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ABSTRACT There are some constraints such as external electrodes, a failure to capture most paroxysmal
atrial fibrillation (AFib), low power transfer efficiency (PTE) for 24/7 charging technology, a short period of
monitoring, and automatic detection of AFib in conventional electrocardiogram (ECG) sensors. To overcome
these constraints, an implantable ECG sensor with a 2-coil inductive link with maximum power transfer effi-
ciency (PTE) is designed to continuously monitor patients and efficiently detect AFib using global covering
rule discovery and the minimum description length (MDL) algorithm. Among different combinations of
ECG caoils, the square spiral-square spiral coil demonstrates the maximum PTE, 56.23%, at the resonant
frequency of 13.56 MHz and it is used in the implantable ECG sensor. The QRS complex from ECG signals
of twenty-nine AFib patients is detected using different operation methods (DOM). The MDL algorithm is
used to group 12 features of heart rate variability (HRV) parameters. The global covering rule discovery
is proposed as a novel classification technique of AFib in ECG data. The average classification accuracy
was 96.67 = 7.03, and then the average recall, precision, F1-measures, and an average number of generated
rules were 97.08 £+ 6.23, 97.08 £ 6.23, 96.57 £ 7.23, and 7.9 + 0.32, respectively. We found that the
NNS50, pNNS50, and LF parameters can distinguish the AFib patient better than a healthy one. Among these
parameters, pNN50 showed that it is greater than 34.75 in 41.38% of patients. The optimized implantable
ECG sensor with a maximum PTE of 56.23% along with novel AFib detection and classification methods
is suitable for its implementation in future implantable ECG sensors.

INDEX TERMS Atrial fibrillation (AFib), difference operation method (DOM), global covering rule

discovery, implantable ECG sensor, wireless power transfer (WPT), power transfer efficiency (PTE).

I. INTRODUCTION

Arrhythmia is defined as the abnormal rhythm of heartbeat.
Atrial fibrillation (AFib) is a type of an arrhythmia that can
cause heart problems such as stroke and heart stop. Cardio-
vascular disease is the leading cause of death in the United
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States [1]. South Korean patients with AFib are four times
as great as the general population at high risk of death [2].
A Holter monitor, which uses electrodes, is utilized to record
the heart’s rhythm and performance between 24 to 72 hours
and the data can be printed whenever the cardiologist needs
the data. A cardiologist requests a Holter monitor when a per-
son suddenly faints or has an irregular heartbeat [3]. Conven-
tional Holter monitoring devices have few leads and difficulty
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to catch AFib [4]. Therefore, an implantable ECG sensor
is required to continuously monitor patients and efficiently
detect AFib in ECG data.

A. WIRELESS IMPLANTABLE MEDICAL DEVICES (WIMD)
The wireless power transfer (WPT) is a common transfer sys-
tem for the transmission of energy without a wire in medical
devices such as cardiac defibrillators (Pacemaker).

In recent years, there are some concerns over frequency,
noise, size, distance, PTE of transmitter, and receiver coils
of WPT systems. Implantable ECG sensors requires WPT
for the seamless, safe operation, power requirements, long
life, and size of the power supply. Traditional WPT coils had
low PTE, the WPT system size and distance limitation, the
resonant frequency range, and tissue safety. The inductive-
coupling and resonance coupling play important roles in
WPT systems. WIMD is based on magnetic field induction,
and it is increasingly used to monitor human organs. Recent
developments in the field of WPT have led to an interest in
the WIMD.

Implantable ECG sensor as a WIMD is fast becoming a
key device to monitor the heart signals. It is one of the most
rapidly implantable devices which is developing to detect
cardiovascular diseases such as AFib. Also, it can record the
heart conditions for 24/7 and send the heart status to cardio-
vascular disease specialist. The existing 24-hour Holter mon-
itoring devices have difficulties to catch most of paroxysmal
AFib and they need external leads while the WIMDs do not.
In addition, they cannot detect and classify the AFib using
novel detection algorithms. The size and charging technology
of wireless implantable ECG sensors is continuing concern
in their design. The issue of PTE of implantable devices with
small coils is a major area of interest within the field of the
wireless implantable device. In addition, the WIMD causes
damage and inflammation of subcutaneous tissue [5]. Despite
the number of research for developing and designing WIMDs,
a large number of them are not marketed.

B. OPTIMIZATION OF WIRELESS IMPLANTABLE ECG
There are concerns such as the effect of resonant frequency on
the human body, the size, the distance, and the type of WPT
coils in optimization of WIMD. They are important due to
human organ size, the movement of the body and maximum
PTE in WIMD.

The PTE is a fundamental parameter for measuring the
wireless power transfer [6]. Two parameters including the
coupling coefficient and the quality factor (Q-factor) are con-
sidered to calculate PTE in the WPT systems, which depends
on many factors such as the geometry, and the distance of
WPT coils. Different coil types, such as circular [7], spiral
square [8], etc., were utilized to obtain the maximum PTE
at the specific resonant frequencies. A primary concern in
the design of WPT systems is the limitation of coil size
which large size of the coil cannot be implemented in medical
devices.
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Several studies investigating the WPT of the near-
field inducting systems have been carried out using 2-coil
[9]-[11], three inductive coils [12] and four ones [13]. Nev-
ertheless, a major problem with the different number of coils
is the power delivered to the load (PDL). Among them,
2-coil inductive links had a higher power delivered to the
load than the other number of coils for a short distance of
the Tx and Rx [12]. Three inductive coils attached to a circuit
were optimized and their power transfer was compared with
the 4-coil one [12]. The power transferred to the resistance
load at a resonant frequency of 13.56 MHz was demonstrated
that the 3-coil had more PDL and PTE than 4-coil [12].
S. Khan and G. Choi [13] studied the optimization of four-
coil planar magnetically coupled printed spiral resonators for
different geometries including square and circular shapes.
They concluded that the circular shape had higher PDL than
square one while the PTE of square shape was higher than
the circular one. PTE is the most significant parameter for
evaluating and comparing the performance of a WPT link
for Implantable devices [6]. Although extensive research has
been carried out on optimization and simulation of inductive
WPT systems, no single study exists to link and optimize
the WPT system in wireless implantable ECG along with
detection methods of AFib using machine learning approach.

C. ECG SIGNALS AND MACHINE LEARNING TECHNIQUES
Machine learning is increasingly developed for the detection
and classification of diseases in medical applications [14].
Investigating the properties of tissues using machine-
learning techniques is continuing concern among researchers
[15], [16]. A key aspect of AFib detection is the charac-
teristics of ECG signals. However, a major problem with
the analysis of ECG data is noise in signals. The noise
is removed from ECG signal using fully convolutional
networks (FCN) [17]. Machine learning is fast becom-
ing a key technique for analyzing and classifying ECG
signals [18]. Machine learning techniques including, linear
discriminant analyses [19], [20], empirical mode decompo-
sition (EMD) based algorithm [21], neural networks (NN)
[22]-[24], deep neural network (DNN) [25], 1-nearest neigh-
borhood (INN) [26], k-nearest neighbors (KNN) [27], [28],
decision trees [27], support vector machines (SVM) [19],
[29]-[33], correlation-based feature selection (CFS) [34],
discrete wavelet transforms (DWT) [32], [35], [36], novel
modified U-net [37], multi-lead fused classification [38],
floating feature selection [39], and independent component
analysis (ICA) [32], were used to detect and classify arrhyth-
mias. Over the past decade, most research in machine learning
techniques has been focused on SVM and DWT to detect
ECG signals. Several signal processing techniques, such as
Hilbert transforms [40], [41], phase-space reconstructions
[40], [42], time-domain analyses [40], [43], and Fourier trans-
forms [44], [45] were utilized to identify AFib and NSR in the
ECG signals.

