and |Y | denotes the cardinality of Y .
Let us assume that the choice function satisfies the weak

axiom of revealed preferences (or any other equivalent ratio-
nality axiom in [29]):(

z, z′ ∈ A ∩ B & z ∈ C(A) & z′ ∈ C(B)
)
⇒ z ∈ C(B).

In other words, if two elements are both most preferred in
some set, then there are no circumstances where one element
is preferred over another. As a direct consequence, we have
the following statement [29]:

Statement 1. There exists a linear order (a complete, tran-
sitive and antisymmetric binary relation) � on Rk , which
represents (6):

C(Y ) =
{
z ∈ Y : z � z′ for any z′ ∈ Y \ {z}

}
,

where Y ⊂ Rk , |Y | <∞.
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Furthermore, let us assume that the ADM can be applied
to solve only a countable set of problems, which implies that
the binary relation is defined on a countable set of objective
vectors. This technical assumption is required for applying
another theoretical result of the rational choice theory [5],
stating that any complete and transitive binary relation on a
countable set has a value representation. Thus, we have the
following statement:

Statement 2. There exists a value function4 v : Rk
→ R

such that for any y, y′ ∈ Rk we have y � y′ ⇔ v(y) ≥ v(y′).
Summing up, from reasonable assumptions we obtain

Statements 1 and 2, saying that the model of steady pref-
erences initially defined as the choice function C can be
represented as a value function v : Rk

→ R :

C(Z ) = argmax {v(z) : z ∈ Z } for any Z ⊂ Rk .

B. THE CURRENT CONTEXT
By the current context, we mean the knowledge about the
Pareto front, which the ADM constructs from information
accumulated during the solution process. As said before, the
ADM receives the following information from the interactive
method: the ideal and nadir objective vectors at the beginning
of the solution process and a set of Pareto optimal objective
vectors derived at each iteration. This information is included
in the current context and used by theADM for deriving infor-
mation about the potential location of new Pareto optimal
objective vectors that have not been generated yet. We shall
now describe this in detail.

Given two objective vectors z and z′ such that zi ≤ z′i for
any i = 1, . . . , k , we define a box as the Cartesian product of
closed intervals:

β
[
z, z′

]
=

∏
i=1,...,k

[zi, z′i]

and call z and z′ itsminimal and maximal points, respectively.
Using this notation, we define the initial region as follows:

B = β
[
z?, znad

]
.

It is the box in the objective space containing the whole Pareto
front. The role of the initial region in constructing the current
context is to limit the area of the potential location of new
Pareto optimal objective vectors.

Let j be an iteration number. After completing the iteration,
the solution pool Ŷ j is defined by

Ŷ j =
⋃

l=1,...,j

Y l, (7)

where Y l is the set of Pareto optimal objective vectors derived
in iteration l. In addition, we set Ŷ 0

= ∅.
Now we introduce a set of objective vectors called the

potential region Rj:

Rj = B \
⋃
z∈Ŷ j

(
z+ Rk

< ∪ z− Rk
<

)
,

4Note that the term utility function is often used in the rational choice
theory instead of a value function.

where Rk
< =

{
z ∈ Rk

: zi < 0, i = 1, . . . , k
}
. It is easy to

see that if a Pareto optimal objective vector derived in the
initial region during the iteration j+ 1 is new (i.e. it does not
belong to Ŷ j), then it belongs to Rj: otherwise it would either
dominate or be dominated by one of the previously derived
Pareto optimal solutions. Therefore, information about the
potential region is relevant when searching for new Pareto
optimal solutions.

We represent the potential region in each iteration as a
collection of boxes in the objective space. Once the ideal
and nadir objective vectors have been obtained in Step 0, the
ADM initializes the potential region as one box, namely the
initial region: R0 = {B}. After having received the set of
Pareto optimal objective vectors Y j derived in Step 2 of the
j-th iteration, the ADM updates the potential region. It sub-
tracts the set of vectors which dominate or are dominated by
the elements of Y j from the area comprised of all the boxes.
Let us define a set of 2k orthants of the objective space:

� =
{
3(b) : b = (b1, . . . , bk ) ∈ {−1, 1}k

}
,

3(b) =
{
(y1, . . . , yk )T ∈ Rk

: biyi ≤ 0, i = 1, . . . , k
}
.

