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ABSTRACT Concerning the coordination of autonomous mobile robots, the main focus has been on the
important class of Pattern Formation problems, where the robots are required to arrange themselves to form
a given geometric shape. This class of problems has been extensively studied in the continuous environment
(e.g., the Euclidean plane), whereas few results exist when robots move in a discretization of the plane,
like infinite grids. In this environment, to form any pattern, the problem of breaking symmetries emerges.
Breaking the symmetry by moving some leader robot is not a straightforward task due to the movement
restrictions as all the adjacent nodes of the leader may be occupied. It may even happen that before obtaining
the requested asymmetric configuration, most of the robots must be moved. Due to the asynchrony of robots,
this fact greatly increases the difficulty of the problem. We assume very weak robots moving on any regular
tessellation graph as a discretization of the Euclidean plane, and we devise an algorithmAbreak able to solve
the Symmetry Breaking problem on both the square and triangular grids. It is important to note that Abreak
is proposed so that it can be used as a module for solving more general problems. As a case study, we use
Abreak to deal with the Line Formation problem, where n ≥ 3 robots must arrange themselves to occupy n
contiguous vertices along a grid line. In this respect, we first provide an algorithm ALF− able to partially
solve this problem (it works with configurations in which it is not necessary to break symmetries), and then
we show how Abreak and ALF− can be combined to form ALF . We provide a complete characterization of
the solvability of the Line Formation problem on the considered topologies by showing that ALF solves the
problem in each configuration where this is possible.

INDEX TERMS Distributed algorithms, mobile robots, asynchrony, pattern formation, symmetry, grid
graphs.

I. INTRODUCTION
The coordination of autonomous mobile entities has long
been the object of study in several fields, including robotics,
control, AI, as well as distributed computing. Within dis-
tributed computing, in particular, extensive research efforts
have been conducted in the last two decades to investigate
the computational and complexity issues arising in distributed
systems composed of a team of mobile computational entities
moving and operating in a Euclidean space.

These entities, often called robots, are autonomous (no
centralized control), anonymous (they are identical in their
external appearance, no unique identifiers), homogeneous
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(have the same capabilities and execute the same algorithm),
silent (they have no explicit means of direct communication),
and disoriented (no common coordinate system, no common
left-right orientation). Each robot in the system has sensory
capabilities, allowing it to determine the location of other
robots in the environment, relative to its own location (in
fact, each robot refers to a local coordinate system that might
be different from robot to robot). Each robot, when active,
operates in Look-Compute-Move cycles: it determines the
positions of the robots in the system (Look), it uses this
information to compute a trajectory toward destination point
(Compute), and then it moves along the computed trajectory
towards the destination point (Move). After the execution of
a cycle, the robot may become temporarily inactive. Further-
more, the entities are oblivious: at the beginning of a cycle
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FIGURE 1. The execution model of computational cycles for each of
FSYNC, SSYNC, SASYNC, and ASYNC robots. The inactivity of robots is
implicitly represented by empty time periods.

the robot has no recollection of computations and operations
performed in previous cycles; that is, there is no persistent
memory. This computational model is called OBLOT and it
is one of the most investigated within distributed comput-
ing [26]. With respect to this model, the research effort is
mainly to determine what problems can be solved by a swarm
of such limited robots.

Crucial for the solvability of a problem is the activation
schedule of robots and the duration of their activities in each
cycle. In the literature, different characterizations of the envi-
ronment have been considered according whether robots are
fully-synchronous, semi-synchronous (cf. [34], [35], [37]),
semi-asynchronous (cf. [15]) or asynchronous (cf. [3], [9],
[10], [12], [19], [25], [28]). These synchronizationmodels are
illustrated in Figure 1 and defined as follows:

• Fully-Synchronous (FSYNC): All robots are always
active, continuously executing their LCM cycles in a
synchronized way. Hence the time can be logically
divided into global rounds. In each round, each robot
obtains a snapshot of the environment computed on the
basis of the obtained snapshot, and then perform the
computed move.

• Semi-Synchronous (SSYNC): It coincides with the FSYNC
model, with the only difference that not all robots are
necessarily activated in each round.

• Semi-Asynchronous (SASYNC): Robots are activated
independently. Like in FSYNC or SSYNC, the duration of
each phase is assumed to be always the same. Differently
from FSYNC or SSYNC, two activated robots can be in
different phases even though phases are synchronized.

• Asynchronous (ASYNC): Robots are activated indepen-
dently, and the duration of each phase is finite but
unpredictable. As a result, robots do not have a common
notion of time.

In ASYNC, the amount of time to complete a full LCM-
cycle is assumed to be finite but unpredictable. Moreover,
in the SSYNC, SASYNC, and ASYNC cases it is usually assumed
the existence of an adversary determining the timing of the
computational cycles. Such timing is assumed to be fair, that
is, each robot performs its LCM-cycle within finite time and
infinitely often.

When robots move in a continuous environment like the
Euclidean Plane, they are often viewed as points (they are
dimensionless), and more than one robot can occupy the
same location at the same time; when this occurs, we say
that there is a multiplicity. It is often assumed (as dictated
by impossibility results) that, in combination with the LCM-
model, robots are endowed with the so-called multiplicity
detection capability (see e.g. [17], [32]). During the Look
phase, robots can perceive multiplicities, and this capability
can be local or global, depending on whether the multiplicity
is detected only by robots composing the multiplicity itself
or by any robot performing the Look phase, respectively.
Moreover, the multiplicity detection can be weak or strong,
depending on whether a robot can detect only the presence
of a multiplicity or if it perceives the exact number of robots
composing the multiplicity, respectively.

Concerning the coordination of autonomousmobile robots,
the main focus has been on the important class of Pattern
Formation problems, where the robots are required to arrange
themselves to form a given geometric shape (e.g., [15], [19],
[22], [24], [34], [35]). The Arbitrary Pattern Formation is
a specific version that asks to determine from which initial
configurations it is possible to form any specific but arbitrary
geometric pattern given as input (e.g., [6], [10], [25]). In [12],
[27], the so-calledEmbedded Pattern Formation problemwas
studied, where the pattern to be formed is provided as a set
of visible points in the plane. The general class of Pattern
Formation includes also theGathering problem, where robots
are all required to move to the same location, not decided in
advance. This problem is of particular importance and has
been extensively studied when robots move in the Euclidean
plane. In this environment, it has been fully characterized
in [17] (for a recent survey, see [23] and references therein).
A slightly different model, imposing robots to gather at some
visible and predetermined points provided in the Euclidean
plane, has been also investigated and fully characterized,
see [9].

In the continuous setting, the robots are assumed to be
able to execute accurate movements in any direction and by
any amount, even by infinitesimally small amounts. Hence,
even in densely crowded situations, punctiform robots can
manoeuvre avoiding collisions. Certain models also permit
the robots to move along curved trajectories, in particular, the
circumference of a circle. The correctness of the algorithms
rely on the accurate execution of the movements. However,
for robots with weak mechanical capabilities, it may not be
possible to execute such intricate movements with precision.
This motivates to consider robots moving on a grid-based
terrain where the movements are restricted only along grid
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lines and only to a neighboring grid point in each step. Grid
type floor layouts can be easily implemented in real-life robot
navigation systems (e.g., see industrial Automated Guided
Vehicles [2] and Coverage Path Planning [33]). From an algo-
rithmic perspective, the restrictions imposed by the model on
the movements make it harder to solve problems that resulted
to be easy in the continuous environment. In the square
grid environment, the most investigated types of formation
problems are the Gathering problem [20] and the Mutual
Visibility problem [1], where a set of opaque robots have
to form a pattern in which no three robots are collinear.
The gathering problem has been investigated also in other
specific graph topologies like trees [21], rings [15], [18],
regular bipartite graphs [30], hypercubes [5], complete and
complete bipartite [13], [14]. For a recent survey, see [11]
and references therein.

Few results concerning the general pattern formation prob-
lem in grids exist. Recently, the Arbitrary Pattern Formation
for a set of oblivious asynchronous robots on the infinite
square grid in the absence of any global coordinate system
was first considered in [4]. The authors have shown that if
the initial configuration is asymmetric, then the Arbitrary
Pattern Formation problem is deterministically solvable by
ASYNC robots. This result has been recently extended in [8]
to triangular and hexagonal grids, also allowing multiplicities
in the pattern to be formed. To further extend these results
to the more general Pattern Formation, authors in both [4]
and [8] posed the open problem of investigating what can
be achieved from symmetric configurations. This led to the
Symmetry Breaking problem addressed in this work: how to
break symmetries in grid-based environments so that robots
can eventually form any requested geometric pattern.

A. CONTRIBUTION
As in [8], to model the discrete environment in which robots
move, we consider any regular tessellation graph, that is
square, triangular, and hexagonal grids.We assume veryweak
robots moving in this environment: they are asynchronous,
oblivious, anonymous, silent, and fully disoriented (but they
are equipped with the global strong multiplicity detection
capability). In this context, we consider the so-called leader
configurations, that is the symmetric configurations 1 in
which it is possible to elect a leader and, as a consequence,
break the symmetry by moving the leader robot. However,
breaking the symmetry by moving the leader robot is not a
straightforward task due to the movement restrictions as all
the adjacent nodes of the leader may be occupied. It may
even happen that before obtaining the required asymmetric
configuration, most of the robots must be moved. Along
with the asynchrony of robots, this fact greatly increases the
difficulty of designing an algorithm able to break symmetries.

1In the literature, the definition of leader configurations also includes
asymmetric configurations. Here we consider a more rigorous version
because we are interested in the symmetry breaking problem, which does
not apply in the case of asymmetric configurations.

We devise an algorithm called Abreak able to solve the
Symmetry Breaking problem on both the square and triangu-
lar grids. As a further contribution, the proposed algorithm is
designed so that it can be also combined with other modules.
As a case study, we applyAbreak to solve the Line Formation
problem, where n ≥ 3 robots must arrange themselves in
order to occupy n contiguous vertices along a grid line. In this
respect, we first provide an algorithm ALF− able to partially
solve this problem (it works with configurations where it is
not necessary to break symmetries), and then we show how
Abreak and ALF− can be combined to form ALF . We provide
a complete characterization of the solvability of the Line
Formation problem on the considered topologies by showing
thatALF solves the problem in each configuration where this
is possible.

B. ORGANIZATION
The rest of the paper is organized as follows. In Section II,
some basic definitions and a formal description of the sym-
metry breaking problem are presented. Section III highlights
some of the key difficulties that make the symmetry break-
ing problem challenging. It also provides insight into our
algorithmic design choices and a high-level intuition of the
proposed algorithm. Section IV contains a specific notation
used by the algorithm whereas Section V provides its formal-
ization and correctness. The case study concerning the Line
formation problem is contained in Section VI. There, nota-
tion, formalization, and correctness are all provided. Finally,
Section VII reports some concluding remarks.