Recently, the deep learning approaches have represented
superior performance for the detection of cardiac pathology
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of AFib symptoms from the features of ECG such as the atrial
and ventricular activities. The automated AFib detection
systems have been suggested on the combination of either
the deep belief network (DBN) with two-stage variational
mode decomposition (VMD) [46] or the hierarchical extreme
learning machine (H-ELM) with the fraction norm (FN) fea-
tures [47], extracted from different sub-bands (or modes) in
the ECG signals.

The aims of this study are to design and develop a wire-
less implantable ECG sensor with maximum PTE. Then,
we want to utilize a novel machine learning approach to
classify and detect the AFib from the transferred data of
implantable ECG sensor with maximum PTE. By combining
both parts, we get comprehensive implantable device for to
continuously monitor patients and efficiently detect AFib
in ECG data. In order to 24/7 monitoring of the patient,
wireless charging technology is needed to charge the device.
Hence, the high-PTE plays an important role in the AFib
detection. Also, the type of antenna and coil is important
for the communication and sending the signals to the base
station. To solve the supply power problem of the implantable
ECG, wireless power technology can be a solution. Due to
the size limitation of implantable ECG, the type of antenna
and coil can be optimized for the maximum PTE. If the
ECG signal is weak and noisy due to sending signal problem,
it is more difficult to detect the AFib from the Data. Hence,
a human implantable ECG sensor is optimized for maximum
PTE using different combinations of coil types, which are
linked to a resonant L-C circuit. In order to maximize the
PTE in wireless ECG sensor for AFib case, a 2-coil inductive
wireless ECG coil was optimized at the resonant frequency
of 13.56 MHz using six different types of coils including a
circular-circular, an elliptical-elliptical, a circular-elliptical, a
circular-square spiral, an elliptical-square spiral, and a square
spiral-square spiral. The optimized coil with maximum PTE
was utilized in the implantable ECG sensor using WPT and
the ECG sensor was inserted under chest skin to monitor the
ECG signals.

The ECG signals received from optimized ECG coils
with maximum PTE were monitored using a patient monitor
device or smartphone and they were analyzed using a simple
and fast consistent method, DOM, to detect AFib from the
NSR using QRS complex. Then, a novel technique, global
covering rule discovery, was proposed for classification of the
HRYV features. The findings of this study can be used in future
human implantable wireless ECG sensors with maximum
PTE to detect the AFib from the NSR.

This paper is divided into five sections. Section II
introduces the WPT ECG system. Section III provides
the methodology for detection of AFib using DOM and
classification of HRV features using global covering rule
discovery. Section IV provides the optimization of ECG coils
in the WPT simulation. Section V presents the experimental
results achieved by different machine learning algorithms.
Section VI provides a discussion for the obtained results.
Finally, section VII draws conclusions.
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Il. WPT ECG SYSTEM

The WPT system consists of transmitter (Tx) and
receiver (Rx) coils as a magnetic induction [48]. The induc-
tive coupling of WPT consists of Tx and Rx coils. Different
number of coils such as 2, 3 and 4 coils are utilized for the
induction in the WPT. The magnetic field is induced in the
space between Tx and Rx. Fig. 1 shows the schematic of
the 2-coil inductive linked to a resonant L-C circuit.

Transmitter (Tx)

Ry, Cry
Vm
LTx
(a)

RTX L TX-MTXRX

Recewver (Rx)
Rgx

Lpx Cro_ §RL

:3 Mgy

LRX-MTXRX

Crs % R,
|

FIGURE 1. Schematic of the 2-coil inductive linked to a resonant L-C
circuit (a) lllustration of transmitter and receiver coils (b) An equivalent
circuit of a transmitter and a receiver coil.

The capacitor is added to both transmitter and receiver coils
to resonate at the specified frequency. The capacitance, C,
is calculated:

1

- - 1
@nuf)*L’ M

where L and f are mutual inductances and the resonant
frequency, respectively. Subscript Tx and Rx in C denote
the capacitors of transmitter and receiver coils, respectively.
As can be seen from Fig. 1, C1x, and Cgrx are connected in
series and parallel with the resistors Ry, and Ry respectively.
The inductance of the transmitter, and receiver coils are
defined by Lk, and Lgy respectively. Mtxrx is the mutual
inductance coupling of transmitter and receiver coils.

Ill. DETECTION AND CLASSIFICATION METHOD OF
ATRIAL FIBRILLATION
A. WAVELET TRANSFORM (WT)
Signal processing is fast becoming a key approach for ana-
lyzing signals. WT is a common method for decomposition
of signals in signal processing. The WT was utilized for
studying the ECG signals in cardiovascular diseases [49].
WT is classified into Continuous Wavelet Trans-
form (CWT) and Discrete Wavelet Transform (DWT). The
DWT has been much more effective than CWT for de-noising
and decomposing of biomedical signals such as ECG signals
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at different frequencies. In this paper, we used DWT for the
division of the ECG signals.

The wavelet function is a fundamental function of WT
analysis. It is selected based on the form of the signal.
Daubechies wavelets, such as Db2, Db4, and DbS8, were
commonly used for decomposition of implantable biomedical
signals [50].

Db8 wavelet was used among the wavelets to decom-
pose ECG in various arrhythmias [29]. The signal, y, passes
through the low and high series of filters using the DWT
method.

x[n] = Y ylklgln — k] )
k=—00

x[n] = > ylklhln — k], 3)
k=—00

where g and h are the impulse response for low- and high pass
filters, respectively. After passing through the first round of
filtering, half of the frequency of signals is eliminated. Then,
g and h are subsampled by two for the next round of filtering.

Xow[n] = (y*g) 12, 4)
xhigh[n] = (y*h) | 2, )

where (y*g) and (y*h) are the complete convolution.

B. DIFFERENCE OPERATION METHOD (DOM)
DOM is a simple and fast consistent method of detecting
AFib in ECG signals [51]. The DOM consists of two stages.
In the first stage, the point R in the QRS of EG signals will
be detected using the difference equation operation. For the
second stage, the other points such as Q and S will be found
in the QRS complex. The QRS complex plays an important
role for detection of AFib in ECG signals due to a high
energy concentration. There are several steps to detect the
QRS complex of the ECG signal.
1) The first step: The difference equation is employed to
discover the point R in the QRS complex.

ya(n) = y(n) — y(n — 1), (6)

where y(n) is the ECG signal, and n is between 0 to N. N is
the number of samples in the ECG signal.
2) The second step: The variation of ECG signal at high
frequency is eliminated by using any low-pass filter.
3) The third step: The filtered signal at high frequency,
vdf, is passed through the threshold window, from 71 =
2MV,, to T, = 2MV,,, to find the final form of the sig-
nal. MV, and MV, are the average value of the positive
and negative waveform amplitudes, respectively.
4) The fourth step: The R position is found using the y;lf
as defined:

0 O<yyr <TrorTr <yg <0
it Yaf = Tioryg <T»

The duration of each beat is about 0.6-0.75 seconds with
180-228 samples at a sampling frequency of the 300 Hz. The

Yo = ©)
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value of y;f greater than zero was considered to derive the
R-peak in every interval of the QRS complex. Half of the
samples, 90 samples, were selected for the length of the QRS
complex intervals.

