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ABSTRACT The latest CPUs(computer cpu processors) employ multiple cores, massively superscalar
pipelines, out-of-order execution of tons of instructions, and advanced SIMD capabilities, which can hide
the memory access latency. And most of recent memory-oriented data structures have already benefit
from these features. However, due to the complexity of data organization, these CPUs do not always
work well in memory resident database systems (MMDBs), particularly regarding storing data in dynamic
random-access memory (DRAM). This article studies memory-efficient data structures by analyzing the
run time, access latency, cache misses, instructions per cycle (IPC), and DRAM reads (bytes). Then,
we design and implement two data organization schemas in the mainmemory database: dispersing data block
organization and clustering data block organization. Using algorithmic engineering and careful attention to
internal parallelism, cache alignment can hide the memory access latency. However, we find that these data
structures work well in some cases, though they have been eclipsed in the face of complex access paths.
To determine the reasons, we study the impact of database techniques on memory access latency, such as
data partitioning, storage models, and by processing algorithms. With the specific main memory database
system, we estimate the performance of each data organization schema based on DRAMDDR4 and the latest
Intel Haswell microarchitecture. In conclusion, this work will make DRAM access applicable in real-world
situations by implementing the schema to systems, such as in-memory databases.

INDEX TERMS DRAM access, in-memory databases, data structure, MMDBs, database techniques.

I. INTRODUCTION
Large -scale highly interactive online applications and batch
processing offline applications require either low latency or
a high throughput for processing huge transactional and ana-
lytical query workloads. With the development of memory
hardware in recent years, to keep data access very high speed,
systems designed for this type of big data application typi-
cally keep all of the data in the main memory. While emerg-
ing byte-addressable nonvolatile memories (NVMs) enable
persistent data, dynamic random access memory (DRAM)
resident data allow for faster access to hot data [1]. Many
of today’s applications have designed databases that reside
in random access memory [2]–[9]. However, unlike tradi-
tional disk-based data management systems, disk I/O for data
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page accesses and buffer pools are omitted in main memory
resident data applications. Consequently for many database
operation performances, accessing DRAM main memory
associated with modern processors is a challenge.

Memory hierarchy design can reduce the gap between
processor memory requests and the latency of DRAM access.
Data are always copied back and forth in the hierarchy
(caches or in the main memory) in fixed-sized logical cache
lines, such as 64 bytes. Optimized caching data is very ben-
eficial to processors due to fewer cache misses and fewer
stalls, which usually causes the average memory access
latency. Moreover, the mainstream CPUs have adopted wider
SIMD registers and more advanced instructions, such as Intel
Haswell, kylake microarchitecture, support 256-bit SIMD
instructions and separate 512-bit SIMD instructions, thus
making more data parallelism performance possible. The
performance of the code is limited by instruction execution
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and yet the data locality does play a substantial role in modern
multicore architectures, which has been discussed in refer-
ences [10]–[12]. If all values reside in one cache line, then one
SIMD gather instruction is sufficient. However, each value is
located in a different cache line, which will require time to
gather. Hence, assuming all the required detector values are
contiguous in the main memory and aligned in cache lines,
data parallelism can be achieved by using SIMD instructions
effectively.

Fortunately, many memory operations that leverage
cache-intensive data structures (e.g., lookup, scan) have abun-
dant memory access performance that can be exploited to
optimize the data organization of the main memory systems.
We gather diverse memory-efficient data structures, design
the access patterns, and observe their memory access per-
formance on target database system resident data in DRAM.
We have been amazed that the advantages of the data struc-
tures have nearly disappeared as the complexity of the
access paths increases. The memory access latency does
not depend too much on the data block organization using
memory-efficient data structures; however, it depends more
so on the internal layout and access methods.

Although Garcia-Molina and Salem [13] say that sequen-
tial access is not notably faster than random access on mem-
ory resident data, the contiguousness and data locality of
read data is a dominant factor that limits the overall execu-
tion performance of cache consciousness in main memory
systems [14]. The data locality is a necessity in pure main
memory persistent data management. If data is accessed in
a sequence, it can be brought in multiple values at a time by
using cache lines, and hardware or software prefetchers can
predict the pattern to overlap memory accesses [15]. Hence,
efficiently placing the data records inside the blocks is critical
to system performance. We implement the decomposition
storage model (DSM) [16], N-ary storage model (NSM) [17],
and Partition Attributes Across (PAX) [18] in this evaluation,
thus aiming to analyze modern OLTP-style and OLAP-style
analytical workloads.

An access method enables the main memory database
accesses the data records stored in the memory heap. In the
vectorization-style processing algorithm, the data transfer
between operators in a query pipeline uses batches of values
having the same data type and typically, stored consecu-
tively [19], [20]. The advantage of this approach while scan-
ning is that it allows us to utilize SIMD instructions where
it is most beneficial. In the materialization-style processing
algorithm, the data tuples are often resident in CPU regis-
ters as long as possible to avoid copying the data. In the
best case, a tuple is kept in registers while multiple opera-
tors are executed on it. This process, known as a pipeline,
is cache friendly. Using the LLVM compiler framework to
generate execution code can further improve performance,
which has been implemented in various database systems
[2], [3], [20]–[23]. However, it is difficult to comprehend and
debug, since the generated code is quite low-level and the
compile time also needs to be traded off. In addition to SQL

statements, Linnea et al. [24] integrated lambda expressions
into a relational memory database, which led to a higher data
analytics performance for large datasets.

In main memory systems, using pointers can not only save
considerable storage space, which is important for expen-
sive DRAM, but can also simplify handling variable length
fields [4], [13], [25], such as memory allocation and cache
alignment. This fully benefits from the random access per-
formance in the main memory. However, with the advent
of big data workloads, this approach increasingly exhibits
long-latencymemory stalls within the complex relational data
structure and data processing [15], [26]. Fortunately, recent
proposals have examined software prefetching techniques
for exploiting inter-lookup parallelism to hide the memory
access latency [27]–[31]. In the program stream, software
prefetching issues nonblocking loads for memory accesses,
mainly by performing address calculations for future memory
accesses by hand or automatically generating code leverag-
ing novel compilers. Otherwise, the hardware prefetching
mechanisms that do not require a core pipeline to exe-
cute additional instructions to compute and issue prefetches
can avoid instruction overheads, inflexibility and limited
latency tolerance of software prefetching, as described in
References [32]–[34]. While these techniques work well for
memory-latency bounds, they focus on long pointer chains
and specific operations, such as hash table probs and tree
traversals, which are only useful for a specific problem.
Our evaluated memory access approaches differ in the fac-
tion of real-life workloads. In addition, we also observe
that performance either improves or remains unchanged for
the software prefetching compiler technique. Our TPC-C
workload experiment offers the memory access latency gap
between the physical pointers and logical pointers in a tar-
geted application.

