
Received October 7, 2021, accepted October 19, 2021, date of publication October 27, 2021, date of current version November 4, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3123529

Real-Time Depth Video-Based Rendering for
6-DoF HMD Navigation and Light Field Displays
DANIELE BONATTO 1,2, SARAH FACHADA 1, (Student Member, IEEE), SÉGOLÈNE ROGGE 2,
ADRIAN MUNTEANU 2, (Member, IEEE), AND GAUTHIER LAFRUIT 1, (Member, IEEE)
1Laboratory of Image Synthesis and Analysis (LISA), Université Libre de Bruxelles, 1050 Brussels, Belgium
2Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussels, 1050 Brussels, Belgium

Corresponding author: Gauthier Lafruit (gauthier.lafruit@ulb.be)

This work was supported in part by the Fonds de la Recherche Scientifque - FNRS, Belgium, project ColibriH, under Grant 33679514; and
in part by the project HoviTron that has received funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement N 951989.

ABSTRACT This paper presents a novel approach to provide immersive free navigation with 6 Degrees of
Freedom in real-time for natural and virtual scenery, for both static and dynamic content. Stemming from
the state-of-the-art in Depth Image-Based Rendering and the OpenGL pipeline, this new View Synthesis
method achieves free navigation at up to 90 FPS and can take any number of input views with their
corresponding depth maps as priors. Video content can be played thanks to GPU decompression, supporting
free navigation with full parallax in real-time. To render a novel viewpoint, each selected input view is
warped using the camera pose and associated depth map, using an implicit 3D representation. The warped
views are then blended all together to generate the chosen virtual view. Various view blending approaches
specifically designed to avoid visual artifacts are compared. Using as few as four input views appears to be
an optimal trade-off between computation time and quality, allowing to synthesize high-quality stereoscopic
views in real-time, offering a genuine immersive virtual reality experience. Additionally, the proposed
approach provides high-quality rendering of a 3D scenery on holographic light field displays. Our results
are comparable - objectively and subjectively - to the state of the art view synthesis tools NeRF and LLFF,
while maintaining an overall lower complexity and real-time rendering.

INDEX TERMS Virtual reality, stereo image processing, stereo vision, free viewpoint navigation, reference
view synthesizer, real-time view synthesis.

I. INTRODUCTION
Rendering a scene from any viewpoint has a long his-
tory, starting from the seminal implementations of Quick-
Time VR [5] a quarter of a century ago, followed by
the Free-Viewpoint TV activity [6] that culminated into
what is called today MPEG Immersive Video (MIV), soon
to be promoted to an MPEG-I standard (‘‘I’’ stands for
‘‘immersive’’) by end-2021. However, 6 degrees of freedom
(6-DoF) navigation in natural content has stagnated due to
inherent difficulties, going from the capture of multiview
content to depth estimation and view synthesis. A robust
framework enabling high-quality seamless navigation in nat-
ural scenery is yet to be created.

View generation for natural scenery has recently been
revived with the advent of virtual reality (VR) applications

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiachen Yang .

and light field displays [7]. Manymedia industries are assidu-
ously working to expand the usability of such technologies to
a wider public. In this context, novel view synthesis methods
are needed to allow rendering of multiview content to the con-
sumer directly, seamlessly navigating through such content in
support of 6-DoF VR, to substantially reduce bandwidth in
streaming applications, and to enable high-quality 3D render-
ing on light field displays. Such view synthesis methods are
the missing technological component to enable a large-scale
deployment of 6-DoF virtual reality and glasses-free 3D dis-
plays at affordable price.

Various approaches can be followed to render natural
scenery from any viewpoint in a static or dynamic context,
using a dataset acquired with fixed camera poses.

For static scenes, explicit 3D models can be obtained
thanks to structure from motion, by triangulation of matched
features across tens, hundreds or thousands of input
images [8]–[11]. However, rendering novel viewpoints from

146868 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-6502-5354
https://orcid.org/0000-0003-1667-8177
https://orcid.org/0000-0002-5734-9583
https://orcid.org/0000-0001-7290-0428
https://orcid.org/0000-0002-2349-1936
https://orcid.org/0000-0003-2558-552X


D. Bonatto et al.: Real-Time Depth Video-Based Rendering for 6-DoF HMD Navigation and Light Field Displays

FIGURE 1. Capturing to rendering pipeline. 1. MPEG-I input sequences. 2-3. Depth generation (Section III-B), 4. Multi-stream encoding. 5. Restricted
bandwidth (Oculus Quest 2), depth images take less bandwidth/bitrate than RGB images. 6-7. Decoding (Section III-B3). 8. Quality evaluation for virtual
reality. Steps 1-4 can be done offline in a pre-processing step, but shall be sufficiently rapid (minutes). Steps 5-8 can be used for an embedded HMD.

a reconstructed scene is a difficult photo-realistic task, due
to the mesh irregularities and low details. Point-cloud (PC)
splatting [12], [13] can improve the quality of the obtained
rendering but still lacks the photo-realism of image-based
rendering (IBR) methods.

IBR techniques use the color values of the acquired
images to recover the light rays appearance. The light field
parametrization [14] stores the light rays localisation and
orientation instead of the scene structure, which remains
implicit for rendering. Similarly, most IBR methods use an
implicit representation of the scene geometry: depth maps
for depth image-based rendering (DIBR) [15] or an explicit
one as in the geometric proxy used in the Unstructured Lumi-
graph Rendering (ULR) approach [16]–[18] and Stable View
Synthesis [19].

More recently, Google has brought IBR back to the
stage with a slow (several minutes per frame) but highly
photo-realistic deep learning stereo algorithm [20]. Another
light field approach, also by Google, runs in real-time and is
suited for VR but at the cost of expensive hardware, heavy
preprocessing and custom compression [21]. Both methods
offer a 6-DoF experience limited around the acquisition point.
High-quality rendering results can still be obtained with
sparse inputs using preprocessing steps [22]. The limitations
that this method encounters are similar to those relying on
light fields [14], that is, ghosting artifacts and limited motion.

Closer to DIBR, Multiplane Images (MPI) reach fast
high-quality results [23]–[26]. Each input image is separated
into sparse images associated to a depth value, and those
sparse images are warped to novel viewpoints before being
merged.

In this paper, we also compare our DIBR results to Local
Light Field Fusion (LLFF) [25], which uses deep learning
to estimate the implicit geometry and the blending of the
reprojected images.

Deep learning is indeed omnipresent in view synthe-
sis, adapted to specific problems, for example interior
images [27], [28], using a geometry based approach to syn-
thesize indoor scenes by generating a global mesh and refin-
ing it with local depth map estimations. An original use
of deep learning is made in NeRF [29], as the network is
trained per dataset to estimate a volumetric representation
of the scene. Though closer to point-clouds representa-
tions than IBR, volumetric rendering performs incredibly
well in rendering natural scenes [29], [30]. In this scope,
we also compare our results to NeRF [29]. Stable View
Synthesis [19] uses deep learning to encode the input

FIGURE 2. DIBR representation. The input images and their corresponding
depth maps are used to render a new image anywhere in 3D space.

images as feature vectors on a surface of a geometric
proxy.

Due to the various trade-offs between those techniques
and the necessity to render video content in real-time,
we have chosen to build on Depth Image-Based Rendering
(DIBR) [15], [31]–[34] which -as shown in the present paper-
offers a fast and accurate approach to render synthetic and
natural scenes at high-quality, in real-time, directly on a head
mounted display (HMD) by means of efficient usage of the
available computational resources. At the same time it is also
suitable for low bandwidth applications such as embedded
HMD, where the data to be transmitted consists of the RGB
images and their associated depth maps (efficiently encoded
using image atlases [35], [36]) while the processing is done
within the embedded GPU (steps 5-8 in Figure 1).

In this paper we also present an approach to accelerate our
DIBR algorithm on the GPU taking several input views in any
configuration, to render a scene in a HMD and/or a light field
display. In contrast to many DIBR algorithms [20], [31], [32],
taking only two views as input (left and right as in Figure 2),
the number of input views in our approach is unlimited (and
we show high-quality results with only 4 input views). This
allows to address more disocclusions, following the exam-
ple of light fields which sample the plenoptic function in
many positions. At the same time, our approach permits a
wider baseline between the input views than in the light field
approach, hence covering a larger field of view in 6-DoF.
To achieve this goal, we started from the MPEG-I Reference
View Synthesizer (RVS) source code [37] we co-developed
and distributed under BSD license,1 and implemented
proprietary shaders [38] in OpenGL to synthesize views in
real-time.

1https://gitlab.com/mpeg-i-visual/rvs

VOLUME 9, 2021 146869



D. Bonatto et al.: Real-Time Depth Video-Based Rendering for 6-DoF HMD Navigation and Light Field Displays

FIGURE 3. View synthesis in HMD resolution, using 8 input views for (a)-(c) and only 2 for (d), tested on four datasets: (a) Museum, (b) Toystable,
(c) Classroom, (d) Fencing.

Even though our approach does not restrict the number
of input views, it generates very pleasing visual results even
with a very limited number of views (one to four views). This
is essential for enabling broad deployment of 6-DoF VR on
common GPU hardware. Some view synthesis results of the
proposed method are shown in Figure 3.

Our main contributions presented in this paper are:
• A novel methodology for virtual view synthesis using
a small number of input views and achieving real-time
rendering on common hardware.

• Achieving high-fidelity and robust free-viewpoint ren-
dering for 6-DoF VR applications, including large
step-in (forward) and step-out (backward) movements
and full motion parallax.

• Correctly handling large baseline inputs, increasing the
navigation range and overcoming limitations caused by
slow computations and expensive hardware.

• Handling classical perspective images as well as
equirectangular images, both as input and output,
supporting many different flavors of 6-DoF applica-
tions: point and navigate on a smartphone, stereoscopic
immersive viewing on a HMD, light field display, etc.

Applications of the proposed view synthesis algorithm
are presented on a HMD device (real-time free navigation),
on a light field Super-MultiView 3D Holographic screen
(light field rendering) and on holographic stereograms
(holography).

II. RELATED WORK
A. ADVANCES IN DEPTH IMAGE-BASED RENDERING
Depth Image-Based Rendering [15], [33] is a technique
to render a view from a novel/virtual viewpoint using a
number of input images (natural or synthetic content) and
their associated depth maps (see Figure 2). This technique
lying between Image-Based-Rendering and mesh reconstruc-
tion takes advantage of the geometric information in the
depth maps while avoiding artifacts due to mesh rendering
(Figure 4). It has been successfully used for free navigation in
6-DoF for custom built rigs [41], [42] and 360◦ video content
of static scenes [43]. In essence, to create a virtual view

from existing camera views, the pixels in the available views
are shifted proportionally with the pixels’ disparity. This is
the case of simple linear camera setups with parallel optical
axes. In general, for an arbitrary camera setup, a reprojection
should be applied for each view, as explained in Section III-B.