C. HEART RATE VARIABILITY ANALYSIS (HRV)

HRV is widely used to identify AFib using ECG signals.
Studies of arrhythmia show the importance of HRV. R-R
intervals play an important role in the analysis of ECG signals
using HRV. Two-domain analysis, including time and fre-
quency, was used to investigate the HRV. In this study, time-
domain was utilized for analyzing the HRV. The features of
RR-interval, HR, RMSSD, and pNN50 were used to analyze
the time domain. The mean value and standard deviation of
RR-interval; HR was considered as mean RR, Std RR, mean
HR and Std HR, respectively.

D. GLOBAL COVERING RULE DISCOVERY

Manual discovery of useful information from different data
sets is extremely difficult for the domain experts and it
requires care, experience, and time. Automated scientific
techniques are employed to discover useful information from
the data sets that may grant companies to make appropriate
decisions for improving their competitive advantages [52].
Rule discovery (or induction) is one of the important pro-
cesses that automatically derive useful information in var-
ious kinds of data sets. In order to accurately predict the
decision of the previously unseen case, the rule discovery
constructed the reasoning models, such as rule-based sys-
tems, from labeled data sets. The relationship between time-
and frequency domains is explained using parameters (or
features) which are extracted from HRV analysis. We used
a global covering rule discovery algorithm that is a com-
ponent of LERS (learning from examples using rough sets)
system [53], [54].

The algorithm checks if the data are consistent, i.e. If the
data are inconsistent, the algorithm computes lower, B (X),
and upper, B*(X), approximations of all concepts where
B.(X) and B*(X) are the set of all samples that can be cer-
tainly and possibly classified as the elements of concept X,
respectively.

B.(X) = {x e U; [x]p € X}, ®)
B*(X) = {x e Us [xlpgNX # o}, ©)

where U = {x1,x2, ..., x,} is a non-empty set of samples,
B; B C C is the subset of condition attributes (or features),
C = {ai,az,...,ay}, and [x]p is an equivalence class of
relation R which is defined by sample x with respect to B.

The binary relation R on U that is called indiscernibility
relation, is defined by:

R = {(xi,x))|Ya € B,f(a,x) = f(a, %)} , (10)

where f (a, x) denotes the value of attribute a for the sample x.
For further details, refer to the references [55]-[58].
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E. ECG SIGNAL DETECTION AND USEFUL
PRE-SCREENING RULES FOR AFib

There are random noises in ECG signals for the AFib case.
Therefore, it is very cumbersome for the cardiologists to
check the ECG signal and diagnose the heart problem using
24-hour Holter monitoring and long-term monitoring. Our
novel algorithm helps them to overcome the complications
in the interpretation of ECG signal data. Flowchart in Fig. 2
illustrates our novel algorithm for the detection of AFib in
ECG signal and classification of features using DOM and
global covering rule discovery respectively.

| ECG Signal | —>| Recognition of R peak |
Division of ECG signal | RRvariability |
using DWT l
1 Analysis of Heart rate
Pre-processing using variability
Baseline correction l
l Detection of AFib
Selection of an interval l
in the frequency
domain of ECG Global covering rule
l discovery
Difference operation
method (DOM)
| I

FIGURE 2. Flowchart for the detection of AFib in ECG signal.

IV. THE OPTIMIZATION OF ECG COILS

The safe frequency range is considered in the WPT simulation
to prevent damage to the human body. The IEEE C95.1-1991
considered that the frequency range of 3 kHz to 300 GHz
was not dangerous for the human under the effect of the
electromagnetic field [59]. In addition, the losses in the fre-
quency range of 100 kHz to 200 MHz through the soft tissue,
such as skin, were considered negligible. Based on the safe
frequency range for the human body, the resonant frequency
of 13.56 MHz was considered for the WPT of the coils.

The simulations of the WPT coil were performed using
ANSYS HFSS software. ANSYS HFSS is utilized to model
the WPT systems at high frequency and to simulate their
electromagnetic model with circuit elements, such as capac-
itor, resistor, and inductor, without need to link ANSYS
Simplorer.

Tx and Rx coils were modeled at the resonant frequency
and the high-frequency electromagnetic field was simulated
and analyzed. In addition, S-parameters in Tx and Rx coils
were illustrated for both coils versus the frequency (Hz).
As can be seen from Table 1, the parameter specification
of different types of coils is presented. In our previous
paper [60], the cross-section of copper wire was considered
arectangular shape with the same area for both elliptical and
circular coils due to considerable computational time for the
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simulation of the WPT inductive coils. In this study, we devel-
oped previous models using a circular cross-section instead
of a rectangular one. In addition, the spiral square coil and
different combinations of coils were added to the simulations.
The spiral square coil had a rectangular wire cross-section
with the same area of a circular one. The material of coil wire
was considered as a copper for all types of coils.

TABLE 1. Parameter specification of different types of coils.

Type of Wire cross- Coil No. of  Pitch Resistance
coil section size turns (mm) Q)
Circular with Radius:
Circular a 0.5 mm adus: s 2 0.0168
. 25 mm
radius
Major
Circular with &% 30
Elliptical a0.5mm mm 5 2 0.0103
. Minor
radius .
axis: 7
mm
Rectangular
Square with a length 50 mm
a and awidthof x50 5 5 0.0214
spiral
1 mm and mm
0.7854 mm

Fig. 3 demonstrates a circular-circular coil linked to the
L-C circuit.

f

Transmitter coil

7 Receiver coil

Resistor . "

Lumped port \” K

Capacitor

FIGURE 3. The components of a circular-circular coil model in ANSYS
HFSS.

The Tx and Rx coils are shown using orange and yellow
colors, respectively. They are aligned in the center of circular
or elliptical coils and the misalignment of coils is not consid-
ered in this study. As can be seen from Fig. 3, a lumped port
with two ports was selected to link the L-C circuit to the coils.
The capacitor of the transmitter and the receiver coils are in
the series and the parallel with the coils, respectively. Other
types of coils have been similarly modeled to circular-circular
coils.

Different combinations of the coils were utilized for the
simulation of ECG coils. Six types of 2-coils inductive WPT
linked to the L-C circuits were illustrated in Fig. 4.
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FIGURE 4. Simulation of six types of ECG coils using ANSYS HFSS
software. (a) Circular-Circular (b) Circular-Elliptical (c) Square
Spiral-Circular (d) Elliptical-Elliptical (e) Square Spiral-Elliptical (f) Square
Spiral-Square spiral.