In summary, the goals of this work are as follows.

• Carefully choose five representative memory-efficient
data structures, including Google BTree [35],Mass-Tree
[36]–[38], Open BW-Tree [5], [39], [40], Hopscotch
Hashing [41], [42], and Cuckoo Hashing [43], [44].
Then, we qualitatively and quantitatively compare these
data structures using a unified framework PiBench.

• Design data organization for a specific in-memory
database system using those memory-efficient data
structures. This is because they are the latest main mem-
ory techniques, and trees and hash tables aremost widely
used in database systems for data organization. We cor-
rectly implement these techniques in a real-life memory
resident application, PELOTON.

• Test a variety of workloads under the same hardware
configurations to ensure the fairness of the experiments.
Through the experimental results and by collecting met-
rics on DRAM, we present more detailed findings and
insights for the different designs.

After introducing background on memory-efficient data
structures in more detail in Section 2 and describing our
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design and implementation in Section 3, we present our
evaluation methodology in Section 4. We then discuss the
experimental configurations, as well as examine them in
Section 5 using the YCSB workloads and the TPC-C work-
loads. In Section 6, We discuss our findings and insights
obtained from this evaluation. We discuss related work in
Section 7 and conclude this paper in Section 8.

II. BACKGROUND AND MOTIVATION
In this section, we survey representative memory-efficient
data structures, including Google BTree [35], Mass-Tree
[36]–[38], Open BW-Tree [39], [40], Hopscotch Hashing
[41], [42], and Cuckoo Hashing [43], [44]. Then, we briefly
discuss a performance comparison between these state-of-
the-art in-memory data structures using the PiBench frame-
work.

A. TREE STRUCTURES
B-Trees are widely known as data structures for secondary
storage because they keep disk seeking to a minimum. For
an in-memory data structure, the same property yields a per-
formance boost by keeping cache-line misses to a minimum.
Google BTree is an implementation of an ordered in-memory
container based on a BTree data structure. It stores entry
instances in an ordered structure, allowing easy insertion,
removal, and iteration. Write operations are not safe for con-
current mutation by multiple go routines, but read operations
are. Compared with standard C++ containers implemented
using red-black trees, Google BTree, on average, makes use
of fewer than one pointer per entry, leading to substantial
memory savings.

As shown in Figure 1, the same node type is used for both
internal and leaf nodes in the tree. The children array is only
valid in internal nodes. Each entry of the array records the
pointer of the corresponding child node holding the keys in
a sorted order i.e., the n-th slot will point to the location
of ValueType pairs with keys smaller than the n+1 slot.
Therefore, if the key is an integral or floating-point type,
using the linear search configurationmight be the wise choice
because array traversals (simple stride indirect) are friendly
for software and hardware prefetching.

Mass-Tree is a fast key-value data structure designed
for shared main memory multiprocessing (SMP) machines.
Mass-Tree keeps all data in memory. Its main data structure
is a trie-like concatenation of B+trees, each of which handles
a fixed-length slice of a variable-length key. Query time
is dominated by the total DRAM fetch time of successive
nodes during tree descent. To reduce this cost, Mass-Tree
uses a wide-fanout tree to reduce the tree depth, prefetches
nodes from DRAM to overlap fetch latencies, and carefully
lays out data in cache lines to reduce the amount of data
needed per node. Mass-Tree achieves a high performance on
multicore hardware using fine-grained locking and optimistic
concurrency control. Mass-Tree readers and writers must
cooperate to avoid confusion. The key communication chan-
nel between them is a per-node version counter that writers

mark as ‘‘dirty’’ before creating intermediate states and then
increment when done. Readers snapshot a node’s version
before accessing the node and then compare this snapshot to
the version afterward. If the versions differ or are dirty, the
reader may have observed an inconsistent intermediate state
and must retry.

Since the tree is sorted by key, it will perform well on
workloads with many keys that share long prefixes. The
access time is dominated by the total DRAM fetch time of
successive nodes during tree descent. As shown in Figure 1,
Mass-Tree uses a wide-fanout tree to lower the tree depth,
prefetches nodes from DRAM to overlap the access laten-
cies, and carefully lays out data in cache lines to reduce the
amount of data needed per node, which all effectively hide
the memory latency. Suppose we want to scan a range key
[k(i), k(i+j)). We first loop over the internal nodes and find
the target nodes. Then, we traverse to the leftmost leaf node
and start a left-to-right walk. Because of the versioned nodes,
we have to thoroughly check the variables of each reach leaf.

BW-Tree is a lock-free index that provides a high through-
put for transactional database workloads in an SQL server’s
Hekaton engine [5]. The high-level idea of the BW-Tree is
that it avoids locks by using an indirection layer that maps
logical identifiers to physical pointers for the tree’s internal
components. Threads then apply concurrent updates to a tree
node by appending delta records to that node’s modification
log. This design provides two benefits. First, it avoids the
coherent traffic of locks by decomposing every global state
change into atomic steps; second, it incurs fewer cache inval-
idations on a multicore CPU because threads append delta
records to make changes to the index instead of overwriting
existing nodes. Wang et al. [40] designed and implemented
an in-memory BW-Tree called the Open BW-Tree.

BW-Tree avoids directly editing tree nodes because it
causes cache line invalidation. However, the mapping table
serves as an indirection layer that maps logical node IDs to
physical pointers. As shown in Figure 1, suppose a lookup
key (k). We first loop search over the inner nodes to find the
corresponding Node ID and then find the physical location
by mapping the hash table for the ValueType. Otherwise,
we must traverse the long delta chains for the valid version.
The complicated delta chain traversal routines and mapping
table all contribute to the Open BW-Tree higher instruction
count and cache misses per operation.