Algorithm 1 can be used for updating the potential region,
where we denote any box included in the potential region by
β and the current iteration number by j.

It is important to note that if Y j ⊆ Ŷ j−1 (no new Pareto
optimal objective vectors have been derived in iteration
j, j > 1), the current context does not change according
to Algorithm 1. On the other hand, the information about
the absence of new solutions should be taken into account
by the ADM. To address that, we introduce a small modi-
fication to the potential region. It is described at the end of
Subsection III-C since its justification refers to an element of
the preference generator.

C. THE PREFERENCE GENERATOR
In each iteration j, the search for the most preferred solution
is naturally narrowed down to the potential region. We deter-
mine a box in Rj, where such a solution can most likely be
located, and to explore this box, we ask the method to derive
Pareto optimal solution(s) in it.

Without complete knowledge about the Pareto optimal set,
determining which box is most promising in the above sense
is not possible. We propose considering the objective vector
in the center of a box (called the midpoint) as a neutral guess
about its content and applying the ADM’s steady preference
model for selecting one among the midpoints of all boxes
in Rj. Then the ADM instructs the method to derive Pareto
optimal solution(s) in the box by setting the reference point
at the midpoint of the selected box. We set the vector of
reservation levels at the maximal point of the box, reflecting
the fact that it represents the upper bounds on components
of Pareto optimal objective vectors, which can be possibly
derived in this box.We formalize this procedure of generating
preference information as follows.
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Algorithm 1: Updating the Potential Region

Initialize Rj := Rj−1.
For each Pareto optimal objective vector y ∈ Y j \ Ŷ j−1:

For each box β ∈ Rj:
Check the relation between β and the set
y+ Rk

< ∪ y− Rk
<.

If β ⊂
(
y+ Rk

< ∪ y− Rk
<

)
, then β cannot

contain any new Pareto optimal objective
vectors. In this case,

remove β from Rj.
If β ∩

(
y+ Rk

< ∪ y− Rk
<

)
= ∅, then β can still

contain new Pareto optimal objective vectors.
In this case,

keep β in Rj.
If β ∩

(
y+ Rk

< ∪ y− Rk
<

)
is neither empty nor

coinciding with β, then a part of β can still
contain new Pareto optimal objective vectors,
and the rest of β cannot. In this case, modify
Rj in order to get rid of vectors belonging to
β ∩

(
y+ Rk

< ∪ y− Rk
<

)
as follows:

Split β into a set of boxes, where each box is
the intersection of β with one of the 2k

orthants from � anchored at y.
Include in Rj all newly obtained boxes
except the following two: β ∩

(
y+ Rk

≤

)
and β ∩

(
y− Rk

≤

)
, where

Rk
≤ =

{
z ∈ Rk

: zi ≤ 0, i = 1, . . . , k
}
.

Remove the initial box β from Rj.

• For all boxes in the potential region, the ADM deter-
mines their midpoints forming the set

8j
=

{
Mid(β) : β := β

[
z, z′

]
∈ Rj

}
, (8)

where

Mid(β) =
(
z1 + z′1

2
,
z2 + z′2

2
, . . . ,

zk + z′k
2

)
.

• Using the choice function (5), the ADM selects the
subset of the most preferred midpoints:

4 = C(8j). (9)

• The ADM chooses any box β? whose midpoint belongs
to 4, and generates preference information in terms of
aspiration and reservation levels: zasp = Mid(β?), zres =
z′ where z′ is the maximal point of β?.

After generating the preference information, the ADM
expresses it depending on the requirements of the interactive
method:

• if the method requires one reference point, then the
ADM returns zasp;

• if the method requires two reference points, then the
ADM returns zasp and zres;

• if the method requires a reference point and weights,
then the ADM returns zasp and the vector of weights
(λ1, . . . , λk) calculated according to (3).