II. BASIC NOTATION AND PROBLEM DEFINITION
We denote by R = {r1, r2, . . . , rn} the set of robots forming
the swarm under consideration. 2 The topology where robots
are placed is represented by a simple, undirected, and con-
nected graph G = (V ,E), with vertex set V and edge set E .
Given a function µ : R → V that maps each robot to the
vertex in G where the robot is placed, we call C = (G,R, µ)
a configuration. A vertex v ∈ V is said occupied if there
exists r ∈ R such that µ(r) = v, unoccupied otherwise.
A multiplicity occurs in any vertex v ∈ V whenever there
is more than one robot occupying v (i.e., when µ is not
injective). With mul(v) we denote the multiplicity in v, that is
the number of robots occupying v. As usual, N (v) represents
the set containing all the neighbors of the vertex v, that is
all vertices adjacent to v; concerning robots, N (r) contains
all the robots ‘‘adjacent’’ to r , that is N (r) = {r ′ ∈ R :
µ(r ′) ∈ N (µ(r))}. In the algorithm proposed in this work,
a robot moves in order to break a symmetry only when
all its neighborhood is empty. This motivates the following
terminology: a robot r is blocked if N (r) 6= ∅, unblocked
otherwise.

2We recall that robots are anonymous and such a notation is used only for
the sake of presentation, hence no algorithm can take advantage of names of
elements in R.

VOLUME 9, 2021 147857



S. Cicerone: Breaking Symmetries on Tessellation Graphs via Asynchronous Robots

FIGURE 2. Part of regular plane tessellations.

A. MOVEMENTS OF ROBOTS AND EXECUTION OF AN
ALGORITHM
The movement of the robots is restricted along the edges of
the graph representing the environment in which robots oper-
ate, from one vertex to one of its neighboring vertices. Tradi-
tionally in discrete domains, robot movements are assumed to
be instantaneous. This results in always perceiving robots on
vertices and never on the edges during Look phases. Hence,
robots cannot be seen by other robots while moving, but only
at the moment they may start moving or when they arrived.
Notice that during an LCM cycle a robot traverses only one
edge.

In the ASYNC scheduler, the activations of the robots deter-
mine specifically ordered time instants. Let C(t) be the con-
figuration observed by some robots at time t during their
Look phase, and let {ti : i = 0, 1, . . .}, with ti < ti+1,
be the set of all time instances at which at least one robot
takes the snapshot C(ti). Since the information relevant for
the computing phase of each robot is the order in which the
different snapshots occur and not the exact time in which each
snapshot is taken, without loss of generality we can assume
ti = i for all i = 0, 1, . . .. Then, an execution of an algorithm
A from an initial configuration C is a sequence of configu-
rations E : C(0),C(1), . . ., where C(0) = C and C(t + 1)
is obtained according to movements of robots as dictated
by the Compute phase implemented by A. This definition
of execution works for all the four schedulers, but with the
following remark: in ASYNC, C(t + 1) can be generated by a
movement planned in C(t ′), with t ′ � t; in FSYNC or SSYNC,
C(t + 1) depends on movements planned in C(t) only; in the
SASYNC case, C(t + 1) depends on movements planned in
C(t) or C(t − 1). Moreover, given an algorithm A, in ASYNC

(but also in SSYNC and SASYNC) there exists more than one
execution from C(0) according to the activation of the robots
(which depends on the adversary).

Initially robots are inactive, but once the execution of any
algorithmA starts there is no instruction to stop it, i.e., to pre-
vent robots to enter their LCM cycles. Then, the termination
property of A can be stated as follows: once robots have
reached the required goal bymeans ofA, from there on robots
perform only the nil movement.

B. CONFIGURATIONS ON TESSELLATION GRAPHS
In this work, we consider G as an infinite graph generated
by a plane tessellation. A tessellation is a tiling of a plane

with polygonswithout overlapping. A regular tessellation is a
tessellation that is formed by just one kind of regular polygons
of side length 1 and in which the corners of polygons are
identically arranged. According to [29], there are only three
regular tessellations, and they are generated by squares, equi-
lateral triangles or regular hexagons (see Fig. 2). An infinite
lattice of a regular tessellation is a lattice formed by taking
the vertices of the regular polygons in the tessellation as the
points of the lattice. A graph G is induced by the point set S
if the vertices of G are the points in S and its edges connect
vertices that are distance 1 apart. A tessellation graph of a
regular tessellation is the infinite graph embedded into the
Euclidean plane induced by the infinite lattice formed by that
tessellation [31]. We denote by GS (GT and GH , resp.) the
tessellation graphs induced by the regular tessellations gen-
erated by squares (equilateral triangles and regular hexagons,
resp.). In this work we consider configurationsC = (G,R, µ)
with G ∈ {GS ,GT ,GH }, but notice that most of the provided
results hold for configurations in GS and GT only.
Concerning any graph G ∈ {GS ,GT ,GH }, it follows from

the definition that G is regular, and hence by deg(G) we
denote the degree of each vertex. Notice that deg(G) equals
three, four, and six in GH , GS , and GT , respectively. Any
line parallel to an edge of G is called a canonical line, and
the smallest angle formed by the available canonical lines
is called the canonical angle. According to this notation,
inGS all the canonical lines have just two orientations and the
canonical angle is 90◦. In both GT and GH all the canonical
lines have three orientations and the canonical angle is 60◦.
In the rest of the paper, given any tessellation graph G,
by hline we mean any half-line starting from a vertex and
coincident with any canonical line.

C. CONFIGURATION AUTOMORPHISMS
AND SYMMETRIES
Two undirected graphs G = (V ,E) and G′ = (V ′,E ′) are
isomorphic if there is a bijection ϕ from V to V ′ such that
{u, v} ∈ E if and only if {ϕ(u), ϕ(v)} ∈ E ′. An automorphism
on a graph G is an isomorphism from G to itself, that is a
permutation of the vertices ofG that maps edges to edges and
non-edges to non-edges. The set of all automorphisms of G,
under the composition operation, forms a group called auto-
morphism group ofG and is denoted byAut(G). If |Aut(G)| =
1, that is G admits only the identity automorphism, then
G is said asymmetric, otherwise it is said symmetric. Two
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distinct vertices u, v ∈ V are equivalent if there exists an
automorphism ϕ ∈ Aut(G) such that ϕ(u) = v.
The concept of graph isomorphism can be extended to

configurations of robots in a natural way. Two configurations
C = (G,R, µ) and C ′ = (G′,R′, µ′) are isomorphic if
there exists an isomorphism ϕ between G and G′ that can
be extended to obtain a bijection from R to R′ such that two
robots can be associated by ϕ only if they reside on equivalent
vertices. Formally, if ϕ(r) = r ′ then ϕ(µ(r)) = µ′(r ′).
In this way, analogously to the case of graph automorphism,
an automorphism of a configuration C = (G,R, µ) is an
isomorphism from C to itself, and the set of all automor-
phisms of C forms a group under the composition operation
that we call automorphism group of C and denote as Aut(C).
Moreover, if |Aut(C)| = 1 we say that C is asymmetric,
otherwise it is symmetric. Two distinct robots r and r ′ are
equivalent in a configuration C if there exists ϕ ∈ Aut(C)
such that ϕ(r) = r ′. Notice that, according to the definition,
distinct robots in the same multiplicity are equivalent and
hence each configuration with a multiplicity is symmetric.
Also, note that mul(u) = mul(v) whenever u and v are
equivalent according to a configuration automorphism.

It can be observed that if r and r ′ are equivalent robots,
no algorithm can distinguish between them. Hence, no algo-
rithm can avoid the two equivalent ASYNC robots start the
computational cycle simultaneously at a certain time t ′.
In such a case, there might be a so-called pending move (or
pending robot), that is one of the two robots performs its
entire computational cycle while the other has not started or
not yet finished itsMove phase. Formally, a robot r is pending
in a configuration C(t) if at time t robot r is active, has taken
a snapshot C(t ′) 6= C(t), t ′ < t , and is planning to move or
is performing a non-nil movement. Clearly, any other robot
r ′ that takes the snapshot C(t) is not aware whether there is
a pending robot r , that is it cannot deduce such a piece of
information from the snapshot acquired in the Look phase.
This fact greatly increases the difficulty to devise algorithms
for ASYNC robots, and this holds in particular in symmetric
configurations, where pending moves can be easily generated
by the adversary. Said that it is worth remarking that each
algorithm must ensure to solve a general task by providing
a stationary configuration: a configuration C(t) is called
stationary if there are no pending robots in C(t). The request
for generating a stationary configuration also holds before the
termination. In fact, when the algorithm solves the general
task by subdividing it into sub-tasks, it must ensure that all
robots are aware that a sub-task has been performed (i.e.,
a particular kind of stationary configuration is generated)
in order to proceed with another one in a controlled way.
This is mandatory whenever formal and solid proof of the
algorithm’s correctness has to be provided.

D. LEADER CONFIGURATIONS AND THE SYMMETRY
BREAKING PROBLEM
Concerning the configurations addressed in this work,
it is not difficult to see that each C = (G,R, µ), with

G ∈ {GS ,GT ,GH }, admits two types of automorphisms
only: reflections, defined by a reflection axis which acts as a
mirror; rotations, defined by a center and an angle of rotation.
A configuration admitting only one reflection axis is called
reflective, and a configuration admitting any rotation is called
rotational. Notice that a configuration with two or more
reflection axes is rotational. In a rotational configuration
C , ρ(C) denotes the ‘‘angle of rotation’’, which is the
smallest angle for which the configuration can be rotated
to coincide with itself. For configurations defined on GS ,
ρ(C) ∈ {90◦, 180◦}, whereas for both GT and GH , ρ(C) ∈
{60◦, 120◦, 180◦}. We say that a rotational configuration C
is of:
• type 1, when the center of rotation is on a vertex of G;
• type 2, when the center of rotation is on a median point
of an edge of G;

• type 3, when the center of rotation is on the center of any
regular polygon of the tessellation forming G.

It is well-known (e.g., see [36]) that no algorithm can
break a symmetry among a group of two or more pairwise
equivalent robots if it acts on that group only, even in the
synchronous setting. In fact, since the algorithm cannot dis-
tinguish between them, any strategy defined by the algorithm
will be applied by the adversary to all the considered robots.
As a final result, the moved robots will remain symmetric
in any possible obtained configuration. This implies that
it is worth addressing the problem of designing symmetry
breaking algorithms only for special cases of symmetric con-
figurations, as defined in the following.
Definition 1 (Leader-Configuration): A configuration

C = (G,R, µ), with G ∈ {GS ,GT ,GH }, is a leader configu-
ration if one of the following cases holds: (1) C is reflective,
and there is one or more robots on the axis of reflection; (2)
C is rotational of type 1, and there is one robot on the center
of rotation.

We can now formalize the main problem addressed in this
work.
Definition 2 (Initial-Configuration): A configuration C =

(G,R, µ), with G ∈ {GS ,GT ,GH }, is an initial configuration
if both the following conditions hold: (1) each robot is idle
and placed on a different vertex, that is mul(v) ≤ 1 for each
v ∈ V; (2) C is a leader configuration.