B. HASHING STRUCTURES
Hopscotch hashing is an open addressing algorithm originally
proposed by Herlihy, Shavit, and Tzafrir, which is known
for fast performance and excellent cache locality. As shown
in Figure 2, the main idea behind hopscotch hashing is that
each bucket has a neighborhood of size H. The neighborhood
of a bucket B is defined as the bucket itself and the (H-1)
buckets following B contiguously in memory (H buckets
total). This also means that at any bucket, multiple neighbor-
hoods overlap (H to be exact). Hopscotch hashing guarantees
that an entry will always be found in the neighborhood of
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FIGURE 1. Architecture overview of Google BTree, Mass-Tree, and open
BW-Tree.

its initial bucket. As a result, most H consecutive look-ups
will be required in contiguous memory locations, which is
extremely cache friendly. Moreover, the authors build upon
this idea of the fixed size neighborhood using relative offsets
to indicate where the next relevant entry is stored. Each
bucket contains two integers: the first is the offset where
the probe chain starts, and the second is the next entry in
the probe chain. Lock-free hopscotch hashing [42] improves
on both speed and cache locality. The progress guarantees
of the original include a chimera of two concurrent hash
tables. They employ relocation counters at each bucket to
indicate when that bucket’s neighborhood has experienced a
bucket relocation. All operations read the relocation counter
before and after to ensure that there is no concurrent operation
consistency.

Cuckoo hashing is an open-addressed hash table design.
Basic cuckoo hashing stores all key and value entries using
a large array with no pointers or linked lists. If collisions
occur, entries can be stored in one of two buckets in the
array. However, they can be moved to the other location
if the first is full. Second, each bucket has N ‘‘slots’’ for
entries, i.e., N = 4 is a common configuration in practice.
To insert a new key into the table, there may be at most hun-
dreds of bucket reads and writes, which is a sequence during
the whole insert process. While two prior approaches [45],
[46] have implemented concurrent access, recent work [47]
presents the design and implementation of the more cache
friendly and memory efficiency cuckoo hash table. As shown
in Figure 2, a cuckoo hash table can be viewed as an undi-
rected graph called a cuckoo graph, which has a vertex for
each bucket and an edge for each key in the table, connect-
ing the two alternative buckets of the key. In the cuckoo
graph, each alternative bucket of the keys in the current
bucket are considered neighbors of that bucket. BFS (breadth-
first search) scans all neighbors of a bucket to extend the
cuckoo path. Before scanning one neighbor, the processor
can load the next neighborhood in the cache, which will
be accessed soon if no empty slot is found in the current
neighbor.

FIGURE 2. Architecture overview of hopscotch hashing and cuckoo
hashing.

C. PERFORMANCE COMPARISON ON PiBench
PiBench [48] is a benchmark framework for an in-memory
data structure, which can be used to benchmark volatile
DRAM and gathers additional metrics specific to Intel
Optane DC Persistent Memory. PiBench comprises a shared
library and supports common operations by defining a set
of common interfaces (e.g., insert, lookup, scan). Any data
structures such as hash tables and trees can be implemented
through awrapper (libwrapper.so) and translate requests from
PiBench’s API.

PiBench allows us to fairly compare multiple in-memory
data structures and rule out the impact of different bench-
mark implementations. We run experiments on a Linux (5.4),
Ubuntu 18.04 server equipped with an Intel(R) Xeon(R) CPU
E5–2620 v3, 64 GB of DRAM4 (4*16 GB DIMMs). The
CPU has 6 cores (12 hyperthreads), 15 MB of L3 cache,
and is clocked at 2.40 GHz. We implement1 five in-memory
data structures and another STL map using red–black trees.
We run each data structure case with loading the 10 million
records with 8-byte keys and 8-byte values. We then measure
and report the performance during the run phase, in which
10 million operations are executed by a single thread. We set
every time window to 100 ms of a list of operations and
calculate the average throughput and latency time.

We configure the default node size for tree structures and
bucket count for hash tables. For Hopscotchmap, each bucket
has 64 neighbors. We set the Cuckoomap initialization bucket
count to 4, the openBW-Tree leaf node size to 128,Mass-Tree
node size to 15, and the Google BTree node size to 256 bytes,
the same as the original paper’s setup. As shown in Figure 3
and 4 (L3 cache misses: 106. L3 cache hit ratio: number of
cache hits/num of lookups. Megabytes: number of bytes read
from DRAM memory controllers, 106. Throughput: average
operations of one second. IPC: instructions per cycle. Cycle:
number of clock cycles, 109. 50% latency: 50% of sorted
global latencies of sample operations, nanoseconds.), we will
not present the scan operation performance of hash tables
since they have not targeted it.

For the insert operation, all hash tables perform better than
trees because of the low cachemisses, instructions and cycles.
Hopscotchmap has a higher throughput and lower latency
than the other hash tables for both insert and lookup oper-
ations. This mainly benefits from low cache misses and IPCs
benefit from the array. For the lookup operation, STLmap has
the worst performance due to the high cachemisses, cycle and

1https://github.com/gitzhqian/pibench-trees-hashing
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lower IPC. This might be affected by the very deep search of
the red–black tree. Open BW-Tree performs relatively poorly
compared to other trees because it has a higher cycle count
and last level cache misses per operation. The higher cache
misses are generally caused by the mapping table. Mass-Tree
has a higher insert operation throughput and lower access
latency. This is because Mass-Tree creates a new space for
the overflow instead of the copy-on-write. However, for the
scan operation, Mass-Tree has high access latency and a low
throughput. Although it has quite low cachemisses and a high
cache hit ratio, a large number of cycles and IPC degrade
its performance. Mass-Tree with no prefetching has a lower
throughput and higher latency compared with Mass-Tree by
∼20%. Google BTree outperforms Open BW-Tree andMass-
Tree in scan operations since it is a single version and requires
fewer instructions.