Most of the DIBR algorithms which are implemented on
CPU take several seconds to minutes to render just a sin-
gle frame [32], [34]. Several GPU implementations [31],
[34], [44] have been proposed in an attempt to make DIBR
real-time using solely one input view, but limiting the naviga-
tion range. Using stereo views increases the possible viewing
area and navigation range but the high overlap between the
images is still associated with disocclusions. A solution is to
add more input views with complementary content. However,
increasing the number of views severely increases the compu-
tational complexity and impairs attempts to achieve real-time
rendering.

Real-timeDIBRhas already been used in aHMD formixed
reality [45] to warp the filmed background to the eye posi-
tion, a few centimeters away. ULR [17] renders high quality
light-fields in real-time using a geometric proxy instead of
the depth maps to correctly blend several input views. Video
rendering for non-static scenes has been recently addressed
in [22], which enables light field reconstruction from a sparse
set of views and omnistereo real-world video rendering on
VR devices. However, as stated in [22], the circular camera
rigs used for creating omnistereoscopic videos are not suited
to the popular and commonly available multiview stereo
approaches. Hence, DIBRmethods cannot be accommodated
for such circular camera rigs, as robust depth estimates are
difficult to generate [22]. DIBR video approaches have been
explored in [6], but no solution has been provided to render
dynamic scenes in real-time without preprocessing. Critical
challenges remain unsolved: multi-camera systems are hard
to synchronize on a frame basis, making the depth estimation
difficult. Moreover, the virtual views corresponding to any
head pose need to be rendered in a short time after the depth
map generation.

A different approach to address the disocclusions includes
inpainting [46], [47] or using superpixels for small

146870 VOLUME 9, 2021



D. Bonatto et al.: Real-Time Depth Video-Based Rendering for 6-DoF HMD Navigation and Light Field Displays

FIGURE 4. Visual comparison between RVS (4 and 8 input views) on zoomed details of Toystable dataset [2] at resolution 1920× 1080 and mesh
reconstruction (180M triangles, and 1M Triangles, decimated) with associated ground truth. The mesh reconstruction was created with the
CapturingReality software [39] using around 500 pictures [40] and is rendered using Phong shading.

disocclusions [48]. Both techniques suffer from several limi-
tations. On the one hand, inpainting relies on diffusion [49],
patch-based methods [50] (traditional) or deep learning [51].
Traditional methods give inconsistent results when employed
in video or need long computations [52] while deep learning
methods have to be trained on similar video content in order
to obtain satisfactory results. On the other hand, superpix-
els are computationally expensive and improve the results
only in very particular cases (when performing navigation
toward the scene, also called step-in). For real-time appli-
cations, we consider that increasing the number of input
views [53], [54] while ensuring that the scene is captured by a
large number of cameras from different locations, is the most
parallelizable method to limit disocclusions. While the time
and memory consumption of using a higher number of input
views can be mitigated in addition to the disocclusions issues,
the generation of high-quality visual results depends directly
on multiple view blending and on the estimated depth maps
quality.

Blending synthesized images to obtain the final virtual
view may create artifacts due to color and depth inconsisten-
cies, or blurry effects due to calibration issues. The artifacts
can be minimized by capturing the scene with controlled light
and applying color correction algorithms. In natural scenes,
even with Lambertian surfaces and controlled light, color
correction is often needed, as the cameras may have color
inconsistencies. [55], [56] devised methods to select the most
correct color between the views, and robust color correction
in multi-camera systems can be obtained for both narrow [57]
and large baselines [58].

Regarding depth quality, while depth inconsistencies can
be avoided by multi-pass rendering [59], it is preferable to
obtain high-quality depth maps as prior. In natural scenes,

depth maps cannot be perfectly acquired. When depth maps
are obtained using depth sensors, they suffer directly from the
sensor’s noise, influencing dramatically the severity and num-
ber of artifacts in the final rendering. Such depth maps have
to be denoised and super-resolved as their spatial resolution
is typically lower compared to the ones estimated from RGB
sensors [60], e.g. via stereo matching. When the depth maps
are computed using multi-stereo matching algorithms [61],
the quality is bounded by the algorithm. Color corrected
images give more robust results. In our approach, we employ
multi-stereo matching algorithms for real scenery, as detailed
next.

B. DATASETS AND ASSOCIATED DEPTH MAPS
Throughout this paper, we illustrate our methods using six
representative datasets with categorical difficulties to explain
our approaches and experimental results. Hence, we intro-
duce datasets and the related tool to acquire their depth
maps. The first one is the publicly available MPI-Sintel
dataset [62], containing 23 sequences of 50 frames of syn-
thetic videos and their associated depth maps. As synthetic
content, the generated depth maps are perfect, but each
sequence only has one moving camera. The other datasets are
originating from the MPEG-I community [63] that develops
compression schemes for immersive video, along with pre-
and post-processing tools, like depth estimation and view
synthesis [64]. Classroom is a synthetic content rendered
from the Blender sample scene classroom in equirectangu-
lar projection [4]. Museum [3] is a synthetic composition
of green-screen captured persons with a background into
equirectangular images covering 180◦. The other datasets are
natural scenes, with imperfect depth maps. Toystable is a
static scene [1], [40] with two sets of depth maps, acquired

VOLUME 9, 2021 146871



D. Bonatto et al.: Real-Time Depth Video-Based Rendering for 6-DoF HMD Navigation and Light Field Displays

FIGURE 5. View synthesis for natural video content with eight input views. (a) Painter, courtesy of InterDigital. (b) Fencing, courtesy of Poznan
University of Technology.

with Kinect v2 and estimated by stereo matching. It contains
three camera arrays capturing the scene from three distances:
55cm (Plane A), 85cm (Plane B), 105cm (Plane C). Those
datasets are shown in Figure 3. Painter [65] and Fencing [66]

are multi-video datasets acquired from camera rigs and are
shown in Figure 5.
For the natural datasets, to generate high-quality depth

maps, we used MPEG’s Depth Estimation Reference

146872 VOLUME 9, 2021



D. Bonatto et al.: Real-Time Depth Video-Based Rendering for 6-DoF HMD Navigation and Light Field Displays

Software (DERS) [67], which allows spatially accurate and
temporally coherent depth maps in dynamic scenery.

III. PROPOSED APPROACH
A. OVERVIEW
The proposed method achieves high-quality view synthesis
while keeping a low bandwidth for virtual reality applica-
tions. To synthesize novel views, we adapt DIBR into the
OpenGL pipeline. DIBR consists in remapping an image to a
new viewpoint as a function of its pixels’ depth. In our design,
we deproject the inputs to the 3D space and reproject them to
the new viewpoint (Figure 2). The deprojected image forms
an implicit mesh, where adjacent pixels are automatically
linked (Figure 8). Unfortunately, the faces located on disoc-
clusions are then elongated, which impacts on the quality of
the rendered views. One of the key challenges of our approach
is to warp and combine the input images to keep only the best
part of each of their associated mesh, in real-time.

The important steps of our high-quality view synthesis
approach are summarized in Figure 1. Steps 1-4 (acquisition,
depth map creation and encoding) are performed offline as
a preprocessing stage. Step 5 (loading the images/videos
on GPU) is the transmission bottleneck for embedded
applications with dynamic content, hence we perform a com-
pression using the GPU hardware before transmitting the
information to the decoder and renderer. Steps 6-8 are imple-
mented in this proposed work, necessarily being real-time for
a live experience.

We now describe the process to render one image (a frame
in a HMD or a view for a light field display). More details
about those steps will be given in Sections III-B1 and III-B2.
Each input view is warped following the target camera pose

before being blended with the other views (see Figure 6).
In the first step, to avoid small holes in the final output
image, each triplet of adjacent pixels is linked together to
obtain an implicit triangular mesh (see Figure 6). The tri-
angles are then warped to the target virtual view position
using the corresponding depth map and are finally rasterized
with their associated colors. The pixels detected as lying on
disocclusions are discarded and remain black in the final
result if no other input image contains information to fill them
in (Figure 7).
This method avoids artifacts around abrupt depth

variations in the scene (disocclusions), without being as
time consuming as inpainting or segmenting the image in
superpixels [48], [68]. To detect the triangles lying on disoc-
clusions (or outward facing), a test is performed on a quality
criterion q to avoid elongated triangles, empirically defined
as follows:

q =

{
0 if L > T − 1 Pixels or En · EC ≤ 0
T − L

(1)

where L is the longest side of the triangle, T a threshold,
EC the target camera viewing vector and En the triangle’s nor-
mal. This quality describes only the size of the triangles.
Elongated triangles have then a small quality corresponding

FIGURE 6. Pipeline for rendering one frame. (a) The input images are
iteratively warped and blended to render the current frame. (b) Warping
of an input view. (c) State of the Framebuffer Object (FBO) at the
beginning of a blending phase. The grey cells are the overwritten textures
after the blending phase. This double buffering architecture is at the core
of real-time rendering.

FIGURE 7. Adjacent pixels of an input image (left) are grouped into
triangles independently of their depth (center) before being reprojected
to their new image location (right). Triangles with a side longer than
T = 15 pixels are detected as lying on a disocclusion and are discarded
(plain color).

to visually unpleasant results. Triangles with zero quality are
discarded. Using normalized coordinates results in removing
the same pixels at any resolution. However, an artifact visible
at one resolution could be ignored at a lower resolution,
depending on the user’s appreciation. A value of T = 15
pixels has been chosen empirically for the Oculus Rift’s
resolution (1200 × 1080 per eye) and should be adapted
proportionally to the target image’s resolution.

For pixels where two triangles are superposed, a test pri-
oritizes the one with the lowest depth d ∈ [dmin, dmax] given
by the input depth map and highest quality q. Empirically we
found that choosing the triangle with the maximumweightw,
according to:

w =
q
d3

(2)

was satisfying. This depth test prioritises foreground objects
and avoids triangles stretched by the disocclusions. The
power of 3 on d counterbalances the impact of q as back-
ground triangles tend to remain small and thus have higher
q values than foreground triangles. If there is no triangle
with a weight w > 0, the pixel is left black. The weight
w is hence based on the depth and the occlusion locations
in order to prioritize foreground objects over background
ones, and the background over disocclusions, overcoming

VOLUME 9, 2021 146873



D. Bonatto et al.: Real-Time Depth Video-Based Rendering for 6-DoF HMD Navigation and Light Field Displays

visual artifacts. This same weight is used during a second
phase, blending the obtained synthetic images from several
input views with a weighted mean to get the final result,
as further explained in the following section III-B2. Compar-
isons with other methods are given in Section IV-B.
Finally, a dynamic loader has been designed to load the

static content (PNG and YUV) as well as video content on
Video RandomAccess Memory (VRAM). It uses one Frame-
buffer Object (FBO) as in Figure 6, which avoids unnecessary
waste of texture memory in the GPU. The video decoder
exploits the graphics card with CUDA to decompress the
video stream from H.256 to the rendering pipeline with the
corresponding frames, before displaying them in the HMD
(more details about this are given in Section III-B3).

B. IMPLEMENTATION
This section describes our algorithm in more details: some
preliminary technicalities are presented, followed by the
description of our real-time warping and blending shaders,
the video decoding and finally the view selection. More
specific implementation details can be found in [69]. The goal
of our implementation is to render high-resolution stereo-
scopic views at high frame-rates (i.e. as high as 90 FPS) in
order to create a comfortable immersive experience without
cyber-sickness.