The set containing all the initial configurations is denoted
by I. The goal of the Symmetry Breaking (SB, for short)
problem is to design any distributed algorithmA that, starting
from any configuration C ∈ I, guides the robots to form
an asymmetric configuration C ′. Formally, an algorithm A
solves the SB problem if, for each configuration C ∈ I and
for each possible execution E : C = C(0),C(1), . . . of A,
there exists a finite time instant t∗ > 0 such that C(t∗) is
asymmetric and no robot moves after t∗, i.e., C(t) = C(t∗)
holds for all t ≥ t∗.

III. TECHNICAL DIFFICULTIES AND HIGH-LEVEL IDEAS
We now highlight some of the key difficulties that make the
SB problem interesting. In doing so, we provide insights into
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FIGURE 3. Representation of some initial configurations defined on GS : from left to right, in the text they are referred as C1, C2, C3, and C4.

our algorithmic design choices and a high-level intuition of
our algorithm, though some key details are elaborated upon
only in the respective sections.

As highlighted in the Introduction, a fundamental diffi-
culty behind any algorithm for the SB problem is due to the
environment in which robots move: graphs. In fact, when
robots move in the Euclidean plane, the typical approach
is the following. Given a configuration of robots placed in
the Euclidean plane, assume that P is the set containing all
the robots’ positions, and let SEC(P) and c(P) denote the
smallest enclosing circle of P and its center, respectively.
If the configuration is rotational and initial, then there is a
single robot r on c(P). To solve the SB problem, let δ be
the distance between r and any other robot r ′ 6= r closest
to r , that is δ(r) = minr ′∈P{d(r, r ′) : r ′ 6= r}. To solve
SB, it is enough to move r along a segment [r, t] toward
any point t such that d(c(P), t) = δ(r)/2. Notice that: (1)
since P is finite and the robots are placed on the Euclidean
plane, there is certainly a segment as required, and (2) even if
the configuration P changes into an asymmetric one as soon
as r leaves c(P), it is important that the robot reaches the
defined target so that the algorithm can correctly guarantee
the termination property.3 A similar (and simple) approach to
solve SB, also holds in the case of a reflective configuration
with robots on the axis.

If we consider configurations defined on graphs, solving
the SB problem may become a really complex task. Consider
the configurations represented in Fig. 3:
• In C1 = (GT ,R, µ), the central robot r is not blocked,
that is the vertices in N (µ(r)) are all unoccupied. In this
case, to solve SB, it is enough to move r to any vertex in
N (µ(r)): as C1 is rotational without axes of reflection,
the obtained configuration is stationary and asymmetric.

• C2 is still an initial rotational configuration, but it has
two axes of reflection. The central robot r has a free
path, i.e., it can freely move along one axis of reflec-
tion. In this case, solving SB simply requires moving r
along the free path, thus generating an initial reflective
configuration. In the obtained configuration, the same

3This may require that r uses more than one LCM cycle, since in the
Euclidean plane the robots’ movements are not rigid, and the adversary may
stop the robots as soon as it performed a minimum guaranteed distance
ν > 0.

robot r can still move along the same direction until it
reaches a position such that it becomes unblocked, that
is N (r) = ∅ holds. Finally, moving r on one of such
neighbors leads solving the problem. Notice that this
approach never creates pending robots, so the obtained
configurations are always stationary and the termination
property is guaranteed.

• C3 shows a more complex situation. There, the central
robot r is blocked. To solve the SB problem, an algorithm
could move the robots in N (r) out of the axes of sym-
metry, and this would certainly lead having unoccupied
neighbors for r . But, the adversary can create pending
robots, and this would affect the termination property.
Additionally, this approach is not always feasible, since
even all robots in N (r) could be blocked as well.

In contrast to the strategy discussed with respect to C3
in Fig. 3, a more robust approach to make space around
the central robot is moving the robots that lie on the axes
of symmetry so as to push them away from the center. For
example, in C3 all four robots on the axes, those furthest from
the center, should move along the axis. Once all the selected
robots on the axis havemoved, subsequent robots on the same
axis should also make the same move, and thus recursively
until the central robot becomes unblocked.

Any algorithm applying the latter approach has to cope
with the following main issue: the adversary may not acti-
vate some robots or may delay the LCM cycle of others so
that pending robots are created. This leads to non-stationary
configurations where, due to the obliviousness property, the
algorithm must detect possible pending robots and finalize
their moves before proceeding further.

For example, when the algorithm processes the configura-
tion C4 in Fig. 3, before considering it a stationary reflective
configuration, it should check if the configuration may have
been generated by previous executions (e.g., it may have been
generated from C3 and have up to three pending robots).
In that case, the algorithm must: (1) consider the configura-
tion as almost rotational instead of rotational, and (2) accord-
ingly, identify all possible robots that should have moved in
the previous configuration and consequently complete their
movement. Of course, the fewer robots they move in each
move, the easier it is to have control over the termination of
each phase.
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FIGURE 4. Visualization of some notation used in the paper. An initial
reflective configuration C defined on GT : circles represent robots.
It shows the three possible bounding parallelograms. They have all the
same size. LSS(R) = 0011000111011010 and it is generated in both the red
and blue parallelograms. In the blue one, LSS(R) is generated from corner
A along the side AD. Robot r is the pivot of C .

Notice that all the previous considerations made about
rotational configurations can be replicated in a similar way
to reflective configurations. Finally, we remark that each
algorithm designed to solve SB cannot create anymultiplicity:
the presence of a multiplicity in a configuration makes that
configuration symmetric. Unfortunately, this kind of symme-
try cannot be broken and hence SB cannot be solved.

IV. CONCEPTS AND NOTATION USED
BY ALGORITHM Abreak
Here we introduce some concepts and notation used in the
proposed algorithm Abreak . They refer to any configuration
C = (G,R, µ), with G ∈ {GS ,GT }.

A. BOUNDING PARALLELOGRAM
As in [8], we consider the concept of bounding parallelogram
bp(R), defined as any parallelogram enclosing all robots, with
sides parallel to two of the available grid line orientations, and
with each pair of parallel sides as close together as possible.
Since GT or GH admit canonical lines along three orienta-
tions, it can be observed that the bounding parallelogram of R
is not unique on such topologies. In fact, there are up to three
possible bounding parallelograms (e.g., see Fig. 4). On GS ,
bp(R) is unique and corresponds to the well-known concept
of minimum bounding rectangle. We denote by h(bp(R)) and
w(bp(R)) the width and height of any bp(R), respectively.
Without loss of generality, we assume h(bp(R)) ≤ w(bp(R)).

B. BINARY STRINGS ASSOCIATED WITH A
CONFIGURATION
Any algorithm addressing the SB problem needs to elect a
leader among the robots in any initial configuration. If C is
rotational, such a leader can be naturally identified with the
robot occupying the center of rotation. Less obvious is how to
identify a specific robot in reflective configurations. To this
aim, in the following, we associate a binary string to any
configuration so that from that string it is possible to elect a

leader also in the case of initial reflective configurations (for
this purpose, we use the example given in Fig. 4).

Given any bp(R), we associate a binary string to each
canonical corner of bp(R) (a canonical corner is a corner of
the parallelogram that forms a canonical angle, e.g., corners
A and C in Fig. 4). The string associated with a canonical
corner A is defined as follows. Scan the finite tessellation
enclosed by bp(R) from A along h(bp(R)) (say, from A to
B) and sequentially all canonical lines parallel to AB in the
same direction. For each vertex v, put a 0 or 1 according to
whether it is empty or occupied. Denote the obtained string
as s(AB). Being h(bp(R)) = w(bp(R)) in the example, from A
it is also possible to obtain the string s(AD), and hence four
strings can be defined in total, two for corner A and two for
corner C . Notice that if any two of these strings are equal,
then the configuration is reflective or rotational.
Definition 3 (LSS(R)): Let C = (G,R, µ) be a configura-

tion, with G ∈ {GS ,GT }, and let S be the set containing all
the binary strings associated with each canonical corner of
bp(R), for each bp(R) with minimum height and, in case of
ties, with minimum width. LSS(R) denotes the lexicographi-
cally smallest string in S.
It follows from the definition that LSS(R) is unique, even
when it is computed on symmetric configurations, where
multiple bp(R)’s must be considered (cf. Fig. 4). By using
LSS(R), it is now possible to elect a leader, called pivot, in any
initial reflective configuration.
Definition 4: Let C = (G,R, µ) be any initial reflective

configuration. The pivot of C is the median robot on the
reflection axis of C. In case of ties, i.e. when the number of
robots on the axis is even, the pivot is the median robot having
the smallest position in LSS(R).

Concerning the example in Fig. 4, the represented config-
uration is reflective with two robots on the axis of reflection,
the pivot is the robot denoted as r since its position in LSS(R)
is 8 whereas the position of r ′ is 10.

C. STRINGS GENERATED FROM A ROBOT
Given a robot r , the strings generated from r are the binary
strings obtained in three steps, performed in order, as follows:

1) scan a hline that starts from the vertex v = µ(r) and
stop when the last occupied vertex is reached: for each
encountered vertex (v excluded) put 0 or 1 according
whether it is empty or occupied; if no occupied vertices
are encountered, the empty string is returned;

2) repeat the previous step for each hline starting from the
vertex v = µ(r), and insert all the obtained strings into
a multiset S(r) - let 0 be the length of the longest string
in S(r);

3) modify each string in S(r) by adding to the right of each
string as many 0’s as necessary to make the length of
each string equal to 0 + 1.

Concerning configuration C ′1 in Fig. 5, S(r) contains six
strings, three equal to 110 and three equal to 010. Also in
S(r) we consider the elements as lexicographically ordered.
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FIGURE 5. C1 is almost-rotational (cf. Definition 6) and C2 is almost-diagonal (cf. Definition 8). Notice that
C ′1 = Reduce(C1, r ) and C ′′1 = Compact(C ′1, r ) = Compact(C1, r ); moreover, C ′2 = Reduce(C2, r ) and
C ′′2 = Compact(C ′2, r ) = Compact(C2, r ).

Definition 5: Let S be a multiset containing some strings
ofS(r), and letmin(S) andmax(S) be the largest and smallest
strings of S, respectively: we say that the strings in S are
almost-equal if both the following conditions hold:
1) each string s ∈ S is either equal to min(S) or max(S);
2) min(S) can be made equal to max(S) by just reversing

one occurrence of the substring 01 in min(S).
Given a robot r , if S(r) contains strings without any 1

we say that r has free paths (e.g., the central robot in both
configurations C1 and C2 shown in Fig. 3 has free paths).
When r has no free paths, there could exist partitions of S(r)
defined as follows:
• {S1, S2, . . . , Sk} is a rotational-partition of S(r) if: (1)
there exists an integer q > 1 such that, for each set Si,
|Si| = q and the hlines corresponding to the string in Si
partition the plane into sectors of 360/q degrees each;
(2) for each set Si, the strings in Si are almost-equal; (3)
k is minimum.