In total, all cache misses pay the higher latency price of
DRAM, which results in a lower throughput. Because of the
complex access pattern resulting in a high instruction count
and cycle count, multiple versions of insert optimization are
less effective in the lookup or scan operation. In general,
hardware and software prefetching can effectively hide the
memory access latencies.

III. DESIGN AND IMPLEMENTATION
In this section, we discuss our design and implementation of
data organization in the PELOTON main memory database
system.

A. PARTITIONING AND DATA BLOCK
Partitioning is a ubiquitous operation for modern hard-
ware query execution as a way to split large inputs into
cache-conscious nonoverlapping subproblems. For example,
in the main memory database, datasets can often be split into
multiple small data blocks that are distributed among threads
and now fit in the cache. Horizontal partitioning combined
vertical partitioning approaches are widely used in modern
database systems.

Dataset D consists of K attributes and contains C records.
We design a data block layout using the decomposition stor-
age model(DSM),D, N-ary storage model(NSM),N, and par-
tition attributes across(PAX),X. If M≤C, all possible layouts
of a partition p are as follows:
N = {{a11, a12, a13, . . . , a1k}, {a21, a22, a23, . . . , a2kk},

. . . , {am1, am2, am3, . . . , amk}}.
D = {{a1i}, {a2i}, {a3i}, . . . , {ami}}.
X = {{a11, a12, a13, . . . , a1k}, {a21, a22, a23, . . . , a2k},

. . . , {amj, amj, amj, . . . , amj}}.
Since the size of each attribute can be a fixed-length or a

variable-length, there could be different size data blocks of
allocatedmemory. Afixed-size block is not a typical scenario,
but it can be convenient. As there is no need to maintain
non-contiguous storage space, fixed-size blocks are easier to
manage. For example, a fixed-size block makes it possible
to preallocate consecutive memory addresses, which avoids
the scalability issue as the number of cores increases by

frequently allocating small objects. In addition, fewer cache
misses are incurred duringmemory accesses due to the spatial
locality. The sequential block scan performance could fully
benefit from these features. Variable-size blocks are more
real-life application scenarios, and there are techniques to
trade off the spatial locality and storage efficiency. Common
implementations, such as fixed length placeholders, reference
relocated attributes. Storing fixed-length (8-bytes) pointers in
each block slot complicates thememory access because of the
long pointer chain. Otherwise, there is a need to maintain a
heap and carefully handle pointer-intensive operations with
irregular access paths.

We use the naïve algorithm [49] to calculate the optimal
attribute partitions based on the cost of each possible par-
tition. The optimal partitions are the candidates that result
in the fewest number of overall cache misses for the query
workload. The cost of executing a query on a relation that uses
a particular partition p is the sum of the cost to access all of the
partitions of the derived attributes, as shown in Equation (1).

Cost(q, p) =
|p|∑
i=1

model
(
q, pn

)
(1)

In Equation (1), |p| represents the number of all partitions of
the derived attributes, pi represents subpartition i in partition
p, and model(q,pi) is the number of cache misses incurred for
query q to access the derived attributes. The naïve algorithm
calculates the cost of each possible partition and selects the
partitions with the lowest overall cost for the set of queries
Q. The method for calculating the lowest cost is shown in
Equation (2).

Costmin = mini=1...|P|(
|Q|∑
j=1

cost
(
Qj,Pi

)
) (2)

In Equation (2), |P| is the number of possible partitions of
the set of derived attributes,Pi is partition i ∈ P, |Q| is the
number of queries in the workload, and Qj is query j ∈ Q.

B. DATA BLOCK ORGANIZATION
In this section, we will describe in detail how to organize the
data blocks in the main memory database system. As in mod-
ern main-memory database systems, out-of-place schema is
the popular approach used to handle insert/update operations.
To update the existing tuple, the system creates a new empty
slot instead of locking the older location, which is often
favored in high contention environments because threads
can make global progress. This out-of-place schema is not
friendly for lookup operations and scan operations because
there is a need for traversal data blocks to search for valid
records. Otherwise, executions that access a record may be
unsuccessful as a result of a higher overhead because the
system follows the record’s pointer chain to find the target
chain [50].
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FIGURE 3. Under uniform distribution, a single thread executes insert-only operation or lookup-only operation.

FIGURE 4. Under uniform distribution, a single thread executes scan operation.

1) DISPERSING DATA BLOCKS
As depicted in Figure 5, all blocks of the dataset are dispersed
in a memory heap in this design. Both performance and
available space considerations are important in allocating
memory addresses. When insert and update operations make
a request, the system tries to obtain an empty slot from the
current active block. If the slot offset reaches the end of the
block, a new fixed-size physical memory will be preallocated
by requesting the OS. The new block should be mapped to the
block organization. As an out-of-place update schema, data
parallelism is allowed to leverage the multiple core processor
by setting the number of active blocks. This optimization,
however, is less effective in high contention workloads where
the threads’ throughput and latency performance are limited
by getNextEmptySlot and updateBlockHeader of the block.

The main idea of using an indirect pointer is that the
database system uses a fixed identifier that leverages expen-
siveDRAMmemory and does not change for each block loca-
tion in its block organization. The random lookup operation
and scan operation would not succeed because of long pointer
chains. The pseudocode for the scan operation is shown in
Algorithm 1. For each scan, the database system loops the
block array held by the relational dataset. After fetching the

block ID, hashing the block ID is needed to obtain the block
physical location. If the attribute is a variable length, there is a
visit to the referenced pointer. There aremore than 4 pointings
for each lookup search. In our experiments, tree iteration and
hash prefetching can reduce the logical pointer penalty, which
benefits less. This is mainly due to the outer loop and the inner
loop, which make the access path longer. Accordingly, this
organization schema is ideal for insert and update operations
but may be less effective for lookup and scan workloads.

2) CLUSTERING DATA BLOCKS
In clustering data block organization, data blocks are sorted in
the block memory heap on their key values. These lock-free
data structures (Google B-Tree, Mass-Tree, CuckooMap,
HopcotchMap) have achieved a high performance for write-
heavy workloads. Figure 6 describes the organization schema
of the relation datasets by leveraging memory-efficient data
structures. For each attribute of the relation, there is a default
area of fixed size consecutive memory addresses. When the
sequential insertions are executed, values of the records are
separately stored in the partitioned blocks. If the block has
no other slot, a new fixed-size block will be created and put
to the block-BTree or the block-HashMap.
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FIGURE 5. Dispersing data blocks architecture overview. Blocks are utilized in NSM fashion, i.e., the attributes of a given record are contiguous. The
variable-length attributes are stored in another memory heap, referenced by the indirect pointers in the block. Horizontal partition is used to split a
relational dataset.