General DIBR algorithms need pre-computed depth maps
associated with color images, as well as the cameras’ intrinsic
and extrinsic matrices for each input view. This information
serves to deproject the pixels of the input views into 3D space
before projecting them back to the new virtual viewpoint.

The inputs of our view synthesis approach are perspective
or equirectangular color images, including their correspond-
ing depth maps and the input camera parameters (location,
rotation, focal length and principal point). All the depth maps
are converted from a 8, 10 or 16 bit representation, depending
on the dataset, to the range [dmin, dmax]. In principle, the
method can take an arbitrary number of input views, but their
number is limited by the GPU memory, its bandwidth and
power.

Whilst usual techniques mesh the depth maps before repro-
jection or use splatting on a pixel basis, in this work the
adjacent pixels are implicitly meshed by grouping them into
triplets, creating triangles in the input images that will be
filled by the OpenGL rasterization stage, avoiding any cracks
in the image, as shown in Figure 7. Moreover, exploiting the
rasterization associated to triangles in the OpenGL fragment
shaders yields high accelerations for real-time performance,
cf. Sub-section III-B1.
To synthesize one frame in the HMD, we use two shaders

per input view, as shown in Figure 6. The first shader warps
an input view to the target view, using the depth images. The
second shader blends all the resulting warped views together
(stored as textures) into the final virtual view by calculat-
ing their weighted mean. Those two shaders are detailed
in Sections III-B1 and III-B2. The rasterization process
(implemented using OpenGL) makes possible to fill in

real-time some disocclusions and ‘‘cracks’’ that can appear,
especially in step-in navigation scenarios.

1) DIBR WARPING SHADER
In the first shader, which performs the warping, the scene is
deprojected and 3D transformed to fit the target view’s pose,
before being projected back to the target view using the clas-
sical OpenGL frustum adapted to the HMD camera matrix,
or projected according to the perspective or equirectangular
target camera.

The shader receives as input the depth map and an implicit
mesh containing h × w × 2 triangles formed by oriented
triplets of adjacent pixels (see Figures 6b and 8). The warp-
ing is performed during the vertex pass. The weight w
(Equation 2) used later for rasterization and blending is
computed during the geometry shader pass. Eventually, the
fragment pass performs the rasterization (see Figure 6b).

FIGURE 8. Warping shader effect. The triangles formed by three adjacent
pixels (left) are deformed in function of the associated depth to fit the
new projection (right).

Based on the implicit mesh of the image, we can detect
pixels that are to be discarded. Those pixels are the ones lying
on disocclusions or with outward facing directions. When a
triplet of pixels actually lies on a disocclusion, the triangle
becomes very elongated (see Figure 7), creating an artifact.
In those cases, they are discarded in the geometry shader pass
if one of their sides is longer than T pixels as given in Eq. 1
or the normal is not facing the camera (q = 0). After this test,
the remaining projected triangles are associated to a quality q
for the rasterization and the blending (Equation 1).

In the fragment shader, a depth test is enabled to deal with
occlusions. It becomes necessary when two pixels’ triplets
are warped to the same place, for example when a foreground
object occludes the background, due to parallax motion. Sim-
ilarly to the blending shader of Section III-B2, the chosen
color does not only depend on the depth d but also on the
quality q to avoid long-sided triangles. The depth test is hence
performed on the agglomerated value d3

q (maximization
of Equation 2).

In our implementation, the value of d is normalized for
OpenGL’s depth test, knowing the highest possible depth d∗

for the scene. We have chosen d∗ = 3 × dmax as a default

146874 VOLUME 9, 2021



D. Bonatto et al.: Real-Time Depth Video-Based Rendering for 6-DoF HMD Navigation and Light Field Displays

FIGURE 9. View synthesis from five input views using various qualities and weights. (a) Using only the depth to rasterize and blend the images.
(b) Using the quality and depth but not the threshold of T pixels. (c) Using the quality as defined in Equations 1 and 2.

normalization parameter, where dmax is the maximum depth
value in the input views, in order to allow reasonable step-out
to the user before clipping the scene.

The pixels on disocclusions are thus discarded, prevent-
ing a ‘‘halo’’ to appear around foreground objects having
large depth variations between them and the background
(see Figure 9).

2) BLENDING SHADER
The blending shader blends the warped input images together,
exploiting a specially designed Framebuffer Object (FBO)
(see Figure 6c). This FBO stores the current input view and
the previously blended ones as one texture within a ping-pong
buffer (grey cells) to limit the memory usage.

The final color of a pixel depends on the shape of the trian-
gles it lies in, and on their associated depths. The following
formula prioritizes foreground objects:

C =
1
W

n∑
i=1

wi × Ci (3)

where C is the final color, Ci the color of image i, wi the
weight of this pixel in image i as defined in Equation 2 and
W =

∑n
i=1 wi is a normalization factor. Figure 9 shows the

impact of using the quality associated with the depth map
instead of simply blending the warped images prioritizing
foreground objects. One notes that, in contrast to the depth
test performed in the warping shader, the choice of the final
color is not based on a hard maximum selection, which
avoids color and contour artifacts such as described in [23]
and [64]. Instead, the color is blended using a weight that
prioritizes foreground (low values of d) and small triangles
(high values of q), in order to avoid artifacts like those in
Figure 9. A soft blending between the warped images can
lead to semi-transparency if some of them contain back-
ground information. However this effect is attenuated as the
foreground is already selected by the hard threshold of the
warping pass. Eventually, the final result is transferred to
the output display framebuffer.

Blending Quality Analysis: Four kinds of artifacts can
be associated with the quality definition. First, temporal
inconsistencies in discarding triangles lead to popping arti-
facts (appearing and disappearing triangles). Second, a qual-
ity depending on depth map values suffers of quantization:
non-uniform quality maps lead to rough blending across the
views (quantization artifacts). Third, disocclusions occurring
in the background are usually less noticeable than large disoc-
clusions in the foreground, due to smaller parallax; discarding
triangles of distant disocclusions is worse than keeping the
little elongated triangles (background). Last, large step-in
toward an object dilates the triangles, which should never-
theless be kept: discarding it will create holes, transparent or
even disappearing objects (step-in artifact).

As explained in the overview, we chose a weight based on a
quality computed following Equation 1 (discarding elongated
triangles). This empiric quality depends on the target view
position relative to the inputs, which may cause popping arti-
facts when disocclusions or great zooms occur. Nonetheless,
with a sufficiently high number of input images (e.g. four),
those poor quality pixels are replaced by the information
available in other input images. Those artifacts are indeed
the most visible in the supplementary videos of MPI-Sintel
dataset [62], which uses only one input image.

To overcome those artifacts, different qualities have been
explored, based on the depth differences between adjacent
pixels, and the ratio over the lengths of the sides of the
triangle. Visual results and examples of quality maps are
given in Figure 10 while Table 1 provides the advantages and
flaws of those methods.

As shown in Figure 10a, a first approach takes into con-
sideration the depth variation between the vertices of the
triangles to discard, and is stable in step-in scenarios and
immune to popping and depth map quantization artifacts,
as the triangles do not depend on the position of the viewer.
However, in the background, toomany triangles are discarded
as the depth map varies abruptly, but motion parallax is suffi-
ciently small to avoid artifacts. Moreover, at the foreground,

VOLUME 9, 2021 146875



D. Bonatto et al.: Real-Time Depth Video-Based Rendering for 6-DoF HMD Navigation and Light Field Displays

FIGURE 10. Visual comparison of the quality maps for blending with zoomed details in Museum dataset [3]. The color images are blending four warped
input views and the displayed quality maps in false colors are extracted from the first input view. (a) Cutting triangles with high depth variations.
(b) Cutting triangles facing perpendicularly to the input camera. (c) Cutting triangles with a side larger than T pixels. (d) Cutting triangles with elongated
shapes. The head and foreground sculpture illustrate the advantage of a metric detecting disocclusion ((a) and (b)). The background sculpture and legs
illustrate the advantage of a metric discarding elongated triangles ((c) and (d)). The details are from close to the camera to far away objects, the last
column has colors remapped for visibility.

146876 VOLUME 9, 2021



D. Bonatto et al.: Real-Time Depth Video-Based Rendering for 6-DoF HMD Navigation and Light Field Displays

TABLE 1. Blending coefficients advantages/drawbacks depending on
which quality they are based on - Popping: Resistant to popping artifacts
in VR (due to target position dependant quality metric), Depth map: not
sensitive to depth map quantization, Background: Keeps borders of
background objects, Step-in: No dilation artifact in large movements
toward the scene. Figure 10 illustrates the effect of each quality metric.

the triangles are not discarded due to the opposite problem.
A variable threshold could be devised to control this behavior.

A second approach is to mark triangles which are per-
pendicular to the input viewing position as disocclusions
(cf Figure 10b). This technique is still stable against popping
artifacts and step-in deformations as it is independent of the
viewpoint and it performs slightly better on foreground and
background than the previous one. However, it now suffers
from depth map quantization artifacts, visible in Figure 10b.
Qualitatively, it is nevertheless a good tradeoff between the
techniques.

Discarding triangles with an elongated side in the synthe-
sized view of Figure 10c is resistant to depthmap quantization
and background issues: the background becomes blurrier
without inpairing the realism of the scene. However, popping
artifacts appear as the quality maps depend on the viewing
position.

Finally, discarding triangles with elongated shape
in Figure 10d (high ratio of longest side over shortest side) is
similar to the previous method. It performs better in step-in,
as zoomed triangles can have a large side while maintaining a
regular shape. But, again, small disocclusions with low paral-
lax of the background may be discarded as the corresponding
triangles are elongated.

In general, finding the correct quality is a hot topic in the
view synthesis field. For instance, LLFF [25] or Free View-
Synthesis [70] rely on learning to infer the blending weights.
Moreover, at the time of writing, MPEG-I is testing other
weights for the blending of the images, based on the rays’
direction similarity [64], [71].

In summary, all our proposed qualities have trade-offs and
are suited for different navigation types (large step-in or win-
dowed navigation) and scene geometries (depth range). They
are all run-time efficient and do not require offline processing,
which is an advantage to achieve real-timemulti-view synthe-
sis. In the remainder of the paper, comparisons are made on
images that are synthesized using equation 1, corresponding
to the quality based on the triangle side.

3) REAL-TIME VIDEO DECODING AND VIEW SYNTHESIS
In this section, we discuss the implementation of our
approach for HMD supporting navigation with full parallax.
Our view synthesizer is able to apply our OpenGL pipeline to
a multi-video input. The input videos are decoded to the input

textures and depth maps in real-time with CUDA. Beside
texture loading at each new video frame, the pipeline stays
unchanged for the synthesis part.

Our video content was initially available in YUV format
where the frames are not compressed. For example, in the
Fencing dataset, 250 frames at 1080p use 741 megabytes
for one YUV color video and 988 megabytes for a 16-bits
depth video encoded in 400 YUV format. This data volume
cannot be transferred to the GPU in real-time due to transfer
bandwidth limitations, nor at once due to limited memory.
For short videos, the GPUmemory can handle uncompressed
video frames, but decompression on GPU becomes quickly
necessary with longer input (e.g. 4 input video streams
of 100 frames with 960 × 540 resolution). While this paper
does not focus on compression, we devised several strategies
to render video content in real-time.