• {S1, S2, . . . , Sk} is a reflective-partition of S(r) if: (1)
there exists a line L such that, for each set Si, |Si| =
2 and L is the bisector of the hlines corresponding
to the strings in Si or L is coincident with both the
hlines corresponding to the strings in Si; (2) for each
set Si, the strings in Si are almost-equal; (3) k is
minimum.

As an example, consider robot r in configuration C1 repre-
sented if Fig. 5: {S1, S2} with S1 = {1100, 1100, 1100} and
S2 = {0100, 0100, 0010} is a rotational-partition of S(r).
Notice that, in the previous definition the value k ranges from
one to three, and the latter occurs in the tessellation graphwith
the largest degree, namely GT .

If the strings in S(r) form a rotational-partition or
a reflective-partition {S1, S2, . . . , Sk}, then Reduce(C, r)
denotes the configuration obtained from C by replacing each
string s ∈ Si with the largest stringmax(Si), for each set Si. By
Compact(C, r) we denote the configuration obtained from C
by replacing each string s ∈ S(r) with its ‘‘compact version’’,
which is the largest binary string containing the same number
of 1’s as s. For instance, by considering the configurations
represented in Fig. 5, notice that C ′1 = Reduce(C1, r) and
C ′′1 = Compact(C ′1, r) = Compact(C1, r).

V. FORMALIZATION AND CORRECTNESS OF Abreak
In this section we formalizeAbreak , an algorithm designed to
solve the SB problem for any configuration C = (G,R, µ) ∈
I, withG ∈ {GS ,GT }, composed of nASYNC robots endowed
with all the minimal capabilities recalled in the Introduction.
We assume n ≥ 3, since for n = 1 the SB problem is trivial
and for n = 2 we get that C cannot be a leader configuration.

The pseudo-code of Abreak is formalized in Algorithm. 1.
It makes use of three distinct procedures:

• Procedure MakeSpace, whose pseudo-code is given in
Algorithm 2. It is an internal procedure used ‘‘to make
space around the central/pivot robot r’’. The space is
created by pushing away the robots that lie on the hlines
that start from the vertex v = µ(r).

• Procedures IMod and FMod , two external modules taken
as input by Abreak . If Abreak is used to solve the SB
problem only, then both IMod and FMod contain the
following simple instruction: each robot performs the nil
movement. Conversely,Abreak can be used as a breaking
symmetry module when some general problem 5 is
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defined for both leader or asymmetric configurations.
In such a case, IMod is responsible for checking the
termination property ofA, andFMod corresponds to any
algorithm A that solves 5 but for asymmetric configu-
rations only. A specific example of this approach will be
provided in Section VI.

Moreover, with respect to the provided pseudo-code the fol-
lowing assumptions hold:
• If no destination is computed (like for instance when
FMod is executed), the current LCM cycle is terminated
with an empty move;

• when any destination is computed, the execution of the
algorithm is terminated within the currentLCM cycle and
then the move is performed.

To describe the behavior of Abreak , consider that all the
initial configurations in I can be divided into some classes
(formalized in what follows according to the highlights and
key difficulties described in Section III). Basically, algorithm
Abreak first determines which class the input configuration
belongs to and consequently performs a dedicated move.
Let us start by formally define the considered classes of
configurations.
Definition 6 (A-Rotational Configuration): A configura-

tion C = (G,R, µ), with G ∈ {GS ,GT }, is called almost-
rotational (a-rotational, for short) if there exists a robot r ∈ R
such that all the following conditions hold:
1) r is blocked in C;
2) there exists a rotational-partition for S(r);
3) Reduce(C, r) is rotational of type 1 and r is central in

Compact(C, r).
In Fig. 5, C1 provides an example of a-rotational

configuration.
Definition 7 (Diagonal Configuration): An initial

configuration C = (G,R, µ), with G ∈ {GS ,GT }, is called
diagonal if it is reflective and its reflection axis does not
coincide with any canonical line.

The following definition introduces the class of almost-
diagonal configurations. It uses the notion of pivot as given
in Definition 4.
Definition 8 (A-Diagonal Configuration): A configura-

tion C = (G,R, µ), with G ∈ {GS ,GT }, is called almost-
diagonal (a-diagonal, for short) if there exists a robot r ∈ R
such that all the following conditions hold:
1) r is blocked in C;
2) there exists a reflective-partition for S(r);
3) Reduce(C, r) is diagonal and r is pivot

in Compact(C, r).
In Fig. 5, C2 provides an example of a-diagonal configura-

tion.
Robot r as in Definition 6 (Definition 8, resp.) is said the

robot that makes C a-rotational (a-diagonal, resp.).
Lemma 9: There exists a unique robot that makes a config-

uration C almost-rotational (almost-diagonal, respectively).
Proof: We first prove the statement concerning

almost-rotational configurations.

If C is rotational, r is unique since it is the central robot
in the configuration. By contradiction, assume that C is not
rotational and there are two distinct robots r ′ and r ′′ that both
satisfy all the three conditions in Definition 6.We analyze two
cases according whether r ′ and r ′′ are on a same canonical
line or not.

Assume that r ′ and r ′′ are both on a same canonical line L.
Since there exists a rotational-partition for r ′, there must be
robots in L. Moreover, according to the definition of S(r ′),
the two strings generated form r ′ and computed along the
hlines coincident with L contains the same number of 1’s.
This means that on L there is an odd number of robot and r ′

is the median robot in L. Of course, it is not possible that also
r ′′ is median in L and hence we get a contradiction.

Assume that r ′ and r ′′ are not on a same canonical line. This
implies that r ′ is not ‘‘compacted’’ to get Compact(C, r ′′)
(and the same for r ′′ in Compact(C, r ′)). Hence, the rel-
ative position of r ′ and r ′′ in C is maintained in both
Compact(C, r ′) and Compact(C, r ′′). Since r ′ is central in
Compact(C, r ′), then there must exist a robot r ′′1 equivalent
to r ′′ in Compact(C, r ′). But now r ′′1 must have an equivalent
robot r ′′2 inCompact(C, r ′′), with the distance between r ′′ and
r ′′1 larger than the distance between r ′ and r ′′1 . Again, the last
identified robot r ′′2 need an equivalent robot r ′′3 at a larger dis-
tance. We get a contradiction since this identification process
would require infinitely many robots in C .

Similar arguments as above can be used to prove that there
exists a unique robot r that makes C an almost-diagonal
configuration.

Symbols aRot and aDia denote the classes containing all
the a-rotational and a-diagonal configurations, respectively.
Additional classes of configurations managed by Abreak are
the following:

• uRef denotes the class containing all the unblocked-
reflective (u-reflective, for short) configurations. A con-
figuration C is u-reflective if it is reflective and there
exists a robot r on the axis such that N (r) = ∅. As an
example, see C4 in Fig. 3.

• fRef denotes the class containing all the free-reflective
(f-reflective, for short) configurations. A configuration
C is free-reflective if it is reflective but not u-reflective.
The name is motivated by the fact that in such configu-
rations the robots on the axis and closest to bp(R) have
free paths. As an example, consider again C4 in Fig. 3
but now assume the existence of a robot r ′, just below r ,
that makes the configuration not u-reflective.

• uRot denotes the class containing all the unblocked-
rotational (u-rotational, for short) configurations.
A configuration C is u-rotational if it is rotational of
type 1 and its central robot r has free paths or N (r) = ∅.
As an example, see C1 in Fig. 3.

It can be observed that the above definitions give rise to
sets that cover all the initial configurations in I. In fact,
(1) I can be partitioned into rotational and reflective con-
figurations by definition; (2) rotational configurations are
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further partitioned into those with the central robot having
free paths (i.e., f-rotational) and those with the central robot
having no free paths - the latter are further divided into those
with central robots unblocked (i.e., u-rotational) and those
with central robot blocked (i.e., a-rotational); (3) similarly,
reflective configurations are partitioned into the three classes
of f-reflective, u-reflective, and a-reflective configurations.

It is worth noting that Abreak checks the membership of
the input configuration C to the defined classes in a specific
order. We will see that this order is important to assess the
correctness of the algorithm.

Algorithm 1 Abreak

Input: A leader configuration C = (G,R, µ), with G ∈ {GS ,GT }
and R composed of n ≥ 3 ASYNC robots; external procedures
IMod and FMod .

Output: A configuration solving SB with respect to the input con-
figuration C

1: Call IMod
2: if C ∈ aRot then
3: let r be the unique robot that makes C a-rotational (cf.

Definition 6 and Lemma 9)
4: let P = {S1, S2 . . . , Sk } be the rotational-partition of S(r)
5: call MakeSpace(r,P)
6: if C ∈ uRot then
7: the central robot r moves on one of its unoccupied neighbors
8: if C ∈ aDia then
9: let r be the unique robot that makes C a-diagonal (cf. Defi-

nition 8 and Lemma 9)
10: let P = {S1, S2 . . . , Sk } be the diagonal-partition of S(r)
11: call MakeSpace(r,P)
12: if C ∈ fRef then
13: let r be the robot on the axis of C closest to bp(R); in case of

ties, consider the one having smallest position in LSS
14: r moves along any free path so that to increase its distance

from the center of bp(R)
15: if C ∈ uRef then
16: let r be the robot on the axis ofC , withN (r) = ∅, and having

smallest position in LSS
17: r moves on one of its neighbors not belonging to the axis of

reflection
18: Call FMod

Algorithm 2MakeSpace
Input: Robot r and a partition P = {S1, S2 . . . , Sk } of S(r)
1: if there exist a multiset Si ∈ P having different strings then
2: for all Si ∈ P : min(Si) 6= max(Si) do
3: for all s ∈ Si : s = max(Si) do
4: let r ′′ be the robot corresponding to the bit 1 in the

substring ‘‘10’’ to be reversed in order to make s equal
to min(Si)

5: r ′′ moves so that s becomes equal to min(Si)
6: else
7: for all s ∈ S(r) that starts with 1 do
8: let r ′ be the robot corresponding to the 1 in the first

occurrence of the substring ‘‘10’’ of s
9: r ′ moves away from r along the hline corresponding to s

Correctness: The following lemma deals with the cor-
rectness of Abreak with respect to ‘‘simple’’ input con-
figurations only, that is configurations not belonging to

aDia ∪ aRot. When one of them is processed by
Abreak , the algorithm is able to solve the SB problem by
always producing stationary configurations throughout the
execution.
Lemma 10: Let C be an initial configuration that does not

belong to either aDia or aRot. Then, Abreak is able to solve
the SB problem with respect to the input configuration C.

Proof: We prove that for each possible execution E :
C = C(0),C(1), . . . of Abreak , there exists a finite time
instant t∗ > 0 such that C(t∗) is asymmetric and no robot
moves after t∗, i.e., C(t) = C(t∗) holds for all t ≥ t∗. The
proof proceeds by analyzing the different classes where C(0)
may belong to.