The PTE of the coil is calculated using S-parameter:
PTE = |Sy;|* x 100, (11)

where the Sy is the forward voltage gain. The PTE in coils
was compared to each other for the same input of the lumped
port. The PTE in coils was compared to each other for the
same input of the lumped port. Then, the optimized coil
with maximum PTE was selected. Finally, the coil type with
maximum PTE was considered for the optimization of coil
size and distance using the Maximum PTE as the objective
function. The air region was considered instead of tissue
environment through the optimization of coils and the effect
of soft tissues was assumed negligible [61], [62].
The PDL of the coil is calculated using the PTE [12]:

V2
PDL = PTE x —, (12)
2RL
where the Vi, and Ry, are illustrated in the Figure 1.

As shown in Fig. 5, the magnitude distribution of the
H filed is presented at the resonant frequency of 13.56 MHz
for a square spiral-square spiral coil. The transmitter and
receiver coils were located at a close distance to prevent
interference between the coils and the lumped ports.

The effect of frequency on the PTE of the 2-coil induc-
tive was investigated using the S-parameter measurement.
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FIGURE 5. The magnitude distributions of H field at the resonant
frequency of 13.56 MHz for a square spiral-square spiral coil.

Fig. 6 illustrate the S-parameters for the receiver and trans-
mitter coils of the square spiral-square spiral coil. The
S-parameter is minimum for both coils at the resonance fre-
quency of 13.56 MHz.

0.00
—. -1.00
o
.-}
£ -2.00
£
-3.00
-4.00
5 463
S99 00 15.00 20.00
Frequency [MHz]
13.56
(a)
0.00
-1.00
g 200
5
o4 -3.00
-4.00 427
%00 15.00 20.00

Frequency [MHz]
13.56

(b)

FIGURE 6. The results of HFSS simulation using square spiral-square
spiral coil at the resonant frequency of 13.56 MHz (a) The S-parameter for
the receiver coil (Rx) (b) The S-parameter for the transmitter coil (Tx).

By constraining the size of transmitter and receiver coils,
the PTE was optimized via a circular-circular, a circular-
elliptical, a circular-square spiral, a square spiral-square
spiral, an elliptical-elliptical, and an elliptical-square spiral
coil using a L-C resonance circuit at resonant frequency
of 13.56 MHz. Fig. 7 compares the PTE for six types of
ECG coils simulated using ANSYS HFSS software. The
maximum and minimum PTE were determined 56.23% and
2.90% for square spiral-square spiral and circular-elliptical
coils respectively.

The plot of the transmitter coefficient Sryxtx is illustrated
in Fig. 8. Fig. 8 shows the optimization of SrxTx versus the
distance between antenna and frequency. As can be seen,
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60 T
|
56.23 %
= /—:\
=== Circular-Square Circular-Elliptical — — —13.56 MHz
Square-Square Square-Elliptical
40 H === Circular-Circular s E lliptica l-E lliptical
g 0 T IS5 —
o] r o | E
| = oo i -
o | ]
L | 15.87%
20 o
1 11.60%
i6 _/_14\
2 90%\"‘/ 3.45%
0 1
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Frequency (MHz)

FIGURE 7. The maximum PTE for different types of coils (Circular-Circular,
Circular-Elliptical, Square Spiral-Circular, Elliptical-Elliptical, Square
Spiral-Elliptical, Square Spiral-Square spiral) at the resonant frequency of
13.56 MHz.

the transmission parameter of the antenna is maximum at a
resonant frequency of 13.56 MHz and zero distance between
transmitter and receiver coils.

FIGURE 8. Plot of the optimized S-parameter of square spiral-square
spiral coil simulated using ANSYS HFSS software.

A. EFFECT OF Ry, AND Ry, ON THE SCATTERING
PARAMETERS (S-PARAMETER)

During the optimization of the antenna, a fixed Rp is
assumed. However, to maximize the power efficiency of the
antenna, the resistance of the transmitter antenna (Rtyx) and
the resistance of the receiver antenna (Rry) are optimized
to find the maximum magnitude of SrxTx for a resonant
frequency of 13.56 MHz. As can be seen from Fig. 9 (a), when
the Rrx increases for a fixed value of Ry, the magnitude
of Srxtx or PTE is increased. The optimum value for the
Rty is 30 Ohm which the magnitude of SryxTx 1S maximum.
Fig. 9 (b) illustrates when the Rpy increases for a fixed
value of Rry, the efficiency is increased. Therefore, this is
no optimal value for Rpy.

The design of square spiral-square spiral antenna consists
of two coils resonating at 13.56 MHz as shown in Fig. 10.
The lumped ports were placed close to Tx and Rx coils and
the effect of distance of lumped ports on the power transfer
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FIGURE 9. Simulated Sgyy, magnitude for different resistance with
varying (a) Ryy (b) Rpy-

efficiency (PTE) was investigated. Three distinct distances
including 0 mm, 7.5 mm, and 17.5 mm, were simulated using
ANSYS HFSS. The obtained results show that the PTE of
square spiral-square spiral coil is increased from 56.23% to
63.03%. No significant increase in PTE was found compared
with 0 mm distance.

Lumped Port

& T 0 (mm)

FIGURE 10. The plot of lumped port distance from the transmitter and
receiver coils.

The smith chart graph points that the impedance matching
is required for the RF coil. Fig.11 illustrates the S-parameter
for six types of transmitter and receiver coils.

The S-parameters obtained from the Smith Chart are
optimized for different distances between transmitter and
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FIGURE 11. Smith chart for S-parameter of transmitter and receiver coils for (a) Elliptical-Square
Spiral (b) Circular-Circular (c) Square Spiral-Square spiral (d) Elliptical-Elliptical (e) Circular-Square

(f) Circular-Elliptical.

receiver coils of square spiral-square spiral with maximum
PTE. As shown in Fig. 12, as the distance between Tx and
Ry increases from O to 100 mm, the S-parameter becomes
narrower.

V. DETECTION OF AFib USING DOM AND MACHINE
LEARNING APPROACH

In this section, we will discuss the analysis of ECG data
from optimized wireless implantable ECG sensors with max-
imum PTE, the square spiral-square spiral coil, using the
DOM method and global covering rule discovery for the
classification of HRV features in AFib patients. The novel

VOLUME 9, 2021

algorithm will be embedded in the next generation of the
wireless implantable ECG sensors. The analysis of ECG data
using DOM and global covering rule discovery are explained
in this section. The ECG signals were recored for 29 healthy
people (control group) with NSR and an equal number of the
NSR patients with AFib problem (study group), which both
groups were informed about the research and were approved
the ethic forms. The research participants’ age can be seen in
Table 2.

The ECG data were recorded for 24 hours from patients in
Daegu, South Korea. Five minutes were only considered to
apply the designed algorithm (DOM with the global covering
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FIGURE 12. S-parameters support Smith Chart for spiral square-spiral
square antenna for different distances between coils.

TABLE 2. The research participant’s age.

Group Mean age (yrs) Age range (yrs)
NSR (Control) 55.92+16.53 18 -89
AFib (Study) 61.12+11.03 40-89

rule discovery). Fig. 13 shows the wireless implantable ECG
sensor, Health Beat™(See Fig. 13b), with an inductor coil
which was inserted under chest skin near the heart. The wire-
less ECG sensor can be charged and transferred data using
CDMA (See Fig. 13a) and frequency identification (RFID)
system. ECG monitoring was performed in the hospital.
The real-time ECG data (See Fig. 13c) were monitored and
analyzed by transmitting to a smart device with embedded
software for AFib patients.