Before loading the videos, in a preprocessing step, the
color and depth content are encoded from YUV420@4k
and YUV400@4k to H.265@1080p formats which results
in compressed video files (several megabytes), with a com-
pression ratio of about 220 for the color content. This is an
important step to be performed, as the amount of data to be
transferred to the GPU can be huge.

Our dynamic loader for video content handles several
scenarios to optimize the data transfers. This includes
multi-pictures (general case, static images), single video with
moving camera, short uncompressed multi-video (raw YUV)
and multi-video inputs. The various decoding behaviours are
shown in Figure 11.

FIGURE 11. Dynamic loading behaviours for video sequences. In red, the
frames which are loaded at the beginning of the application. (a) Single
video with moving camera: each frame is treated as a different input
view, and used when needed. (b) Multi-video (uncompressed): loading
all the color and depth frames at the beginning. (c) Multi-video
(compressed): loading the first frames for all the views and decompress
the following ones when they are needed.

a: MULTI-PICTURES RENDERING (STATIC SCENES)
Static content comes in multi-pictures format. Each input
consists of a color image and a depth map with different
extrinsic matrices. The pictures are loaded in main mem-
ory at the start of the program. For each output frame dis-
played in the HMD, the corresponding textures are sent one
after the other to the FBO for the warping-blending process,
as described in Subsections III-B1 and III-B2.

b: SINGLE VIDEO WITH MOVING CAMERA
The MPI-Sintel dataset [62] is a typical example of a scene
synthesized from successive viewpoints. If this case is treated

VOLUME 9, 2021 146877



D. Bonatto et al.: Real-Time Depth Video-Based Rendering for 6-DoF HMD Navigation and Light Field Displays

FIGURE 12. Sintel Temple Dataset. Left: input frame (frame 1), middle: synthesized frame 49, right: target frame 49. This shows the importance of
view selection among available inputs to minimize dissocclusions artifacts. As the sun is rapidly rising during the movie, we can observe that the
houses’ roofs don’t have the same colors and as this is a movie, the characters moved between frame 1 and frame 49.

as the multi-video case, the user would experience the same
motion as the camera without performing the actual move-
ment. However, to avoid motion sickness in the HMD, it is
preferable to treat each video frame as a single camera with
different extrinsic parameters and leave the user at a static
position. For this reason, the input frames are loaded exactly
as in multi-picture rendering. During the rendering, each
frame is used in the rendering pipeline only when the exe-
cution time corresponds to that frame (see Figure 11a). For
a movie playing at 30 FPS, and the view synthesis running
at 90 FPS, each frame will hence be used three times to
synthesize the view corresponding to the user’s head position,
before going to the next frame. This kind of content leads to
many disocclusions (due to synthesis from one single view),
which depend on the current camera.

c: MULTI-VIDEO STREAMS
Datasets like Fencing [66] or Painter [65] include several
viewpoints on the same dynamic scene, acquired with a syn-
chronized camera rig. However, the VRAM cannot handle
multiple video files and their depth without compression
(unless the videos consist of only a few seconds at low reso-
lution), see Figure 11b. We improved our view synthesizer in
order to load compressed color and depth videos at startup,
as explained in Subsection III-B3.

The frames are decompressed during view synthesis each
time a new frame is needed (see Figure 11c) and are gradually
overwritten when new frames come in. The newly decom-
pressed frames take the place of the oldest textures in theGPU
memory, and then are used in the pipeline, as described in
Subsections III-B1 and III-B2.

To further optimize the method, we encoded the depth
maps as one channel of a RGB video, hence the depth infor-
mation is contained only in 8 bits. However, the rendering
often needs at least 10 bits or even 16 bits to avoid artifacts.
In that case, the remaining two channels are used to store
more bit-planes from the depth information.

4) VIEW SELECTION
To reach a high frame rate for a better immersive experience,
it is recommended to limit the number of input viewpoints.
However, to fill as many disocclusions as possible (the other
being left in black), it is important to select the k best views
among all the available inputs. The choice of k will be dis-
cussed in Section IV, to keep a balance between frame rate
and visual quality.

This leads us to the problem of selecting the most appro-
priate views, which is challenging and linked to the choice of
the blending weights. The selected views need to be similar
to the target (viewing direction, part of the scene captured),
but also different between each other, so that each input
gives new information about the target view. To find the
optimal inputs, a naive idea could be to keep inputs with a
small distance to the optical center of the target [64], or with
small similarity metrics between each other. However, these
measures lack the information about the depth of the view
and the cameras’ orientations. For example, rendering a view
from a quasi-perpendicular camera results inmany occlusions
even if the optical centers are rather close to each other
(see Figure 12).

Due to the low number of input images and the real-time
requirements, we avoid using involved view selection meth-
ods found in Structure-from-Motion approaches [11], [72].
We propose a solution which computes the frustums inter-
section between the target and input cameras, and uses this
information to obtain better results than with only the dis-
tance between the optical centers. To keep the information
of the camera direction, we multiply the frustum intersection
volume V (F1 ∩ F2) by the dot product of the two cameras
viewing directions, like in the Unstructured Lumigraph [17].
Hence we get a similarity Si,j between the cameras i and j:

Si,j = Eni · Enj × V (Fi ∩ Fj) (4)

As each camera can be a classical perspective camera or
an equirectangular image (360 degrees or less), the trapezoid
can be a generic deformed cube or parts of a sphere delimited
by the depth range, which is known in the depth map. There
is no simple general formula for those intersections (except
sphere-sphere), so the overlapping frustum between two
views is estimated using a Monte Carlo method for volume
estimation [73]:

V̂ (Fi ∩ Fj) =
VBB
n

n∑
k=1

1pk∈F1 × 1pk∈F2 (5)

where VBB is the volume of a box bounding the two frustums,
pi, i ∈ [1, n] are randomly drawn points in that bounding
box and 1pk∈Fi is an indicator function evaluating whether
pk belongs to the frustum Fi. Combining Equations 4 and 5,
we get an estimated similarity Ŝ between views i and j with
the estimated volume V̂ :

Ŝi,j = Eni · Enj × V̂ (Fi ∩ Fj) (6)

146878 VOLUME 9, 2021



D. Bonatto et al.: Real-Time Depth Video-Based Rendering for 6-DoF HMD Navigation and Light Field Displays

FIGURE 13. Museum Dataset (180◦ equirectangular images). Result of the view synthesis with view selection for one to four selected input views
among eight proposed inputs.

Finally, to render an image using view selection, we select
the k views overlapping the most the target camera C accord-
ing to the metric Ŝi,C . The set of the k chosen cameras among
the N is:

{a1, . . . , ak} such that Ŝa1,C ≤ . . . ≤ Ŝak ,C ≤ . . . ≤ ŜaN ,C
(7)

This measure still lacks the information about redundant
selected views, which could be implemented using the simi-
larity Ŝi,j between the inputs views, but does not guarantee
that an input view containing unique information will not
be discarded. However, the results are satisfying for inputs
in a general position and is suitable for real-time appli-
cations. Results of the view selection process are shown
in Figures 13 and 14.

IV. PERFORMANCE EVALUATION
Quantitative evaluations of the frame rate (FPS) and the syn-
thesis quality (PSNR in dB, andMS-SSIM) following natural
head movements on an Oculus Rift HMD were done on a
low-end as well as a high-end computer; the low-end one is
a Linux PC and uses an Intel i3 3225 CPU and a NVIDIA
GTX 1660 Super GPU, while the high-end computer is a
Windows PC with Intel Xeon E5-2680@2.7GHz CPU and
NVIDIA GTX 1080TI GPU.

A. SPEED
Ideally a real-time application should run at least at 90 FPS
for VR (and preferably even 120 FPS) [41], [74]–[76], and
30 FPS for light field displays. Video content has usually a
frame rate of 30 FPS, which is hence a lower bound for the
view synthesis. As we render frames at the eyes’ positions
at 90 FPS, each input frame is reused three-times. The number
of FPS will of course depend on the size of the input images
and their number.

To test the speed performance of our software, view syn-
thesis was run in an HMD with one to eight input views on
datasets with different resolutions. The content was evaluated
on an Oculus Rift HMD, rendering two 1080× 1200 images,
for a total of 2160 × 1200 pixels at 90 FPS. The code
works with the OpenVR [77] library and is thus compatible
with any available headset supporting the OpenVR initiative.

FIGURE 14. Zoomed details on Toystable Dataset. Left: Reference image.
Middle: View synthesis from 1 input view. Right: View synthesis
from 4 input views. With four input views, very little artifacts and
disocclusions remain (mannequin’s arm, shadow of the skull on the
Rubik’s cube, horse’s ears and back leg, . . .)

Figure 15 shows the frame rate (two frames are rendered, one
for each eye in the HMD) as a function of the number of input
views on the high-end computer.

To keep the navigation real-time on our test platform,
eight input views with 1920 × 1080 textures are perfectly
manageable. For higher resolutions, the same execution speed
can be reached with three to four inputs views.

B. VISUAL QUALITY
To objectively estimate the visual quality, we devised three
experiments. In the first experiment we compute the Peak
Signal to Noise Ratio (PSNR) and Multi-Scale Structural
Similarity Index Measure (MS-SSIM) [78] of our view
synthesis against images of Toystable (Plane A), Museum,
Fencing and Painter natural datasets for one to eight input
views (see Figure 16). As Museum has few overlapping

VOLUME 9, 2021 146879



D. Bonatto et al.: Real-Time Depth Video-Based Rendering for 6-DoF HMD Navigation and Light Field Displays

FIGURE 15. Frame rate of the view synthesis on the Windows PC using
one to eight input views for Painter, Fencing (video decoder switched on),
Toystable, Classroom and Museum datasets. Observe a higher FPS drop
with Classroom and Museum due to their input texture sizes.

FIGURE 16. Quality trends in PSNR and MS-SSIM in stereoscopic
rendering using one to eight input views for Toystable, Fencing,
Classroom, Museum, Painter (in-house) and Painter (DERS) datasets.

outward-facing camera viewpoints, the PSNR stops increas-
ing after the four first input views have been selected by
our algorithm described in Sub-section III-B4; the four other
available input views are looking in the opposite direction
and do not bring any new information. Classroom reaches
directly high PSNR as the views are 360◦ equirectangu-
lar projections. Intuitively, adding more views improves the
quality as more occlusions are covered. However, the graphs
in Figure 16 show that three or four images are sufficient
to reach a high-quality output for all datasets. Adding more
views does not significantly improve the quality but makes

TABLE 2. PSNR, MS-SSIM [78] and IV-PSNR [82] for Toystable dataset at
various resolutions. RVS (8) uses eight input color images, provided with
their depth maps computed with 6 additional images (14 in total). RVS (4)
uses only four input color images, with their depth maps computed
with 6 additional images (10 in total) [83], [84]. NERF and LLFF use the
same 8 input images as RVS (8) and the same calibration parameters. The
evaluations are the average performed on 15 images, including the input
poses, on the Toystable (Plane B) dataset.

the frame rate drop noticeably. Therefore, it is probably wiser
to add dedicated inpainting extensions to tackle the remaining
quality imperfections, e.g. Deep Neural Networks (DNN),
cf. Section V.