Since the derivation of Pareto optimal solutions is confined
to the most interesting box selected by the ADM, we can
address the case where Y j ⊆ Ŷ j−1 for some j, j > 1, i.e.,
no new Pareto optimal objective vectors have been derived in
iteration j. We slightly amend Algorithm 1 for updating the
current context described in Subsection III-B based on the fol-
lowing reasoning. The lack of new Pareto optimal objective
vectors implies that the interior of the most interesting box
selected by the ADM contains no solutions. Since this box
has been explored, we should not repeat an attempt to derive
solutions in it. Therefore, after completing each iteration, the
box β? that was selected by the ADM is removed from the
potential region.
We illustrate the process of generating preference infor-

mation described above in Fig. 1 in the case of k = 2.
Let us assume that in some iteration, the solution pool con-
sists of three Pareto optimal objective vectors z1, z2 and z3.
We show the boxes comprising the potential region in gray
color. The dashed curves depict isoquants of the value func-
tion representing steady preferences. Small crossed circles
in the centers of the boxes mark their midpoints. It is easy
to notice that the midpoint of the box between solutions z2

and z3 has the highest value of the value function. After the
ADM selects this box and generates a reference point in it,
the method derives a new Pareto optimal objective vector z4.
The ADM adds this vector to the solution pool and updates
the potential region by removing from it the areas z4+R2

< and
z4−R2

<. It divides the box under consideration into four boxes
and deletes two of them as described in Subsection III-B.

D. THE SCHEME OF IMPLEMENTING TESTS
USING THE ADM
Let us first describe the aspects of interactive methods which
can be evaluated using the ADM. The central question is how
well the method finds the most preferred solution, referred
to as the performance aspect. We can measure it by the
following two means, which are dual to each other.

• ‘‘Accuracy’’: given the maximum number of iterations,
how close to the most preferred solution can a solution
be found.

• ‘‘Convergence speed’’: given desirable accuracy in the
above sense, how many iterations are needed to reach
this accuracy.

To evaluate thesemeans for a given problem and anADM’s
steady preference model, we must first derive the most
preferred solution regarding the ADM’s steady preferences.
We should introduce a measure of closeness of any Pareto
optimal solution and the most preferred solution. We must
perform a predefined number of iterations to calculate the
accuracy and the minimum proximity between the derived
solutions and the most preferred solution. To calculate the
convergence speed, we must perform iterations until the
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FIGURE 1. The operation of the ADM in the case k = 2.

proximity of one of the derived solutions falls below the
desirable accuracy. The number of iterations serves as the
result of calculations. It is practical to set the threshold as
the maximal number of iterations to limit the time needed
for conducting experiments in the latter case. If the desired
accuracy has not been achieved, the convergence speed can
be described as ‘‘failed to converge in the allotted number of
iterations.’’

Another critical aspect is how well the method explores
the objective space regarding the accuracy of overall infor-
mation about the Pareto front. We can quantify this so-called
exploration aspect as the hypervolume of the potential region.
The smaller is the hypervolume of Rj, the less uncertainty the
ADM has about the shape of the Pareto front after the i-th
iteration.

We propose the following scenario of conducting exper-
iments. We formulate the main research question by the
two means describing the performance. After each run,
we accompany the performance analysis with the exploration
analysis and consider the hypervolume of the potential region
after each iteration. The stopping criterion is formulated
based on the experiment design. Depending on the perfor-
mance analysis, the stopping criterion can be, for instance,
a certain number of iterations or a certain closeness to the
most preferred solution.

Let us now present the scheme of implementing experi-
ments. In testing, the ADM is a black box replacing the DM in
the interaction introduced in Section II. During experiments,
the ADM and the method are called in turns, exchanging
information: the output from the ADM serves as the input for
the method and vice versa until a stopping criterion is met.

Fig. 2 summarizes how one can use an ADM consisting
of the three described parts to test an interactive reference
point-based method. Below, we specify the details of the
interaction.
• In Step 0, the method passes initial information about
the problem (z? and znad) to the ADM. As described
in Subsection III-B, current context is initialized: the

potential region R0 as {β
[
z?, znad

]
} and the solution

pool Ŷ 0 as ∅.
• In Step 1, the method asks for preference information as
parameters of the ASF. The preference generator creates
such information based on the steady part and the current
context as described in Section III-C, and passes this
information to the method.

• In Step 2, themethod passes to theADM the set of Pareto
optimal solutions Y j derived in iteration j. The ADM
uses it to update the current context: it is included in the
solution pool and used for updating the potential region
as described in Section III-B.