The Ethics Committee of Keimyung University supported
the experiments. (Approval number: KM-2015-20). The data
consisting of HRV parameters were extracted from the ECG
signal in order to induce useful pre-screening rules associated
with AFib symptoms.

TABLE 3. Characteristics of heart rate variability (HRV) parameters for
ECG signals.

Normal sinus

Variable (unit) Alzg):(z};))up rhythm Group
(N=29)
Age yrs 61.12+11.03 55.92 +£16.53
Male: 17 (58.6%)
. 0,
Sex - é\g $2i62.36((7290'370/;)) Female: 12
: e (41.4%)
mRR* (ms) 782.26 £211.10 883.87 +173.78
SDRR* (ms) 181.70 £ 64.25 64.73 +32.43
mHR* (bpm) 89.20 +29.04 71.63 +14.51
SDHR*
Time domain (bpm) 29.02 £22.10 8.78 £ 6.62
£ 3
R“fnSlS)D 249.10 + 93.55 63.01 £ 40.66
NN50* 231.93 +139.16 33.41 £26.78
pPNNS50* (%) 62.91 +£24.99 11.95+9.62
VLF* (%) 19.64 + 14.17 41.21 £24.23
Frequency LF* (%) 30.42+9.27 23.96 +10.61
domain HF* (%) 49.93 +15.73 34.83 +£21.19
LE/HF* 0.71+0.38 127+ 1.62
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FIGURE 13. Wireless implantable ECG sensor (a) Monitor and display the
24-h wireless ECG signal using an implantable ECG sensor (b) Different
type of spiral coils for implantable ECG (c) Implantable Cardiac Monitor,
Health Beat™, with inductor coil (d) Original signal recorded by Wireless
implantable ECG sensor.

The discretization is an essential process for explaining the
AFib symptoms. In this study, we categorized 12 features
expressed as quantitative values among HRV parameters
using minimum description length (MDL) algorithm [64].
The criteria (i.e., cut-points) for categorizing 12 features is
presented in Table 4. For example, “SDRR” can be cat-
egorized into three intervals based on two reference val-
ues: “SDRR” < 85.25, 85.25 < “SDRR” < 149.55, and
“SDRR” > 149.55.

Pre-screening rules were verified using two experiments.
In the first experiment, we utilized the overall data to derive
rules that could be explained by AFib symptoms. Thus,
we investigated the useful parameters to identify AFib symp-
toms from NSR and compared them with two represen-
tative rule induction methods [65], [66], OneR and C4.5
decision tree classifier. In the second experiment, 10-fold
cross-validation test was performed to provide the objective
performance of the proposed method with two rule induction
methods and other four machine learning methods [67]—[69]
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TABLE 4. Discretization criteria of features in quantitative values.

Variable Cut-Points
Age yrs 52.5
mRR (ms) 615.55,674.2,713.5
SDRR (ms) 85.25, 149.55
mHR (bpm) 105.65
Time domain SDHR (bpm) 6.35,7.05, 13.85,27.25
RMSSD (ms) 101.85, 115.35, 151.8
NN50 27.5,63.0,90.5
PNNS50 (%) 7.45,34.75
VLF (%) 31.45
Frequency domain LF (%) 28.25,31.5, 33.45,39.45
HF (%) 29.6
LF/HF 1.7035

such as kNN, logistic regression (LR), multi-layer percep-
tron (MLP), and support vector machines (SVM) with three
kernels such as linear, polynomial, and radial basis function
(RBF). It is a widely used technique for testing and evaluat-
ing classification performance. The samples were randomly
divided into ten subsets using a random seed and nine of them
were used as the training set and the remaining one was used
as the test set. The procedure is invoked repeatedly ten runs.
Then the five evaluation criteria (i.e., Accuracy, Recall, Pre-
cision, F-measure, and Kappa coefficient) derived from ten
runs are averaged to produce the classification performance
on each classifier.

TP+ TN
Accuracy = (13)
TP + FN + TN + FP
TP
Recall = —— (14)
TP + FN
. TP
Precision = ——— (15)
TP + FP
Precision x Recall
F-Measure = 2 x (16)

Precision + Recall

Accuracy — Random Accuracy
Kappa = (17)
1 — Random Accuracy

TP, TN, FP, and FN represent true positive, true nega-
tive, false positive, and false negative respectively. In (17),
“Random Accuracy” is defined as the sum of the products of
reference likelihood and result from likelihood for each class
and can be written as:

(TP4FP)x(TN+FN)+(FN+TP)x (FP+TP)/N?, where N
defines the total number of samples.

Cross-validation is one of the procedures which is utilized
to assess the machine learning models. It is named as a k-fold
cross-validation because it uses a k parameter to divide the
limited number of samples. At the cross-validation procedure,
the proposed method evaluates new decisions of test samples
from a rule set, which is induced by train samples. The best
k rules are used for prediction of each test sample using a
rule set which is contained rules for each class label with the
following procedure: (1) select all the rules which conditions
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are matched by the test sample, (2) select the best k rules from
the candidate rules in step (1), and (3) choose the class of rule
with the highest matching degree of rule conditions as the
predicted class [70]. The proposed method was implemented
and evaluated on the hardware and software platforms: CPU,
Intel®CoreTM i7-6700 @ 3.40GHz; RAM, 32.0GB; OS,
Windows 10; S/W, IntelliJ IDEA 2019.1.4 (Ultimate Edition)
with Python 3.6.8. Six benchmark methods, i.e., OneR, C4.5,
kKNN(k = 1), LR, MLP, and SVMs (linear, polynomial, and
RBF), were evaluated on a version of Weka 3.8.3 [71].

Table 5 shows the pre-screening rules associated with HRV
parameters which were extracted from the proposed method.
These rules illustrate the sorted rules in descending order
according to two evaluation criteria, rule confidence (CONF)
and rule support (SUPP). Suppose that a rule is defined as IF
X THEN Y. Then, rule support, defined in (18), represents
the ratio of samples that satisfy both the condition X and
decision Y. Rule confidence, defined in (19), is an indica-
tion of how often the rule has been found to be true. The
confidence of a rule is the proportion of samples that contain
both X and Y.

SUPP = |X N Y| /N, (18)
CONF = X NY|/|X], (19)

where || is the cardinality of a set.

As can be seen from the experimental results, three impor-
tant parameters, pNN50, NN50, and LF, were found to dis-
tinguish between AFib symptoms and NSR. pNN50 was the
most important parameter compared to others, and 41.38%
of 58 patients demonstrated that the pNN50 was greater
than 34.75.

TABLE 5. Pre-screening rules induced from Proposed method.

SUPP.

No Condition Decision (%) CONF.
0

1 pNN50 > 34.75 AFib 41.38 1.0
7.45 < pNN50 < 34.75

2 AND LF <£28.25 NSR 24.14 10

3 pNN50 <7.45 NSR 22.41 1.0

4 33.45<LF <3945 AFib 13.79 1.0

5 2835<LF<3l1.5 AFib 12.07 1.0

6 63.0 <NN50<90.5 NSR 12.07 1.0

7 31.5<LF<3345 NSR 5.17 1.0
27.5 <NN50<63.0 .