To emphasize the importance of the depth map on the
final quality, an in-house multi-stereo algorithm [79]–[81]
was used on a single frame of Painter. Our depth estimation
method substantially outperformed DERS on static content,
showing an increase in PSNR value up to 5 dB (Figure 16).
However, it cannot be used for dynamic content, as the
absence of the temporal filtering in the algorithm leads to
visual artifacts. Therefore, DERS was used during all our
experiments for a fair comparison.

The visual results shown for Museum and Toystable in
Figures 13 and 14 respectively, follow the same trend, con-
firming that with four input views, most of the disocclusion
artifacts have disappeared. Moreover, the results shown in
Figure 15 confirm that four input views are sufficient to
sustain a fluent visual experience with common head move-
ments. Other examples of the view synthesis are shown in
Figures 3 and 5. In Figure 4, we subjectively compare the
results given by our DIBR technique to a real-time Phong
shading performed on a photogrammetry of 180M triangles
and its decimation to 1M triangles. We observe that our view
synthesis with 8 input views and 4 viewpoints both creates
more realistic renderings than mesh based rendering. As such
a rendering method does not reach photorealism, we also
compare our results with slower algorithms.

In the second experiment, we compare our approach with
Mildenhall’s promising Local Light Field Fusion (LLFF) [25]
and Neural Radiance Field (NeRF) [29] techniques on the
Toystable (Plane B) dataset. While LLFF does not need
training, NeRF learns a representation of the scene rendered
using a raytracing approach in volume rendering [85]. It was
trained for more than 500k epochs (only 200k in the orig-
inal paper), cf. Supplementary material. Table 2 shows the

146880 VOLUME 9, 2021



D. Bonatto et al.: Real-Time Depth Video-Based Rendering for 6-DoF HMD Navigation and Light Field Displays

FIGURE 17. Visual comparison between LLFF, NeRF and RVS on zoomed details of Toystable dataset at resolution 1920× 1080 with associated ground
truth difference map. We observe a uniform grainy texture on the error pictures in NeRF and LLFF introduced by the raytracing approach and the neural
blending of several MPIs. The occlusions in RVS with 4 input views are removed using 8 viewpoints. Our approach produces visually smoother flat areas
and less errors on the edges while suffering more from occlusions.

comparison in PSNR, MS-SSIM [78] and IV-PSNR [82],
while Figure 17 shows the comparative results on two chal-
lenging details of the dataset. We observe that NeRF per-
forms better on lower resolution images and therefore ran the
experiment on three resolutions: 1920 × 1080, 960 × 540,
480 × 270. In full-HD, our approach performs equally well
(within 1 dB PSNR) to NeRF and LLFF and renders the
views in real-time, while several seconds per frame are
needed for LLFF and minutes for NeRF. In lower resolutions,
NeRF achieves the best results, but those resolutions and
NeRF’s computation time are not recommended in practice
for VR applications.

In the error plots (difference between each technique and
the Ground Truth (GT)) of Figure 17, we observe that neu-
ral techniques introduce noise in flat areas. This effect can

be reduced in NeRF by using more rays per pixel, but it
drastically increases the training time and the network does
not fit on our GPU anymore. Another visible difference is that
our approach has noticeably less errors on the edges, but it
suffers more from disocclusions - the areas that are left black
in Figure 17 (white in error).

We also reproduced the tests of [34], describing a GPU
implementation of DIBR. The tests consist in synthesizing
the 49 frames of each sequence in the MPI-Sintel dataset [62]
using only the first frame or only the last frame. Finally,
we evaluated the PSNR and MS-SSIM [78] of the result-
ing images. We followed the original methodology of [34]
for evaluation: the images are compared to the ground
truth after masking the disocclusions and moving charac-
ters. Figure 18 shows a comparison between our results and

VOLUME 9, 2021 146881



D. Bonatto et al.: Real-Time Depth Video-Based Rendering for 6-DoF HMD Navigation and Light Field Displays

FIGURE 18. PSNR and MS-SSIM results of view synthesis on three representative MPI-Sintel sequences over frames 1 to 49. Plain lines
represent the view synthesis from image 1, dashed lines represent the view synthesis from image 49. Black: proposed, light blue:
Ogniewski’s results [34].

Ogniewski’s [34]. On average we perform 2 dB (PSNR)
or 0.02 (MS-SSIM) better for all test sequences, with a maxi-
mum quality improvement of up to 7 dB in PSNR and 0.05 for
MS-SSIM. Visual results are shown in Figure 19, showing the
high-quality outcome (except for the disocclusions coming
from one camera synthesis).

Hence, our method obtains the highest quality while main-
taining real-time performance with 4 input images.

C. APPLICATIONS
Previous sections have focused on a typical HMD-VR appli-
cation where any virtual viewpoint is synthesized from a
couple of fixed camera feeds. To sustain stereoscopic HMD
viewing, two virtual views (one per eye) must be synthe-
sized. We present now three different applications where

our approach can equally well perform: (a) Light field dis-
plays (e.g. Holografika display) that projects hundreds of
parallax-consistent views of the scene to the user. This pro-
cess requires more than two views to be simultaneously syn-
thesized.

If all these views can be synthesized in the display from a
limited number of input views, huge gains in video streaming
data rates can be expected. The same line of thought can be
used for (b) holographic stereograms where any number of
views can be synthesized to produce a high-quality display.
As our approach is robust in interpolation and extrapolation,
we reached high-quality results in this context as described
hereafter. We have also developed a website (c) to dynami-
cally show our results and let third parties experiment with
our software.

146882 VOLUME 9, 2021



D. Bonatto et al.: Real-Time Depth Video-Based Rendering for 6-DoF HMD Navigation and Light Field Displays

FIGURE 19. Representative graphical results for MPI-Sintel synthesized from frame 1 as input to several selected frames. As the camera is moving and
the views are synthesized using only the first frame, occlusions (in black) can be observed. The camera of the second sequence moves sharply, which
induces more disocclusions.

FIGURE 20. Rendering Toystable (Plane A) on light field display (Holografika). 72 viewpoints have been synthesized and fed to the display to
simulate horizontal parallax.

1) HOLOGRAFIKA
Holografika is a Super-MultiView light field display [7]
screenwhich uses 72 inlined projectors to render a scene from
any viewpoint. We synthesized the video Fencing dataset
using only 4 cameras to render 72 videos of 250 frames
simultaneously in 720p - the maximum resolution of the

projectors - (7s for 72 output views including encod-
ing in YUV420 format on the disk) and the Toystable
dataset for a static scene before displaying them on the
screen [86]. We obtained high-quality results for the two
datasets. In the navigation of the Toystable dataset we can
see the objects in 3D from several viewpoints without glasses

VOLUME 9, 2021 146883



D. Bonatto et al.: Real-Time Depth Video-Based Rendering for 6-DoF HMD Navigation and Light Field Displays

FIGURE 21. Viewpoints of the holographic stereograms. Top: Toystable dataset (200 synthesized views from 4 input images, hogel size of
500µm). Bottom: Classroom dataset (768 synthesized views from 4 input images, hogel size of 250µm). Videos of the holographic
stereograms showing the horizontal parallax can be found in the supplementary material.

(Figure 20). Next-generation holographic screens display
more than 72 viewpoints. However, the bandwidth require-
ment to transfer viewpoints at 30 fps is unachievable. This
proof-of-concept shows that it is possible to transfer only key
images and synthesize the others viewpoints in real-time.

2) HOLOGRAPHIC STEREOGRAMS
Holographic Stereograms are like a light field display, but
are implemented differently: the hundreds of projection direc-
tions are obtained with diffractive, Holographic Optical Ele-
ments (HOE) engraving interference fringes.

Very fine details can be engraved as the discretization of the
light-field depends only on laser limitations. The Toystable
and the Classroom datasets were used to generate holographic
stereograms with respective sizes of 26cm × 21cm and
40cm×22cm (Figure 21). They were engraved using 200 and
768 virtual viewswith 500µmand 250µmhogel sizes (HOE),
respectively synthesized using 4 and 8 input views [87]. A full
description of the procedure tomake holographic stereograms
using our software can be found in [88]. Our solution’s quality
can be further improved on this application as it is not bound
to the real-time component.

3) WEBSITE
A demonstration website https://lisaserver.ulb.ac.be/rvs/ was
developed to show the quality of the synthesized images.

At the time of writing, the website is limited to a non real-time
version of our software to focus on the quality aspects without
cumbersome HMD interfacing (no cloud computing applica-
tion with client VR).

V. CONCLUSION AND FUTURE WORK
Real-time rendering of natural scenes on HMD with 6-DoF
is achieved with our approach on commodity GPU platforms
using DIBR and proprietary shaders. They allow to reach
90 FPS without dropping quality and without particular opti-
mization or preprocessing, apart from the OpenGL pipeline
and depth map priors. One of the main advantages of the
proposed approach is the low number of views needed for
high-quality synthesis, as shown on the MPI-Sintel (cartoon)
sequences (Figure 19), as well as the quality we obtain with
natural and synthetic datasets. Our system handles any pose
by relying on efficient systems in the selection and the blend-
ing, while managing the throughput at each step.

We performed extended experiments with only four input
views to render a scene on a light field display with horizontal
motion parallax and on holographic stereograms, proving the
versalitity of our approach.

We plan to explore real-timeDNN inpainting [89], [90] and
compression mechanisms for data transmission in embed-
ded VR without impeding on the quality and processing
speed. As our method leaves only small disocclusions,

146884 VOLUME 9, 2021



D. Bonatto et al.: Real-Time Depth Video-Based Rendering for 6-DoF HMD Navigation and Light Field Displays

DNN inpainting is promising to fill realistically the discarded
triangles for light field content. Combining inpainting with
compression allows to lower the number of input views
even further. We expect new challenges with inpainting, but,
we believe that our approach is flexible enough to be adapted
to this use case.

SUPPLEMENTARY MATERIAL
Supplementary video and data material is available with our
paper. It shows real-time large 6-DoF movements with the
same quality as in Figure 14 for various datasets, as well
as our quality experiments videos, associated to Figure 18.
Training data and high resolution images of our blending
weight (Figure 10) are also included. Finally, Table 2 is
extended to include more details.

ACKNOWLEDGMENT
Sarah Fachada is a Research Fellow of the Fonds de
la Recherche Scientifique - FNRS, Belgium. This work
uses several copyrighted materials, including Toystable
dataset [1], [2] created in the 3DLicorneA project, supported
by Innoviris, the Brussels Institute for Research and Innova-
tion Belgium, under contract No.: 2015 R39c, 3DLicorneA.
Technicolor Museum and Technicolor Painter, Technicolor.
All rights reserved Copyright
 2017-2018-Thomson Licens-
ing [3], and Classroom dataset from Philips [4].

REFERENCES
[1] D. Bonatto, A. Schenkel, T. Lenertz, Y. Li, and G. Lafruit, ULB High

Density 2D/3D Camera Array Data set, Version 2, document ISO/IEC
JTC1/SC29/WG11, 2017.