• In Step 3, the method asks for information related to
stopping the solution process.

IV. TEST EXPERIMENTS
We have implemented the ADM in Python 3 and
published the code under Mozilla Public License 2.0
onGitHub: https://github.com/industrial-optimization-group/
desdeo-adm.

Our purpose is to demonstrate what meaningful informa-
tion and valuable insights we can gain about interactive meth-
ods. We define basic experimental settings and, during the
runs, collect information on the performance and exploration
aspects introduced in Subsection III-D.

We solve one problem using two popular methods: the ref-
erence point method (RPM) [39], [40] and the synchronous
NIMBUS method [24], [26]. The latter uses the classifica-
tion of objectives as preference information indicating how
a Pareto optimal solution (called a current solution) should
be improved. We can obtain this information from a refer-
ence point if the latter does not dominate or is not domi-
nated by the current solution. We show that the ADM can
test a broader class of interactive methods by considering a
classification-based method.

Below,we briefly summarize the twomethods and describe
how one can convert a reference point into preference infor-
mation for NIMBUS. After that, we define the value function
representing the steady part of the ADM, formulate an exam-
ple problem and present the results of experiments.

A. REFERENCE POINT AND NIMBUS METHODS
Both methods fit into the core structure described in
Section II. In Step 1 of the RPM, the DM specifies a refer-
ence point zasp. In Step 2, the method derives k + 1 Pareto
optimal solutions as follows. First, the method solves (2)
with the given reference point and fixed weights defined
by (4), obtaining a Pareto optimal objective vector z̃ (the
current solution). Then, k more reference points are created
by perturbing zasp, where the i-th perturbation, i = 1, . . . , k ,
consists of adding the value ‖zasp − z̃‖ to the i-th component
of zasp. For each of these reference points, the method solves
problem (2). In this way, the DM gets a better idea of the
surroundings of the current solution in the objective space.
Thus, it is enough to pass the first reference point to the RPM
as the preference information.
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FIGURE 2. The scheme of interaction between an ADM and an interactive
method.

In Step 0 of the synchronous NIMBUSmethod, in addition
to the ideal and nadir objective vectors, a Pareto optimal
solution is generated as the first current solution. It is needed
for expressing preference information in the first step. Since
this Pareto optimal objective vector belongs to the solution
pool, in terms of the core structure of interactive methods
(Section II), it should be treated as a result of an iteration
rather than a part of the initialization step. Thus, in our experi-
ments we assume that in the first iteration, the ADM provided
the reference point zasp := Mid(B) with the components
znadi +z

?
i

2 , i = 1, . . . , k, to get a neutral compromise solution
[24] by solving problem (2).

In Step 1 of NIMBUS, the DM expresses preference infor-
mation for the current solution z̃ by classifying the objec-
tive functions into up to five classes. This classification
shows the desirable way of changing the objective vector
component-wise to get a more preferred solution. The classes
are subsets of functions fi, i = 1, . . . , k,whose values should
be decreased (i ∈ I<), should be decreased till a desirable
level γi < z̃i (i ∈ I≤), are satisfactory at the moment (i ∈ I=),
are allowed to increase till an upper bound εi > z̃i (i ∈ I≥),
and are allowed to change freely (i ∈ I�).
Some of the classes may be empty; however, the follow-

ing conditions should be satisfied for a classification to be
feasible: I< ∪ I≤ 6= ∅ and I> ∪ I� 6= ∅. In Step 2, the
method derives up to four Pareto optimal solutions by solving
four different scalarized subproblems, reflecting the diversity
of interpretations of the preference information. We give a
simple way of converting reference points into classification
following [24] in Appendix I.

B. THE STEADY PART OF THE CONSIDERED ADM
As a value function, we use the Cobb-Douglas function (see,
e.g., [14], [38]). It is defined for non-negative objective values
to be maximized:

ωᾱ(z) =
∏

i=1,...,k

zαii ,

where ᾱ = (α1, . . . , αk ) and αi, i = 1, . . . , k, are
non-negative parameters. To use this function, we map the
objective space of problem (1) to the objective space of a
maximization problem with non-negative objective values:

gi(zi) :=
znadi − zi
znadi − ẑi

+ 0.01, i = 1, . . . , k.