Let us assume that in C(0) the test at Line 15 is evaluated
true. Hence, C ∈ uRef. By definition, C is reflective and
there exists a robot r on the axis such that N (r) = ∅. In this
situation, the algorithm selects the robot r on the axis of C ,
with N (r) = ∅, and having smallest position in the LSS.
The selected robot is unique. Hence, r is moved on one
of its neighbors not belonging to the axis. This movement
creates an asymmetric stationary configuration C(1). When
C(1) is further elaborated, Abreak terminates without com-
puting any move. In fact, since C(1) is asymmetric, all tests
at Lines 6, 12, and 15 return false. Moreover, also tests at
Lines Lines 2 and 8 return false otherwise, according to the
move performed by r in C(0), also C(0) would have been in
aRot∪aDia. Notice that computing nomove, the termination
property is satisfied.

If in C(0) the test at Line 12 is true, then C ∈ fRef.
According to the definition of fRef, C is reflective and
hence there exist robots on the axis of C with free paths.
Accordingly, Abreak selects a unique robot r on the axis of
C closest to bp(R). Then, r moves along any free path so
that to increase its distance from the center of bp(R). Such a
movement creates a configuration C(1) which is still in fRef.
When C(1) is further elaborated, Abreak correctly detects it
as a configuration in fRef since all tests at Lines 2, 6, and 8
return false. In fact, since C(1) is reflective, it can be neither
in uRot nor in fRot; moreover, according to the movement of
r , C(1) can be neither a-rotational nor a-diagonal, otherwise
C(0) would have been too. Hence, in a finite number of move-
ments of robots along the axis, a configuration belonging
to uRef will be eventually produced. From there, as shown
above, an asymmetric stationary configuration is created in
just one step.

If in C(0) the test at Line 6 is passed, then C ∈ uRot.
By definition, C is rotational and its central robot r has
free paths or N (r) = ∅ holds. Abreak moves the central
robot r on one of its unoccupied neighbors. If r moves to a
neighbor not belonging to an axis of reflection, the obtained
configuration is stationary and asymmetric. Otherwise, a sta-
tionary reflective configurationC(1) is created. WhenC(1) is
further elaborated,Abreak detects it as a configuration in fRef
because the path along which the robot r has moved defines
the axis of reflection, and the robot at the end of the path have
free paths.Moreover, inC(1) tests at Lines 2 and 8 return false
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since if C(1) is detected as a-rotational or a-diagonal, also
C(0) would belong to the same class. Hence,Abreak processes
C(1) at Line 12 and, as shown above, it produce a stationary
asymmetric configuration in a finite time.

The following two lemmata deal with the correctness of
Abreak with respect to input configurations belonging to aRot
or aDia. Notice that in such cases the algorithm may produce
pending moves.
Lemma 11: Let C be any initial configuration belonging to

the class aRot. Then, Abreak is able to solve the SB problem
with respect to C.

Proof: Since C belongs to aRot, according to Def-
inition 6 and Lemma 9, we get that there exists a unique
robot r in C such that (1) r is blocked in C , (2) there
exists a rotational-partition for S(r), and (3) Reduce(C, r) is
rotational of type 1 and r is central in Compact(C, r). Notice
that inC any type of symmetrymay exist:C can be rotational,
reflective (diagonal or not), or even asymmetric.

Let E : C = C(0),C(1), . . . be any execution of Abreak
that starts from C . When Abreak is executed with respect
to C(0), MakeSpace is called at line 5, and both r and a
rotational-regular partition P = {S1, S2 . . . , Sk} of S(r) are
passed as input to that procedure. Two cases must be ana-
lyzed, according whether there exist a multiset Si ∈ P having
different strings or not.
• Assume that the strings in each set Si belonging to S(r)
are all the same.
As a consequence, the block of code at lines 7–9 is
executed. There, only the strings generated from r that
starts with 1 are considered (they are generated from
the hlines passing through an occupied neighbor of
r). Let s be any of such strings: the robot r ′ corre-
sponding to the 1 in the first occurrence of the sub-
string 10 of s moves away from r along the hline
corresponding to s. Notice that according to the defini-
tion of strings generated from r , the substring 10 always
occurs in s.
LetC(1) be any configuration generated according to the
execution of MakeSpace. According to the hypothesis
and to the move performed by the algorithm, it can be
observed that C(1) results to be also in aRot, and in
particular the same robot r that was central in C(0) is
now the robot that makes C(1) a-rotational. This implies
that when Abreak processes C(1), again MakeSpace is
called at line 5, and both r andS(r) are passed as input to
that procedure. Notice that S(r) inC(1) may be different
from the samemultiset computed inC(0) (it may happen
that some of the previous Si in the initial partition are
now merged).
Concerning C(1), three cases may apply with respect to
robots that had to move in C(0): (i) they all moved and
finished the move in C(1), (ii) only a subset was acti-
vated, but all the activated robots finished the move in
C(1), and (iii) there are pending robots in C(1). In cases
(i) and (ii) the configuration is stationary, whereas in (iii)
it is not.

If C(1) matches case (i), we are in the same situation
as in C(0). If case (ii) or (iii) applies, in the parti-
tion P received as input by MakeSpace there can be a
mutiset Si containing different strings. In such a case,
Lines 2–5 are executed. Notice that now the procedure
moves exactly those robots in Si that was not activated in
C(0) or pending in C(1). This implies that, according to
the fairness property, all such robots are moved so that
all the strings in Si are the same as max(Si) in C(1) and
all the robots related to these strings become stationary.
According to this analysis, it follows that through
repeated calls to procedure MakeSpace, the algorithm
pushes the robots forward until the central robot r in
C(0) becomes unblocked in an obtained configuration
C(t), with t > 1. Notice that t is finite since it simply
depends on 0, that is the length of the longest string
in S(r) computed in C(0). It can be observed that C(t)
is stationary, initial, and belongs to uRot. According
to Lemma 10, Abreak eventually solves the SB problem
after starting to process C(t).

• Assume there exists a multiset Si ∈ P containing dif-
ferent strings. In this case we have the same analysis
performed for C(1) in the previous case. In particu-
lar, we can assume that case (ii) above applies, and in
C(1) procedureMakeSpacewill move robots that poten-
tially can make the strings in S(r) all the same. Hence,
as above, the execution proceeds until an asymmetric
stationary configuration is created after a finite time.

Lemma 12: Let C be any initial configuration belonging
to the class aDia. Algorithm Abreak is able to solve the SB
problem with respect to C.

Proof: If C is elaborated by Abreak before Line 8, then
according to Lemmata 10 and 11 it is correctly transformed
into a stationary asymmetric configuration in a finite time.

Assume that C is elaborated by Abreak at Line 8. Since
C belongs to aDia, according to Definition 6 and Lemma 9
there exists a unique robot r in C such that (1) r is blocked
in C , (2) there exists a reflective-partition for S(r), and (3)
Reduce(C, r) is diagonal and r is pivot in Compact(C, r).
Let E : C = C(0),C(1), . . . be any execution of Abreak

that starts from C . When Abreak processes C(0), MakeSpace
is called at line 5, and both r and a reflective-partition P =
{S1, S2 . . . , Sk} of S(r) are passed as input to that procedure.

It can be observed that C(1) still remains in the class aDia,
but it could belongs also to other classes processed byAbreak .
According to the order in which the algorithm checks the
membership of the processes configuration, different cases
may occur:
• C(1) belongs to aRot. In that case, it will be pro-
cessed by Abreak at Line 2 and again MakeSpace
is executed. The robot r passed as an argument to
MakeSpace in C(0) is still selected to be passed again
to that procedure: this easily holds since r was the pivot
robot in Compact(C(0), r). Hence, MakeSpace contin-
ues to push forward the same robots involved in C(0).
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According to Lemma 11, from C(1) the algorithm will
eventually create a stationary asymmetric configuration.

• C(1) belongs to uRot, but this case occurs when
MakeSpace has made r unblocked and this implies that
the configuration is stationary. According to Lemma 10,
form C(1) the algorithm solves the SB problem.

• C(1) belongs to aDia. In this case, as already analyzed
in the proof of Lemma 11, repeated calls to procedure
MakeSpace lead the pivot robot r to make unblocked in a
configuration C(t), for a finite t > 1. C(t) is stationary,
initial, and belongs to uRef. According to Lemma 10,
Abreak eventually solves the SB problem after starting to
process C(t).

The above case analysis concludes the proof.
Theorem 13: Abreak is able to solve the SB problem with

respect to any initial configuration C = (G,R, µ) such that
G ∈ {GS ,GT }.

Proof: It follows by using Lemmata 10, 11, and 12.

VI. THE LINE FORMATION PROBLEM AS A CASE STUDY
The goal of the Line Formation problem (LF , for short) is
to design a distributed algorithm A that, starting from any
configuration C = (G,R, µ) such that G ∈ {GS ,GT }, guides
the robots to form a line-pattern. Given n ≥ 3 robots, they
form a line-pattern in G if all the robots lie on the same
canonical line and form a path of n vertices (i.e., the robots
are consecutive in the canonical line). Formally, an algorithm
A solves the LF problem for any configuration C if, for each
possible execution E : C = C(0),C(1), . . . ofA, there exists
a finite time instant t∗ > 0 such that robots in C(t∗) form a
line-pattern and no robot moves after t∗, i.e., C(t) = C(t∗)
holds for all t ≥ t∗.

A. A NECESSARY CONDITION FOR SOLVING LF
In this section, we show that there are initial configurations
in which the LF problem cannot be solved.
Definition 14: Let C = (G,R, µ), with G ∈ {GS ,GT },

be an initial configuration. We say that C is LF-unresolvable
if one of the following cases apply:
1) C is reflective with no robot on the reflection axis;
2) C is rotational, ρ(C) 6= 180◦, and the center of C is

unoccupied;
3) C is rotational of type 1 or 3, ρ(C) = 180◦, and the

center of C is unoccupied.
For sake of simplicity, in the remainder, we use U

to denote the class containing all the ‘‘LF-unresolvable’’
configurations.

The following result motivates the term LF-unresolvable
since it formally proves that the LF problem cannot be solved
in each configuration belonging to U .
Theorem 15: Given an input configuration C ∈ U , the LF

problem cannot be solved in C, even for FSYNC robots.
Proof: By contradiction, let us assume that there

exists an algorithm A able to solve the LF problem for C .
We analyze different cases according to the kind of symmetry
holding in C .