[2] D. Bonatto, S. Fachada, and G. Lafruit, ‘‘ULB ToysTable,’’ Tech. Rep.,
Jun. 2021, doi: 10.5281/zenodo.5055543.

[3] R. Doré, G. Briand, and T. Tapie, Technicolor 3DoF+ Test Materials
[M42349], document ISO/IEC JTC1/SC29/WG11, Apr. 2018, p. 8.

[4] B. Kroon, 3DoF+ Test Sequence ClassroomVideo [M42415], docu-
ment ISO/IEC JTC1/SC29/WG11, Apr. 2018.

[5] S. E. Chen, ‘‘QuickTime VR: An image-based approach to virtual
environment navigation,’’ in Proc. 22nd Annu. Conf. Comput. Graph.
Interact. Techn. (SIGGRAPH), 1995, pp. 29–38. [Online]. Available:
https://portal.acm.org/citation.cfm?doid=218380.218395

[6] T. Tanimoto, M. P. Tehrani, T. Fujii, and T. Yendo, ‘‘FTV for 3-D spatial
communication,’’ Proc. IEEE, vol. 100, no. 4, pp. 905–917, Apr. 2012, doi:
10.1109/JPROC.2011.2182101.

[7] T. Balogh, T. Forgács, T. Agács, O. Balet, E. Bouvier, F. Bettio,
E. Gobbetti, and G. Zanetti, ‘‘A scalable hardware and software system
for the holographic display of interactive graphics applications,’’
Eurographics, pp. 109–112, Jan. 2005. [Online]. Available: https://www.
researchgate.net/publication/230735224_A_scalable_hardware_and_
software_system_for_the_holographic_display_of_interactive_graphics_
applications, doi: 10.2312/egs.20051036.

[8] R. C. Bolles, H. H. Baker, and D. H. Marimont, ‘‘Epipolar-plane image
analysis: An approach to determining structure from motion,’’ Int. J. Com-
put. Vis., vol. 1, no. 1, pp. 7–55, 1987, doi: 10.1007/BF00128525.

[9] R. Mohr, L. Quan, and F. Veillon, ‘‘Relative 3D reconstruction using mul-
tiple uncalibrated images,’’ Int. J. Robot. Res., vol. 14, no. 6, pp. 619–632,
Dec. 1995, doi: 10.1177/027836499501400607.

[10] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless,
S. M. Seitz, and R. Szeliski, ‘‘Building Rome in a day,’’ Commun.
ACM, vol. 54, no. 10, pp. 105–112, Oct. 2011. [Online]. Available:
https://dl.acm.org/citation.cfm?doid=2001269.2001293

[11] J. L. Schönberger and J.-M. Frahm, ‘‘Structure-from-motion revisited,’’
in Proc. IEEE CVPR, Jun. 2016, pp. 4104–4113. [Online]. Available:
https://ieeexplore.ieee.org/document/7780814/

[12] M. Botsch, M. Spernat, and L. Kobbelt, ‘‘Phong splatting,’’ in
Proc. 1st Eurograph. Conf. Point-Based Graph., 2004, pp. 25–32, doi:
10.5555/2386332.2386338.

[13] D. Bonatto, S. Rogge, A. Schenkel, R. Ercek, and G. Lafruit, ‘‘Explo-
rations for real-time point cloud rendering of natural scenes in virtual
reality,’’ in Proc. Int. Conf. 3D Imag. (IC3D), Dec. 2016, pp. 1–7, doi:
10.1109/IC3D.2016.7823453.

[14] M. Levoy and P. Hanrahan, ‘‘Light field rendering,’’ in Proc. 23rd Annu.
Conf. Comput. Graph. Interact. Techn. (SIGGRAPH), 1996, pp. 31–42,
doi: 10.1145/237170.237199.

[15] C. Fehn, ‘‘Depth-image-based rendering (DIBR), compression, and trans-
mission for a new approach on 3D-TV,’’Proc. SPIE, vol. 5291, pp. 93–105,
May 2004, doi: 10.1117/12.524762.

[16] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, ‘‘The lumi-
graph,’’ in Proc. 23rd Annu. Conf. Comput. Graph. Interact. Techn., 1996,
pp. 43–54, doi: 10.1145/237170.237200.

[17] C. Buehler, M. Bosse, L. Mcmillan, S. Gortler, and M. Cohen, ‘‘Unstruc-
tured lumigraph rendering,’’ in Proc. 28th Annu. Conf. Comput. Graph.
Interact. Techn. (SIGGRAPH), 2001, pp. 425–432. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=383259.383309

[18] A. Isaksen, L. McMillan, and S. J. Gortler, ‘‘Dynamically reparam-
eterized light fields,’’ in Proc. 27th Annu. Conf. Comput. Graph.
Interact. Techn. (SIGGRAPH), 2000, pp. 297–306. [Online]. Available:
https://portal.acm.org/citation.cfm?doid=344779.344929

[19] G. Riegler and V. Koltun, ‘‘Stable view synthesis,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2021, pp. 12216–12225.

[20] J. Flynn, I. Neulander, J. Philbin, and N. Snavely, ‘‘DeepStereo: Learning
to predict new views from the world’s imagery,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 5515–5524, doi:
10.1109/CVPR.2016.595.

[21] R. S. Overbeck, D. Erickson, D. Evangelakos, and P. Debevec, ‘‘Welcome
to light fields,’’ in Proc. ACM SIGGRAPH Virtual, Augmented, Mixed
Reality, Aug. 2018, p. 32, doi: 10.1145/3226552.3226557.

[22] C. Schroers, J.-C. Bazin, and A. Sorkine-Hornung, ‘‘An omnistereo-
scopic video pipeline for capture and display of real-world VR,’’ ACM
Trans. Graph., vol. 37, no. 3, pp. 1–13, Aug. 2018. [Online]. Available:
https://dl.acm.org/citation.cfm?doid=3243123.3225150

[23] T. Zhou, R. Tucker, J. Flynn, G. Fyffe, and N. Snavely, ‘‘Stereo
magnification: Learning view synthesis using multiplane images,’’
ACM Trans. Graph., vol. 37, no. 4, pp. 1–12, Aug. 2018, doi:
10.1145/3197517.3201323.

[24] J. Flynn, M. Broxton, P. Debevec, M. DuVall, G. Fyffe, R. Overbeck,
N. Snavely, and R. Tucker, ‘‘Deepview: View synthesis with learned gra-
dient descent,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 2362–2371, doi: 10.1109/CVPR.2019.00247.

[25] B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. K. Kalantari,
R. Ramamoorthi, R. Ng, and A. Kar, ‘‘Local light field fusion: Practi-
cal view synthesis with prescriptive sampling guidelines,’’ ACM Trans.
Graph., vol. 38, no. 4, pp. 1–14, Jul. 2019, doi: 10.1145/3306346.3322980.

[26] M. Broxton, J. Flynn, R. Overbeck, D. Erickson, P. Hedman, M. Duvall,
J. Dourgarian, J. Busch,M.Whalen, and P. Debevec, ‘‘Immersive light field
video with a layered mesh representation,’’ ACM Trans. Graph., vol. 39,
no. 4, Jul. 2020, doi: 10.1145/3386569.3392485.

[27] P. Hedman, T. Ritschel, G. Drettakis, and G. Brostow, ‘‘Scalable inside-
out image-based rendering,’’ ACM Trans. Graph., vol. 35, no. 6, pp. 1–11,
Nov. 2016, doi: 10.1145/2980179.2982420.

[28] P. Hedman, J. Philip, T. Price, J.-M. Frahm, G. Drettakis, and
G. Brostow, ‘‘Deep blending for free-viewpoint image-based render-
ing,’’ ACM Trans. Graph., vol. 37, no. 6, pp. 1–15, Jan. 2019, doi:
10.1145/3272127.3275084.

[29] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, ‘‘NeRF: Representing scenes as neural radiance fields for view
synthesis,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2020, pp. 405–421,
doi: 10.1007/978-3-030-58452-8_24.

[30] L. Liu, J. Gu, K. Zaw Lin, T.-S. Chua, and C. Theobalt, ‘‘Neural sparse
voxel fields,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 33,
pp. 15651–15663, 2020. [Online]. Available: https://proceedings.neurips.
cc/paper/2020/file/b4b758962f17808746e9bb832a6fa4b8-Paper.pdf

[31] B. Reinert, J. Kopf, T. Ritschel, E. Cuervo, D. Chu, and H.-P. Seidel,
‘‘Proxy-guided image-based rendering for mobile devices,’’ Comput.
Graph. Forum, vol. 35, no. 7, pp. 353–362, Oct. 2016, doi: 10.1111/
cgf.13032.

[32] O. Stankiewicz, K. Wegner, M. Tanimoto, and M. Domanski, Enhanced
View Synthesis Reference Software (VSRS) for Free-Viewpoint Television
[M31520], document ISO/IEC JTC1/SC29/WG11, Jan. 2013.

VOLUME 9, 2021 146885

http://dx.doi.org/10.5281/zenodo.5055543
http://dx.doi.org/10.1109/JPROC.2011.2182101
http://dx.doi.org/10.2312/egs.20051036
http://dx.doi.org/10.1007/BF00128525
http://dx.doi.org/10.1177/027836499501400607
http://dx.doi.org/10.5555/2386332.2386338
http://dx.doi.org/10.1109/IC3D.2016.7823453
http://dx.doi.org/10.1145/237170.237199
http://dx.doi.org/10.1117/12.524762
http://dx.doi.org/10.1145/237170.237200
http://dx.doi.org/10.1109/CVPR.2016.595
http://dx.doi.org/10.1145/3226552.3226557
http://dx.doi.org/10.1145/3197517.3201323
http://dx.doi.org/10.1109/CVPR.2019.00247
http://dx.doi.org/10.1145/3306346.3322980
http://dx.doi.org/10.1145/3386569.3392485
http://dx.doi.org/10.1145/2980179.2982420
http://dx.doi.org/10.1145/3272127.3275084
http://dx.doi.org/10.1007/978-3-030-58452-8_24
http://dx.doi.org/10.1111/cgf.13032
http://dx.doi.org/10.1111/cgf.13032


D. Bonatto et al.: Real-Time Depth Video-Based Rendering for 6-DoF HMD Navigation and Light Field Displays

[33] W. Sun, L. Xu, O. C. Au, S. H. Chui, and C. W. Kwok, ‘‘An overview
of free view-point depth-image-based rendering (DIBR),’’ in Proc.
APSIPA Annu. Summit Conf., 2010, pp. 1023–1030. [Online]. Available:
https://hdl.handle.net/1783.1/47652

[34] J. Ogniewski, ‘‘High-quality real-time depth-image-based-rendering,’’ in
Proc. SIGRAD, vol. 143, Aug. 2017, pp. 1–8.

[35] J. Jylänki, A Thousand Ways to Pack Bin—A Practical Approach to
Two-Dimensional Rectangle Bin Packing, 2010. [Online]. Available:
http://clb.demon.fi/files/RectangleBinPack.pdf

[36] G. Lafruit, D. Bonatto, C. Tulvan, M. Preda, and L. Yu, ‘‘Understand-
ing MPEG-I coding standardization in immersive VR/AR applications,’’
SMPTE Motion Imag. J., vol. 128, no. 10, pp. 33–39, Nov. 2019, doi:
10.5594/JMI.2019.2941362.