8 AND LF >39.45 AFib 345 10

Table 6 shows the classification rules generated from
OneR. The OneR classifier is one of the simplest rule induc-
tion algorithms. From all HRV parameters, it selected the
one that carries the most information about the outcome of
interest and creates two decision rules from this parameter.
RMSSD was the most important parameter to distinguish
AFib symptoms from NSR. 29 (i.e., 50%) of 58 patients
demonstrated that the RMSSD was equal or greater than
101.85, and then its confidence was 0.85.

Table 7 shows the classification rules extracted from C4.5
decision tree classifier. Four important parameters, NN50,

149259



IEEE Access

S. J. Mostafavi Yazdi et al.: Novel Machine Learning Approach to Classify and Detect AFib Using Optimized Implantable ECG Sensor

TABLE 6. Classification rules induced from OneR classifier.

No Condition Decision (S,JE)PP CONF.
(]

1 RMSSD > 101.85 AFib 50.00 0.85

2 RMSSD < 101.85 NSR 41.38 1.0

RMSSD, LF, and mRR, were determined in order to generate
the decision tree model to identify AFib symptoms from
NSR. Three (No. 2, 4, and 5 in Table 7) were useful pre-
screening rules associated with AFib.

TABLE 7. Classification rules induced from C4.5 decision tree classifier.

No Condition Decision (S,J}J)P P. CONF.
(]

NN50 < 88 AND

1 RMSSD < 96.7 NSR 41.38 1.0
NN50 < 88 AND
RMSSD > 96.7 AND LF .

2 <343 AND mRR < AFib 3.45 0.67
877.8
NN50 < 88 AND
RMSSD > 96.7 AND LF

3 <343 AND mRR > NSR 8.62 1.0
877.8
NN50 < 88 AND

4 RMSSD >96.7 AND LF  AFib 5.17 1.0

>343
5 NN>88 AFib 41.38 0.96

Table 8 shows the classification performances for the five
evaluation criteria after 10-fold cross validation. In Table 8,
the average number of rules generated by the proposed
method are larger than those derived by OneR and C4.5
decision tree classifiers.

However, we found that the combination of three parame-
ters, pNN50, NN50, and LF, can lead to more accurate clas-
sification rules than those used in OneR and C.45 classifiers
(See Table 9). The proposed method achieved higher classi-
fication accuracy, F-measure, and Kappa coefficient than six
benchmark methods.

In order to provide a better understanding, we examined
the pairwise comparison between the F-measures of the clas-
sifiers; the results are presented in Table 10. The pairwise
comparison is the difference between the observed means,
i.e., F-measures, in two independent classifiers. A signifi-
cance value, standard error (SE), and 95% confidence inter-
vals (CI) of the difference were provided.

The significance value, estimated using the 7-test, is the
probability of obtaining the observed difference between the
classifiers if the null hypothesis were true.

The null hypothesis is the hypothesis that the difference is
zero. The significance level (or p-value) is calculated with the
value ¢ as:

o _BR

= m (20)

149260

TABLE 8. Comparison of classification performances during 10-fold cross
validation.

MeEho Accura Recall Precisi MeFa-sur Kappa NAI\III‘%]
d ey (%) (%) on (%) e (%) Rules
OneR 467+ 8583+ 87+ 83.08+  0.68+ N
9.58 10.05 8.03 10.91 0.2
cas 9333t 9292+ 0483+  92.64f  0.86% 4.1+
8.61 9.63 6.86 9.62 0.19 0.32
88+ 90+ 87.08+  87.01+  0.75%

NN 11.46 11.49 12.8 12.74 0.25 -
IR 88+ 87.08+  88.83+% 86+ 0.73+ B
11.46 13.24 12.55 13.28 0.26
91.33+  92.08+ 91.92+  90.26+  0.81+
MLP 9.19 9.1 9.33 10.5 0.2 B

SVM 9133+ 9208+ 91.92+ 9026+  0.81%

(L) 9.19 9.1 9.33 10.5 0.2 B
SVM 93+ 93.33+  93.58+ 91.97+  0.85+

(P) 9.09 9.26 9.11 10.56 0.2 -
SVM 88+ 90+ 89.25+  87.01+  0.75%

R) 11.46 10.61 9.77 12.74 0.23
Propo  96.67+  97.08t 97.08f  96.57t 0.94+ 7.9+
sed 7.03 6.23 6.23 7.23 0.12 0.32
* Training parameters for each classifier
1) OneR: no parameters;
2) C4.5: confidence factor (0.25), the minimum number of samples per
leaf node (2);
3) kKNN: the number of neighbors (1), Euclidean distance;
4) LR: no parameters;
5) MLP: batch size (100), 3 hidden layers, the number of nodes (or units)
at each layer (7), learning rate (0.3), momentum (0.2), the number of
epochs (500), sigmoid function;
6) SVM: complexity (1.0), calibration method (logistic), epsilon (1.0E-12);
- Linear (L): exponent (1.0);
- Polynomial (P): exponent (2.0);
- RBF (R): gamma (0.01).

TABLE 9. HRV parameters selected during 10-fold cross validation.

Fold OneR C4.5 Proposed
1 RMSSD [NN50, SDRR, LF pNN350, NN50, LF
2 NN50 pNN50, SDRR, LF pNN50, NN50, LF
3 NN50 NN50, SDRR, LF NN50, LF
4 RMSSD pNN50, SDRR, LF PpNNS50, LF
5 RMSSD RMSSD, NN50, LF pNNS50, NN50, LF
6 RMSSD RMSSD, pNN50, LF pNNS50, NN50, LF
7 NN50 pNN50, SDRR, HF, LF pNN50, NN50, LF
8 RMSSD RMSSD pNN50, NN50, LF
9 RMSSD pNN50, SDRR, LF pNN50, NN50, LF
10 pNN50 pNN50, SDRR, LF pNN50, NN50, LF

The standard error denotes the difference between the two
means of F-measure calculated from i- and j-th classifiers.

2D

where n; and n; denotes the number of test samples used
in i- and j-th classifiers during 10-fold cross validation
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TABLE 10. Pairwise comparison between f-measures of different classifiers.