• C is reflective with no robots on the reflection axis. This
means that no robot can be moved from the axis to break
the symmetry and also that all robots are partitioned into
subsets R1,R2, . . . ,Rk , k ≥ 2, with Ri formed exactly
by two equivalent robots for each i. Let L be the line
coincident with the axis of reflection. Assume that A
wants to form the pattern on a canonical line parallel to
the reflection axes. If that line does not coincide with
the axis, then all robots in C should be moved in one
of the half-planes defined by L. But the adversary may
force each pair of robots in Ri to move symmetrically,
and hence the two robots will be always in different half-
planes. If A move the robots on L, then multiplicities
will be formed on L. Notice that the adversary does not
allow to break the multiplicity. Assume that A wants to
form the pattern on a canonical line not parallel to the
reflection axes. As above, the adversary will perform
symmetric moves for the two robots in Ri. Even if A
is able to make all robots on the same line L ′, at the
intersection vertex between L and L ′ there are either no
robots or two robots. In any case, A cannot form a line-
pattern.

• C is rotational, ρ(C) 6= 180◦, and the center of C is
unoccupied. Thismeans that all robots can be partitioned
into subsets R1,R2, . . . ,Rk , k ≥ 1, with robots in Ri
pairwise equivalent and |Ri| = n/k > 2, for each i.
Since the robots in any subset Ri are pairwise equivalent,
for any move planned by A, the adversary can force all
the robots to move accordingly, and hence they always
remain equivalent. This implies that robots in Ri cannot
be guided by A to form any line-pattern.

• C is rotational, ρ(C) = 180◦, and the center of C is
unoccupied. Thismeans that all robots can be partitioned
into subsets R1,R2, . . . ,Rk , with |Ri| = 2 and the two
robots in Ri are equivalent, for each i. As in the previous
case, the adversary can force each pair of robots in Ri
to perform symmetric moves, so they always maintain
the same symmetry. The only way for A to form a line-
pattern is to ‘‘rotate’’ all the pairs of robots with respect
to the center of rotation so that they finally lie on the
same canonical line.
Consider the cases in which C is of type 1 or 3. In the
first case, even ifA is able tomove all robots on the same
canonical line, the obtained configuration does not form
a line-pattern. This is implied by the fact that the initial
configuration C does not have a robot on the center of
rotation and the center of rotation must be part of the
line-pattern. In the second case, being the center of the
rotation not on a canonical line, then the line-pattern
cannot be formed.

At this point, in order to characterize the solvability of the LF
problem, it emerges the problem of designing an algorithm
for solving LF in any initial configuration C not belonging
to U . For sake of clarity, in the remainder we denote as R
(shorthand for ‘‘resolvable’’) the class containing all such
configurations. Formally:

147866 VOLUME 9, 2021



S. Cicerone: Breaking Symmetries on Tessellation Graphs via Asynchronous Robots

Definition 16: R is the class containing any initial config-
uration C fulfilling one of the following conditions:
1) C is asymmetric;
2) C is reflective, with robots on the reflection axis;
3) C is rotational of type 1, and the center of C is occupied;
4) C is rotational of type 2 with ρ(C) = 180◦ and not

reflective.
It can be easily observed that classesR and U form a partition
of all the initial configurations in I.

In the remainder, we provide an algorithm called ALF
able to solve LF in any configuration C = (G,R, µ), with
G ∈ {GS ,GT }, such that C ∈ R. As a consequence, each
configuration in R can be thought as a ‘‘LF-resolvable’’
configuration. Notice thatALF is designed to take advantage
of Abreak as follows: Abreak is responsible to manage leader
configurations (exactly all the configurations referred to in
Items 2 and 3 of Definition 16), while an algorithm denoted
as ALF− handles all configurations referred to in Items 4
and 1 of the same definition. For the sake of presentation,
algorithm A0 contains a module called A0 responsible for
configurations in Item 4 only.

B. SOLVING LF IN ROTATIONAL CONFIGURATIONS
In this section, we focus on solving the LF problem on any
configuration C as in Item 4 of Definition 16, that is C is
rotational of type 2 with ρ(C) = 180◦ and not reflective.
To this end, we provide an algorithm denoted as A0. Dur-
ing its execution, and before generating the requested line-
pattern, A0 may produce configurations as in the following
definition.
Definition 17: Given any configuration C = (G,R, µ),

with G ∈ {GS ,GT }, we say that C belongs to the class C0
if one of the following properties hold:
1) C is rotational of type 2 with ρ(C) = 180◦ and not

reflective;
2) there exists a unique pair of robots (r ′, r ′′) in C such

that if r ′ or r ′′ is moved into an unoccupied neighboring
vertex, then the move generates a configuration C ′ such
that: (1) C ′ is rotational of type 2 with ρ(C ′) = 180◦

and not reflective, and (2) r ′ and r ′′ are equivalent in
C ′. In this case, r ′ and r ′′ are called companion robots
in C.

Remark 18: Class C0 can be partitioned into rotational
and asymmetric configurations. In particular, the former cor-
responds to all the configurations fulfilling the first condition
in Definition 17, and the latter to all the configurations
fulfilling the second condition in Definition 17.
According to this remark, in the following we will simply

write ‘‘rotational configuration in C0’’ as a shorthand for any
configuration fulfilling the first condition in Definition 17.
LetC be a rotational configuration with n robots belonging

to C0. By definition, n is even and the center ofC is the middle
point of some edge e. We denote by c(e) the center of C , by X
the canonical line coincident with e. Denote also as Y ′ and Y ′′

the lines passing through c(e) and parallel to the canonical
directions different form X (cf. Figure 6).

FIGURE 6. A rotational configuration C ∈ C0. Here, q(C̄ ′) = (3, 11210)
and q(C̄ ′′) = (2, 12200). Since q(C̄ ′) > q(C̄ ′′), then X and Y ≡ Y ′ can be
used as two unoriented axes. In the obtained reference system, the
equivalent robots r ′ and r ′′ are both in position (3, 1).

We now associate to C two auxiliary configurations
defined as follows: C̄ ′ (C̄ ′′, respectively) is the configuration
obtained fromC by projecting onX - along directions parallel
to Y ′ (Y ′′, respectively) - all robots in C . Notice that both in
C̄ ′ and C̄ ′′ all robots are placed on X .
We now define some measures on both C̄ ′ and C̄ ′′. Let X ′

and X ′′ the two half-lines starting from c(e) and forming X .
Denote as v̄1, v̄2, . . . the vertices in X ′ and X ′′ starting from
c(e), and proceeding in order (cf. Figure 6). Measures q1()
and q2() are defined on C∗ ∈ {C̄ ′, C̄ ′′} as follows:
• q1(C∗) = t1, where t1 is the size of the longest sequence
v̄1, v̄2, . . . , v̄t1 starting from v̄1 and composed of occu-
pied vertices; notice that q1(C∗) = 0 when v̄1 is unoc-
cupied;

• let t2 is the largest index such that v̄t2 is occupied and
let k = max{t2, n/2}: q2(C∗) is equal to the integer
expressed in base b = n/2 + 1 and composed of k + 1
digits such that the first digit is 1, and the i-th digit,
i > 1, corresponds to mul(v̄i−1). By recalling that mul()
denotes the multiplicity of a vertex, and by observing
that C rotational in C0 implies mul(v̄i) < n/2 for each v̄i
in X , then q2(C∗) can be formally defined as:

q2(C∗) = bk +
k∑
i=1

bk−i · mul(v̄i)

Define q(C∗) = (q1(C∗), q2(C∗)) as the final measure to be
associated with C∗, and consider the pairs defining q() as
lexicographically ordered.

It can be easily observed that

M (C∗) = (n/2,
0∑

i=n/2

bi)

is the maximum value for q(C∗) and it occurs if and only
if the n robots in C∗ are uniformly distributed along the n
vertices denoted as v̄1, v̄2, . . . , v̄n/2 and located on X (recall
that, being X unordered, there are two occurrences of v̄i in
X for each i = 1, 2, . . . , n/2, one in the half-line X ′ and the
other in X ′′).
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The following statement ensures that q() can be always
used to discriminate between lines Y ′ and Y ′′.
Lemma 19: If C is any rotational configuration in C0 then

q(C̄ ′) 6= q(C̄ ′′).
Proof: It can be easily observed that q(C̄ ′) = q(C̄ ′′)

only if both the following conditions hold: (1) all robots are
located on the portion of the grid enclosed by Y ′ and Y ′′ and
not containing the endpoints of the edge e defining the center
of rotation for C , and (2) X is a reflection axis for C . Notice
that the existence of a reflection axis for C contradicts C ∈
C0, since each configuration is such class is not reflective.

Now, if q(C̄ ′) > q(C̄ ′′) then define

• Y ≡ Y ′ and C̄ ≡ C̄ ′

else

• Y ≡ Y ′′ and C̄ ≡ C̄ ′′

All the notation and concepts defined so far will be used
by A0 to solve the LF problem for any configuration C
belonging to C0. In particular, the defined lines X and Y are
used as unoriented axes forming a unique reference system
computable to all robots (note that these axes are unoriented
because C is symmetric), whereas C̄ is used to recall which
auxiliary configuration provided the larger value for q().
The pseudo-code of A0 is given in Algorithm 3. The

proof of the following lemma provides a description of the
algorithm along with its correctness.

Algorithm 3 A0

Input: A configuration C ∈ C0.
Output: A configuration containing a line-pattern
1: if q(C̄) < M (C̄) then
2: if C is rotational then
3: let t1 = q1(C̄)
4: if in C̄ : t1 > 0 and

∑
1≤j≤t1 mul(v̄j) > t1 then

5: in C̄ : let i ≤ t1 be the largest index such that mul(v̄i) >
1

6: let (i, j), with largest j, be the position of an occupied
vertex

7: move the two equivalent robots in (i, j) to (i+ 1, j)
8: else
9: in C̄ : let i > t1 be the largest index such thatmul(v̄j) =

0 for each t1 < j ≤ i
10: let (i+1, j), with largest j, be the position of an occupied

vertex
11: move the two equivalent robots in (i+ 1, j) to (i, j)
12: else
13: let r ′ and r ′′ be the unique pair of companion robots in C
14: move a robot between r ′ and r ′′ so that to obtain a rota-

tional configuration C+ ∈ C0 with q(C̄+) > q(C̄)
15: else
16: if C is rotational then
17: let i the minimal index such that there exist a robot in (i, j),

j > 0
18: move the two equivalent robots in (i, j) to (i, j− 1)
19: else
20: let i the unique index such that there exist two robots in

positions (i, j) and (i, j+ 1), for some j > 0
21: move the robot from (i, j+ 1) to (i, j)

Lemma 20: A0 solves LF in each configuration C ∈ C0.

Proof: The strategy of A0 is based on two different
phases.

The first one (cf. Lines 2–14) aims to move robots along
canonical lines parallel to X so that, at the end of the phase,
for each i = 1, 2, . . . , n/2 there exists a robot in a position
with X -coordinate i in both the half-planes defined by Y .
This is performed by either ‘‘pushing forward’’ robots so to
increase q1(C̄) (cf. Lines 5–7) or ‘‘pulling back’’ robots so
to increase q2(C̄) (cf. Lines 9–11). Notice that, in both cases,
two equivalent robots are moved. If both robots move, the
obtained configuration is still rotational in C0, otherwise an
asymmetric configuration in C0 is generated. In the last case,
moves at Lines 13 and 14 are performed in order to force
the unmoved robot to complete the step and to create again
a rotational configuration in C0. Notice the global reference
system given by X and Y it is maintained throughout the
execution of the phase since the moves always increase the
value of q(C̄).