[37] S. Fachada, B. Kroon, D. Bonatto, B. Sonneveldt, and G. Lafruit, Ref-
erence View Synthesizer (RVS) 2.0 Manual, MPEG2018/N17759, docu-
ment ISO/IEC JTC1/SC29/WG11, Jul. 2018.

[38] J. Kessenich, D. Baldwin, and R. Rost, ‘‘The OpenGL shading language,
version 4.60.7,’’ Khronos Group, Beaverton, OR, USA, Tech. Rep., 2019.

[39] Capturing Reality. Accessed: Sep. 10, 2018. [Online]. Available:
https://www.capturingreality.com

[40] A. Schenkel, D. Bonatto, S. Fachada, H.-L. Guillaume, and G. Lafruit,
‘‘Natural scenes datasets for exploration in 6DOF navigation,’’ in
Proc. Int. Conf. 3D Immersion (IC3D), Dec. 2018, pp. 1–8, doi:
10.1109/IC3D.2018.8657865.

[41] R. S. Overbeck, D. Erickson, D. Evangelakos, M. Pharr, and P. Debevec,
‘‘A system for acquiring, processing, and rendering panoramic light field
stills for virtual reality,’’ ACM Trans. Graph., vol. 37, no. 6, pp. 1–15,
Jan. 2019, doi: 10.1145/3272127.3275031.

[42] A. P. Pozo, M. Toksvig, T. F. Schrager, J. Hsu, U. Mathur,
A. Sorkine-Hornung, R. Szeliski, and B. Cabral, ‘‘An integrated 6DoF
video camera and system design,’’ ACM Trans. Graph., vol. 38, no. 6,
pp. 1–16, Nov. 2019, doi: 10.1145/3355089.3356555.

[43] J. Huang, Z. Chen, D. Ceylan, and H. Jin, ‘‘6-DOF VR videos with a single
360-camera,’’ in Proc. IEEE Virtual Reality (VR), Mar. 2017, pp. 37–44,
doi: 10.1109/VR.2017.7892229.

[44] R. G. de Albuquerque Azevedo, F. Ismério, A. B. Raposo, and
L. F. G. Soares, ‘‘Real-time depth-image-based rendering for 3DTV using
OpenCL,’’ Adv. Visual Comput., vol. 8887, pp. 97–106, Dec. 2014, doi:
10.1007/978-3-319-14249-4_10.

[45] C.-J. Lai, P.-H. Han, H.-L.Wang, andY.-P. Hung, ‘‘Exploringmanipulation
behavior on video see-through head-mounted display with view interpo-
lation,’’ in Proc. Asian Conf. Comput. Vis. (ACCV), vol. 10118, 2017,
pp. 258–270, doi: 10.1007/978-3-319-54526-4_20.

[46] I. Daribo and B. Pesquet-Popescu, ‘‘Depth-aided image inpainting for
novel view synthesis,’’ in Proc. IEEE Int. Workshop Multimedia Signal
Process., Oct. 2010, pp. 167–170, doi: 10.1109/MMSP.2010.5662013.

[47] B. Ceulemans, S.-P. Lu, G. Lafruit, and A. Munteanu, ‘‘Robust
multiview synthesis for wide-baseline camera arrays,’’ IEEE
Trans. Multimedia, vol. 20, no. 9, pp. 2235–2248, Sep. 2018, doi:
10.1109/TMM.2018.2802646.

[48] M. P. Tehrani, T. Tezuka, K. Suzuki, K. Takahashi, and T. Fujii, ‘‘Free-
viewpoint image synthesis using superpixel segmentation,’’ APSIPA
Trans. Signal Inf. Process., vol. 6, 2017. [Online]. Available: https:
//www.cambridge.org/core/journals/apsipa-transactions-on-signal-and-
information-processing/volume/9D4FF8C693586983FE5D764C8DCEE3
0C, doi: 10.1017/ATSIP.2017.5.

[49] A. Telea, ‘‘An image inpainting technique based on the fast marching
method,’’ J. Graph. Tools, vol. 9, no. 1, pp. 23–34, Jan. 2004, doi:
10.1080/10867651.2004.10487596.

[50] A. Newson, A. Almansa, Y. Gousseau, and P. Pérez, ‘‘Non-local patch-
based image inpainting,’’ Image Process. On Line, vol. 7, pp. 373–385,
Dec. 2017, doi: 10.5201/ipol.2017.189.

[51] D. Pathak, P. Krähenbuhl, J. Donahue, T. Darrell, andA.A. Efros, ‘‘Context
encoders: Feature learning by inpainting,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2536–2544. [Online]. Avail-
able: https://ieeexplore.ieee.org/document/7780647/

[52] Y. Wexler, E. Shechtman, and M. Irani, ‘‘Space-time completion of
video,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 3,
pp. 463–476, Mar. 2007. [Online]. Available: https://ieeexplore.ieee.
org/document/4069262/

[53] S. Li, C. Zhu, and M.-T. Sun, ‘‘Hole filling with multiple reference
views in DIBR view synthesis,’’ IEEE Trans. Multimedia, vol. 20, no. 8,
pp. 1948–1959, Aug. 2018, doi: 10.1109/TMM.2018.2791810.

[54] S. Fachada, D. Bonatto, A. Schenkel, and G. Lafruit, ‘‘Depth image
based view synthesis with multiple reference views for virtual reality,’’ in
Proc. IEEE 3DTV-Conf., True Vis.-Capture, Transmiss. Display 3D Video
(3DTV-CON), Jun. 2018, pp. 1–4, doi: 10.1109/3DTV.2018.8478484.

[55] R. Pintus, E. Gobbetti, and M. Callieri, ‘‘Fast low-memory seamless
photo blending on massive point clouds using a streaming framework,’’
J. Comput. Cultural Heritage, vol. 4, no. 2, pp. 1–15, Nov. 2011. [Online].
Available: https://dl.acm.org/citation.cfm?doid=2037820.2037823

[56] A. Dziembowski and M. Domański, ‘‘Adaptive color correction in vir-
tual view synthesis,’’ in Proc. IEEE 3DTV Conf., True Vis.-Capture,
Transmiss. Display 3D Video (3DTV-CON), Jun. 2018, pp. 1–4, doi:
10.1109/3DTV.2018.8478439.

[57] S.-P. Lu, B. Ceulemans, A. Munteanu, and P. Schelkens, ‘‘Spatio-
temporally consistent color and structure optimization for multiview video
color correction,’’ IEEE Trans. Multimedia, vol. 17, no. 5, pp. 577–590,
May 2015, doi: 10.1109/TMM.2015.2412879.

[58] S. Ye, S.-P. Lu, and A. Munteanu, ‘‘Color correction for large-baseline
multiview video,’’ Signal Process., Image Commun., vol. 53, pp. 40–50,
Apr. 2017, doi: 10.1016/j.image.2017.01.004.

[59] B. Salahieh, S. Bathia, J. Boyce, J. Fleureau, and R. Doré, Hybrid Multi-
Pass Add-on Tool for Coherent and Complete View Synthesis of Natural
Content [M47502], document ISO/IEC JTC1/SC29/WG11, Mar. 2019,
p. 11.

[60] Z. Zhang, ‘‘Microsoft Kinect sensor and its effect,’’ IEEE MultiMedia,
vol. 19, no. 2, pp. 4–10, Feb. 2012.

[61] T. Senoh, K. Yamamoto, N. Tetsutani, and H. Yasuda, Enhanced DERS for
Quad Reference Views (eDERS), document ISO/IEC JTC1/SC29/WG11,
Jan. 2018.

[62] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, ‘‘A naturalistic
open source movie for optical flow evaluation,’’ in Proc. 12th
Eur. Conf. Comput. Vis. (ECCV), Oct. 2012, pp. 611–625,
doi: 10.1007/978-3-642-33783-3_44.

[63] J. Jung, B. Kroon, R. Doré, G. Lafruit, and J. Boyce, CTC on 3DoF+ and
Windowed 6DOF (v2) [N17726], document ISO/IEC JTC1/SC29/WG11,
Jul. 2018.

[64] B. Salahieh, B. Kroon, J. Jung, and M. Domanski, Test Model 4 for Immer-
sive Video [N19002], document ISO/IEC JTC1/SC29/WG11, Feb. 2020.

[65] D. Doyen, T. Langlois, B. Vandame, F. Babon, G. Boisson, N. Sabater,
R. Gendrot, and A. Schubert, Light Field Content From 16-Camera Rig
[M40010], document ISO/IEC JTC1/SC29/WG11, Jan. 2017.

[66] M. Domanski, A. Dziembowski, A. Grzelka, D. Mieloch, O. Stankiewicz,
andK.Wegner,Multiview Test Video Sequences for Free Navigation Explo-
ration Obtained Using Pairs of Cameras [M38247], document ISO/IEC
JTC1/SC29/WG11, May 2016.

[67] K. Wegner, Software Manual DERS, document ISO/IEC
JTC1/SC29/WG11, 2014, p. 17.

[68] T. Tezuka, M. P. Tehrani, K. Suzuki, K. Takahashi, and T. Fujii, ‘‘View
synthesis using superpixel based inpainting capable of occlusion han-
dling and hole filling,’’ in Proc. Picture Coding Symp. (PCS), May 2015,
pp. 124–128, doi: 10.1109/PCS.2015.7170060.

[69] D. Bonatto, S. Fachada, and G. Lafruit, ‘‘RaViS: Real-time acceler-
ated view synthesizer for immersive video 6DoF VR,’’ in Proc. IS&T
Int. Symp. Electron. Imag., Sci. Technol., Society for Imaging Sci-
ence and Technology, Jan. 2020, doi: 10.2352/ISSN.2470-1173.2020.13.
ERVR-382.

[70] G. Riegler and V. Koltun, ‘‘Free view synthesis,’’ in Proc. Eur. Conf.
Comput. Vis. (ECCV), 2020, pp. 623–640, doi: 10.1007/978-3-030-58529-
7_37.

[71] S. Kwak, J. Yun, J. Y. Jeong, W.-S. Cheong, and J. Seo, Ray-Based
Blending Weight for 6DoF View Synthesis [M54409], document ISO/IEC
JTC1/SC29/WG11, Jun. 2020, p. 5.

[72] J. L. Schönberger, E. Zheng, J.-M. Frahm, and M. Pollefeys, ‘‘Pixelwise
view selection for unstructured multi-view stereo,’’ in Computer Vision
(Lecture Notes in Computer Science), vol. 9907, B. Leibe, J. Matas,
N. Sebe, and M. Welling, Eds. Cham, Switzerland: Springer, 2016,
pp. 501–518, doi: 10.1007/978-3-319-46487-9_31.

[73] D. S. K. Fok and D. Crevier, ‘‘Volume estimation by Monte Carlo meth-
ods,’’ J. Stat. Comput. Simul., vol. 31, no. 4, pp. 223–235, Apr. 1989, doi:
10.1080/00949658908811145.