Method OneR C4.5 kNN LR MLP SVM (L) SVM (P) SVM (R) Proposed
p<0.0001%; p=0.077; p=0.1983; p<0.001%; p<0.001%; p<0.0001%; p=0.077; p<0.0001%;
SE=1.91; SE=2.202; SE=2.257, SE=1.988; SE=1.988; SE=1.994; SE=2.202; SE=1.719;
OneR - 95% CI: 95% CI: [- 95% CI: [- 95% CI: 95% CI: 95% CI: 95% CI: [- 95% CI:
[5.7765, 0.433, 1.5506, [3.2413, [3.2413, [4.9405, 0.433, [10.0855,
13.3435] 8.293] 7.3906] 11.1187] 11.1187] 12.8395] 8.293] 16.8945]
p<0.0001%; p<0.01%; p<0.01%; p=0.2057, p=0.2057; p=0.7216, p<0.01%; p<0.05%;
SE=1.91; SE=2.096; SE=2.153; SE=1.87; SE=1.87; SE=1.876; SE=2.096; SE=1.58;
C4.5 95% CI: [- - 95% CI: [- 95% CI: [- 95% CIL: [- 95% CI: [- 95% CI: [- 95% CIL: [- 95% CI:
13.3435, - 9.7825, - 10.9055, - 6.0842, 6.0842, 4.3857, 9.7825, - [0.7998,
5.7765] 1.4775] 2.3745] 1.3242] 1.3242] 3.0457] 1.4775] 7.0602]
p=0.077; p<0.01%; p=0.6768; p=0.1366; p=0.1366; p<0.05%; p=1; p<0.0001%;
SE=2.202; SE=2.096; SE=2.416; SE=2.168; SE=2.168; SE=2.173; SE=2.366; SE=1.923;
kNN 95% CI: [- 95% CI: - 95% CI: [- 95% CI: [- 95% CI: [- 95% CI: 95% CI: [- 95% CI:
8.293, [1.4775, 5.7969, 1.0444, 1.0444, [0.6557, 4.6865, [5.7497,
0.433] 9.7825] 3.7769] 7.5444) 7.5444) 9.2643] 4.6865] 13.3703]
p=0.1983; p<0.01%; p=0.6768; p=0.0578; p=0.0578; p<0.01%; p=0.6768,; p<0.0001%;
SE=2.257, SE=2.153; SE=2.416; SE=2.223; SE=2.223; SE=2.228; SE=2.416; SE=1.985;
LR 95% CIL: [- 95% CI: 95% CIL: [- - 95% CL: [- 95% CL: [- 95% CI: 95% CL: [- 95% CI:
7.3906, [2.3745, 3.7769, 0.1437, 0.1437, [1.5566, 3.7769, [6.6369,
1.5506] 10.9055] 5.7969] 8.6637] 8.6637] 10.3834] 5.7969] 14.5031]
p<0.001%; p=0.2057; p=0.1366; p=0.0578; p=1; p=0.3837; p=0.1366; p<0.001%;
SE=1.988; SE=1.87, SE=2.168; SE=2.223; SE=1.95; SE=1.955; SE=2.168; SE=1.674;
MLP 95% CL: [- 95% CL: [- 95% CIL: [- 95% CL: [- - 95% CL: [- 95% CL: [- 95% CL: [- 95% CI:
11.1187, - 1.3242, 7.5444, 8.6637, 3.8625, 2.1636, 7.5444, [2.9939,
3.2413] 6.0842] 1.0444] 0.1437] 3.8625] 5.5836] 1.0444] 9.6261]
p<0.001%; p=0.2057; p=0.1366; p=0.0578; p=1; p=0.3837; p=0.1366; p<0.001%;
SE=1.988; SE=1.87; SE=2.168; SE=2.223; SE=1.95; SE=1.955; SE=2.168; SE=1.674;
SVM (L) 95% CIL: [- 95% CL: [- 95% CI: [- 95% CIL: [- 95% CL: [- - 95% CL: [- 95% CL: [- 95% CI:
11.1187, - 1.3242, 7.5444, 8.6637, 3.8625, 2.1636, 7.5444, [2.9939,
3.2413] 6.0842] 1.0444] 0.1437] 3.8625] 5.5836] 1.0444] 9.6261]
p<0.0001%; p=0.7216, p<0.05%; p<0.01%; p=0.3837; p=0.3837; p<0.05%; p<0.01%;
SE=1.994; SE=1.876; SE=2.173; SE=2.228; SE=1.955; SE=1.955; SE=2.173; SE=1.68;
SVM (P) 95% CI: [- 95% CI: [- 95% CI: [- 95% CI: [- 95% CI: [- 95% CI: [- - 95% CI: [- 95% CI:
12.8395, - 3.0457, 9.2643, - 10.3834, - 5.5836, 5.5836, 9.2643. - [1.271,
4.9405] 4.3857] 0.6557] 1.5566] 2.1636] 2.1636] 0.6557] 7.929]
p=0.077; p<0.01%; p=1; p=0.6768; p=0.1366; p=0.1366; p<0.05%; p<0.0001%*;
SE=2.202; SE=2.096; SE=2.366; SE=2.416; SE=2.168; SE=2.168; SE=2.173; SE=1.923;
SVM (R) 95% CI: [- 95% CI: 95% CI: [- 95% CI: [- 95% CI: [- 95% CI: [- 95% CI: - 95% CI:
8.293, [1.4775, 4.6865, 5.7969, 1.0444, 1.0444, [0.6557, [5.7497,
0.433] 9.7825] 4.6865] 3.7769] 7.5444] 7.5444] 9.2643] 13.3703]
p<0.0001%; p<0.05%; p<0.0001%*;  p<0.0001%; p<0.001%; p<0.001%; p<0.01%; p<0.0001%;
SE=1.719; SE=1.58; SE=1.923; SE=1.985; SE=1.674; SE=1.674; SE=1.68; SE=1.923;
Proposed 95% CI: [- 95% CI: [- 95% CI: [- 95% CI: [- 95% CI: [- 95% CI: [- 95% CI: [- 95% CI: [- -
16.8945, - 7.0602, - 13.3703, - 14.5031, - 9.6261, - 9.6261, - 7.929, - 13.3703, -
10.0855] 0.7998] 5.7497] 6.6369] 2.9939] 2.9939] 1.271] 5.7497]

a Pairwise comparison between F-measures indicated a statistically significant difference.

respectively. Then the pooled standard deviation s is as
follow:

(nj — 1)si2 + (nj — 1) sjg

22
ni+”j_2 (22)

S =

where s? and s? are the standard deviations of F-measure
in the two classifiers with the sample size n; and n;.
Thus, the significance value is the area of the ¢ distribu-
tion with n; + n; — 2 degrees of freedom, that falls out-
side ¢ [72]. When the p value is less than 0.05, the
conclusion is that the two F-measures are significantly
different.

From these results, we showed that the proposed method
had significantly better discriminatory power than these
benchmark methods.
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VI. DISCUSSION
Cardiovascular disease is the most leading cause of death
in developing countries. An arrhythmia is one of the most
common types of cardiovascular disease. A cardiologist mon-
itors and analyzes the heart condition in arrhythmia patients
using 24-h hour Holter monitoring. An analysis of data from
Holter (ECG) monitor and the detection of AFib cardiovascu-
lar disease are continuing concerns for cardiologists. Wireless
implantable devices are being developed to record the data,
monitor the patient’s condition, and analyze the recorded
data. A medical doctor can access the data anytime that is
needed using a smartphone and wireless network. A wireless
implantable ECG sensor can be utilized to detect AFib for
inpatient and outpatient.

There are some important parameters, including size,
distance of the inductive coils, and sensor PTE, to be
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considered for designing implantable medical devices. This
paper optimized a human implantable ECG sensor with WPT
for maximum PTE. As mentioned in the literature review, the
PTE in induced coils was investigated using different types
of coils [7], [8], [73].