In the second phase,A0 simply maintains each robot in its
X -coordinate, but at each step it decreases the Y -coordinate
of each moving robot (cf. Lines 17–18). Also in this second
phase, it is considered the possibility that the adversary may
activate only one robot: in such a case moves at Lines 20–21
force the unmoved robot to complete the required step. Notice
that (1) q(C̄) is not affected by such moves and hence Y will
remain the same as in the first phase, and (2) as in the first
case any obtained configuration is still in C0. At the end of
the second phase a line-pattern will be formed on the X axis.
Since the number of moves required in each phase is

bounded, it is clear that there will a finite time t∗ such that the
observed configuration C(t∗) contains a line-pattern. Notice
that, after t∗, A0 will no longer move any robot.
The following additional result will be exploited later when

A0 is used in conjunction with Abreak .
Lemma 21: For each configuration C ∈ C0 and for each

possible execution E : C = C(0),C(1), . . . of A0, any
produced configuration C(i), i > 0, does not belong to
aRot ∪ uRot ∪ aDia ∪ fRef ∪ uRef.

Proof: In the proof of Lemma 20, we have already
remarked that C(i) ∈ C0. Hence, to prove the statement it
is sufficient to show that C0 ∩ (aRot∪ uRot∪ aDia∪ fRef∪
uRef) = ∅.

Since each configuration in C0 is not reflective, then C0 ∩
(fRef ∪ uRef) = ∅ easily follows. Since each rotational
configuration in C0 is of type 2, then C0 ∩ uRot = ∅ as well.
In the remainder, let C ′ be any configuration in C0. We now
show thatC ′ 6∈ aRot. IfC ′ is rotational, being the center ofC ′

of type 2, then clearly C ′ 6∈ aRot. Consider the case in which
C ′ is asymmetric and let C ′′ = C ′ \ {r ′, r ′′} where r ′ and r ′′

are companion robots in C ′. By definition, C ′′ is rotational
of type 2 and belongs to C0. Assume that the center of C ′′

is the median point c(e) of an edge e = (v′, v′′). We recall
that if C ′ ∈ aRot then there must exist a robot r which is
central in Compact(C ′, r). The only possibility for such a
central robot r is that r is located on a vertex v ∈ {v′, v′′}.
Of course, it is impossible that at the same time the following
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FIGURE 7. (left) An input configuration C for the LF problem. (right) The configuration C ′ obtained by ALF− at the end of
the first task (Reference System).

two conditions hold: (1) C ′′ is rotational and its center is c(e)
with e = (v′, v′′), and (2)C ′′ along with the companion robots
r ′ and r ′′ is almost-rotational, there exists a robot r located on
v ∈ {v′, v′′} such that r is central in Compact(C ′, r). Similar
arguments can also be used to show that if C ′ ∈ C0 then
C ′ 6∈ aDia.

C. SOLVING LF IN ROTATIONAL OR ASYMMETRIC
CONFIGURATIONS
In the previous section, we have shown that A0 solves LF
on C0, a subset of all the LF-resolvable configurations in R.
Here we extend this result by providing an algorithm ALF−

able to solve LF for each configuration which is in C0 or is
asymmetric. Notice that ALF− incorporates A0.
The provided algorithm considers a partition of all the

initial asymmetric configurations into three classes denoted
as C1, C2, and C3. The algorithm exploits these classes so
that each class is associated with a specific task for the
robots. Informally, in any configuration in C1, robots have to
cooperate in order to define a common reference system; in
C2, robots exploit the formed reference system to partially
form the requested line-pattern, and finally, in C3 robots
complete the line-pattern formation. This approach follows
the methodology proposed in [16]. More details are provided
in the following paragraphs.

1) CLASS C1
This class concerns all the asymmetric configurations in
which it is necessary to form a common reference system that
allows robots to uniquely identify the targets (the final desti-
nation vertices where the line-pattern will be formed). In gen-
eral, the requested common reference system is obtained
by moving some (minimal number of) robots into specific
positions such that they can be used by any other robot as
a reference. These robots are called guards. The realized
reference system should imply a unique mapping from robots
to targets, and this mapping should be maintained along all
the movements of non-guard robots.

InALF− , a single robot denoted as r1 is used as a guard. It is
selected as the robot that maximizes the sum of the distances
from all other robots (in case of ties, LSS(R) is used tomake r1
unique and detectable by all robots) - cf Fig. 7. This guard is
moved far away from all the other robots so that the obtained

configuration has a number of useful properties: (1) there
exists a unique canonical line U passing through r1 and each
bp(R′), where R′ = R \ {r1}, (2) all the robots in R′ are in the
same half-plane with respect toU , and (3) by ‘‘projecting’’ all
the positions of robots in R′ onto U , the distance between r1
and the projection vertex onto U closest to r1 is large enough
to guarantee that during the next task r1 will remain detectable
and not equivalent to any other robot. In the subsequent task
(i.e., partial line-formation), robots in R′ will be moved onto
U in order to realize the requested pattern. Fig. 7 (right side)
shows the configuration obtained by ALF− at the end of this
task: notice that once r1 is placed, each robot can determine
the vertices p1, p2, . . . , p7 where the requested pattern will be
finalized.

2) CLASS C2
This class contains all the configurations in which the guard
r1 has been placed and hence part of the requested line-
pattern can be realized. Thanks to the guard, all robots can
agree on embedding robot in R′ onto U starting from vertex
p1 and continuing with the adjacent vertices p2, p3, . . . , pn.
Robot in R′ are moved one at a time and in a given order:
if pi is the first unoccupied vertex on U , the robot closest to
pi, and with the smallest position in LSS(R) in case of ties,
moves toward pi along any shortest path. To avoid forming
a symmetric configuration before completing the pattern, the
last robot in R′ stops at distance one from its target. In this
way, during this task, no undesired collisions are created, and
only stationary and asymmetric configurations are generated.
In Fig. 7, robots in R′ are named from r2 to r7 according to
the ordering in which they are moved during this task.

3) CLASS C3
This class contains all the configurations in which only two
robots remain to be moved in order to finalize the requested
line-pattern. In our strategy, it concerns moving guard r1 and
the robot (say rn) that is at distance one from its target (the last
robot moved in the previous task). Our algorithm first moves
r1 along the canonical line U till reaching vertex p1, and
then rn.

4) FORMALIZING C1, C2, AND C3
In this paragraph, we first introduce some notation and then
we use it to formalize the three above classes. Let D() be
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the function that returns the sum of distances of a given
robot from any other robot, that is D(r) =

∑
r ′∈R\{r} d(r, r

′).
Given an asymmetric configuration C = (G,R, µ), with
G ∈ {GS ,GT }, let r1 = argmaxr∈R{D(r)} and with the
smallest position in LSS(R) in case of ties, R′ = R \ {r1}, and
1 = max{n,w}, where w is the largest width of any bp(R′)’s.
Notice that r1 is unique and that both R′ and1 depend on r1.
According to this notation, we define two Boolean variables
P2 and P3 defined on both C and r1.
Definition 22 (Variable P2): Given any configuration

C = (G,R, µ), with G ∈ {GS ,GT }, we say that variable
P2 holds in C if all the following properties hold:
P2.1 there exists a unique canonical line U passing through

r1 and each bp(R′);
P2.2 all the robots in R′ are in the same half-plane with

respect to U (U included);
P2.3 given Proj(R′) = {p1, p2, . . . , ps}, s ≤ n, be the set

containing all the vertices obtained by ‘‘projecting’’ all
the positions of robots in R′ ontoU along canonical lines
forming a canonical angle with U in the half-plane not
containing robots, then d(r1, p1) ≥ 31 (we assume that
d(r1, pi) < d(r1, pj) if i < j);

P2.4 given UR = {r ∈ R : r is on U}, then |UR| ≤ n − 1; if
|UR| = n − 1 then the robot not on U is at distance at
least 2 from U.

Definition 23 (Variable P3): Given any configuration
C = (G,R, µ), with G ∈ {GS ,GT }, we say that variable
P3 holds in C if both the following properties hold:
P3.1 there exists a path π = (p1, p2, . . . , pn) such that (1)

π is coincident with a canonical line U, (2) p1 is the
vertex in π closest to r1, (3) vertices p2, p3, . . . , pn−1
are all occupied, and (4) there is a robot rn at distance 1
from pn;

P3.2 r1 is located on U.
These variables can now be used to formally define the

three classes of configurations:
• C3 be the class of configurations where P3 holds;
• C2 be the class of configurations where P2 holds;
• C1 be the class containing all the initial asymmetric
configurations inR \ (C0 ∪ C2 ∪ C3).

It is worth observing that each robot, by using the data
acquired during the Look phase in any LCM cycle, can
evaluate variables P2 and P3, and in turn it can determine
the membership of the observed configuration to C2 or C3.
Moreover, by also using Definition 17, it can also determine
the membership to C1.
AlgorithmALF− is formalized in Fig. 4. Basically, it deter-

mines which class among C0, . . . , C3 the input configuration
belongs to, and move robots accordingly.

5) CORRECTNESS OF ALF−

To prove the correctness ofALF− , we first analyze its behav-
ior when it takes as input a configuration in C0, and then we
prove that classes C1, C2 and C3 form a partition of all the
asymmetric configurations inR \ C0.

Algorithm 4 ALF−

Input: A configuration C = (G,R, µ), with G ∈ {GS ,GT },
belonging to C0 or asymmetric.

Output: A configuration containing a line-pattern.
1: if C ∈ C0 then
2: call A0
3: if C ∈ C1 then
4: r1 moves toward any closest point t such that when t is

reached the obtained configuration belongs to C2 - during the
move, r1 must increase its distance from each other robot

5: if C ∈ C2 then
6: let Proj(R′) and U as defined in variable P2
7: let pi ∈ Proj(R′) be the first unoccupied vertex on U : the

robot closest to pi, and with the smallest position in LSS(R)
in case of ties, moves toward pi along any shortest path; the
last robot moving stops at distance 1 from its target

8: if C ∈ C3 then
9: let U be the canonical line as defined in Property P3.1.

If d(r1, p1) > 0 then r1 moves along U so that it reduces
the distance from p1. If d(r1, p1) = 0 then rn moves on pn

Lemma 24: ALF− solves LF in each configuration
C ∈ C0.

Proof: It simply follows from Lemma 20 and from the
observation that A0 always generates configurations belong-
ing to C0. Hence, whenALF− takes a configuration C ∈ C0 as
input, it continuously callsA0 until the line-pattern is formed.

Lemma 25: Classes C1, C2, and C3 form a partition of all
the configurations inR \ C0.