FIGURE 6. Clustering data blocks architecture overview. On the left, data blocks are organized in the BTree, such as Google B-Tree and Mass-Tree, utilizing
the DSM fashion, i.e., each attribute of a given relation is contiguous. On the right, data blocks are organized in the Hash Map, such as CuckooMap and
HopscotchMap, utilizing the PAX fashion, and each attribute of a partition is contiguous. The variable-length attributes are stored in another memory
heap, referenced by the indirect pointers in the block. Horizontal and vertical partitions are used to split a relational dataset.

Algorithm 1 Dispersing Data Blocks Organization Scan
Algorithm
Require: blockARRAY
Ensure: buffer < value >

1: /*scan a table by looping though block array */
2: while i← 0 to sizeOf (blockARRAY )− 1 step 1 do
3: /*fetch the block id*/
4: blockID← blockARRAY [i]
5: /*find the location by searching a mapping table*/
6: blockPTR← SearchBlockOrganization(blockID)
7: block ← Load(blockPTR)
8: /*construct valid data set by scanning each block*/
9: while j← 0 to sizeOf(block) step 1 do
10: /*fetch each value of the block*/
11: while k ← 0 to sizeOf(attributes) step 1 do
12: /*check the validity of the target*/
13: attrOFFSET ← CalculateOffset(attr[k])
14: attrPTR← Load(attrOFFSET )
15: attrVALUE ← Load(attrPTR)
16: check ← CheckValidity(attrVALUE)
17: /*put the valid values to the output*/
18: buffer < value >← Buffer(attrVALUE)
19: end while
20: end while
21: end while

The data blocks are aligned to the 64-byte cache block
boundary with the aligned attribute. Using this particular

partitioning, the number of cache misses per block shrinks to
block size/cache line size when executing a full scan. In addi-
tion, this benefits the load (value) and condition check in the
loop and improves performance for two reasons. As shown in
Algorithm 2, first, it allows GetBlock and fetches each value
as array iteration. Second, because instruction prefetching
and pipelining can be adversely affected due to branch predic-
tion misses, we can amortize the condition checking cost by
performing it only once for the whole block. Usually, due to
the complexity of the workloads, condition checks will occur
frequently, and we thus improve the execution efficiency of
the loop. If the execution plan is simple, then the throughput
and access latency are limited by the data block loop. When
the execution plan has more operators and condition checks,
the lookup and scan performance drops as a consequence of
high cycles and IPC. Even though this schema has a relatively
poor performance, the experimental evaluation shows that it
still outperforms the dispersing data block organization for
most workloads. We expect that the performance of a perfect
data organization will improve the throughput and memory
access latency but with an additional computational cost, e.g.,
estimate the amount of address space to preallocate large
virtual addresses for data blocks.

C. ACCESS METHOD
We now briefly discuss the effect of the memory access
hindrance on the design of algorithms for common query
processing operators. The access method describes how the
database accesses the data stored in the memory heap.
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Algorithm 2 Clustering Data Blocks Organization Scan
Algorithm
Require: tableID, columnID, constantPartitionSize
Ensure: buffer < value >

1: /*scan a table by traversing the ordered data structure*/
2: while true do
3: /*find the location and fetch the target values*/
4: blockKEY ← CaculateKey(PARAMETER)
5: blockPTR← SearchBlockOrganization(blockKEY )
6: valueARRAY ← getBlockValue(blockPTR)
7: /*check the validity of each value*/
8: while j← 0 to sizeOf(valueARRAY) step 1 do
9: validity← CheckValidity(valueARRAY [i])

10: if validity is true then
11: /*put the valid values to the output buffer*/
12: buffer < value >← Buffer(valuearray[i])
13: end if
14: end while
15: end while

In general, there are two popular processing models in mod-
ern main memory database systems. Our experiments eval-
uate the vectorization and materialization model using a
sequential scan access method.

Considering an SQL query: Select count (R.b) from R,
H where R.d = H.f and R.a > ? and H.y < ? and H.z > ?,
which accesses the relation Table R(a,b,c,d) and H(x,y,z,e,f).
It selects some tuples from R and some tuples from H, and
then joins the resulting tuples. Finally, it computes the count
of the resulting tuples. The corresponding access patterns and
the pseudocode for parts of our realistic implementations are
shown in Figure 7. In vectorization-style processing, each
operation emits a block of data instead of a single record.
A next function is essentially for in-flight loops iterating
over the output of their child operator. This allows pipelining
where the executor can process a batch of records through
as many operators as possible before having to retrieve the
next batch. The vectorization-style approach is ideal for
read-heavy workloads in which there are a large number of
records that need to be scanned, but fewer operator invo-
cations are required. The code idea of materialization-style
processing is to breakdown the memory accesses with N
dependent operation stages, where each stage consumes the
data from the previous stage and prefetches the data for the
next stage, inspired by [27]. To hide the memory access
latency by doing useful work, all output results of each stage
of the in-flight request are kept in an output buffer. Once a
lookup has been initiated, its stage state is saved in a temp
buffer structure, e.g., valid position, valid count, hash result,
status. This stage state is necessary to continue or terminate
the lookup. Using the field status, the exact operator stage
of an in-flight lookup can be captured easily. For example,
stage 0 (sequential scan) loads the required values and per-
forms condition checking, buffering the logical position of

TABLE 1. Experimental platforms.

the visibility records. Stage 1 (hash table build) requests the
hash attributes and consumes the last buffer, finally buffering
the hash table. If the valid count <= 0 produced by stage 0,
then the following stages will do nothing.