In other words, we normalize each component of the objec-
tive vector to the interval from 0 (the worst value) to 1
(the best value), and add a small term to avoid the marginal
rates of substitution diminishing to zero. The value function
representing the steady ADM’s preferences is

vᾱ(z) = ωᾱ(g(z)) (10)

where g(z) = (g1(z1), . . . , gk (zk )).

C. EXAMPLE PROBLEM
We tested the two interactive methods on a three-objective
optimization problem. This number of objectives ensures
that both the RPM and NIMBUS solve the same number of
subproblems in each iteration. We considered the following
modification of the problem formulated in [12]:

minimize (f1(x), f2(x), fk (x))T

subject to x = (x1, x2)T ∈ [0, 1]2,

f1(x) ≤ 1, (11)

where f1(x) = φ(x1, x2), f2(x) = φ(x1, x2−1), f3(x) = φ(x1−
1, x2), φ(x1, x2) = ψ(x1, x2) − e−50ψ(x1,x2) and ψ(x1, x2) =
x21 + x

2
2 . For this problem, we have z? = (−1,−1,−1) and

znad = (1, 2, 2). We have chosen this particular problem
because it has a nonconvex Pareto front of a complex shape,
making the solution process more challenging.

It is a nonlinear problem. The scalarized subprob-
lems were solved using the simplicial homology global
optimization (SHGO) algorithm [11] published in Github
https://github.com/Stefan-Endres/shgo and available as a part
of the SciPy library. It is well suited for problems of this type
and has an easy-to-use interface.

D. EXPERIMENT DESIGN
We characterize an instance of the ADM by a vector ᾱ =
(α1, α2, α3) of parameters of the value function v defined
by (10), which represents the steady part. We used each
instance for solving the example problem independently by
both considered methods. We performed 100 experiments
with randomly generated ᾱ. We ran the solution process with
each instance for up to 25 iterations, as this number exceeds
the typical duration of real-life solution processes reported in
the literature.

At the end of each iteration i, i > 0, after the ADM
updated the current context taking the derived solutions into
account, we collected the following indicators characterizing
the solution process.

1) The iteration value defined as vi
v? · 100%, where vi is

the maximum value of the value function v among the
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solutions derived in iteration i, and v? is the optimum
value of the value function for problem (11). This
indicator reflects the quality of obtained solutions and
can be interpreted in terms of the proximity of the best
solution among the obtained ones to the most preferred
solution.

2) The volume of the potential region, which characterizes
the exploration aspect.

3) The total number of Pareto optimal solutions accumu-
lated in the solution pool. As explained later, we con-
sider this indicator for controlling the fairness of
method comparisons.

Fig. 3 illustrates the results of running the solution pro-
cess for 25 iterations using both methods with the ADM
characterized by ᾱ = (1, 1, 1). It includes the plots of the
iteration value (black lines, the left-hand axis) and volume
of the potential region (gray lines, the right-hand axis) along
with iterations. The indicators of the RPM and NIMBUS are
depicted by solid and dashed lines, respectively. The small
rhombusesmark themaximum iteration values among 25 iter-
ations for both methods.

For the RPM, 99.2% of the optimum was achieved in
the 21st iteration, and in the case of NIMBUS, 99.7% of
the optimum was achieved in the 18th iteration. The ADM
demonstrated the same pattern for both methods: the iteration
value gradually stabilized near the highest value while the
potential region volume decreased. This observation indicates
that an improvement in the quality of the derived solutions
goes hand in hand with the accumulation of knowledge about
the Pareto front.

E. RESULTS OF EXPERIMENTS
In each of the 100 experiments, we generated the coefficients
α1, α2, and α3 as independent random variables uniformly
distributed in the interval [1, 2]. During the test of each of the
methods with the same ADM, we calculated the following
indicators.

1) The maximum among iteration values achieved during
the first ten iterations. This characterized accuracy,
where we interpreted the obtained value in terms of
the proximity to the most preferred solution. We chose
ten iterations as a specific number of iterations to be
completed, taking into account our experience with
real-life interactive solution processes.

2) The smallest iteration number where the iteration value
of 95%was reached, referred to as the iteration number
of 95% level. This indicator characterized the conver-
gence speed. Not getting a 95% level in 25 iterations
was considered a failure.