Proof: C1 is disjoint with both C2 and C3 by definition.
Concerning C2, it is disjoint with C3 since each configuration
C cannot fulfill at the same time properties P3.1 and P2.4.
Finally, observe that the definition of C1 guarantees that the
three classes C1, C2, and C3 contain each possible asymmetric
configuration inR \ C0.

According to Lemma 25, in order to prove the correctness
of ALF− , we have to show that all the following properties
hold in configurations belonging to the above three classes:

• Prop1: any configuration produced by ALF− and
belonging to C1, C2, or C3 is stationary and asymmetric;

• Prop2: from any configuration in Ci, i = 1, 2, 3, no class
Cj with j < i can be reached by ALF− ;

• Prop3: from any configuration in Ci, i = 1, 2, within
a finite number of LCM cycles, a class Cj, with j > i,
is reached by ALF− .

The following lemmas are responsible for checking these
properties.
Lemma 26: All three properties Prop1, Prop2, and Prop3

are valid in class C1.
Proof: Let C be any configuration in C1 processed by

ALF− . According to the definition of C1, robots in C do not
form a line-pattern and neither P2 nor P3 holds in C .
We prove thatProp1 is valid in C1. AlgorithmALF− moves

only r1, which is unique in C by definition. This implies
that each configuration obtained after the move is station-
ary. According to the definition of r1 and to the move (r1
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moves away from the other robots), it is easy to observe
that the obtained configurations remain asymmetric, since r1
is the robot that maximizes D() and the movement increases
the value D(r1).
Concerning Prop2, we have to prove that each configura-

tion C ′ produced from C does not belong to C0. This can be
observed by recalling that C 6∈ C0, that is C ′ is asymmetric,
and that the movement of r1 – which continuously increases
D(r1) – prevents the formation of an asymmetric configura-
tion as in Item 2 of Definition 17.

Prop3 holds since as soon as r1 reaches its target, the
obtained configuration belongs to C2 and this requires a
finite number of LCM cycles (it depends on just the distance
between the position of r1 in C and the final target).
Lemma 27: All three properties Prop1, Prop2, and Prop3

are valid in class C2.
Proof: Let C be any configuration in C2 processed

by ALF− . According to the definition of C2, variable P2
holds in C .
We prove that Prop1 is valid in C2, that is we show that

any configuration obtained from C is stationary and asym-
metric. The stationary property follows from the fact that the
algorithmmoves one robot at a time, whereas the asymmetric
property is guaranteed by the position of r1 with respect all
robots in R′. In particular, d(r1, p1) ≥ 31 implies that r1
cannot have equivalent robots, and hence if any obtained
configuration is symmetric the only possibility is that there
is an axis of reflection coincident with U , but this cannot
happens by property P2.4.
ConcerningProp2, it can be observed that for any obtained

configuration C ′, C ′ is asymmetric and it still belongs to
C2 since all properties defining P2 are not affected by the
move until the last robot in R′ reaches U , but in that case,
the obtained configuration belongs to C3. C ′ cannot belong to
C1 since it is disjoint with both C2 and C3. Finally, C ′ cannot
belong to C0 since the position of r1 prevents the formation
of an asymmetric configuration as in Item 2 of Definition 17.

Prop3 is valid in C2 since each time a robot moves,
it reduces its distance from U , and hence in a finite number
of cycles, a configuration in C3 is generated.

The validity of Prop1 and Prop2 in C3 is shown in the
proof of the following lemma.
Lemma 28: ALF− is able to solve LF in any configuration

in C3.
Proof: Let C be any configuration in C3 processed

by ALF− . According to the definition of C3, variable P3
holds in C . This means that in C there exists a path
π = (p1, p2, . . . , pn) such that (1) π is coincident with a
canonical line U , (2) p1 is the vertex in π closest to r1, (3)
vertices p2, p3, . . . , pn−1 are all occupied, and (4) there is a
robot rn at distance 1 from pn.

Prop1 is valid in C3 because, as long as robot r1 moves
along U , the configurations obtained are all stationary and
asymmetric (the latter due to the position of rn).
Concerning Prop2, observe that the movement of r1 does

not affect variable P3. This implies that if C ∈ C3, then

any configuration obtained during the movement of r1 it
remains in such a class. As soon as rn moves on π , the
final configuration forming the requested line-pattern is
obtained.
Lemma 29: Let C = (G,R, µ), with G ∈ {GS ,GT }, be an

initial configuration. If C ∈ C0 or C is asymmetric, then
ALF− is able to solve the LF problem in C.

Proof: According to Lemma 24, the statement holds
when C ∈ C0. In the remainder, assume that C ∈ Ci,
i = 1, 2, 3.
Assume that C is provided as input toALF− . According to

Lemma 25, there exists a single class (say Ci) that contains C .
According to Prop1, any obtained configuration is stationary
and asymmetric.

Now, let C ′ be any configuration generated from C .
By Prop2 and Prop3, we can consider C

′ belonging to some
class Cj with j ≥ i. According to this analysis, we can say that
C ′ will further evolve during the time by changing its mem-
bership from class to class according to the forward transi-
tions defined by Lemmas 26 and-27. Although the execution
ofALF− is infinite, property Prop3 assures that the transition
from each class into another is completed within a finite
number of LCM cycles. This implies that a configuration in C3
will be generated. Then, according to Lemma 28, in a finite
timeALF− will finally produce a configuration containing the
requested line-pattern.
Lemma 30: For each configuration C which is in C0 or

asymmetric and for each possible execution E : C =

C(0),C(1),C(2), . . . of ALF− , any produced configuration
Ci, i ≥ 0, does not belong to aRot ∪ aDia ∪ uRot ∪ fRef ∪
uRef.

Proof: According to the proof of Lemma 20, we know
that if C(i) ∈ C0 then C(i + 1) still belongs to C0. Consider
now the cases in which C(i) ∈ C1 ∪ C2 ∪ C3. Since C(i)
is asymmetric (cf. Lemmas 26–28), then it cannot belong to
aRot ∪ fRef ∪ uRef.

AssumeC(i) ∈ C1. Concerning the membership ofC(i+1)
to aRot∪aDia, notice thatC(i) belongs neither to aRot nor to
aDia, because it is currently processed by ALF− . Moreover,
during the move, in order for the obtained configuration to be
in one of the two classes aRot or aDia, there should be a robot
r different from r1 such that r1 correspond to some bit 1 in
some string belonging to S(r). But even if this happens, there
can be no string in S(r) which is almost-equal to the one to
which r1 belongs. This property is ensured by the movement
of r1.

Assume C(i) ∈ C2. In the proof of Lemma 27 we have
already observed that the position of r1 guarantees that
C(i + 1) is asymmetric. In particular, d(r1, p1) ≥ 31
implies that r1 cannot have equivalent robots, and hence if
any obtained configuration is symmetric the only possibility
is that there is an axis of reflection coincident withU , but this
cannot happen by property P2.4. For this reasons, we are sure
that any obtained configuration cannot belong to aDia∪aRot
(as in the proof of Lemma 26, there should be a robot r
different from r1 such that r1 corresponds to some bit 1 in
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some string belonging to S(r), but there can be no string in
S(r) which is almost-equal to the one to which r1 belongs).
Assume C(i) ∈ C3. The obtained configuration C(i + 1)

cannot belong to aDia∪aRot because Reduce(C(i+1), r) is
neither rotational nor diagonal for each possible robot r (this
simply derives from the n − 1 robots located on U , whereas
rn is not on U but at distance 1 from it).

D. SOLVING LF FOR ANY CONFIGURATION IN R
Algorithm 5 shows ALF : it refers to how Abreak can be
customized by proving it (1) a module M responsible for
managing the termination property concerning the LF prob-
lem, and (2) the algorithm ALF− responsible for solving LF
for configurations which are asymmetric or belong to C0.
In this form, ALF is able to solve the LF problem for each
configuration inR.

Algorithm 5 ALF

Input: A configuration C = (G,R, µ) ∈ R, with G ∈ {GS ,GT },
and composed of n ≥ 3 ASYNC robots.

Output: A configuration containing a line-pattern.
1: let M be a simple procedure defined as follows: ‘‘if robots

in C form a line-pattern, then each robot performs the nil
movement’’

2: call Abreak and provide it with C , M , and ALF− as input

Theorem 31: The LF problem can be solved in any con-
figuration C = (G,R, µ), with G ∈ {GS ,GT }, if and only if
C ∈ R, that is either C is leader or C is rotational of type 2
with ρ(C) = 180◦ and not reflective.

Proof: According to the adopted notation, all the initial
configurations are partitioned into U and R. Theorem 15
ensures that LF cannot be solved in any configuration in U .

Assume that the input configuration C ∈ R, when pro-
cessed by ALF , is not elaborated by IMod nor FMod . In such
a case, C is a leader configuration and Theorem 13 ensures
that the symmetry breaking problem is solved inC and hence,
in a finite time, C is transformed into an asymmetric config-
uration C ′. When C ′ is processed again by ALF , then either
IMod or FMod ≡ ALF− are called byAbreak . In the first case,
LF will be certified by IMod to be solved; in the second case,
Lemmata 29 and 30 ensure thatALF− will correctly solve LF .

Assume that the input configuration C ∈ R, when pro-
cessed byALF , is elaborated by IMod orFMod . If the nil move
is computed by IMod , then C contains already the requested
line-pattern. If C is elaborated by FMod then it is either
asymmetric or it belongs to C0. In both cases, as remarked
above, Lemmata 29 and 30 ensure that ALF− will correctly
solve LF .

VII. CONCLUSION
This paper investigated the Symmetry Breaking problem in
grid graphs by means of very weak robots. In this environ-
ment, breaking the symmetry by moving some leader robot
is not a straightforward task due to the movement restrictions
as all the adjacent nodes of the leader may be occupied.
We have shown that the proposed algorithmAbreak can solve

FIGURE 8. Example of rotational and reflective initial configurations
defined on GH .

the problem on both the square and triangular grids. The
algorithm is proposed so that it can be also combined with
other modules. As a case study, we used the proposed algo-
rithm to fully characterize the Line Formation problem on the
considered grids.

This work opens some interesting investigation directions.
The most obvious open problem is extending the proposed
algorithm Abreak to work in the case of hexagonal grids.
In this case, the challenge would be to identify a single
strategy valid for all the three types of graphs. As can be
observed from Fig. 8, in the case of GH it is not possible to
‘‘make space’’ around the central node (or around a node on
the symmetry axis) by moving robots along hlines.

As another possible investigation, it would worth testing
whether it is possible to combine the proposed algorithmwith
that proposed in [8] to solve the Arbitrary Pattern Formation
problem. The combination, if realizable, could let to consider
as input not only asymmetric but also leader configurations.
This would lead to a complete characterization of the Arbi-
trary Pattern Formation problem on square and triangular
grids. Finally, it would be interesting to analyze other prob-
lems in grid graphs that might benefit from Abreak .
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