While accurate, the statements we show in the code are
simplified. For instance, three optimizations, not seen in the
code, are the following. (1) To eliminate branches to avoid
misprediction penalties, we eagerly evaluate the selective
predicates, transaction visibility check and reduce the code
branches, which have been discussed in many studies [11],
[19], [21], [31], [51]. We also try to make the data locality
for each hash subprocessing. (2) The global buffer can be
invoked between arbitrary operator stages during the in-flight
lookup. (3) The logical key ID is used for each attribute to
build projection using lazy materialization, which reduces the
intermediate results compared to early materialization.

IV. EVALUATION METHODLOGY
A. EXPERIMENT SETUP
1) HARDWARE
The server machines used in our experiments are listed in
Table 1. The Intel Xeon E5-2620 server features a two-socket
CPU with 6 cores per socket. The server runs Ubuntu 18.04
Linux (kernel version 5.4). On x86, we compile our code with
g++ 5.5 using the −O3 flag. For prefetching data blocks,
on x86, we use the PREFETCHNTA instruction via the built-
in g++ function.

2) SOFTWARE
To reduce the impact of different implementations, we imple-
ment all data structures and design using the PELOTON
in-memory database system. PELOTON is 100% open-
source and completely provides the execution and storage
engine. We use the OLTPBenchmark Framework [52] to
produce a relational database of variable rates and variable
mixture loads via JDBC. As it also provides data collection
features, e.g., per-operation latency and throughput records,
we can analyze details by fully utilizing these statistics.

B. WORKLOADS
1) YCSB
To analyze the memory access performance, we use a
set of Yahoo! Cloud Serving Benchmark (YCSB) [53]
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FIGURE 7. Execution patterns of vectorization-style processing, materialization-style processing and pseudocode of the critical operations. block(i) is the
i block of the given relation. r(i) is the i record of the in-flight loop block. c(i) is the i attribute of the given relation.

microbenchmarks to emulate lookup and scan operations
under relatively simple application scenarios. We configure
workloads Read-only and Scan-only with Zipfian distribu-
tions, which have skewed access patterns common to ran-
dom lookup and scan workloads. We use the default Zipfian
constant of 0.99 to ensure that the read and scan items will
be more uniform. For each workload, we test key and field
types: 32-bit random integers. We test two field length: 10
and 100. Then, there are approximately 44 bytes or 404 bytes
for each record in the usertable YCSB database. The scale
factor varies from 1 thousand to 10 million records. Because
our experimental logical processor is 12, the terminal is set
to 10. In addition, we expect to evaluate how the dataset,
data scale, field size, projectivity, and partition settings affect
the DRAM memory access performance under different data
block organizations.

2) TPC-C
This benchmark is the current standard for measuring
the performance of OLTP systems [54]. It models a
warehouse-centric order processing application with nine
tables and five transaction types. We test only one transaction
StockLevel that scans the order line table and stock table
after looking up the district table. We set the number of
warehouses to 20 and scale up the number of threads to
measure the overall throughput and memory access latency.
We also change the number of warehouses to compare the
access methods, complexity of datasets, the physical pointer
and logical pointer, thread contention, and data prefetching.

V. EXPREMENT ANALYSIS
A. DATASET
In this experimental evaluation, we analyze the performance
impact of the dataset using the YCSB workload and the TPC-
C workload. For the YCSB workload, there is only 1 relation
dataset, and all the field value types are integers. For the
TPC-C workload, there are 9 relation datasets, and the field
value types vary, such as int, double, timestamp, data, varchar,
and char. We limit the 10 threads of concurrent accessing for
each workload. We load 10 million records for YCSB and 20

warehouses for TPC-C, which need 500 800 MB DRAM
memory.

Figures 8 and 9 show the results for these two workloads.
The clustered data block organization executes the scan-only
workload up to 1200× faster than dispersing the data block
organization. However, the clustering data block organization
executes the stock-level workload to fall below 2× faster than
dispersing the data block organization. This is because the
complex value types of the data block need to store large
indirect memory pointers that reference the start of allocated
storage. Then, generally, regular and irregular traversal paths
will require more complex access mechanisms. In addition,
consecutive memory addresses of integer value allow us to
implement the GetBlock, not the GetValue, which will incur
the overhead of pointing.

To verify whether GetValue results in a greater number
of cache misses, we measure the performance counters for
stock-level workload using Perf. As Figure 10 shows, during
the query execution, 80%, cache misses are caused by Get-
Value. Varying the data block organization is possible at a
performance improvement, which is so small if the dataset is
unregular and pointer intensive.

B. DATA SCALE
The results for the throughput and average latency experi-
ments of the dispersing data block organization are shown
in Figure 11 and Figure 12, respectively. We observe that the
throughput drops as we increase the number of data scales
from 1 thousand to 10 million records. After the data scale
exceeds the L3 cache, the throughput drops seriously, and
the average latency increases by 5×. If we implement the
dense index for the dispersing CuckooMap and the sparse
index for the dispersing Google BTree, we see that the dense
index outperforms the sparse index, and the performance gap
increases to 5× after the L3 cache. Scanning only the work-
load performance of the sparse index grows unsteadily as the
data scale increases, but the dense index performs smoothly.
These results are partly because the generated scan items
follow a random distribution. As the data scale increases,
the sparse index performance impacts the distribution of scan
data.
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FIGURE 8. YCSB workload, scan only, throughput and average latency with the different implementations.

FIGURE 9. TPC-C workload, stock level, throughput and average latency with the different implementations.

FIGURE 10. TPC-C workload, stock level, L1D cache misses, TLB misses, and cache misses for dispersing and clustering data block organization.

FIGURE 11. YCSB, read only, scan only, throughput of different data block organizations with varying data scales.

From this experiment, we can also see that the cluster-
ing data block organization increases slightly for the scan
only and read only workload as the data scale increases.
If the data scale is full with the L3 cache, the performance
improves. Where the data scale does not match the L3 cache,
the performance will drop. However, the performance gap
between the different clustering organizations is small. The
reason why the clustering data blocks achieve high perfor-
mance is because the storage format makes GetBlock and the
materialization-style access methods possible. This schema
can leverage the CPU registers during query execution. We

repeated the same experiment using the TPC-C workload.
We set the 10 thread contentions and varied the warehouse
from 1 to 20. From Figure 13, we observe that the average
latency of all the implementations grows near-linearly with
the increase in the number of warehouses, while the dense
index schema maintains a latency that is lower when the
warehouse is 20. We attribute this to the advantage of the
physical pointers and logical pointers. The results show that
at the 20 warehouses, compared with using logical pointers,
the system’s memory access latency when using physical
pointers is 53% lower.
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FIGURE 12. YCSB, read only, scan only, average latency of different data block organizations with varying data scales.