3) The volume of the potential region after ten iterations
characterizing the exploration power of the method.

4) The size of the solution pool after ten iterations used
for controlling the fairness of experiments.

Table 1 summarizes the results of 100 experiments. The
table contains the average value and the standard deviation

FIGURE 3. Iteration value and potential region volume during the
solution process with ᾱ = (1,1,1).

in parentheses for each of the mentioned indicators. The last
column summarizes the differences in the indicators values
between the RPM andNIMBUS in each experiment. On aver-
age, the RPM performed similarly to NIMBUS in terms of
accuracy5 and 21.6% faster in terms of convergence speed.
The RPM also reduced the average potential region volume
after the 10th iteration to 7.12. It is 10.1% less than what was
done by NIMBUS (note that the volume of the initial region
is equal to 18). We can view this as a better exploration of the
objective space.

On the other hand, the RPM provided the ADM with,
on average, 2.9 (8.6%) more solutions in 10 iterations, which
can be partially explained by the special treatment of the first
iteration in NIMBUS (where only one solution was derived,
see Subsection IV-A). This advantage partially explains the
better performance of the RPM.

Another important observation from the experiments was
that the differences between themethods’ performance varied
significantly across ADM instances. For the maximum itera-
tion value and the iteration number of 95% level (see the first
two cells of the third column), the standard deviation of the
differencewas 5.7 and 2.5 times higher than the absolute aver-
age difference, respectively. In addition, in all the experiments
where the RPM failed to achieve 95% iteration value, the
NIMBUS method succeeded, and vice versa. In other words,
the differences in those methods’ performance are sensitive
to the parameters of the ADM’s steady preference model.

The above observation sheds light on the issue of selecting
an interactive method. It appears that even if a problem
instance and a class of steady preference models are given,
there is not enough information to conclude which method is
better. The recommendation onmethod selection may depend
on the parameters of the preference model. This dependence
undermines the possibility of universal recommendations,

5Since the maximum iteration value in ten iterations was, on average,
similar for both methods, we needed to test if this difference was sig-
nificant. We have tested the hypothesis that this indicator has the same
statistical distribution for both methods using the nonparametric test by [42].
This hypothesis was rejected with the confidence level of 98.9%. For the
remaining indicators, the confidence of rejecting analogous hypotheses was
much higher (the values of p-statistics for this test were lower by orders of
magnitude).
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TABLE 1. Comparison of the reference point and NIMBUS methods in
100 experiments.

suggesting that it may be necessary to select an interactive
method for each DM.

One can look for patterns in the dependence between the
preference model parameters and methods’ performance by
conducting experiments, where parameters change system-
atically. As an example, we set6 the value of α3 to 1, and
varied α1 and α2 independently from 1.5 to 2.5 with step size
0.2. For each of the 36 resulting parameter vectors, we ran
the solution process with both the RPM and NIMBUS in the
sameway as in the former series of experiments. The tables in
Appendix II present the main performance indicators depend-
ing on the parameter values: the maximum iteration value
achieved in the first ten iterations (accuracy) and the itera-
tion number, where a 95% iteration value has been achieved
(convergence speed). We can notice that better performance
of both methods in terms of both indicators was achieved
for the lowest value of α1 as well as low ratios between
α1 and α2. However, the combinations of parameter values
where each method demonstrated good performance did not
completely coincide. In terms of accuracy, good performance
of the RPM was also achieved for some combinations where
α2 ∈ {0.7, 0.9}, and good performance of the NIMBUS
method was also achieved for α1 = 1.5 and 0.7 ≤ α2 ≤

1.3. Interestingly, for the combinations α1 ∈ {1.3, 1.5} and
α2 = 0.5, despite the RPM had better performance in terms
of accuracy, it had a bad performance in terms of convergence
speed as the iteration value of 95%was not reached in 25 iter-
ations. Summing up, the influence of parameters of the value
function on methods’ performance does not look arbitrary
but demonstrates some patterns. The analysis of such patterns
could be utilized for predicting methods’ performance based
on parameter values.