In our previous work [60], the PTE of the elliptical-circular
coil was obtained 1.85% for a distance of 5 mm while we
calculated the PTE as 2.90 % for a real wire with circular
cross-section at the distance of 0 mm. In addition, we have
demonstrated that the PTE of the square spiral coils was
greater than the circular ones at the resonant frequency of
13.56 MHz which is consistent with other research [74].

The 4-coil inductance link had higher PTE than the 3-coil
one [7]. However, the power delivered to the load resistance
of the 3-coil inductive link was lower than the 4-coil [12].
The PTE of the 2-coil inductive WPT is less than the
4-coil one [12]. A WPT system including a 3-coil inductive
link was proposed and designed based on the FEM and a
hybrid algorithm [75]. The results were compared to 2- and
4-coil resonant systems. The power transfer of the receiver
coil was increased in 48% as compared to 2- and 4-coil
resonant system [75]. Nevertheless, there is a geometrical
size limitation to use the wireless implantable device in the
human organ. Hence, the 2-coil inductive WPT has minimum
size compared to other coil types. In addition, the PDL of
2-coil inductive WPT is greater than other coils for a short
distance [12]. the average of the maximum PTEs of 21% [§]
and 85.5% [76] is approximately close to the maximum PTE,
56.23%, of present study.

The PTE was increased when the Tx and Rx coils were
moved toward each other. This result agrees with the finding
of other research [7], in which the PTE of the 3-coil inductive
system decreases with the increase of coil distance. When
the distance between the transmitter and receiver coils was
increased, the PTE was dropped because of decreasing the
coupling coefficient of coils [77]. Hence, the far distance
between coils did not work for the wireless transfer system.
It can be predicted that the alignment of the coils will not
significantly affect the PTE.

Table 11 illustrates the comparison of present study with
other references. This study analyzed the ECG signal from
AFib and NSR patients using the DOM method. The DOM
can be utilized in the implantable ECG sensor to detect
the AFib from NSR. The pNN50 and NN50 were found
the most important parameter to distinguish between AFib
symptoms and NSR. The present finding seems to be con-
sistent with [78] which found pNN50 is maximum in the
AFib group. However, the finding of the current study does
not support the previous research [79], in which low LF/HF
was the strongest predictor of AFib. Our novel technique
with HRV features has generated the classification accuracy
of 96.67%.

The proposed classification technique was compared to
advanced arrhythmia classification methods in Table 12.
Our classification technique has generated better results than
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TABLE 11. Comparison of the optimized coil with other literature.

Reference Present Study  [8] [76]
Resonant

Frequency (MHz) 13.56 25 5

Type of transmitter . . .
coil Square-spiral Square-spiral  Square-spiral
Size of transmitter

coil (mm x mm) 50 x50 28 x 28 70 x 70
Type of receiver . . .
coil Square-spiral Square-spiral ~ Square-spiral
Size of receiver coil

(mm x mm) 50 x 50 6x6 20 x 20
Number of coils 2 2 2

Distance of coils

(mm) 10 10
Maximum PTE (%)  56.23 21 85.8

the previously reported researches exlcuding two automated
AFib detection methods such as DBN with VMD and H-ELM
with FN features, although the indirect comparison with the
classification performances.

TABLE 12. Comparison of the Classification accuracy of arrhythmia using
different methods.

Method /(ilcacsligg}z]atlon Reference
Convolutional neural networks 92.7% [80]
Linear discriminant analysis (LDA)  83.0% [20]
1 nea_rest neighborhood (INN) 95.0% [26]
classifier

9-layer deep convolutional neural o

network (CNN) 94.0% (811
Domain transfer SVM, importance o

weighted kernel logistic regression 91.8% [82]
Multi-lead fused classification 87.9% [38]
Floating feature selection 93.0% [39]
SVM 86.4% [83]
CNN-SVM 96.0% [23]
Deep CNN-BLSTM 96.6% [84]
Multi-scale residual convolutional o

neural networks 92.1% (831
ggi}gﬁ\;el co-occurrence matrix 92.1% [36]
Deep belief network (DBN) with

two-stage variational mode 98.2% [46]
decomposition (VMD)

Hierarchical extreme learning

machine (H-ELM) with the 99.4% [47]
fractional norm (FN) features

Global covering rule discovery 96.7% Present
and MDL algorithm - Study

The key findings of this study are given as follows:

1) The square spiral-square spiral coil demonstrated that
the maximum PTE was 56.23% at 13.56 MHz frequency.

2) The DOM can detect the QRS complex from ECG
signal.

3) The rule discovery method is able to induce the classifi-
cation rules without the removal of the inconsistent samples,
e.g., the two samples have identical attribute values but are
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labeled as belonging to different concepts (i.e., AFib and
NSR), in the HRV features by using two rough set approx-
imations, i.e., Eqs. (8) and (9).

4) The proposed model provides more informative and
explainable knowledge that could be used to identify
AFib symptoms than statistical machine learning methods,
in particular, NNs and SVMs, although the classification
power of the proposed model is dependent on other data
discretization algorithms such as FUSINTER, ChiMerge,
Chi2, etc.

5) The 10-fold cross-validation and the pairwise com-
parison results are provided for comparing the classifi-
cation power between the proposed and six benchmark
models.

There has been little ECG signal data in the ECG database
recorded using a human implantable ECG sensor. A further
study with more AFib patients considered the ECG signals
from a human implantable ECG sensor, will need to be under-
taken. The proposed method was considered for the AFib
only and there are other types of arrhythmias such as Ventric-
ular tachycardia. Therefore, false-negative can be increased
because of other types of arrhythmias. More research is
required to detect the effect of other types of arrhythmias.
In addition, it would be interesting to determine the effects
of noise in the ECG signal that can be misdiagnosed as an
abnormal heartbeat.

VII. CONCLUSION

The main aim of this study was to design and develop an
implantable ECG sensor with maximum PTE for classifying
and detecting the AFib from the transferred data using global
covering rule discovery and the MDL algorithm. Hence,
for a 2-coil inductive with WPT, which was attached to a
L-C circuit, was optimized using six different types of ECG
coils at the resonant frequency of 13.56 MHz. The square
spiral-square spiral coil can reach a PTE of 56.23% at the
resonant frequency of 13.56 MHz. The optimized coil with
maximum PTE was used in the implantable ECG sensor and
the ECG data were recorded. To classify AFib from NSR,
a novel machine learning technique, named as global rule
discovery, was used for HRV features. A simple and fast
efficient algorithm, named as difference operation method
(DOM), was utilized that can detect AFib from the NSR using
QRS complex. The ECG signals were recorded using twenty-
nine AFib patients and a control group with NSR.

In this study, we categorized 12 features (excluding “Sex’")
in quantitative values among HRV parameters using MDL
algorithm. The classification accuracy was calculated 96.67%
with the average number of classification rules of 7.9 £
0.32. Our results showed that the averaged F-measure of
our novel technique was more superior than six benchmark
methods such as OneR, C4.5, kNN, LR, MLP, and SVM
with three kernels, as well as other reported classification
methods using machine learning approaches for detection of
AFib using ECG signals. Based on the experimental results,
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three parameters, pNN50, NN50, and LF, were found to be
important for distinguishing between AFib symptoms and
NSR. Well-designed and developed implantable ECG sensor
with maximum PTE can be a basis for the next generation of
human wireless implantable ECG sensors.
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