FIGURE 13. TPC-C, stock level, the throughput and average latency of different data block organizations with varying warehouses.

C. FIELD SIZE
In this experiment, wewill examine the impact of field size on
the throughput performance of the different data block orga-
nization schemas. The projectivity of the scan is set to 100%
of all the attributes in the relation table, where one record is 44
bytes in size for 10 fields and 404 bytes in size for 100 fields.
Figure 14 shows that for the throughput performance, when
using the dispersing data block schema drops severely, but
the clustering data block organization does not. We attribute
this to their usage of memory bandwidth and multiple-cache
by consecutively fetching the attributes required by the scan
execution. In the dispersing data block organization schema,
the system execution engine scans records only by using
the GetValue interface and the references stored in the data
blocks.

D. PARTITION
We next examine the impact of partitioning on the differ-
ent implementations. In this experiment, we load 10 million
records, and each record has 100 fields. We evaluate the
alteration in the throughput and average latency due to the
size of the data block. The results for the dispersing data block
organization are shown in Figure 15. For the dispersing Cuck-

oomap and dispersingGoogle BTree organization, we see that
the throughput and latency performance is stable regardless
of the size of the data block that the system configurates.
When the data block full the L3 cache, the average access
latency is lower by 2%. In contrast, for the dispersing Google
BTree + sparse schema, there is a high throughput and low
latency when increasing the data block size. This is because
the sparse index is partition intensive, which reduces the scan
loop instructions. With the sparse index, the average latency
of the scan operation downwards near-logarithmically with
the increase partition.

As shown in Figure 16, we also have some interesting
findings showing that the performance declines over parti-
tion size. This worst performance is a consequence of the
materialization-style access method. As the partition size
increases, the data blocks cannot fill the cache efficiency.
Furthermore, GetBlock and 100% projectivity have an effect
on access latency, which leads to large intermediate results.

E. PROJECTIVITY
In this experiment, we load the 10 million records and
configure 100 fields for each record. We vary the project-
ing attributes from 1% to 100%. Figure 17 presents the
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FIGURE 14. YCSB, scan only, throughput of different data block organizations with varying field sizes.

FIGURE 15. YCSB, scan only, throughput and average latency of dispersing data block organization. 394 KB (1000 records), 1 MB (4000 records), 15 MB
(38000 records), 24 MB (64000 records), 30 MB (75000 records), 48 MB (128000 records), 90 MB (235000 records) are the different block size.

FIGURE 16. YCSB, scan only, throughput and average latency of clustering data block organization. 4 KB (1000 records), 16 KB (4000 records), 32 KB
(8000 records), 64 KB (16000 records), 128 KB (32000 records), 256 KB (64000 records) are the different block size.

throughput and average latency performancewhen the system
executes scans using the dispersing data block organization
schema. Both the dispersing Cuckoomap and GoogleBTree
perform up and down with varying projectivity. This is
because of the lazy materialization for the project operation.
In addition, we partly attribute this to hashing and tree data
structures. In contrast, the sparse index schema’s performance
is stable regardless of the variety of projectivity.

As we expected, Figure 18 shows that the clustering
data block organization schema will deteriorate from a low
throughput and a high average latency as the projectivity
ratio increases. This is because clustering data blocks the
organization schema and only fetches the required attributes
of records, which may require more projection overhead as
the projectivity ratio increases.

F. THREAD CONTENTION
The salient aspect of these data structures’ design is that they
are all lock-free and ideal for modern multicore CPUs. Even
though we only analyze the memory access latency in this

evaluation, to better understand this issue, we create a high
contention workload environment. We load 20 warehouses
and vary the current threads from 1 to 20. The results shown
in Figure 19 indicate that all six implementations degrade
under high contention. Both dispersing and clustering schema
performance drops as the threads increase. Overall, under
high contention, dispersing the dense index has the best result,
followed by clustering the hashing schema and then clus-
tering the tree schema. The dispersing Cuckoomap suffers
from logical pointers as threads contend for the data block
slots. The average access latency performance gap between
the clustering tree schema and hashing schema grows to 18%
as the thread contention increases. We attribute this to the
multithreads, in-memory data structures and the PAX storage
model, which brings the data locality.

G. DATA PREFETCHING
These data structures in original papers claim that this design
incurs fewer cache misses and leads to low memory access
latency.We load the 20 warehouse and configured 10 threads.
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FIGURE 17. YCSB, scan only, throughput and average latency of dispersing data block organization with varying the projectivity.

FIGURE 18. YCSB, scan only, throughput and average latency of clustering data block organization with varying the projectivity.

FIGURE 19. TPC-C, stock level, the throughput and average latency of different data block organizations with varying concurrent threads.

We use perf to measure running metrics, such as L1D cache
misses, TLD misses and instructions. Figure 20 shows that
the clustering Google BTree schema is unsuccessful because
of the number of nodes, which requires fewer array loops as
the partition size increases. Furthermore, in our experiments,
the optimal node size threshold is 32 bytes when the partition
size is set to 1000.

As we expect, the MassTree data block organization with
prefetch outperforms the schema without prefetch. From Fig-
ure 21, we observe that the masstree with prefetch achieves
a higher throughput and lower average latency due to fewer
TLB cache misses. However, it also has the large instructions.
Regardless, this software prefetching by performing address

calculation for future memory accesses by hand in the pro-
gram steam benefits the memory access latency reduction.

VI. SUMMARY OF EXPERIMENTS
We describe a large number of experiments in Section 5.
In this section, we summarize our findings and connect them
back to the impact discussed in Section 3. Our focus is to
understand the relative performance of the two block organi-
zation schemas, which are alternatives to different implemen-
tations. Our high-level conclusion is that in the in-memory
setting, for systems using block-based architecture, the per-
formance has a gap between these two alternatives. We now
analyze the impact of individual dimensions.
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FIGURE 20. TPC-C, stock level, throughput and average latency of clustering GoogleBTree data block organizations with varying partitions (a), (b) and
node sizes (c), (d), such as 32 bytes, 64 bytes, 128 bytes and 256 bytes.