[74] M. Regan and G. S. P. Miller, ‘‘The problem of persistence
with rotating displays,’’ IEEE Trans. Vis. Comput. Graphics,
vol. 23, no. 4, pp. 1295–1301, Apr. 2017. [Online]. Available:
https://ieeexplore.ieee.org/document/7829409/

146886 VOLUME 9, 2021

http://dx.doi.org/10.5594/JMI.2019.2941362
http://dx.doi.org/10.1109/IC3D.2018.8657865
http://dx.doi.org/10.1145/3272127.3275031
http://dx.doi.org/10.1145/3355089.3356555
http://dx.doi.org/10.1109/VR.2017.7892229
http://dx.doi.org/10.1007/978-3-319-14249-4_10
http://dx.doi.org/10.1007/978-3-319-54526-4_20
http://dx.doi.org/10.1109/MMSP.2010.5662013
http://dx.doi.org/10.1109/TMM.2018.2802646
http://dx.doi.org/10.1017/ATSIP.2017.5
http://dx.doi.org/10.1080/10867651.2004.10487596
http://dx.doi.org/10.5201/ipol.2017.189
http://dx.doi.org/10.1109/TMM.2018.2791810
http://dx.doi.org/10.1109/3DTV.2018.8478484
http://dx.doi.org/10.1109/3DTV.2018.8478439
http://dx.doi.org/10.1109/TMM.2015.2412879
http://dx.doi.org/10.1016/j.image.2017.01.004
http://dx.doi.org/10.1007/978-3-642-33783-3_44
http://dx.doi.org/10.1109/PCS.2015.7170060
http://dx.doi.org/10.2352/ISSN.2470-1173.2020.13.ERVR-382
http://dx.doi.org/10.2352/ISSN.2470-1173.2020.13.ERVR-382
http://dx.doi.org/10.1007/978-3-030-58529-7_37
http://dx.doi.org/10.1007/978-3-030-58529-7_37
http://dx.doi.org/10.1007/978-3-319-46487-9_31
http://dx.doi.org/10.1080/00949658908811145


D. Bonatto et al.: Real-Time Depth Video-Based Rendering for 6-DoF HMD Navigation and Light Field Displays

[75] G. Denes, K. Maruszczyk, G. Ash, and R. K. Mantiuk, ‘‘Temporal
resolution multiplexing: Exploiting the limitations of spatio-temporal
vision for more efficient VR rendering,’’ IEEE Trans. Vis. Comput.
Graphics, vol. 25, no. 5, pp. 2072–2082, May 2019. [Online]. Available:
https://ieeexplore.ieee.org/document/8643566/

[76] Y.Kuroki, T. Nishi, S. Kobayashi, H. Oyaizu, and S. Yoshimura, ‘‘Improve-
ment of motion image quality by high frame rate,’’ in SID Symp. Dig. Tech.
Papers, vol. 37, no. 1, 2006, p. 14, doi: 10.1889/1.2433276.

[77] V. Corporation. (Nov. 2018). Valvesoftware/OpenVR. [Online]. Available:
https://github.com/ValveSoftware/openvr

[78] Z. Wang, E. P. Simoncelli, and A. C. Bovik, ‘‘Multiscale struc-
tural similarity for image quality assessment,’’ in Proc. 37th Asilomar
Conf. Signals, Syst. Comput., 2003, pp. 1398–1402. [Online]. Available:
https://ieeexplore.ieee.org/document/1292216/

[79] S. Rogge, I. Schiopu, and A. Munteanu, ‘‘Depth estimation for light-
field images using stereo matching and convolutional neural networks,’’
Sensors, vol. 20, no. 21, p. 6188, Oct. 2020, doi: 10.3390/s20216188.

[80] S. Rogge and A. Munteanu, ‘‘Depth estimation in light field camera arrays
based on multi-stereo matching and belief propagation,’’ in Proc. 3DTV-
Conf., True Vis. Capture, Transmiss. Display 3D Video (3DTV-CON),
Jun. 2018, pp. 1–4, doi: 10.1109/3DTV.2018.8478503.

[81] S. Rogge, B. Ceulemans, Q. Bolsee, and A. Munteanu, ‘‘Multi-
stereo matching for light field camera arrays,’’ in Proc. 26th Eur.
Signal Process. Conf. (EUSIPCO), Sep. 2018, pp. 251–255, doi:
10.23919/EUSIPCO.2018.8553075.

[82] A. Dziembowski, Software Manual of IV-PSNR for Immersive Video
[N19495], document ISO/IEC JTC1/SC29/WG11, Jul. 2020.

[83] J. Jung, G. Lafruit, and A. Schenkel, Exploration Experiments for MPEG-
I: Windowed-6DoF [N17609], document ISO/IEC JTC1/SC29/WG11,
Apr. 2018.

[84] A. Schenkel, S. Fachada, D. Bonatto, and G. Lafruit, Response to
Exploration Experiments for MPEG-I Windowed-6DoF [M43509], doc-
ument ISO/IEC JTC1/SC29/WG11, Jul. 2018.

[85] J. T. Kajiya and B. P. Von Herzen, ‘‘Ray tracing volume densities,’’ ACM
SIGGRAPH Comput. Graph., vol. 18, no. 3, pp. 165–174, Jul. 1984, doi:
10.1145/964965.808594.

[86] P. Ndjiki-Nya, M. Koppel, D. Doshkov, H. Lakshman, P. Merkle,
K. Muller, and T. Wiegand, ‘‘Depth image-based rendering with
advanced texture synthesis for 3-D video,’’ IEEE Trans. Multime-
dia, vol. 13, no. 3, pp. 453–465, Jun. 2011. [Online]. Available:
https://doi.org/10.1109/TMM.2011.2128862

[87] S. Fachada and G. Lafruit, ‘‘Computer generated holography with depth-
based view synthesis,’’ in Proc. OSA Imag. and Appl. Opt. Congr.,
Jun. 2020, p. 3, doi: 10.1364/DH.2020.HF1D.7.

[88] S. Fachada, D. Bonatto, and G. Lafruit, ‘‘High-quality holographic
stereogram generation using four RGBD images,’’ Appl. Opt.,
vol. 60, pp. A250–A259, Oct. 2020. [Online]. Available:
https://www.osapublishing.org/ao/abstract.cfm?doi=10.1364/AO.403787

[89] S. Lu, J. Hanca, A. Munteanu, and P. Schelkens, ‘‘Depth-based
view synthesis using pixel-level image inpainting,’’ in Proc. 18th
Int. Conf. Digit. Signal Process. (DSP), Jul. 2013, pp. 1–6, doi:
10.1109/ICDSP.2013.6622773.

[90] G. Wadhwa, A. Dhall, S. Murala, and U. Tariq, ‘‘Hyperrealistic image
inpainting with hypergraphs,’’ in Proc. IEEE Winter Conf. Appl. Comput.
Vis. (WACV), Jan. 2021, pp. 3912–3921.

DANIELE BONATTO received themaster’s degree
in computational intelligence software engineer-
ing in applied sciences from the Université Libre
de Bruxelles, Brussels, Belgium, in 2016. He is
currently pursuing the Ph.D. degree in real-time
3D computing, jointly between the Université
Libre de Bruxelles and the Vrije Universiteit
Brussel, respectively, the French and Dutch wing
of the Free University of Brussels, Brussels.
He works on real-time free-viewpoint rendering of

natural scenery with sparse multi-camera acquisition setups. Jointly with the
Moving Picture Experts Group (MPEG), he developed the reference view
synthesis software, in 2018, and two high-density natural scene data sets for
static and dynamic content explorations.

SARAH FACHADA (Student Member, IEEE)
graduated from the Ecole polytechnique, France,
and the Trinity College of Dublin, Ireland in
2017, majoring in computer science. She is cur-
rently pursuing the Ph.D. degree with the Uni-
versité Libre de Bruxelles, Belgium, working
on acquisition and rendering in light fields and
DIBR. She is a Research Fellow of the Fonds de
la Recherche Scientifique—FNRS, Belgium. She
explores fields, such as renderingwith non-pinhole

cameras, geometric algebra applications and rendering non-Lambertian
objects. Jointly with MPEG, she developed the reference view synthesis
software, in 2018, and dynamic natural scene datasets.

SÉGOLÈNE ROGGE received the degree in com-
putational intelligence software engineering in
applied sciences from the Université Libre de
Bruxelles, Brussels, Belgium, in 2016. She is cur-
rently pursuing the Ph.D. degree entitled 3D recon-
struction using multimodal camera systems at the
Vrije Universiteit Brussel and the Université Libre
de Bruxelles, Belgium. Jointly with the Moving
Picture Experts Group (MPEG), she is involved
with the reference depth estimation software and

her actual focus is on depth estimation for light field cameras.

ADRIAN MUNTEANU (Member, IEEE) received
the M.Sc. degree in electronics and telecom-
munications from the Politehnica University of
Bucharest, Romania, in 1994, the M.Sc. degree
in biomedical engineering from the University of
Patras, Greece, in 1996, and the Ph.D. degree in
applied sciences from Vrije Universiteit Brussel
(VUB), Belgium, in 2003.

From 2004 to 2010, he was a Postdoc-
toral Fellow with the Fund for Scientific

Research–Flanders (FWO), Belgium, and since 2007, he has been a Pro-
fessor at VUB. He is currently a Professor with the Electronics and Infor-
matics (ETRO) Department, VUB. His research interests include image,
video and 3D graphics compression, 3D video, deep learning, distributed
visual processing, error-resilient coding, and multimedia transmission over
networks. He is the author of more than 350 journal articles and conference
publications, book chapters, and contributions to standards, and holds seven
patents in image and video coding.

Dr. Munteanu was a recipient of the 2004 BARCO-FWO prize for his
Ph.D. work, a (co-)recipient of the Most Cited Paper Award from Elsevier
for 2007, and of ten other scientific prizes and awards. He served as an
Associate Editor for the IEEE TRANSACTIONS ON MULTIMEDIA. He also serves
as an Associate Editor for the IEEE TRANSACTIONS ON IMAGE PROCESSING.

GAUTHIER LAFRUIT (Member, IEEE) received
the M.Sc. and Ph.D. degrees from Vrije Univer-
siteit Brussel (VUB), in 1989 and 1995, respec-
tively. He is currently an Associate Professor of
virtual reality and light field technologies at the
l’Université Libre de Bruxelles (ULB), Brussels,
Belgium.He hasworked for 25 years in the domain
of visual data analysis and compression, partici-
pating to compression standardization committees
like CCSDS (space applications), JPEG (still pic-

ture coding) and MPEG (moving picture coding). His research interests
include depth image-based rendering, immersive video, point-clouds, and
digital holography technologies.

VOLUME 9, 2021 146887

http://dx.doi.org/10.1889/1.2433276
http://dx.doi.org/10.3390/s20216188
http://dx.doi.org/10.1109/3DTV.2018.8478503
http://dx.doi.org/10.23919/EUSIPCO.2018.8553075
http://dx.doi.org/10.1145/964965.808594
http://dx.doi.org/10.1364/DH.2020.HF1D.7
http://dx.doi.org/10.1109/ICDSP.2013.6622773