Let us note that we must judge the fairness of comparing
methods individually for various experimental settings. For
example, one must decide whether it is fair to conduct the
same number of iterations (knowing that different methods
may need different amounts of computations per iteration).
Alternatively, one can apply the same number of function

6We do not need to vary the parameter α3 since the value function
with parameters (α1, α2, α3) is equivalent to the function with parameters
(α1 + δ, α2 + δ, 1) where δ = 1− α3.

evaluations or require a similar amount of information from
the ADM. For example, due to the special treatment of the
initialization phase, the NIMBUSmethod derived fewer solu-
tions in the first iteration than the RPM. We can consider
the amount of cognitive load set on the DM as a ‘‘common
denominator’’ for establishing the equality of experimental
settings for human DMs. In the case of ADMs, we can
estimate corresponding information by the size of the solution
pool.

V. CONCLUSIONS
The concept of reference points is widely used for repre-
senting preference information in interactive multiobjective
optimization methods. The class of reference point-based
methods is important from theoretical and practical points
of view but lacks comparative studies. We have proposed an
approach called an ADM to enable comparing interactive ref-
erence point-based methods. One can apply it for preliminary
comparison of methods of this class before involving a human
DM. The transparent description of the principles underlying
the ADM’s operation and a ready-to-use implementation in a
widely used language (Python) shouldmake our development
easy and attractive to apply.

We demonstrated how one can apply the ADM with some
preliminary experiments and that it can exhibit complex
operations and help draw nontrivial conclusions. For exam-
ple, we were able to quantify how sensitive differences are
between methods’ performance to parameters of the ADM.
It appears that the recommendations onmethod selectionmay
require adjustment in each case. We can establish the fairness
of method comparison in terms of the number of solutions
provided to the ADM in the same number of iterations.

The current implementation of our approach is not suitable
for comparing interactive methods where Pareto optimal
solutions are approximated. If different elements of the solu-
tion pool can dominate each other, then the premise that
any newly derived objective vector belongs to the potential
region is violated. Algorithm 1 of updating the potential
region should be revised to adapt our approach for comparing
approximate methods. In the long run, it is desirable to com-
pare methods from different classes (using different prefer-
ence types), employing other ADM approaches calibrated to
ensure fairness of comparing methods.

As said in the introduction, we have not intended the ADM
to replace human DMs in tests of interactive methods fully.
Due to the broad spectrum of human behaviors, evaluating the
accuracy of the ADM should be done in the framework of a
multidisciplinary study involvingmany experiments with real
DMs in various settings. That would pave the way for further
improvement of the proposed approach.

APPENDIX I
GENERATING NIMBUS-RELATED PREFERENCE
INFORMATION FROM A GIVEN REFERENCE POINT zasp

First, it is natural to select the current solution in iteration j
from among those members of the solution pool which are
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TABLE 2. Maximum iteration value in 10 iterations (values that are
greater than 98% are highlighted in bold).

TABLE 3. Iteration number of 95% level (the dash indicates that 95%
level has not been reached in 25 iterations).

the most preferred (according to the steady part):

z̃ ∈ C(Ŷ j).

Secondly, each objective function is assigned to one of the
five classes by consecutively applying the following rules
(once an assignment is done, the remaining rules do not
apply):

• if zaspi is close to z?i , then assign i to I
<,

• if zaspi is close to znadi , then assign i to I�,

• if zaspi = z̃i, then assign i to I=,

• if zaspi < z̃i, then assign i to I≤ and set γi = zaspi ,

• if zaspi > z̃i, then assign i to I≥ and set εi = zaspi .
The proximity of zaspi to z?i or znadi mentioned in the first
two rules means that the absolute difference between zaspi
and the corresponding value is less than 1% of the difference
znadi − z

?
i .

Observe that due to the method of defining preference
information (see Subsection III-C), a reference point zasp

generated by the ADM always belongs to the interior of the
potential region. It follows that zasp never dominates nor is
dominated by any Pareto optimal objective vector. In this
case, it is easy to see that the classification obtained as above
is always feasible.

APPENDIX II
INDICATORS OF METHOD PERFORMANCE DEPENDING
ON ADM PARAMETERS
In both Tables 2 and 3, the row and column headers represent
the values of α1 and α2, respectively. Each cell contains two
values of the performance indicator obtained in the experi-
ment with the corresponding parameter vector (α1, α2, 1): the
value for the RPM above the value for the NIMBUS method.
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