FIGURE 21. TPC-C, stock level, throughput, average latency, L1D cache misses, TLB misses and instructions of clustering masstree data block organization
with varying concurrent threads.

A. WORKLOAD
We find that the database workload bridges the gap between
the performance of the dispersing data block organization and
clustering data block organization. Despite the different stor-
age layouts, the two organization schemas have similar access
latency performances resulting from complex data types that
could produce long pointer access paths. Data scale variation
largely impacts dispersing data block organization schemas.
When the field size of the relation is wider, the clustering data
block organization outperforms the dispersing schema. Under
high thread contention, their performance degrades linearly.

B. BLOCK SIZE
Block size can largely affect the performance of clustering
data block organization. As the materialization-style access
algorithm we discussed in Section 3, the CPU register cannot
fill the whole block.

C. PARALLELISM
The performance gap between the two alternatives is largely
unaffected by data parallelism. We note that the dispers-
ing data block organization works well in most workloads,
although query processing is based on data block pipeline
parallelism.

D. INDEX
The index is commonly used to speed up query processing
when the data blocks are dispersed. In our experiments, the
dense index and sparse index are implemented by using
Open BW-Tree and Zone Map, respectively. The dense index
always has high throughput and low access latency. However,
the sparse index has unstable performance and performs
poorly on a large data scale.

E. SOFTWARE PREFETCHING
Software prefetching improves the scan performance when
using the Mass-Tree clustering data block organizations in a
representative query. Prefetching did not perform well, as we
expected, as Mass-Tree has a relatively poor performance for
the YCSB scan workload.

VII. RELATED WORK
There have been many experimental studies on memory
access performance for in-memory databases. For instance,
Anastassia Ailamaki [18], [55] examines the data organiza-
tion model PAX (Partition Attributes Across), which achieves
high cache utilization and performance for modern pro-
cessors. In main-memory experiment environments, PAX
can reduce 50%∼75% compared to NSM (N-ary Storage
Model) [17]-oriented disk pages. When compared to the
DSM (decomposition storage model) [16] researched by
George P, PAX also performs faster, and memory access
remains stable as required attributes increase. In [49], Richard
A. Hankins et al. presented a flexible data storage technique
called datamorphing that significantly improves performance
by calculating the layout and trading optimality for faster time
complexity. To optimize accesses to all levels of the memory
hierarchy and for all the different workloads, [56] designed a
buffer pool to narrow the access latency gap between volatile
and nonvolatile storage. MonetDB/X100 ColumnBM [57]
also stores all delta columns using PAX in the memory buffer
pool to reduce the update operation cost.

Optimized cache efficiency and multicore parallelism data
structures have emerged in recent years. These include
adaptive radius trees [58], [59], open Bw-trees [39], [40],
Bz-trees [26], Mass trees [37], [38], FPTrees [60], [61],
master trees [4], [37], B+trees [62], cuckoo hashing [43],
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[44], [63], and hopscotch hashing [41], [42]. Indices allow
the system to look up data quickly, without scanning all
of the records. Traditional concurrent data structures use
locks to provide fine-grained concurrent access, which scales
poorly on modern multicore CPUs. Optimistic locking not
only improves the scalability of data structures on modern
processors, but also allows the processing of more complex
workloadswhen usingmultiversion concurrency control [50].
Otherwise, for these design decisions, such as index, version
storage, and data representation, most HTAP transactional
analytical implementations store records in global data struc-
tures in the main databases [3], [5], [7], [8], [64]–[66].

New hardware technologies create new opportunities
and challenges for memory access latency in in-memory
databases. Reference [11]researched mainstream CPUs with
wider SIMD registers and presented the impact of efficient
vectorization on the algorithmic designs and implementa-
tions of in-memory database operators. Pipelining query
execution is critical in an in-memory database, but for
system designers, pipelines or not pipelines, [20] exam-
ined the narrow gap between them. Reference [19] ana-
lyzed vectorization or data-centric code generation, which
are query engines adopted by most modern in-memory
databases. Both are efficient, vectorization is better at hid-
ing cache miss latency, whereas data-centric compilation
requires fewer CPU instructions, which benefits cache-
resident workloads. Furthermore, in-memory database sys-
tems commonly use pointers for direct access to records in
memory. This is because pointers can save space for large
variable length values, just stored once, referenced by mem-
ory pointers everywhere. However, pointer chaining is truly
limited for memory access latency. Reference [27], [32],
[67] researched approaches using hardware-based memory
traces and software-based prefetching, which all improved
the memory access performance. In addition, hardware trans-
actional memory (HTM) based on cache coherence has been
studied in many works [68]–[71].

VIII. DISCUSSION AND CONCLUSION
In this work, we present generic DRAM access patterns
for in-memory databases. We design data block organiza-
tion schemas using recent memory-efficient data structures.
We implement query processing algorithms in the in-memory
database PELOTON.2 Our evaluations show that data block
organization schemas benefit memory access performance
improvement. However, in some cases, their performance
gap is narrow. We discuss the many dimensions that impact
DRAM access performance for an in-memory database.
Though the summary of experiments, we gain four insights.
I1: The performance of memory access for dispersing orga-
nization rapidly degrades as read workload becomes heavy.
This mainly due to the L3 cache misses. I2: The effective-
ness of two data organizations to lower the access latency
depends on the access methods. The access pointer chain

2https://github.com/gitzhqian/peloton-trees-hashing

can be pruned eagerly by using optimized processing algo-
rithms. I3: Results produced from dispersing and cluster-
ing implementations may be inconsistent with the theory.
I4: Even hardware and software prefetching techniques can-
not improve the performance of memory access if there is
more transaction validation mixed into the query workload.

In future work, we plan to support TPC-H, and to include
index data structure modules based on our preliminary stud-
ies. We expect that our work will help to advance DRAM
access for in-memory data management system research.
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